1
|
Zhang X, Fam KT, Dai T, Hang HC. Microbiota mechanisms in cancer progression and therapy. Cell Chem Biol 2025; 32:653-677. [PMID: 40334660 DOI: 10.1016/j.chembiol.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The composition of the microbiota in patients has been shown to correlate with cancer progression and response to therapy, highlighting unique opportunities to improve patient outcomes. In this review, we discuss the challenges and advancements in understanding the chemical mechanisms of specific microbiota species, pathways, and molecules involved in cancer progression and treatment. We also describe the modulation of cancer and immunotherapy by the microbiota, along with approaches for investigating microbiota enzymes and metabolites. Elucidating these specific microbiota mechanisms and molecules should offer new opportunities for developing enhanced diagnostics and therapeutics to improve outcomes for cancer patients. Nonetheless, many microbiota mechanisms remain to be determined and require innovative chemical genetic approaches.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tingting Dai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Zhang J, Zhang Z, Yang C, Liu Q, Song T. Development of a MVI associated HCC prognostic model through single cell transcriptomic analysis and 101 machine learning algorithms. Sci Rep 2025; 15:7977. [PMID: 40055377 PMCID: PMC11889200 DOI: 10.1038/s41598-025-91475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/20/2025] [Indexed: 03/12/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is an exceedingly aggressive form of cancer that often carries a poor prognosis, especially when it is complicated by the presence of microvascular invasion (MVI). Identifying patients at high risk of MVI is crucial for personalized treatment strategies. Utilizing the single-cell RNA-sequencing dataset (GSE242889) of HCC, we identified malignant cell subtypes associated with microvascular invasion (MVI), in conjunction with the TCGA dataset, selected a set of MVI-related genes (MRGs). We developed an optimal prognostic model comprising 11 genes (NOP16, YIPF1, HMMR, NDC80, DYNLL1, CDC34, NLN, KHDRBS3, MED8, SLC35G2, RAB3B) based on MVI-related signature genes by integrating single-cell transcriptomic analysis with 101 machine learning algorithms. This model is meticulously crafted to forecast the prognosis of individuals afflicted with hepatocellular carcinoma (HCC). Additionally, we affirmed the predictive precision and superiority of our model through a meta-analysis against existing HCC models. Furthermore, we explored the differences between high- and low-risk groups through mutation and immune infiltration analyses. Lastly, we investigated immunotherapy responses and drug sensitivities between risk groups, providing novel therapeutic insights for liver cancer.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Zheng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Chenqing Yang
- Department of Gynaecology and Obstetrics Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| | - Tao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
3
|
Chen R, Luo N, Li P, Song M, Ji L, Gao X, Xia X, Capasso M, Sun Y. Identification of a pyroptosis-related gene prognostic signature in patients with hepatocellular carcinoma. J Gastrointest Oncol 2025; 16:128-145. [PMID: 40115919 PMCID: PMC11921290 DOI: 10.21037/jgo-2024-954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Background Pyroptosis has been recently identified as a hallmark of cancer biology; however, the potential of pyroptosis-related genes (PRGs) as prognostic markers has not been fully elucidated in hepatocellular carcinoma (HCC). The aim of this study was to develop a PRG-associated risk signature for prediction prognosis in patients with HCC. Methods We identified 35 PRGs from the published literature, and pyroptosis subtypes were identified through bioinformatics methods. The risk score model was established by applying least absolute shrinkage and selection operator (LASSO) Cox regression method in The Cancer Genome Atlas (TCGA) cohort and validated in International Cancer Genome Consortium (ICGC) datasets. Additionally, immune infiltration, enriched pathways, and genomic alterations were compared between the high- and low-risk score subgroups. Finally, a nomogram containing the pyroptosis risk score and other prognosis-related clinical factors was developed for predicting the overall survival of patients with HCC. Results Based on the expression profile of PRGs, we determined two pyroptosis-related subtypes (cluster A and cluster B) of HCC associated with different immune characteristics and significantly different prognoses. The risk score model showed that upregulation of GPX4, CASP8, NOD2, and GSDME was associated with poor overall survival (OS), while high expression of NLRP6 was associated with good prognosis. Compared with group with a lower risk score, the group with a high risk score had worse prognosis (P<0.001) and a high level of immune cell infiltration. Functional analysis indicated that the highly expressed genes in the high-risk group were mainly enriched in various signaling pathways, while the genes with low expression in the high-risk group were mainly enriched in different biochemical metabolic translations. Genomic alterations in high-risk and low-risk populations suggested that mutations in the TP53 gene are highly associated with pyroptosis in patients with HCC. A nomogram including risk score and TNM stage demonstrated good prognostic ability in predicting 1-year, 3-year, and 5-year OS. Conclusions We developed and verified a prognostic risk model based on PRGs for patients with HCC, which may provide a robust tool for predicting outcomes in this setting.
Collapse
Affiliation(s)
- Ruipeng Chen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Nuojie Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pansong Li
- Geneplus-Beijing Research Institute, Beijing, China
| | | | - Liyan Ji
- Geneplus-Beijing Research Institute, Beijing, China
| | - Xuan Gao
- Geneplus-Beijing Research Institute, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Research Institute, Beijing, China
| | - Mario Capasso
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery University of Naples Federico II, Naples, Italy
- Gastroenterology and Digestive Endoscopy Department, ASST Crema Maggiore Hospital, Crema, Italy
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Fu T, Zhou J, Yang L, Wang J, Li H, Shan Y, Gao H, Xie C, Jiang D, Zhang L, Ma J, Pan Q, Xu M, Zhang M, Gu S. Neutrophil-induced pyroptosis promotes survival in patients with hepatoblastoma. Cancer Immunol Immunother 2025; 74:106. [PMID: 39932547 PMCID: PMC11813845 DOI: 10.1007/s00262-024-03922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/11/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Hepatoblastoma (HB) is the predominant hepatic malignancy among children. Despite therapeutic options for HB were gradually refined in recent years, patients with metastasis suffer from an unsatisfactory prognosis. Pyroptosis is a type of programmed and inflammatory necrosis. Neutrophils are crucial in innate immunity, which were shown to be associated with tumor progression. Our study strived to unravel the relationship between neutrophil-induced pyroptosis (NIP) and HB. METHODS The clinical and bulk RNA sequencing data of 38 patients with HB were obtained from Shanghai Children's Medical Center. We established NIP score based on the LASSO regression. The single-cell RNA sequencing data (GSE186975) were used for for key genes identification, cellular communication, and differentiation trajectories of neutrophils. KEGG, GO, GSVA, and ssGSEA enrichment were used to analyze biological functions, including neutrophil extracellular traps (NETs), NOD-like receptors pathway, neutrophil activation, neutrophil-mediated cytotoxicity, and others. RESULTS We constructed a NIP score based on the expression of three genes related to neutrophil and pyroptosis, namely ELANE, CASP1, and NOD2, which was positively correlated with a favorable prognosis of HB. Moreover, we clarified the function of ELANE in HB microenvironmwnt. Immunohistochemistry and transcriptome analysis unraveled a significant correlation between NETs and pyroptosis in HB, suggesting the key role of NETs-related neutrophils in inducing pyroptosis and prolonging survival. We also found upregulated tumor-promoting and immunosuppression-related pathways in the HB microenvironment. In addition, we clarified the growth trajectories and phenotypic changes of neutrophils in the immune microenvironment of HB, which can serve as potential targets for immunotherapy. CONCLUSIONS The novel NIP score for patients with HB shows high predictive value for survival. Moreover, we identified biological function, cellular communication, and growth trajectories of neutrophils in HB. Our findings broaden insights into the treatment of HB.
Collapse
Affiliation(s)
- Tingyi Fu
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jiquan Zhou
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Liyuan Yang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jing Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai, Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yuhua Shan
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hongxiang Gao
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Chenjie Xie
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Lei Zhang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Ji Ma
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Min Xu
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center Affiliated to Shanghai, Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Song Gu
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
5
|
Zerrad C, Lkhider M, Bouqdayr M, Belkouchi A, Badre W, Tahiri M, Pineau P, Benjelloun S, Ezzikouri S. NOD1 and NOD2 genetic variants: Impact on hepatocellular carcinoma susceptibility and progression in Moroccan population. Gene 2024; 931:148847. [PMID: 39147112 DOI: 10.1016/j.gene.2024.148847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 are involved in carcinogenic processes by recognizing bacterial cell wall components and triggering inflammation. This study explored the association between genetic variations in NOD1 and NOD2 and susceptibility to hepatocellular carcinoma (HCC) and its progression in a Moroccan population. METHODS Genotyping of NOD1 rs2075820 (C>T) and NOD2 rs718226 (A>G) was performed using the TaqMan allelic discrimination assay in 467 Moroccan individuals. The cohort included 156 patients with hepatocellular carcinoma (HCC), 155 patients with liver cirrhosis (LC) diagnosed with HBV, HCV, or MASLD, and 156 controls. RESULTS The NOD1 rs2075820 variant showed no association with HCC susceptibility or progression, which is consistent with in silico predictions. However, the NOD2 rs718226 G allele and GG genotype were more common in the HCC group compared to the cirrhosis and control groups. Individuals with the homozygous G variant had a 2-fold higher risk for HCC (ORad = 2.12; CI=1.01-4.44; Pad = 0.04). Those with the GG genotype also had an increased risk of HCC (GG vs. AG+AA ORad = 2.28; CI=1.15-4.54; Pad = 0.016). Furthermore, GG genotype carriers had a significantly higher risk of HCC progression (ORad = 2.58; CI=1.26-5.31; Pad = 0.031). Individuals with the rs718226 minor allele had a significantly elevated risk of progressing from LC to HCC (ORad = 1.50; CI=1.07-2.09; Pad = 0.016). Stratification analysis indicated that men had a higher risk of HCC progression compared to women (ORad = 4.63; CI=1.53-14.00 vs. ORad = 2.73; CI=1.05-7.09). CONCLUSION The NOD1 rs2075820 polymorphism does not appear to be a genetic risk factor for susceptibility to HCC. In contrast, the non-coding NOD2 rs718226 variant significantly increases HCC susceptibility and promotes liver cancer progression in the Moroccan population. Further studies involving larger cohorts are warranted to definitively confirm or refute the effects of NOD1 and NOD2 genetic variants on liver cancer susceptibility and progression.
Collapse
Affiliation(s)
- Chaimaa Zerrad
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Mustapha Lkhider
- Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Meryem Bouqdayr
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Wafaa Badre
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco; Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
6
|
Rahdan F, Abedi F, Dianat-Moghadam H, Sani MZ, Taghizadeh M, Alizadeh E. Autophagy-based therapy for hepatocellular carcinoma: from standard treatments to combination therapy, oncolytic virotherapy, and targeted nanomedicines. Clin Exp Med 2024; 25:13. [PMID: 39621122 PMCID: PMC11611955 DOI: 10.1007/s10238-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Human hepatocellular carcinoma (HCC) has been identified as a significant cause of mortality worldwide. In recent years, extensive research has been conducted to understand the underlying mechanisms of autophagy in the pathogenesis of the disease, with the aim of developing novel therapeutic agents. Targeting autophagy with conventional therapies in invasive HCC has opened up new opportunities for treatment. However, the emergence of resistance and the immunosuppressive tumor environment highlight the need for combination therapy or specific targeting, as well as an efficient drug delivery system to ensure targeted tumor areas receive sufficient doses without affecting normal cells or tissues. In this review, we discuss the findings of several studies that have explored autophagy as a potential therapeutic approach in HCC. We also outline the potential and limitations of standard therapies for autophagy modulation in HCC treatment. Additionally, we discuss how different combination therapies, nano-targeted strategies, and oncolytic virotherapy could enhance autophagy-based HCC treatment in future research.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Zhao L, Ma H, Jiang Y, Li Y, Guo N, Chen Y, Jiang X, Zhao Y, Yang J, Liu Y, Wen K, Wang L, Jian L, Fan X. Reserpine, a novel N6-methyladenosine regulator, reverses Lenvatinib resistance in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156002. [PMID: 39326134 DOI: 10.1016/j.phymed.2024.156002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive malignancy and a growing global health problem. Reserpine (Res), a plant-derived hypertension drug, has been reported to possess anti-tumor efficacy. However, the role and function of Res in N6-methyladenosine (m6A) regulation and Lenvatinib (Len) resistance in HCC have not been clarified. PURPOSE To verify whether Res can be used as a natural small-molecule regulator of m6A to reverse Len resistance in HCC. METHODS Dot blotting, Western blotting and m6A quantification were used to compare and analyze the differential expression of m6A and its methyltransferase METTL3. Western blotting, Real-Time PCR (RT-PCR), cellular thermal shift assay (CETSA) and molecular docking were used to explore the mechanism of interaction between Res and m6A. The effects of Res on the biological characteristics of Lenvatinib-resistant HCC cells were investigated through CCK-8, clone formation, and Transwell assays. Cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models were used to assess the ability of Res to reverse Len resistance in vivo. MeRIP m6A sequencing, PATHWAY analysis and Western blotting were used to analyze the downstream signaling pathways and genes involved in Res-mediated reversal of Len resistance. RESULTS Len resistance in HCC is related to the increased m6A level and the high expression of METTL3. Res affects the activity of METTL3 protein by binding to it, thereby downregulating the level of m6A. In vitro study showed that Res can sensitize HCC cells to the anti-tumor effects of Len treatment, including blocking proliferation, inhibiting migration, and inducing apoptosis. Len-resistant CDX and PDX models revealed that Res can reverse the resistant phenotype, with the tumor inhibition rates of 77.46 % and 62.1 %, respectively, when combined with Len treatment. Analysis of xenograft tissues showed that the combination of Res and Len down-regulates the m6A level, reduces proliferation biomarkers, and induces apoptosis, which is consistent with the in vitro data. Mechanistically, our preliminary results indicate that Res can up-regulate the SMAD3 level by down-regulating m6A in Len-resistant cells. CONCLUSIONS Reserpine, a small-molecule regulator of m6A, reverses Lenvatinib-resistant phenotypes, including proliferation, migration and anti-apoptosis, in vitro and in vivo by targeting SMAD3 and down-regulating the m6A level in HCC.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Heyao Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuhui Jiang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yingying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaowen Jiang
- Department of Analysis and Pharmacology of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yunpeng Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingjing Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yifei Liu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kaishu Wen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xinyu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
8
|
Penugurti V, Manne RK, Bai L, Kant R, Lin HK. AMPK: The energy sensor at the crossroads of aging and cancer. Semin Cancer Biol 2024; 106-107:15-27. [PMID: 39197808 PMCID: PMC11625618 DOI: 10.1016/j.semcancer.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
AMP-activated protein kinase (AMPK) is a protein kinase that plays versatile roles in response to a variety of physiological stresses, including glucose deprivation, hypoxia, and ischemia. As a kinase with pleiotropic functions, it plays a complex role in tumor progression, exhibiting both tumor-promoting and tumor-suppressing activities. On one hand, AMPK enhances cancer cell proliferation and survival, promotes cancer metastasis, and impairs anti-tumor immunity. On the other hand, AMPK inhibits cancer cell growth and survival and stimulates immune responses in a context-dependent manner. Apart from these functions, AMPK plays a key role in orchestrating aging and aging-related disorders, including cardiovascular diseases (CVD), Osteoarthritis (OA), and Diabetes. In this review article, we summarized the functions of AMPK pathway based on its oncogenic and tumor-suppressive roles and highlighted the importance of AMPK pathway in regulating cellular aging. We also spotlighted the significant role of various signaling pathways, activators, and inhibitors of AMPK in serving as therapeutic strategies for anti-cancer and anti-aging therapy.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajesh Kumar Manne
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Ling Bai
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Rajni Kant
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States
| | - Hui-Kuan Lin
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
9
|
Yun F, Wu N, Yi X, Zhang X, Feng Y, Ni Q, Gai Y, Li E, Yang Z, Zhang Q, Sai B, Kuang Y, Zhu Y. NOD2 reduces the chemoresistance of melanoma by inhibiting the TYMS/PLK1 signaling axis. Cell Death Dis 2024; 15:720. [PMID: 39353904 PMCID: PMC11445241 DOI: 10.1038/s41419-024-07104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an immune sensor crucial for eliciting the innate immune responses. Nevertheless, discrepancies exist regarding the effect of NOD2 on different types of cancer. This study aimed to investigate these function of NOD2 in melanoma and its underlying mechanisms. We have validated the tumor suppressor effect of NOD2 in melanoma. NOD2 inhibited the proliferation of melanoma cells, hindering their migration and invasion while promoting the onset of apoptosis. Our study showed that NOD2 expression is closely related to pyrimidine and folate metabolism. NOD2 inhibits thymidylate synthase (TYMS) expression by promoting K48-type ubiquitination modification of TYMS, thereby decreasing the resistance of melanoma cells to 5-fluorouracil (5-FU) and capecitabine (CAP). TYMS was identified to form a complex with Polo-like Kinase 1 (PLK1) and activate the PLK1 signaling pathway. Furthermore, we revealed that the combination of the PLK1 inhibitor volasertib (BI6727) with 5-FU or CAP had a synergistic effect repressing the proliferation, migration, and autophagy of melanoma cells. Overall, our research highlights the protective role of NOD2 in melanoma and suggests that targeting NOD2 and the TYMS/PLK1 signaling axis is a high-profile therapy that could be a prospect for melanoma treatment.
Collapse
Affiliation(s)
- Fang Yun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Na Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qinxuan Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yanlong Gai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Enjiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China.
| |
Collapse
|
10
|
Gurses S, Varghese N, Gupta D. Innate immunity gene Nod2 protects mice from orthotopic breast cancer. Mol Biol Rep 2024; 51:988. [PMID: 39285089 PMCID: PMC11405536 DOI: 10.1007/s11033-024-09927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Nod2 is involved in innate immune responses to bacteria, regulation of metabolism, and sensitivity to cancer. A Nod2 polymorphism is associated with breast cancer, but the role of Nod2 in the development and progression of breast cancer is unknown. METHODS Here, we tested the hypothesis that Nod2 protects mice from breast cancer using the 4T1 orthotopic model of mammary tumorigenesis. WT and Nod2-/- mice were injected with 4T1 mammary carcinoma cells and the development of tumors was monitored. A detailed analysis of the tumor transcriptome was performed and genes that were differentially expressed and pathways that were predicted to be altered between WT and Nod2-/- mice were identified. The activation of key signaling molecules involved in metabolism and development of cancer was studied. RESULTS Our data demonstrate that Nod2-/- mice had a higher incidence and larger tumors than WT mice. Nod2-/- mice had increased expression of genes that promote DNA replication and cell division, and decreased expression of genes required for lipolysis, lipogenesis, and steroid biosynthesis compared with WT mice. Nod2-/- mice also had lower expression of genes required for adipogenesis and reduced levels of lipids compared with WT mice. The tumors in Nod2-/- mice had decreased expression of genes associated with PPARα/γ signaling, increased activation of STAT3, decreased activation of STAT5, and no change in the activation of ERK compared with WT mice. CONCLUSIONS We conclude that Nod2 protects mice from the 4T1 orthotopic breast tumor, and that tumors in Nod2-/- mice are predicted to have increased DNA replication and cell proliferation and decreased lipid metabolism compared with WT mice.
Collapse
Affiliation(s)
- Serdar Gurses
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nivya Varghese
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA.
| |
Collapse
|
11
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
12
|
Gong X, Wang Z, You J, Gao J, Chen K, Chu J, Sui X, Dang J, Liu X. Pyroptosis-associated genes and tumor immune response in endometrial cancer. Discov Oncol 2024; 15:433. [PMID: 39264524 PMCID: PMC11393226 DOI: 10.1007/s12672-024-01315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
The occurrence and progression of tumors are linked to the process of pyroptosis. However, the precise involvement of pyroptosis-associated genes (PRGs) in endometrial cancer (EC) remains uncertain. 29 PRGs were identified as being either up-regulated or down-regulated in EC. PRGs subgroup analysis demonstrated distinct survival outcomes and diverse responses to chemotherapy and immune checkpoint blockade therapy. A higher expression of GPX4 and NOD2, coupled with lower levels of CASP6, PRKACA, and NLRP2, were found to be significantly associated with higher overall survival (OS) rates (p < 0.05). Conversely, lower expression of NOD2 was linked to lower progression-free survival (p = 0.021) and advanced tumor stage(p = 0.0024). NOD2, NLRP2, and TNM stages were identified as independent prognostic factors (p < 0.001). The LASSO prognostic model exhibited a notable decrease in OS among EC patients in the high-risk score group (ROC-AUC10-years: 0.799, p = 0.00644). Furthermore, NOD2 displayed a positive correlation with the infiltration of immune cells and the expression of immune checkpoints (p < 0.001). GPX4 and CASP6 are significantly associated with TMB and MSI (RTMB = 0.39; RMSI = 0.23). Additionally, a substantial upregulation of NOD2 was confirmed in both EC cells and tissue, indicating a positive relationship between advanced TNM stage (p < 0.0001) and infiltration of M1 phenotype macrophages. Nonetheless, its impact on patient OS did not reach statistical significance (p = 0.141). Our findings have contributed to the advancement of a prognostic model for EC patients. NOD2 receptor-mediated pyroptosis mechanism potentially regulates tumor immunity and promotes the transformation of macrophages from the M2 phenotype to the M1 phenotype, which significantly impacts the progression of EC.
Collapse
Affiliation(s)
- Xiaodi Gong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zhifeng Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jiahao You
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jinghai Gao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kun Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jing Chu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxin Sui
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jianhong Dang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Xiaojun Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
13
|
Fan FM, Fleishman JS, Chen J, Chen ZS, Dong HH. New insights into the mechanism of resistance to lenvatinib and strategies for lenvatinib sensitization in hepatocellular carcinoma. Drug Discov Today 2024; 29:104069. [PMID: 38936692 DOI: 10.1016/j.drudis.2024.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.
Collapse
Affiliation(s)
- Fei-Mu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Han-Hua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
14
|
Chen G, Li MY, Yang JY, Zhou ZH. Will AMPK be a potential therapeutic target for hepatocellular carcinoma? Am J Cancer Res 2024; 14:3241-3258. [PMID: 39113872 PMCID: PMC11301289 DOI: 10.62347/yavk1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer is the disease that poses the greatest threat to human health today. Among them, hepatocellular carcinoma (HCC) is particularly prominent due to its high recurrence rate and extremely low five-year postoperative survival rate. In addition to surgical treatment, radiotherapy, chemotherapy, and immunotherapy are the main methods for treating HCC. Due to the natural drug resistance of chemoradiotherapy and targeted drugs, satisfactory results have not been achieved in terms of therapeutic efficacy and cost. AMP-Activated Protein Kinase (AMPK) is a serine/threonine protein kinase. It mainly coordinates the metabolism and transformation of energy between cells, which maintaining a balance between energy supply and demand. The processes of cell growth, proliferation, autophagy, and survival all involve various reaction of cells to energy changes. The regulatory role of AMPK in cellular energy metabolism plays an important role in the occurrence, development, treatment, and prognosis of HCC. Here, we reviewed the latest progress on the regulatory role of AMPK in the occurrence and development of HCC. Firstly, the molecular structure and activation mechanism of AMPK were introduced. Secondly, the emerging regulator related to AMPK and tumors were elaborated. Next, the multitasking roles of AMPK in the occurrence and development mechanism of HCC were discussed separately. Finally, the translational implications and the challenges of AMPK-targeted therapies for HCC treatment were elaborated. In summary, these pieces of information suggest that AMPK can serve as a promising specific therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Guo Chen
- Department of Oncology, Anhui Hospital, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineHefei, Anhui, China
| | - Ming-Yuan Li
- Department of Oncology, Anhui Hospital, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineHefei, Anhui, China
| | - Jing-Yi Yang
- Department of Oncology, Feixi Hospital of Traditional Chinese MedicineFeixi, Hefei, Anhui, China
| | - Zhen-Hua Zhou
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
15
|
Zhao LJ, Dai XY, Ye YW, Pang XF, Jiang M, Tan WY, Xu YH, Su JF, Shi B. MURAMYL DIPEPTIDE CAUSES MITOCHONDRIAL DYSFUNCTION AND INTESTINAL INFLAMMATORY CYTOKINE RESPONSES IN RATS. Shock 2024; 62:139-145. [PMID: 38546380 DOI: 10.1097/shk.0000000000002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Introduction: Intestinal flora and the translocation of its products, such as muramyl dipeptide (MDP), are common causes of sepsis. MDP is a common activator of the intracellular pattern recognition receptor NOD2, and MDP translocation can cause inflammatory damage to the small intestine and systemic inflammatory responses in rats. Therefore, this study investigated the effects of MDP on the intestinal mucosa and distant organs during sepsis and the role of the NOD2/AMPK/LC3 pathway in MDP-induced mitochondrial dysfunction in the intestinal epithelium. Methods: Fifty male Sprague Dawley rats were randomly divided into five treatment groups: lipopolysaccharide (LPS) only, 1.5 and 15 mg/kg MDP+LPS, and 1.5 and 15 mg/kg MDP+short-peptide enteral nutrition (SPEN)+LPS. The total caloric intake was the same per group. The rats were euthanized 24 h after establishing the model, and peripheral blood and small intestinal mucosal and lung tissues were collected. Results: Compared to the LPS group, both MDP+LPS groups had aggravated inflammatory damage to the intestinal mucosal and lung tissues, increased IL-6 and MDP production, increased NOD2 expression, decreased AMPK and LC3 expression, increased mitochondrial reactive oxygen species production, and decreased mitochondrial membrane potential. Compared to the MDP+LPS groups, the MDP+SPEN+LPS groups had decreased IL-6 and MDP production, increased AMPK and LC3 protein expression, and protected mitochondrial and organ functions. Conclusions: MDP translocation reduced mitochondrial autophagy by regulating the NOD2/AMPK/LC3 pathway, causing mitochondrial dysfunction. SPEN protected against MDP-induced impairment of intestinal epithelial mitochondrial function during sepsis.
Collapse
Affiliation(s)
- Lu-Jia Zhao
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yong Dai
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - You-Wen Ye
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiu-Feng Pang
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Meng Jiang
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Wan-Yi Tan
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Ying-Hui Xu
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Ji-Feng Su
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Bin Shi
- Department of Emergency Intensive Care Unit, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
16
|
Jeong IH, Yun JK, Jin JO, Hong JH, Lee JY, Lee GD, Lee PCW. E3 ligase SOCS3 regulates NOD2 expression by ubiquitin proteasome system in lung cancer progression. Cell Oncol (Dordr) 2024; 47:819-832. [PMID: 37910276 DOI: 10.1007/s13402-023-00896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE Despite lung cancer is one of the leading causes of cancer-related deaths, it remains hard to discover effective diagnostic and therapeutic approaches. Moreover, the five-year survival rate is relatively lower than other tumors. So urgent needs for finding a new theranostic target to treat lung cancer effectively. This study aims to present SOCS3 and NOD2 proteins as novel targets for diagnosis and therapy. METHODS We first confirmed SOCS3 expression level in patients' tissues. Then, we applied knockdown and overexpression of SOCS3 on lung cancer cell lines and performed proliferation, migration, and invasion assay. After that, we found NOD2 is a target of SOCS3 and introduced overexpression of NOD2 to A549 for verifying reduced tumorigenicity of lung cancer cells. RESULTS We identified protein expression level of SOCS3 was frequently higher in tumor tissues than adjacent normal tissues. Truly, overexpression of SOCS3 promoted proliferation, migration, and invasion capacity of lung cancer cells. We found that SOCS3 interacts with NOD2 and SOCS3 ubiquitinates NOD2 directly. Furthermore, lung cancer tissues with higher SOCS3 expression showed lower NOD2 expression. We confirmed overexpression of NOD2 leads to suppressed tumorigenicity of lung cancer cells, and these effects occurred through MAPK pathway. CONCLUSION Collectively, our work reveals novel roles of SOCS3 in lung tumorigenesis and proposes SOCS3 as a promising biomarker candidate for therapeutic and diagnostic target for lung cancer.
Collapse
Affiliation(s)
- In-Ho Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jae Kwang Yun
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jun-O Jin
- Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
| | - Ji Yeon Lee
- Division of Rheumatology, Department of Medicine, Seoul St. Mary's Hospital, Catholic University, Seoul, 06591, Korea.
| | - Geun Dong Lee
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
- Lung Cancer Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
- Lung Cancer Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
17
|
Kong L, Cao Y, He Y, Zhang Y. Role and molecular mechanism of NOD2 in chronic non-communicable diseases. J Mol Med (Berl) 2024; 102:787-799. [PMID: 38740600 DOI: 10.1007/s00109-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene mutations of NOD2 lead to the development of autoimmune diseases such as Crohn's disease and Blau syndrome. Recently, NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.
Collapse
Affiliation(s)
- Lingjun Kong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanhua Cao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanan He
- Gamma Knife Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Gong Z, Wan Y, Han E, Zhou X, Huang J, Yu H, Shi Y, Lian K. Development and validation of a pyroptosis-related prognostic signature associated with osteosarcoma metastasis and immune infiltration. Medicine (Baltimore) 2024; 103:e37642. [PMID: 38579086 PMCID: PMC10994441 DOI: 10.1097/md.0000000000037642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/31/2024] [Indexed: 04/07/2024] Open
Abstract
Pyroptosis is a programmed cell death, which has garnered increasing attention because it relates to the immune and therapy response. However, few studies focus on the application of pyroptosis-related genes (PRGs) in predicting osteosarcoma (OS) patients' prognoses. In this study, the gene expression and clinical information of OS patients were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Based on these PRGs and unsupervised clustering analysis, all OS samples can be classified into 2 clusters. The 8 key differential expressions for PRGs (LAG3, ITGAM, CCL2, TLR4, IL2RA, PTPRC, FCGR2B, and CD5) were established through the univariate Cox regression and utilized to calculate the risk score of all samples. According to the 8-gene signature, OS samples can be divided into high and low-risk groups and correlation analysis can be performed using immune cell infiltration and immune checkpoints. Finally, we developed a nomogram to improve the PRG-predictive model in clinical application. We verified the predictive performance using receiver operating characteristic (ROC) and calibration curves. There were significant differences in survival, immune cell infiltration and immune checkpoints between the low and high-risk groups. A nomogram was developed with clinical indicators and the risk scores were effective in predicting the prognosis of patients with OS. In this study, a prognostic model was constructed based on 8 PRGs were proved to be independent prognostic factors of OS and associated with tumor immune microenvironment. These 8 prognostic genes were involved in OS development and may serve as new targets for developing therapeutic drugs.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yimo Wan
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Enen Han
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiaoyang Zhou
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiaolong Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hui Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yihua Shi
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
19
|
Jiang Z, Shi B, Zhang Y, Yu T, Cheng Y, Zhu J, Zhang G, Zhong M, Hu S, Ma X. CREB3L4 promotes hepatocellular carcinoma progression and decreases sorafenib chemosensitivity by promoting RHEB-mTORC1 signaling pathway. iScience 2024; 27:108843. [PMID: 38303702 PMCID: PMC10831937 DOI: 10.1016/j.isci.2024.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
This study was designed to explore the roles of CREB3L4 in the pathogenesis and drug resistance of hepatocellular carcinoma (HCC). The proliferation of HCC lines was determined in the presence of CREB3L4 over-expression and silencing. Chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter assay were performed to screen the potential target of CREB3L4 on mTORC1. Xenografted tumor model was established to define the regulatory effects of CREB3L4 in the tumorigenesis. Then we evaluated the roles of CREB3L4 in chemosensitivity to sorafenib treatment. CREB3L4 significantly induced the HCC cell proliferation by modulating the activation of mTROC1-S6K1 signaling pathway via binding with RHEB promoter. Moreover, CREB3L4 dramatically inhibited the chemosensitivity to sorafenib treatment via up-regulating RHEB-mTORC1 signaling. CREB3L4 promoted HCC progression and decreased its chemosensitivity to sorafenib through up-regulating RHEB-mTORC1 signaling pathway, indicating a potential treatment strategy for HCC through targeting CREB3L4.
Collapse
Affiliation(s)
- Zhengchen Jiang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Bowen Shi
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Tianming Yu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
| | - Yang Cheng
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| |
Collapse
|
20
|
Zhang L, Wang J, Guo Y, Yue H, Zhang M. The construction, validation and promotion of the nomogram prognosis prediction model of UCEC, and the experimental verification of the expression and knockdown of the key gene GPX4. Heliyon 2024; 10:e24415. [PMID: 38312660 PMCID: PMC10835249 DOI: 10.1016/j.heliyon.2024.e24415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background Adequate prognostic prediction of Uterine Corpus Endometrial Carcinoma (UCEC) is crucial for informing clinical decision-making. However, there is a scarcity of research on the utilization of a nomogram prognostic evaluation model that incorporates pyroptosis-related genes (PRGs) in UCEC. Methods By analyzing data from UCEC patients in the TCGA database, four PRGs associated with prognosis were identified. Subsequently, a "risk score" was developed using these four PRGs and LASSO. Ordinary and web-based dynamic nomogram prognosis prediction models were constructed. The discrimination, calibration, clinical benefit, and promotional value of the selected GPX4 were validated. The expression level of GPX4 in UCEC cell lines was subsequently verified. The effects of GPX4 knock-down on the malignant biological behavior of UCEC cells were assessed. Results Four key PRGs and a "risk score" were identified, with the "risk score" calculated as (-0.4323) * GPX4 + (0.2385) * GSDME + (0.0525) * NLRP2 + (-0.3299) * NOD2. The nomogram prognosis prediction model, incorporating the "risk score," "age," and "FIGO stage," demonstrated moderate predictive performance (AUC >0.7), good calibration, and clinical significance for 1, 3, and 5-year survival. The web-based dynamic nomogram demonstrated significant promotional value (https://shibaolu.shinyapps.io/DynamicNomogramForUCEC/). UCEC cells exhibited abnormally elevated expression of GPX4, and the knockdown of GPX4 effectively suppressed malignant biological activities, including proliferation and migration, while inducing apoptosis. The findings from tumorigenic experiments conducted on nude mice further validated the results obtained from cellular experiments. Conclusion Following validation, the nomogram prognosis prediction model, which relies on four pivotal PRGs, demonstrated a high degree of accuracy in forecasting the precise probability of prognosis for patients with UCEC. Additionally, the web-based dynamic nomogram exhibited considerable potential for promotion. Notably, the key gene GPX4 exhibited characteristics of a potential oncogene in UCEC, as it facilitated malignant biological behavior and impeded apoptosis.
Collapse
Affiliation(s)
- Lindong Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450052, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Yan Guo
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou, 450003, China
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou, 450003, China
| | - Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450052, China
| |
Collapse
|
21
|
Hou W, Gad SA, Ding X, Dhanarajan A, Qiu W. Focal adhesion kinase confers lenvatinib resistance in hepatocellular carcinoma via the regulation of lysine-deficient kinase 1. Mol Carcinog 2024; 63:173-189. [PMID: 37787401 PMCID: PMC10842616 DOI: 10.1002/mc.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Lenvatinib is a clinically effective multikinase inhibitor approved for first-line therapy of advanced hepatocellular carcinoma (HCC). Although resistance against lenvatinib often emerges and limits its antitumor activity, the underlying molecular mechanisms involved in endogenous and acquired resistance remain elusive. In this study, we identified focal adhesion kinase (FAK) as a critical contributor to lenvatinib resistance in HCC. The elevated expression and phosphorylation of FAK were observed in both acquired and endogenous lenvatinib-resistant (LR) HCC cells. Furthermore, inhibition of FAK reversed lenvatinib resistance in vitro and in vivo. Mechanistically, FAK promoted lenvatinib resistance through regulating lysine-deficient kinase 1 (WNK1). Phosphorylation of WNK1 was significantly increased in LR-HCC cells. Further, WNK1 inhibitor WNK463 resensitized either established or endogenous LR-HCC cells to lenvatinib treatment. In addition, overexpression of WNK1 desensitized parental HCC cells to lenvatinib treatment. Conclusively, our results establish a crucial role and novel mechanism of FAK in lenvatinib resistance and suggest that targeting the FAK/WNK1 axis is a promising therapeutic strategy in HCC patients showing lenvatinib resistance.
Collapse
Affiliation(s)
- Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Shaimaa A. Gad
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Egypt
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1 Avenue., Maywood, IL 60153, USA
| |
Collapse
|
22
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
23
|
Wei L, Zhang Y, Wang R, Liu S, Luo J, Ma Y, Wang H, Liu Y, Chen Y. Heteroantigen-assembled nanovaccine enhances the polyfunctionality of TILs against tumor growth and metastasis. Biomaterials 2023; 302:122297. [PMID: 37666102 DOI: 10.1016/j.biomaterials.2023.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The dysfunction of tumor infiltrating lymphocytes (TILs) directly correlates with out of control of tumor growth and metastasis. New approaches and insightful clarity for rescuing TILs dysfunction are urgently needed. Here, we design two heterogenous antigens based on MHC-I epitope and MHC-II epitope from tumor, and assemble heterogenous antigens by electrostatic interactions and π-π stacking into heteroantigen-assembled nanovaccine (HANV). HANV not only significantly increases the abundance of CD8+ and CD4+ TILs, but also elicits stronger polyfunctionality of CD8+ and CD4+ TILs in vivo. Enhanced polyfunctionality of CD8+ and CD4+ TILs positively correlate to suppression of tumor growth and metastasis in melanoma-bearing mouse models. We also validate that nucleotide-binding oligomerization domain-containing protein 2 (NOD2) dominantly enhances anti-tumor capacity of TILs in a temporal immunoregulation manner. This work presents a new insight in developing HANV as a rational strategy to shape TILs polyfunctionality for tumor growth and metastasis.
Collapse
Affiliation(s)
- Liangnian Wei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Ye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Ruixin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Shuai Liu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Yunfei Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100190, China; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, 100190, China.
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
24
|
Khanmohammadi S, Ramos-Molina B, Kuchay MS. NOD-like receptors in the pathogenesis of metabolic (dysfunction)-associated fatty liver disease: Therapeutic agents targeting NOD-like receptors. Diabetes Metab Syndr 2023; 17:102788. [PMID: 37302383 DOI: 10.1016/j.dsx.2023.102788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS In metabolic (dysfunction)-associated fatty liver disease (MAFLD), activation of inflammatory processes marks the transition of simple steatosis to steatohepatitis, which can further evolve to advanced fibrosis or hepatocellular carcinoma. Under the stress of chronic overnutrition, the innate immune system orchestrates hepatic inflammation through pattern recognition receptors (PRRs). Cytosolic PRRs that include NOD-like receptors (NLRs) are crucial for inducing inflammatory processes in the liver. METHODS A literature search was performed with Medline (PubMed), Google Scholar and Scopus electronic databases till January 2023, using relevant keywords to extract studies describing the role of NLRs in the pathogenesis of MAFLD. RESULTS Several NLRs operate through the formation of inflammasomes, which are multimolecular complexes that generate pro-inflammatory cytokines and induce pyroptotic cell death. A multitude of pharmacological agents target NLRs and improve several aspects of MAFLD. In this review, we discuss the current concepts related to the role of NLRs in the pathogenesis of MAFLD and its complications. We also discuss the latest research on MAFLD therapeutics functioning through NLRs. CONCLUSIONS NLRs play a significant role in the pathogenesis of MAFLD and its consequences, especially through generation of inflammasomes, such as NLRP3 inflammasomes. Lifestyle changes (exercise, coffee consumption) and therapeutic agents (GLP-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, obeticholic acid) improve MAFLD and its complications partly through blockade of NLRP3 inflammasome activation. New studies are required to explore these inflammatory pathways fully for the treatment of MAFLD.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Mohammad Shafi Kuchay
- Divison of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram 122001, Haryana, India.
| |
Collapse
|
25
|
Park D, Lee S, Boo H. Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells. Dev Reprod 2023; 27:77-89. [PMID: 37529015 PMCID: PMC10390098 DOI: 10.12717/dr.2023.27.2.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.
Collapse
Affiliation(s)
- Deokbae Park
- Corresponding author Deokbae
Park, Department of Histology, Jeju National University College of Medicine,
Jeju 63243, Korea. Tel: +82-64-754-3827, Fax:
+82-64-702-2687, E-mail:
| | | | | |
Collapse
|
26
|
Li X, Liu S, Jin L, Ma Y, Liu T. NOD2 inhibits the proliferation of esophageal adenocarcinoma cells through autophagy. J Cancer Res Clin Oncol 2023; 149:639-652. [PMID: 36316517 PMCID: PMC9931811 DOI: 10.1007/s00432-022-04354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/07/2022] [Indexed: 02/16/2023]
Abstract
AIM To study the regulatory mechanism of NOD2 in the inhibition of esophageal adenocarcinoma cell proliferation. METHODS Cell experiments: after confirming the decrease in NOD2 expression in esophageal adenocarcinoma, we overexpressed NOD2 in esophageal adenocarcinoma cells via lentivirus, compared and verified the changes in esophageal adenocarcinoma cell proliferation before and after NOD2 overexpression, and compared the overexpression group with the control group by mRNA sequencing to identify pathways that may affect cell proliferation. Then, the autophagy level of multiple groups were assessed, and the results were verified by rescue experiments. In vivo experiments: we administered esophageal adenocarcinoma cells to nude mice to form tumors under their skin and then injected the tumors with NOD2 overexpression lentivirus and negative control lentivirus. After a period of time, the growth curve of the tumor was generated, and the tumor was removed to generate sections. Ki67 was labeled with immunohistochemistry to verify cell proliferation, and the protein was extracted from the tissue to detect the molecular indices of the corresponding pathway. RESULTS Upregulation of NOD2 expression inhibited the proliferation of esophageal adenocarcinoma cells. Upregulation of NOD2 expression increased the autophagy level of esophageal adenocarcinoma cells via ATG16L1. After ATG16L1 was inhibited, NOD2 had no significant effect on autophagy and proliferation of esophageal adenocarcinoma cells. Enhanced autophagy in esophageal adenocarcinoma cell lines inhibited cell proliferation. In vivo, the upregulation of NOD2 expression improved the autophagy level of tumor tissue and inhibited cells proliferation. CONCLUSION NOD2 can activate autophagy in esophageal adenocarcinoma cells through the ATG16L1 pathway and inhibit cell proliferation.
Collapse
Affiliation(s)
- Xiaozhi Li
- Emergency Department, The Third XiangYa Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Suo Liu
- Cardiothoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Longyu Jin
- Cardiothoracic Surgery, The Third XiangYa Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Yuchao Ma
- Cardiothoracic Surgery, The Third XiangYa Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Tao Liu
- Cardiothoracic Surgery, The Third XiangYa Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
27
|
Oura K, Morishita A, Hamaya S, Fujita K, Masaki T. The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:2805. [PMID: 36769116 PMCID: PMC9917861 DOI: 10.3390/ijms24032805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is a major histologic type with a poor prognosis owing to the difficulty in early detection, the chemotherapy resistance, and the high recurrence rate of the disease. Despite recent advancements in HCC prevention and diagnosis, over 50% of patients are diagnosed at Barcelona Clinic Liver Cancer Stage B or C. Systemic therapies are recommended for unresectable HCC (uHCC) with major vascular invasion, extrahepatic metastases, or intrahepatic lesions that have a limited response to transcatheter arterial chemoembolization, but the treatment outcome tends to be unsatisfactory due to acquired drug resistance. Elucidation of the mechanisms underlying the resistance to systemic therapies and the appropriate response strategies to solve this issue will contribute to improved outcomes in the multidisciplinary treatment of uHCC. In this review, we summarize recent findings on the mechanisms of resistance to drugs such as sorafenib, regorafenib, and lenvatinib in molecularly targeted therapy, with a focus on epigenetic regulation and the tumor microenvironment and outline the approaches to improve the therapeutic outcome for patients with advanced HCC.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | | | | | | | | |
Collapse
|
28
|
Li Z, Shen L, Li Y, Shen L, Li N. Identification of pyroptosis-related gene prognostic signature in head and neck squamous cell carcinoma. Cancer Med 2022; 11:5129-5144. [PMID: 35574984 PMCID: PMC9761089 DOI: 10.1002/cam4.4825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a life-threatening disease with poor prognosis. Pyroptosis has been recently disclosed as a programmed cell death triggered by invasive infection, involved in cancer development. However, the prognosis role of pyroptosis-related genes in HNSCC has not been discussed. METHODS The RNA sequence data of pyroptosis-related genes were obtained from The Cancer Genome Atlas (TCGA) database. Cox regression and the least absolute shrinkage and selection operator (LASSO) analysis were performed to screen the HNSCC survival-related signature genes. We established a HNSCC risk model with the identified prognostic genes, then divided the HNSCC patients into low- and high-risk subgroups according to median risk score. Moreover, we utilized Gene Expression Omnibus (GEO) dataset to validate the risk model. Go and KEGG analyses were conducted to reveal the potential function of differential expression of genes that identified between low- and high-risk subgroups. ESTIMATE algorithm was performed to investigate the immune infiltration of tumors. Correlation between signature gene expression and drug-sensitivity was disclosed by Spearman's analysis. RESULTS We constructed a HNSCC risk model with identified seven pyroptosis-related genes (CASP1, GSDME, IL6, NLRP1, NLRP2, NLRP6, and NOD2) as prognostic signature genes. High-risk subgroup of HNSCC patients in TCGA cohort correlated with lower survival probability than patients from low-risk subgroup (p < .001), and the result is verified with GEO dataset. In addition, 161 genes were identified differentially expressed between the low- and high-risk subgroups in the TCGA cohort, mainly related to immune response. Higher PD-L1 expression level was found in the high-risk subgroup that indicated the possible employment of immune checkpoint inhibitors. IL6 was positively correlated with WZ3105 and MPS-1-IN-1 in the cancer therapeutics response portal database. CONCLUSION We built and verified a risk model for HNSCC prognosis using seven pyroptosis-related signature genes, which could predict the overall survival of HNSCC patients and facilitate treatment.
Collapse
Affiliation(s)
- Zhanzhan Li
- Department of OncologyXiangya Hospital, Central South UniversityChina
| | - Lin Shen
- Department of OncologyXiangya Hospital, Central South UniversityChina
| | - Yanyan Li
- Department of NursingXiangya Hospital, Central South UniversityChina
| | - Liangfang Shen
- Department of OncologyXiangya Hospital, Central South UniversityChina
| | - Na Li
- Department of OncologyXiangya Hospital, Central South UniversityChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChina
| |
Collapse
|
29
|
Prognostic potential and mechanism of
SORT1
and its co‐expressed genes in hepatocellular carcinoma based on integrative analysis of multiple database. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Long Noncoding RNA XIST Promotes Resistance to Lenvatinib in Hepatocellular Carcinoma Cells via Epigenetic Inhibition of NOD2. JOURNAL OF ONCOLOGY 2022; 2022:4537343. [PMID: 36304988 PMCID: PMC9596241 DOI: 10.1155/2022/4537343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022]
Abstract
Background. Hepatocellular carcinoma (HCC) is a severe global health issue that still lacks of effective treatments. Lenvatinib is a novel tyrosine kinase inhibitor (TKI) that has been approved for the treatment of HCC. However, drug resistance is inevitable and limits the clinical application of lenvatinib. Till now, there is still little knowledge about the mechanisms under the resistance to lenvatinib in HCC. Long noncoding RNA (lncRNA) is a group of noncoding RNAs that play essential roles in various physiological activities including the chemoresistance. In the present study, through RNA sequencing, we discovered that lncRNA XIST was upregulated in HCC cells that was insensitive to lenvatinib. Mechanically, we found that lncXIST promotes lenvatinib resistance via activation of EZH2-NOD2-ERK axis in HCC cells. Our data suggest that targeting lncXIST/EZH2/NOD2/ERK axis might be a promising strategy to enhance the efficacy of lenvatinib against HCC cells.
Collapse
|
31
|
Wang D. NOD1 and NOD2 Are Potential Therapeutic Targets for Cancer Immunotherapy. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2271788. [PMID: 36262606 PMCID: PMC9576356 DOI: 10.1155/2022/2271788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a group of intracellular proteins that are essential for controlling the host's innate immune response. The cytosolic nucleotide binding oligomerization domains 1 and 2 receptors (NOD1 and NOD2) are the most widely investigated NLRs. As pattern recognition receptors (PRRs), NOD1 and NOD2 may recognize and bind endogenous damage associated molecular patterns (DAMPs) and external pathogenic associated molecular patterns (PAMPs), directing the activation of inflammatory caspases through engaging the adaptor protein RIP2, which further activates the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, thereby mediating host innate immunity and regulating the adaptive immunity. Previous research has identified NOD1 and NOD2 as key players in inflammatory disease and host-microbial defense. Despite numerous studies claiming that NOD1 and NOD2 are linked to tumorigenesis and tumor development, it is still unclear whether NOD1 and NOD2 act as cancer's friends or foes. In this review, we focus on concluding the current research progress on the role of NOD1 and NOD2 in a variety of cancers and discussing the potential reasons for the contradicting role of NOD1 and NOD2 in cancers. This review may help better understand the role of NOD1 and NOD2 in cancer and shed light on NOD1 and NOD2 as potential therapeutic targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Dongjie Wang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
32
|
Omaru N, Watanabe T, Kamata K, Minaga K, Kudo M. Activation of NOD1 and NOD2 in the development of liver injury and cancer. Front Immunol 2022; 13:1004439. [PMID: 36268029 PMCID: PMC9577175 DOI: 10.3389/fimmu.2022.1004439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocytes and liver-resident antigen-presenting cells are exposed to microbe-associated molecular patterns (MAMPs) and microbial metabolites, which reach the liver from the gut via the portal vein. MAMPs induce innate immune responses via the activation of pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), nucleotide-binding oligomerization domain 1 (NOD1), and NOD2. Such proinflammatory cytokine responses mediated by PRRs likely contribute to the development of chronic liver diseases and hepatocellular carcinoma (HCC), as shown by the fact that activation of TLRs and subsequent production of IL-6 and TNF-α is required for the generation of chronic fibroinflammatory responses and hepatocarcinogenesis. Similar to TLRs, NOD1 and NOD2 recognize MAMPs derived from the intestinal bacteria. The association between the activation of NOD1/NOD2 and chronic liver diseases is poorly understood. Given that NOD1 and NOD2 can regulate proinflammatory cytokine responses mediated by TLRs both positively and negatively, it is likely that sensing of MAMPs by NOD1 and NOD2 affects the development of chronic liver diseases, including HCC. Indeed, recent studies have highlighted the importance of NOD1 and NOD2 activation in chronic liver disorders. Here, we summarize the roles of NOD1 and NOD2 in hepatocarcinogenesis and liver injury.
Collapse
|
33
|
Li C, Liang H, Bian S, Hou X, Ma Y. Construction of a Prognosis Model of the Pyroptosis-Related Gene in Multiple Myeloma and Screening of Core Genes. ACS OMEGA 2022; 7:34608-34620. [PMID: 36188246 PMCID: PMC9521030 DOI: 10.1021/acsomega.2c04212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Pyroptosis is an important factor affecting the proliferation, invasion, and metastasis of tumor cells. However, in multiple myeloma (MM), there are few studies on whether the occurrence of pyroptosis is related to the occurrence and prognosis of the disease. Based on the Gene Expression Omnibus and Cancer Genome Atlas database search dataset, this study identified pyroptosis-related genes with a specific prognosis, constructed and verified the prediction model by stepwise Cox regression analysis and time receiver operating characteristic curve analysis, and predicted specific functions by single-sample gene set enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes. Dataset analysis identified key genes, which were used to construct a risk scoring system for the prognosis of MM. The entire test set and external verification set verified the results. The expression levels of related genes in the clinical samples were detected using fluorescence quantitative PCR. A prognostic gene model based on six pyroptosis-related genes (CYCS, NLRP9, AIM2, NOD2, CHMP3, and GSDME) was constructed. The model has an excellent prognostic ability and can be popularized in the external validation set. The predictive prognostic nomogram integrating clinical information can effectively evaluate the risk score of each patient and predict their survival. After sample validation, our study found three potential key pyroptosis-related genes in multiple myeloma. GSDME, NOD2, and CHMP3 were significantly different between MM and healthy subjects, suggesting that they are pyroptosis-related protective genes. This study shows that the key pyroptosis-related gene in the model can be used as a marker for predicting the prognosis of myeloma, which may provide a basis for clinical individualized stratification therapy.
Collapse
Affiliation(s)
- Can Li
- Department
of Hematology, The Second Clinical Medical College of Shanxi Medical
University, Shanxi Medical University, 030000 Taiyuan, China
| | - Hongzheng Liang
- Department
of Hematology, The Second Clinical Medical College of Shanxi Medical
University, Shanxi Medical University, 030000 Taiyuan, China
| | - Sicheng Bian
- Harbin
Medical University, 23 Youzheng Street, NanGang District, Harbin 150001, PR China
| | - Xiaoxu Hou
- Department
of Hematology, The Second Clinical Medical College of Shanxi Medical
University, Shanxi Medical University, 030000 Taiyuan, China
| | - Yanping Ma
- Department
of Hematology, The Second Clinical Medical College of Shanxi Medical
University, Shanxi Medical University, 030000 Taiyuan, China
| |
Collapse
|
34
|
The E3 ubiquitin ligase MG53 inhibits hepatocellular carcinoma by targeting RAC1 signaling. Oncogenesis 2022; 11:40. [PMID: 35858925 PMCID: PMC9300626 DOI: 10.1038/s41389-022-00414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (RAC1) overexpressiosn and hyperactivation are correlated with aggressive growth and other malignant characteristics in a wide variety of cancers including hepatocellular carcinoma (HCC). However, the regulatory mechanism of RAC1 expression and activation in HCC is not fully understood. Here, we demonstrated that E3 ubiquitin ligase MG53 (also known as tripartite motif 72, TRIM72) acted as a direct inhibitor of RAC1, and it catalyzed the ubiquitination of RAC1 and further inhibited RAC1 activity in HCC cells. Mechanistically, MG53 directly bound with RAC1 through its coiled-coil domain and suppressed RAC1 activity by catalyzing the Lys48 (K48)-linked polyubiquitination of RAC1 at Lys5 residue in HCC cells. We further demonstrated that MG53 significantly suppressed the malignant behaviors of HCC cells and enhanced the chemosensitivity of HCC cells to sorafenib treatment by inhibiting RAC1-MAPK signaling axis. In summary, we identified MG53 as a novel RAC1 inhibitor and tumor suppressor in HCC, and it suppressed HCC progression by inducing K48-linked polyubiquitination of RAC1 and further inhibiting the RAC1-MAPK signaling. Altogether, our investigation provided a new therapeutic strategy for RAC1 overactivated tumors by modulating MG53.
Collapse
|
35
|
Identification of New Molecular Biomarkers in Ovarian Cancer Using the Gene Expression Profile. J Clin Med 2022; 11:jcm11133888. [PMID: 35807169 PMCID: PMC9267752 DOI: 10.3390/jcm11133888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a common cause of death among women worldwide. The current diagnostic and prognostic procedures available for the treatment of ovarian cancer are either not specific or are very expensive. Gene expression profiling has proved to be a very effective tool in the exploration of new molecular markers in patients with ovarian cancer, although the link between such markers and patient survival and clinical outcomes is still elusive. We are looking for genes that may function in the development and progression of ovarian cancer. The aim of our study was to evaluate the expression of selected suppressor genes (ATM, BRCA1, BRCA2), proto-oncogenes (KRAS, c-JUN, c-FOS), pro-apoptotic genes (NOXA, PUMA), genes related to chromatin remodeling (MEN1), and genes related to carcinogenesis (NOD2, CHEK2, EGFR). Tissue samples from 30 normal ovaries and 60 ovarian carcinoma tumors were provided for analysis of the gene and protein expression. Gene expression analysis was performed using the real-time PCR method. The protein concentrations from tissue homogenates were determined using the ELISA technique according to the manufacturers’ protocols. An increase in the expression level of mRNA and protein in women with ovarian cancer was observed for KRAS, c-FOS, PUMA, and EGFR. No significant changes in the transcriptional levels we observed for BRCA1, BRCA2, NOD2, or CHEK2. In conclusion, we suggest that KRAS, NOXA, PUMA, c-FOS, and c-JUN may be associated with poor prognosis in ovarian cancer.
Collapse
|
36
|
A pyroptosis-related gene signature predicts prognosis and immune microenvironment in hepatocellular carcinoma. World J Surg Oncol 2022; 20:179. [PMID: 35659304 PMCID: PMC9164458 DOI: 10.1186/s12957-022-02617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor with a very poor prognosis. Pyroptosis is an inflammatory form of cell death and plays an important role in cancer development. The prognostic value of pyroptosis-related genes (PRGs) in HCC has not been studied extensively. METHODS Unsupervised consensus clustering analysis was performed to identify two subtypes based on the expression profiles of prognostic PRGs in the The Cancer Genome Atlas (TCGA) database, and the differences between the two subtypes were compared. A prognostic model based on four PRGs was established by further least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox regression analysis. RESULTS Two subtypes (clusters 1 and 2) were identified by consensus clustering based on prognostic PRGs in HCC. Survival outcomes, biological function, genomic alterations, immune cell infiltration, and immune checkpoint genes were compared between the subtypes. Cluster 2 had a worse survival outcome than cluster 1. Cluster 2 was enriched for hallmarks of cancer progression, TP53 mutation, tumor-promoting immune cells, and immune checkpoint genes, which may contribute to the poor prognosis. A prognostic risk signature that predicted the overall survival (OS) of patients was constructed and validated. Consequently, a risk score was calculated for each patient. Combined with the clinical characteristics, the risk score was found to be an independent prognostic factor for survival of HCC patients. Further analysis revealed that the risk score was closely associated with the levels of immune cell infiltration and the expression profiles of immune checkpoint genes. CONCLUSIONS Collectively, our study established a prognostic risk signature for HCC and revealed a significant correlation between pyroptosis and the HCC immune microenvironment.
Collapse
|
37
|
Zhang Y, Li N, Yuan G, Yao H, Zhang D, Li N, Zhang G, Sun Y, Wang W, Zeng J, Xu N, Liu M, Wu L. Upregulation of NOD1 and NOD2 contribute to cancer progression through the positive regulation of tumorigenicity and metastasis in human squamous cervical cancer. BMC Med 2022; 20:55. [PMID: 35130902 PMCID: PMC8822783 DOI: 10.1186/s12916-022-02248-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metastatic cervical squamous cell carcinoma (CSCC) has poor prognosis and is recalcitrant to the current treatment strategies, which warrants the necessity to identify novel prognostic markers and therapeutic targets. Given that CSCC is a virus-induced malignancy, we hypothesized that the pattern recognition receptors (PRRs) involved in the innate immune response likely play a critical role in tumor development. METHODS A bioinformatics analysis, qPCR, IHC, immunofluorescence, and WB were performed to determine the expression of NOD1/NOD2. The biological characteristics of overexpression NOD1 or NOD2 CSCC cells were compared to parental cells: proliferation, migration/invasion and cytokines secretion were examined in vitro through CCK8/colony formation/cell cycle profiling/cell counting, wound healing/transwell, and ELISA assays, respectively. The proliferative and metastatic capacity of overexpression NOD1 or NOD2 CSCC cells were also evaluated in vivo. FCM, mRNA and protein arrays, ELISA, and WB were used to identify the mechanisms involved, while novel pharmacological treatment were evaluated in vitro and in vivo. Quantitative variables between two groups were compared by Student's t test (normal distribution) or Mann-Whitney U test (non-normal distribution), and one-way or two-way ANOVA was used for comparing multiple groups. Pearson χ2 test or Fisher's exact test was used to compare qualitative variables. Survival curves were plotted by the Kaplan-Meier method and compared by the log-rank test. P values of < 0.05 were considered statistically significant. RESULTS NOD1 was highly expressed in CSCC with lymph-vascular space invasion (LVSI, P < 0.01) and lymph node metastasis (LM, P < 0.01) and related to worse overall survival (OS, P = 0.016). In vitro and in vivo functional assays revealed that the upregulation of NOD1 or NOD2 in CSCC cells promoted proliferation, invasion, and migration. Mechanistically, NOD1 and NOD2 exerted their oncogenic effects by activating NF-κb and ERK signaling pathways and enhancing IL-8 secretion. Inhibition of the IL-8 receptor partially abrogated the effects of NOD1/2 on CSCC cells. CONCLUSIONS NOD1/2-NF-κb/ERK and IL-8 axis may be involved in the progression of CSCC; the NOD1 significantly enhanced the progression of proliferation and metastasis, which leads to a poor prognosis. Anti-IL-8 was identified as a potential therapeutic target for patients with NOD1high tumor.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Guangwen Yuan
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Hongwen Yao
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Die Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Nan Li
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Gongyi Zhang
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Yangchun Sun
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Wenpeng Wang
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Panjiayuan, Chaoyang District, 100021, Beijing, People's Republic of China.
| |
Collapse
|
38
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [PMID: 35101391 DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
39
|
Niu Z, Xu Y, Li Y, Chen Y, Han Y. Construction and validation of a novel pyroptosis-related signature to predict prognosis in patients with cutaneous melanoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:688-706. [PMID: 34903008 DOI: 10.3934/mbe.2022031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Skin cutaneous melanoma (SKCM) is one of the most malignant skin cancers and remains a health concern worldwide. Pyroptosis is a newly recognized form of programmed cell death and plays a vital role in cancer progression. We aim to construct a prognostic model for SKCM patients based on pyroptosis-related genes (PRGs). SKCM patients from The Cancer Genome Atlas (TCGA) were divided into training and validation cohorts. We used GSE65904 downloaded from GEO database as an external validation cohort. We performed Cox regression and the least absolute shrinkage and selection operator (LASSO) regression to identify prognostic genes and built a risk score. Patients were divided into high- and low-risk groups based on the risk score. Differently expressed genes (DEGs), immune cell infiltration and immune-related pathways activation were compared between the two groups. We established a model containing 4 PRGs, i.e., GSDMA, GSDMC, AIM2 and NOD2. The overall survival (OS) time was significantly different between the 2 groups. The risk score was an independent predictor for prognosis in both the uni- and multi-variable Cox regressions. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that DEGs were enriched in immune-related pathways. Most types of immune cells were highly expressed in the low risk group. All immune pathways were significantly up-regulated in the low-risk group. In addition, low-risk patients had a better response to immune checkpoint inhibitors. Our novel pyroptosis-related gene signature could predict the prognosis of SKCM patients and their response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zehao Niu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
40
|
Gao M, Deng C, Dang F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr Res 2021; 65:3602. [PMID: 34776832 PMCID: PMC8559449 DOI: 10.29219/fnr.v65.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Although sorafenib (Sor) is the only effective drug for hepatocellular carcinoma (HCC), its therapeutic potential to date is mainly limited to the low tumor response. This study was designed to explore whether resveratrol (Res) could potentiate the anticancerous activity of Sor. We used HepG2 and Huh7 HCC cell lines and BALB/c nude mice for in vitro and in vivo studies, respectively. The cultured cell lines and tumor induction in the mice were treated with different concentrations of Res and Sor alone, and the combination of Res and Sor to observe the antitumor effects. Significant inhibitory effects were observed in the combined treatment of Res and Sor compared to Res and Sor alone treatments both in vitro and in vivo as demonstrated by significantly high number of S phase cells and apoptotic cells. Moreover, these findings were accompanied by the reduction of CDK2, CDC25A, PKA, p-AMPK, and eEF2K protein levels and the increment of cyclin A, cleavage caspase-3, caspase-8, and caspase-9 protein levels. The combinational treatment exhibited more significant anticancerous effect than the Res and Sor alone treatments in mice-bearing HepG2 xenograft. Overall, our results suggest that PKA/AMPK/eEF2K pathway is involved in the synergistic anticancerous activity of Res and Sor combination treatment in HCC cells. Thus, Res and Sor combination therapy may be promising in increasing the tumor response of Sor in the future.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chun Deng
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Inhibiting Src-mediated PARP1 tyrosine phosphorylation confers synthetic lethality to PARP1 inhibition in HCC. Cancer Lett 2021; 526:180-192. [PMID: 34762994 DOI: 10.1016/j.canlet.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC), a heterogeneous cancer with high mortality, is resistant to single targeted therapy; thus, combination therapy based on synthetic lethality is a promising therapeutic strategy for HCC. Poly (adenosine diphosphate [ADP]-ribose) polymerase 1 (PARP1) is the most recognized target for synthetic lethality; however, the therapeutic effect of PARP1 inhibition on HCC is disappointing. Therefore, exploring new synthetic lethal partners for the efficient manipulation of HCC is urgently required. In this study, we identified Src and PARP1 as novel synthetic lethal partners, and the combination therapy produced significant anti-tumor effects without causing obvious side effects. Mechanistically, Src interacted with PARP1 and phosphorylated PARP1 at the Y992 residue, which further mediated resistance to PARP1 inhibition. Overall, this study revealed that Src-mediated PARP1 phosphorylation induced HCC resistance to PARP1 inhibitors and indicated a therapeutic window of the Y992 phosphorylation of PARP1 for HCC patients. Moreover, synthetic lethal therapy by co-targeting PARP1 and Src have the potential to broaden the strategies for HCC and might benefit HCC patients with high Src activation and resistance to PARP1 inhibitors alone.
Collapse
|
42
|
Wang F, Liu R, Yang J, Chen B. New insights into genetic characteristics between multiple myeloma and COVID-19: An integrative bioinformatics analysis of gene expression omnibus microarray and the cancer genome atlas data. Int J Lab Hematol 2021; 43:1325-1333. [PMID: 34623759 PMCID: PMC8652836 DOI: 10.1111/ijlh.13717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023]
Abstract
Background Multiple myeloma (MM) is a hematological malignancy. Coronavirus disease 2019 (COVID‐19) infection correlates with MM features. This study aimed to identify MM prognostic biomarkers with potential association with COVID‐19. Methods Differentially expressed genes (DEGs) in five MM data sets (GSE47552, GSE16558, GSE13591, GSE6477, and GSE39754) with the same expression trends were screened out. Functional enrichment analysis and the protein‐protein interaction network were performed for all DEGs. Prognosis‐associated DEGs were screened using the stepwise Cox regression analysis in the cancer genome atlas (TCGA) MMRF‐CoMMpass cohort and the GSE24080 data set. Prognosis‐associated DEGs associated with COVID‐19 infection in the GSE164805 data set were also identified. Results A total of 98 DEGs with the same expression trends in five data sets were identified, and 83 DEGs were included in the protein‐protein interaction network. Cox regression analysis identified 16 DEGs were associated with MM prognosis in the TCGA cohort, and only the cytochrome c oxidase subunit 6C (COX6C) gene (HR = 1.717, 95% CI 1.231–2.428, p = .002) and the nucleotide‐binding oligomerization domain containing 2 (NOD2) gene (HR = 0.882, 95% CI 0.798–0.975, p = .014) were independent factors related to MM prognosis in the GSE24080 data set. Both of them were downregulated in patients with mild COVID‐19 infection compared with controls but were upregulated in patients with severe COVID‐19 compared with patients with mild illness. Conclusions The NOD2 and COX6C genes might be used as prognostic biomarkers in MM. The two genes might be associated with the development of COVID‐19 infection.
Collapse
Affiliation(s)
- Fei Wang
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, Zhongda Hospital, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Ran Liu
- Department of Quality Management, Medical School, Zhongda Hospital, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jie Yang
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, Zhongda Hospital, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Baoan Chen
- Department of Hematology (Key Department of Jiangsu Medicine), Medical School, Zhongda Hospital, Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
43
|
Yu T, Yu J, Lu L, Zhang Y, Zhou Y, Zhou Y, Huang F, Sun L, Guo Z, Hou G, Dong Z, Wang B. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis. Cell Oncol (Dordr) 2021; 44:821-834. [PMID: 33974236 PMCID: PMC8338827 DOI: 10.1007/s13402-021-00605-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Lenvatinib is a long-awaited alternative to Sorafenib for first-line targeted therapy of patients with advanced hepatocellular carcinoma (HCC). However, resistance to Lenvatinib results in tumor progression and has become a major obstacle to improving the prognosis of HCC patients. Exploring the mechanisms underlying Lenvatinib resistance is considered essential for the treatment of advanced HCC. METHODS Lenvatinib resistant HCC (LR-HCC) cells were generated and potential long non-coding RNAs (Lnc-RNAs) upregulated in LR-HCC cells were identified by RNA sequencing. The effects of upregulated Lnc-RNAs were evaluated in vitro in cell models and in vivo in experimental animals using quantitative cell viability and apoptosis assays. RESULTS We found that Lnc-RNA MT1JP (MT1JP) was upregulated in LR-HCC cells and inhibited the apoptosis signaling pathway. In addition, we found that sponging of microRNA-24-3p by MT1JP released Bcl-2 like 2 (BCL2L2), an anti-apoptotic protein, thereby forming a positive-feedback loop. The role of this feedback loop was validated using rescue assays. Additionally, we found that upregulation of MT1JP and BCL2L2 impaired the sensitivity of HCC cells to Lenvatinib both vitro and vivo. CONCLUSIONS Our results suggest a novel molecular feedback loop between MT1JP and apoptosis signaling in Lenvatinib sensitive HCC cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Nude
- Mice, SCID
- MicroRNAs/genetics
- Phenylurea Compounds/therapeutic use
- Quinolines/therapeutic use
- RNA, Long Noncoding/genetics
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Ting Yu
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Jiajian Yu
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yize Zhang
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yadong Zhou
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Yong Zhou
- Department of Hepatobiliary, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Fengling Huang
- Department of Radiology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Lu Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhixian Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Zihui Dong
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Bibo Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
44
|
Dahiya M, Dureja H. Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. J Chemother 2021; 34:286-301. [PMID: 34291704 DOI: 10.1080/1120009x.2021.1955202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most widespread typical therapy-resistant, unresectable type of malignant solid tumour with a high death rate constituting huge medical concern. Sorafenib is a small molecule oral multi-target kinase potent inhibitor that acts by suppressing/blocking the multiplication of the tumour cells, angiogenesis, and encouraging apoptosis of the tumour cells. Though, the precise mechanism of tumour cell death induction by sorafenib is yet under exploration. Furthermore, genetic heterogeneity plays a critical role in developing sorafenib resistance, which leads the way to identify the need for predictive biomarkers responsible for drug resistance. Therefore, it is essential to find out the fundamental resistance mechanisms to expand therapeutic plans. The authors summarize the molecular concepts of resistance, progression, potential molecular targets, HCC management therapies, and discussion on the advancements expected in the coming future, inclusive of biomarker-driven treatment strategies, which may provide the prospects to design innovative therapeutically targeted strategies for the HCC treatment and the clinical implementation of emerging targeted agents.
Collapse
Affiliation(s)
- Mandeep Dahiya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
45
|
Lu H, Mei C, Yang L, Zheng J, Tong J, Duan F, Liang H, Hong L. PPM-18, an Analog of Vitamin K, Induces Autophagy and Apoptosis in Bladder Cancer Cells Through ROS and AMPK Signaling Pathways. Front Pharmacol 2021; 12:684915. [PMID: 34305598 PMCID: PMC8299005 DOI: 10.3389/fphar.2021.684915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
PPM-18, identified as a novel analog of vitamin K, has been reported to play a critical role in the suppression of seizures. However, the concerns that whether PPM-18, like vitamin K, exerts anticancer activity remain to be further investigated. Here, we found that PPM-18 remarkably suppressed the proliferation and induced apoptosis in bladder cancer cells. Furthermore, a significant autophagic effect of PPM-18 on bladder cancer cells was also demonstrated, which profoundly promoted apoptotic cell death. Mechanistically, PPM-18 activated AMP-activated protein kinase (AMPK), whereas it repressed PI3K/AKT and mTORC1 pathways in bladder cancer cells. Inhibition of AMPK markedly relieved PPM-18–induced autophagy and apoptosis, indicating that PPM-18 is able to induce autophagy and apoptosis in bladder cancer cells via AMPK activation. Moreover, reactive oxygen species (ROS) were notably accumulated in PPM-18–treated bladder cancer cells, and treatment with ROS scavengers not only eliminated ROS production but also abrogated AMPK activation, which eventually rescued bladder cancer cells from PPM-18–triggered autophagy and apoptotic cell death. In bladder cancer xenografts, the anticancer activities of PPM-18, including suppressing the growth of tumors and inducing autophagy and apoptosis in tumor cells, were also established. Collectively, this study was the first to demonstrate the anticancer effect of PPM-18 on bladder cancer cells in vitro and in vivo through eliciting autophagy and apoptosis via ROS and AMPK pathways, which might provide new insights into the potential utilization of PPM-18 for future bladder cancer treatment.
Collapse
Affiliation(s)
- Huiai Lu
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luhao Yang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyan Zheng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Tong
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengsen Duan
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hong
- Department of Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
47
|
Autophagy, an accomplice or antagonist of drug resistance in HCC? Cell Death Dis 2021; 12:266. [PMID: 33712559 PMCID: PMC7954824 DOI: 10.1038/s41419-021-03553-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy characterized by poor prognosis and a low 5-year survival rate. Drug treatment is proving to be effective in anti-HCC. However, only a small number of HCC patients exhibit sensitive responses, and drug resistance occurs frequently in advanced patients. Autophagy, an evolutionary process responsible for the degradation of cellular substances, is closely associated with the acquisition and maintenance of drug resistance for HCC. This review focuses on autophagic proteins and explores the intricate relationship between autophagy and cancer stem cells, tumor-derived exosomes, and noncoding RNA. Clinical trials involved in autophagy inhibition combined with anticancer drugs are also concerned.
Collapse
|
48
|
Gurses SA, Banskar S, Stewart C, Trimoski B, Dziarski R, Gupta D. Nod2 protects mice from inflammation and obesity-dependent liver cancer. Sci Rep 2020; 10:20519. [PMID: 33239685 PMCID: PMC7688964 DOI: 10.1038/s41598-020-77463-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Nod2 is a pattern recognition receptor that modulates host innate immune responses and protects from inflammation, steatosis, and obesity. Obesity and inflammation are risk factors for hepatocellular carcinoma, however, the role of Nod2 in obesity-dependent hepatic tumorigenesis is not known. Here we tested the hypothesis that Nod2 protects from high fat diet (HFD)-dependent hepatic cancer. We used an obesity-dependent hepatic tumor model. WT and Nod2−/− mice were treated with the carcinogen dimethylbenz[a]anthracene (DMBA) and maintained on HFD. Nod2−/− mice treated with DMBA and maintained on HFD gain significantly more weight and develop more liver tumors than similarly treated WT mice. Livers of Nod2−/− tumorigenic mice had increased expression of genes involved in cell proliferation, immune responses, and cholesterol biosynthesis, increased infiltration of neutrophils, inflammatory monocytes, and T cells, and increased activation of STAT3 and ERK during the later stages of tumorigenesis. Bioinformatic analyses of genes with differential expression predicted an increase in cancer, immune, and cholesterol biosynthesis pathways. In summary, we have identified a novel role for Nod2 and demonstrate that Nod2 protects from HFD-dependent liver malignancy and this protection is accompanied by decreased cell proliferation, inflammation, steroid biosynthesis, neutrophils and macrophages infiltration, and STAT3 and MAPK signaling in the liver.
Collapse
Affiliation(s)
- Serdar A Gurses
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Sunil Banskar
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Cody Stewart
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Bill Trimoski
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA.
| |
Collapse
|
49
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The "Warburg effect" illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| |
Collapse
|
50
|
Zhao Y, Zhang YN, Wang KT, Chen L. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188391. [PMID: 32659252 DOI: 10.1016/j.bbcan.2020.188391] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Lenvatinib, a multi-target tyrosine kinase inhibitor (TKI), is an emerging first-line therapy for hepatocellular carcinoma (HCC). Its application has changed the status of sorafenib as the only first-line TKI treatment for HCC for more than a decade. Evidence has shown that lenvatinib possesses antitumor proliferation and immunomodulatory activity in preclinical studies. In comparison, lenvatinib was non-inferior to sorafenib in overall survival (OS), and even shows superiority with regard to all the secondary efficacy endpoints. Immune-checkpoint inhibitors(ICIs)are now being incorporated into HCC treatment. Positive outcomes have been achieved in the combination of lenvatinib plus ICIs, bringing broader prospects for HCC. This review presents an overview on the therapeutic mechanisms and clinical efficacy of lenvatinib in HCC, and we discuss the future perspectives of lenvatinib in HCC management with focus on biomarker-guided precision medicine.
Collapse
Affiliation(s)
- Yan Zhao
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Ya-Ni Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Kai-Ting Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Lei Chen
- International Cooperation Laboratory of Signal Transduction, Eastern Hepatobiliary Surgery Institute, China.
| |
Collapse
|