1
|
Georgantopoulos A, Kalousi FD, Pollastro F, Tsialtas I, Kalogiouri NP, Psarra AMG. Chemical Analysis and Antioxidant Activities of Resin Fractions from Pistacia lentiscus L. var. Chia in Neuroblastoma SH-SY5Y Cells. Molecules 2025; 30:997. [PMID: 40076222 PMCID: PMC11901618 DOI: 10.3390/molecules30050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Chios mastiha is the natural aromatic resin of Pistacia lentiscus L. var. Chia, Anacardiaceae, which is exclusively cultivated in the southern part of the Greek island of Chios. Chios mastiha (P. lenticonus/Chios mastiha) is well-known for its distinctive taste and aroma and has been known since ancient times due to its healing properties in gastrointestinal and inflammatory disorders and because of its anti-bacterial and anti-fungal activities. In this study, the chemical composition, applying LC-QTOF-MS/MS analysis, and the antioxidant activities of three different polarity P. lenticonus/Chios mastiha fractions, apolar, medium polar, and polar, were characterized in human neuroblastoma SH-SY5Y cells. Chemical analysis of the fractions unveiled new components of P. lenticonus/Chios mastiha, mainly fatty acids compounds, known for their antioxidant activity and regulatory effects on lipid metabolism. By applying the MTT assay and confocal microscopy analysis, we showed that P. lenticonus/Chios mastiha fractions, especially the apolar and medium polar fractions, enriched in triterpenes and fatty acids, caused suppression of the H2O2-induced reduction in cell viability, ROS production, and depolarization of the mitochondrial membrane potential, in SH-SY5Y cells. Moreover, Western blot analysis revealed that apolar fraction, enriched in fatty acids, induced expression of the PPARα, which is well-known for its antioxidant activities and its crucial role in lipid metabolism. Induction of PPARα, a GR target gene, was also accompanied by an increase in GR protein levels. Enhanced antioxidant activities of the apolar fraction may be correlated with its chemical composition, enriched in fatty acids and triterpenoids. Thus, our results indicate the neuroprotective actions of P. lenticonus/Chios mastiha fractions, highlighting their potential application as neuroprotective agents in neurodegenerative diseases.
Collapse
Affiliation(s)
- Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Federica Pollastro
- Department of Pharmaceutical, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Natasa P. Kalogiouri
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| |
Collapse
|
2
|
He Y, Li S, Jiang L, Wu K, Chen S, Su L, Liu C, Liu P, Luo W, Zhong S, Li Z. Palmitic Acid Accelerates Endothelial Cell Injury and Cardiovascular Dysfunction via Palmitoylation of PKM2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412895. [PMID: 39665133 PMCID: PMC11791964 DOI: 10.1002/advs.202412895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
High serum level of palmitic acid(PA) is implicated in pathogenesis of cardiovascular diseases. PA serves as the substrate for protein palmitoylation. However, it is still unknown whether palmitoylation is involved in PA-induced cardiovascular dysfunction. Here, in clinical cohort studies of 1040 patients with coronary heart disease, high level of PA is associated with risk of major adverse cardiovascular events (MACE) and death. In ApoE-/-mice, 10 mg/kg-1 PA treatment induces blood pressure elevation, cardiac contractile dysfunction, endothelial dysfunction and atherosclerotic plaqueformation. In endothelial cells, inhibition of palmitoylation bypalmitoyl-transferase inhibitor 2-BP eliminates PA-induced endothelial injury, whereas promotion of palmitoylation by depalmitoylase inhibitor ML349 exacerbates the harmful effect of PA. Palmitoyl-proteomics analysis identifies pyruvate kinase isozyme type M2 (PKM2) as the palmitoylated protein responsible for PA-induced endothelial injury, and Cys31 as the predominant palmitoylated site. PKM2-C31S mutants (cysteine replaced by serine) prevents PA-induced endothelial injury. Endothelial-specific AAV-C31S PKM2endo ameliorates cardiovascular dysfunction caused by PA in ApoE-/- mice. Mechanistically, PKM2-C31 palmitoylation impairs PKM2 tetramerization to inhibit its pyruvate kinase activity and endothelial glycolysis. Finally, zDHHC13 is identified as the palmitoyl acyltransferase of PKM2. In conclusion, these findings suggest that PKM2-C31 palmitoylation contributes to PA-induced endothelial injury and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Yu He
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Senlin Li
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080P. R. China
- School of MedicineSouth China University of TechnologyGuangzhou510006P. R. China
| | - Lujing Jiang
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Kejue Wu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Shanshan Chen
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Linjie Su
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Cui Liu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Peiqing Liu
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Wenwei Luo
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Shilong Zhong
- Department of PharmacyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080P. R. China
- School of MedicineSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zhuoming Li
- Department of Pharmacology and ToxicologySchool of Pharmaceutical SciencesNational and Local United Engineering Lab of Druggability and New Drugs EvaluationGuangdong Engineering Laboratory of Druggability and New Drug EvaluationGuangdong Provincial Key Laboratory of New Drug Design and EvaluationSun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
3
|
Melnyk O, Guo JK, Li ZA, Jo JH, Hughes JW, Linnemann AK. Intravital imaging reveals glucose-dependent cilia movement in pancreatic islets in vivo. Metabolism 2025; 163:156105. [PMID: 39667431 PMCID: PMC11718731 DOI: 10.1016/j.metabol.2024.156105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Pancreatic islet cells harbor primary cilia, small sensory organelles that detect environmental changes to regulate hormone secretion and intercellular communication. While the sensory and signaling capacity of primary cilia are well-appreciated, it is less recognized that these organelles also possess active motility, including in dense multicellular tissues such as the pancreatic islet. In this manuscript, we use transgenic cilia reporter mice and an intravital imaging approach to quantitate primary cilia dynamics as it occurs in live mouse pancreatic islets. We validate this imaging workflow as suitable for studying islet cilia motion in real time in vivo and demonstrate that glucose stimulation corresponds to a change in cilia motility, which may be a physiologic measure of nutrient-dependent fluxes in islet cell function. Complementary ex vivo analysis of isolated islets further demonstrates that metabolic stress in the form of lipotoxicity impairs cilia motility and these effects can be reversed by glucose elevation. These findings suggest that cilia motility is sensitive to metabolic stress and highlight its potential functional role in beta cell adaptation.
Collapse
Affiliation(s)
- Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeff Kaihao Guo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zipeng Alex Li
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeong Hun Jo
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing W Hughes
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Amelia K Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Su X, Li Q, Yang M, Zhang W, Liu X, Ba Y, Deng Q, Zhang Y, Han L, Huang H. Resveratrol protects against a high-fat diet-induced neuroinflammation by suppressing mitochondrial fission via targeting SIRT1/PGC-1α. Exp Neurol 2024; 380:114899. [PMID: 39059737 DOI: 10.1016/j.expneurol.2024.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Various health issues have emerged due to consuming high-fat diets (HFD), particularly the detrimental impact they have on mitochondrial dynamics and subsequet cognition functions. Specially, mitochondrial fission can serve as an upstream signal in the regulation of cortical inflammation and neural pyroptosis. Our study was designed to verify the existence of neuroinflammation in the pathogenesis of HFD-induced cognitive dysfunction and demonstrated that resveratrol (RSV) attenuated neural deficits via regulation of cortical mitochondrial fission. A total of 50 male Sprague Dawley rats were randomly divided into five groups: control (Cont, 26 weeks on normal rodent diet); high-fat diet (HFD); dietary adjustments (HFD + ND); resveratrol intervention (HFD + R); joint intervention (HFD + ND + R) for 26 weeks. The spatial learning and memory function, spine density, NLRP3 inflammasome associated protein, mRNA and protein expression involved in mitochondrial dynamics and SIRT1/PGC-1α signaling pathway in brain were measured. Furthermore, reactive oxygen species (ROS) accumulation and resultant mitochondrial membrane potential (MMP) alteration in PC12 cells exposed to palmitic acid (PA) or Drp1 inhibitor (Mdivi-1) were detected to reflect mitochondrial function. The findings suggested that prolonged treatment of RSV improved cognitive deficits and neuronal damage induced by HFD, potentially attributed to activation of the SIRT1/PGC-1α axis. We further indicated that the activation of the NLRP3 inflammasome in PA (200 μM) treated PC12 cells could be inhibited by Mdivi-1. More importantly, Mdivi-1 (10 μM) reduced intracellular ROS levels and enhanced MMP by reversing Drp1-mediated aberrant mitochondrial fission. To summarize, those results clearly indicated that a HFD inhibited the SIRT1/PGC-1α pathway, which contributed to an imbalance in mitochondrial dynamics and the onset of NLRP3-mediated pyroptosis. This effect was mitigated by the RSV possibly through triggering the SIRT1/PGC-1α axis, prevented aberrant mitochondrial fission and thus inhibited the activation of the NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Wenhui Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiaoxue Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yu Zhang
- State Key Laboratory of Microbial Technology, Qingdao, Shandong 266000, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250100, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong 250100, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
5
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
6
|
García-Navarrete C, Kretschmar C, Toledo J, Gutiérrez K, Hernández-Cáceres MP, Budini M, Parra V, Burgos PV, Lavandero S, Morselli E, Peña-Oyarzún D, Criollo A. PKD2 regulates autophagy and forms a protein complex with BECN1 at the primary cilium of hypothalamic neuronal cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167256. [PMID: 38782303 DOI: 10.1016/j.bbadis.2024.167256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.
Collapse
Affiliation(s)
- Camila García-Navarrete
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Facultad de Medicina, Universidad de Chile, Chile
| | - Karla Gutiérrez
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia V Burgos
- Autophagy Research Center, Santiago, Chile; Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, Huechuraba 8580702, Santiago, Chile
| | - Sergio Lavandero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastián, Chile.
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Jurisch-Yaksi N, Wachten D, Gopalakrishnan J. The neuronal cilium - a highly diverse and dynamic organelle involved in sensory detection and neuromodulation. Trends Neurosci 2024; 47:383-394. [PMID: 38580512 DOI: 10.1016/j.tins.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7491 Trondheim, Norway.
| | - Dagmar Wachten
- Department of Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; Institute for Human Genetics, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
| |
Collapse
|
8
|
Florance I, Ramasubbu S. Regulation of genes involved in the metabolic adaptation of murine microglial cells in response to elevated HIF-1α mediated activation. Immunogenetics 2024; 76:93-108. [PMID: 38326657 DOI: 10.1007/s00251-024-01334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Microglia cells are activated in response to different stress signals. Several metabolic adaptations underlie microglia activation in the brain. Among these, in conditions like ischemic stroke and, hypoxic stress stimuli activate microglia cells. Hypoxic stress is mediated by HIF-1α. Although HIF-1α has been implicated in the alteration of metabolic pathways, changes in microglia lipid metabolism during M1 activation of microglia induced by elevated HIF-1α levels are yet to be understood. This can also merit interest in the development of novel targets to mitigate chronic inflammation. Our study aims to elucidate the transcriptional regulation of metabolic pathways in microglia cells during HIF-1α mediated activation. To study the adaptations in the metabolic pathways we induced microglia activation, by activating HIF-1α. Here, we show that microglia cells activated in response to elevated HIF-1α require ongoing lipogenesis and fatty acid breakdown. Notably, autophagy is activated during the initial stages of microglia activation. Inhibition of autophagy in activated microglia affects their viability and phagocytic activity. Collectively, our study expands the understanding of the molecular link between autophagy, lipid metabolism, and inflammation during HIF-1α mediated microglial activation that can lead to the development of promising strategies for controlling maladaptive activation states of microglia responsible for neuroinflammation. Together, our findings suggest that the role of HIF-1α in regulating metabolic pathways during hypoxia in microglia is beyond optimization of glucose utilization and distinctly regulates lipid metabolism during pro-inflammatory activation.
Collapse
Affiliation(s)
- Ida Florance
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Seenivasan Ramasubbu
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Zhang S, Zhang Y, Wen Z, Yang Y, Bu T, Wei R, Chen Y, Ni Q. Jinkui Shenqi pills ameliorate diabetes by regulating hypothalamic insulin resistance and POMC/AgRP expression and activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155297. [PMID: 38342019 DOI: 10.1016/j.phymed.2023.155297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yueying Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanan Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tianjie Bu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruoyu Wei
- Department of Traditional Chinese Medicine, The Fifth Hospital of Xingtai, Hebei, 054000, China
| | - Yupeng Chen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qing Ni
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
10
|
Nasr M, Fay A, Lupieri A, Malet N, Darmon A, Zahreddine R, Swiader A, Wahart A, Viaud J, Nègre-Salvayre A, Hirsch E, Monteyne D, Perez-Morgà D, Dupont N, Codogno P, Ramel D, Morel E, Laffargue M, Gayral S. PI3KCIIα-Dependent Autophagy Program Protects From Endothelial Dysfunction and Atherosclerosis in Response to Low Shear Stress in Mice. Arterioscler Thromb Vasc Biol 2024; 44:620-634. [PMID: 38152888 DOI: 10.1161/atvbaha.123.319978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.
Collapse
Affiliation(s)
- Mouin Nasr
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Alexis Fay
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Adrien Lupieri
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Nicole Malet
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Anne Darmon
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Rana Zahreddine
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Audrey Swiader
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Amandine Wahart
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Julien Viaud
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Anne Nègre-Salvayre
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy (E.H.)
| | - Daniel Monteyne
- IBMM-DBM, Department of Molecular Parasitology, University of Brussels, Gosselies, Belgium (D.M., D.P.-M.)
| | - David Perez-Morgà
- IBMM-DBM, Department of Molecular Parasitology, University of Brussels, Gosselies, Belgium (D.M., D.P.-M.)
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, France (N.D., P.C., E.M.)
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, France (N.D., P.C., E.M.)
| | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, France (N.D., P.C., E.M.)
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Stephanie Gayral
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| |
Collapse
|
11
|
Hernández-Cáceres MP, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Criollo A, Yañez MJ, Morselli E. Role of lipids in the control of autophagy and primary cilium signaling in neurons. Neural Regen Res 2024; 19:264-271. [PMID: 37488876 PMCID: PMC10503597 DOI: 10.4103/1673-5374.377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is, after the adipose tissue, the organ with the greatest amount of lipids and diversity in their composition in the human body. In neurons, lipids are involved in signaling pathways controlling autophagy, a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium, a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development. A crosstalk between primary cilia and autophagy has been established; however, its role in the control of neuronal activity and homeostasis is barely known. In this review, we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons. Then we review the recent literature about specific lipid subclasses in the regulation of autophagy, in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions, specifically focusing on neurons, an area of research that could have major implications in neurodevelopment, energy homeostasis, and neurodegeneration.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Daniela Pinto-Nuñez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Patricia Rivera
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Francisco Díaz-Castro
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Maria Jose Yañez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| |
Collapse
|
12
|
Macarelli V, Leventea E, Merkle FT. Regulation of the length of neuronal primary cilia and its potential effects on signalling. Trends Cell Biol 2023; 33:979-990. [PMID: 37302961 PMCID: PMC7615206 DOI: 10.1016/j.tcb.2023.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Primary cilia protrude from most vertebrate cell bodies and act as specialized 'signalling antennae' that can substantially lengthen or retract in minutes to hours in response to specific stimuli. Here, we review the conditions and mechanisms responsible for regulating primary cilia length (PCL) in mammalian nonsensory neurons, and propose four models of how they could affect ciliary signalling and alter cell state and suggest experiments to distinguish between them. These models include (i) the passive indicator model, where changes in PCL have no consequence; (ii) the rheostat model, in which a longer cilium enhances signalling; (iii) the local concentration model, where ciliary shortening increases the local protein concentration to facilitate signalling; and (iv) the altered composition model where changes in PCL skew signalling.
Collapse
Affiliation(s)
- Viviana Macarelli
- Metabolic Research Laboratories, Wellcome Trust - Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Eleni Leventea
- Wolfson Diabetes and Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Florian T Merkle
- Metabolic Research Laboratories, Wellcome Trust - Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
13
|
Kretschmar C, Hernández-Cáceres MP, Reyes M, Peña-Oyarzún D, García-Navarrete C, Troncoso R, Díaz-Castro F, Budini M, Morselli E, Riquelme JA, Hill JA, Lavandero S, Criollo A. Methods for studying primary cilia in heart tissue after ischemia-reperfusion injury. Methods Cell Biol 2023; 176:85-101. [PMID: 37164544 DOI: 10.1016/bs.mcb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death and disability worldwide. After heart injury triggered by myocardial ischemia or myocardial infarction, extensive zones of tissue are damaged and some of the tissue dies by necrosis and/or apoptosis. The loss of contractile mass activates a series of biochemical mechanisms that allow, through cardiac remodeling, the replacement of the dysfunctional heart tissue by fibrotic material. Our previous studies have shown that primary cilia, non-motile antenna-like structures at the cell surface required for the activation of specific signaling pathways, are present in cardiac fibroblasts and required for cardiac fibrosis induced by ischemia/reperfusion (I/R) in mice. I/R-induced myocardial fibrosis promotes the enrichment of ciliated cardiac fibroblasts where the myocardial injury occurs. Given discussions about the existence of cilia in specific cardiac cell types, as well as the functional relevance of studying cilia-dependent signaling in cardiac fibrosis after I/R, here we describe our methods to evaluate the presence and roles of primary cilia in cardiac fibrosis after I/R in mice.
Collapse
|
14
|
Brewer KM, Brewer KK, Richardson NC, Berbari NF. Neuronal cilia in energy homeostasis. Front Cell Dev Biol 2022; 10:1082141. [PMID: 36568981 PMCID: PMC9773564 DOI: 10.3389/fcell.2022.1082141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
A subset of genetic disorders termed ciliopathies are associated with obesity. The mechanisms behind cilia dysfunction and altered energy homeostasis in these syndromes are complex and likely involve deficits in both development and adult homeostasis. Interestingly, several cilia-associated gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis, including their roles in centrally mediated food intake and peripheral tissues, many questions remain. Here, we briefly discuss syndromic ciliopathies and monogenic cilia signaling mutations associated with obesity. We then focus on potential ways neuronal cilia regulate energy homeostasis. We discuss the literature around cilia and leptin-melanocortin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We also discuss the different brain regions where cilia are implicated in energy homeostasis and the potential for cilia dysfunction in neural development to contribute to obesity. We close with a short discussion on the challenges and opportunities associated with studies looking at neuronal cilia and energy homeostasis. This review highlights how neuronal cilia-mediated signaling is critical for proper energy homeostasis.
Collapse
Affiliation(s)
- Kathryn M. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Katlyn K. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicholas C. Richardson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Claude-Taupin A, Dupont N, Codogno P. Autophagy and the primary cilium in cell metabolism: What’s upstream? Front Cell Dev Biol 2022; 10:1046248. [PMID: 36438551 PMCID: PMC9682156 DOI: 10.3389/fcell.2022.1046248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The maintenance of cellular homeostasis in response to extracellular stimuli, i.e., nutrient and hormone signaling, hypoxia, or mechanical forces by autophagy, is vital for the health of various tissues. The primary cilium (PC) is a microtubule-based sensory organelle that regulates the integration of several extracellular stimuli. Over the past decade, an interconnection between autophagy and PC has begun to be revealed. Indeed, the PC regulates autophagy and in turn, a selective form of autophagy called ciliophagy contributes to the regulation of ciliogenesis. Moreover, the PC regulates both mitochondrial biogenesis and lipophagy to produce free fatty acids. These two pathways converge to activate oxidative phosphorylation and produce ATP, which is mandatory for cell metabolism and membrane transport. The autophagy-dependent production of energy is fully efficient when the PC senses shear stress induced by fluid flow. In this review, we discuss the cross-talk between autophagy, the PC and physical forces in the regulation of cell biology and physiology.
Collapse
Affiliation(s)
| | - Nicolas Dupont
- *Correspondence: Aurore Claude-Taupin, ; Nicolas Dupont, ; Patrice Codogno,
| | - Patrice Codogno
- *Correspondence: Aurore Claude-Taupin, ; Nicolas Dupont, ; Patrice Codogno,
| |
Collapse
|
16
|
Jin L, Dang H, Wu J, Yuan L, Chen X, Yao J. Weizmannia coagulans BC2000 Plus Ellagic Acid Inhibits High-Fat-Induced Insulin Resistance by Remodeling the Gut Microbiota and Activating the Hepatic Autophagy Pathway in Mice. Nutrients 2022; 14:4206. [PMID: 36235858 PMCID: PMC9572659 DOI: 10.3390/nu14194206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
(1) Background: Ellagic acid (EA) acts as a product of gut microbiota transformation to prevent insulin resistance, which is limited by high-fat diet (HFD)-induced dysbiosis. The aim of this study was to investigate the synergistic effects and mechanisms of supplementation with the probiotic Weizmannia coagulans (W. coagulans) on the prevention of insulin resistance by EA; (2) Methods: C57BL/6J mice were divided into five groups (n = 10/group): low-fat-diet group, high-fat-diet group, EA intervention group, EA + W. coagulans BC77 group, and EA + W. coagulans BC2000 group; (3) Result: W. coagulans BC2000 showed a synergistic effect on EA's lowering insulin resistance index and inhibiting high-fat diet-induced endotoxemia. The combined effect of BC2000 and EA activated the autophagy pathway in the mouse liver, a urolithin-like effect. This was associated with altered β-diversity of gut microbiota and increased Eggerthellaceae, a potential EA-converting family. Ellagic acid treatment alone and the combined use of ellagic acid and W. coagulans BC77 failed to activate the hepatic autophagy pathway; (4) Conclusions: W. coagulans BC2000 can assist EA in its role of preventing insulin resistance. This study provides a basis for the development of EA-rich functional food supplemented with W. coagulans BC2000.
Collapse
Affiliation(s)
- Long Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Probiotics Institute, Hefei 230031, China
| | - Hongyang Dang
- College Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|