1
|
Tan R, Zhao D, Zhang X, Liu T, Han C, Li Z, Qi C, Wang Z. Gender and age differences in the global burden of peptic ulcers: an analysis based on GBD data from 1990 to 2021. Front Med (Lausanne) 2025; 12:1586270. [PMID: 40357292 PMCID: PMC12066501 DOI: 10.3389/fmed.2025.1586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Background Peptic ulcer (PU) is one of the most common gastrointestinal diseases worldwide. With advances in medical technology, the global disease burden of PU has been effectively controlled. However, the most recent evidence regarding the global burden of PU remains limited. Methods Using publicly available data from the Global Burden of Disease (GBD) study from 1990 to 2021, we analyzed the characteristics of the global burden of PU, including trends in incidence, prevalence, mortality, disability-adjusted life years (DALYs), years lived with disability (YLDs), and years of life lost (YLLs). We employed Joinpoint regression, age-period-cohort (APC) analysis, decomposition analysis, and autoregressive integrated moving average (ARIMA) modeling to evaluate changes and influencing factors for each indicator. Results The global number of PU cases increased from 2,570,413 in 1990 (95% CI: 2,161,831-2,997,880) to 2,854,370 in 2021 (95% CI: 2,438,231-3,264,252), representing a cumulative growth of 11.05%. However, the age-standardized incidence rate (ASIR) decreased from 57.14 (95% CI: 48.61-66.73) per 100,000 population in 1990 to 34.10 (95% CI: 29.13-38.97) per 100,000 population in 2021. The global number of deaths due to PU decreased from 273,872 in 1990 (95% CI: 247,312-299,718) to 230,217 in 2021 (95% CI: 193,005-270,858). Significant gender differences were observed, with the disease burden consistently higher in males than in females. After controlling for period and cohort effects, the onset of PU tended to occur at younger ages, and the number of cases declined across most age groups from 1990 to 2021. The highest incidence of PU was concentrated in individuals aged 90 years and older. In terms of future trends, the global incidence of PU is projected to continue decreasing over the next 15 years. The global prevalence is expected to improve, while PU-related mortality is likely to plateau without significant increases or decreases. Conclusion The global burden of PU has declined significantly over the past three decades. However, elderly individuals and males remain at higher risk and require continued attention in prevention and management efforts.
Collapse
Affiliation(s)
- Ruirui Tan
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaomei Zhang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Tong Liu
- Department of Acupuncture and Moxibustion, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Chao Han
- Department of Acupuncture and Moxibustion, Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen, China
| | - Zhongcheng Li
- Department of Acupuncture and Moxibustion, Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen, China
| | - Chenxi Qi
- Department of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhaohui Wang
- Department of Acupuncture and Moxibustion, Shenzhen Bao’an Authentic TCM Therapy Hospital, Shenzhen, China
| |
Collapse
|
2
|
Kim CW, Ku KB, Hwang I, Jung HE, Kim KD, Lee HK. Differential responses of lung and intestinal microbiota to SARS-CoV-2 infection: a comparative study of the Wuhan and Omicron strains in K18-hACE2 Tg mice. Lab Anim Res 2025; 41:11. [PMID: 40270072 PMCID: PMC12016229 DOI: 10.1186/s42826-025-00241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/07/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2, has led to the emergence of viral variants with distinct characteristics. Understanding the differential impacts of SARS-CoV-2 variants is crucial for effective public health response and treatment development. We investigated the differential effects of the original Wuhan strain and the emergent Omicron variant of SARS-CoV-2 using a K18-hACE2 transgenic mouse model. We compared the mortality rates, viral loads, and histopathological changes in lung and tracheal tissues, as well as alterations in the lung and intestinal microbiota following infection. RESULTS Our findings revealed significant differences between the variants, with the Wuhan strain causing higher mortality rates, severe lung pathology, and elevated viral loads compared to the Omicron variant. Microbiome analyses uncovered novel and distinct shifts in the lung and intestinal microbiota associated with each variant, providing evidence for variant-specific microbiome alterations. These changes suggest microbiome-related mechanisms that might modulate disease severity and host responses to SARS-CoV-2 infection. CONCLUSIONS This study highlights critical differences between the Wuhan strain and Omicron variant in terms of mortality, lung pathology, and microbiota changes, emphasizing the role of the microbiome in influencing disease outcomes. Novel findings include the identification of variant-specific microbiota shifts, which underscore potential microbiome-related mechanisms underlying differences in disease severity. These insights pave the way for future research exploring microbiome-targeted interventions to mitigate the impacts of SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Chae Won Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Life Science Institute, KAIST, Daejeon, 34141, Republic of Korea
| | - Keun Bon Ku
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Insu Hwang
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hi Eun Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Life Science Institute, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyun-Do Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| | - Heung Kyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Sangsari R, Saeedi M, Mirnia K, Eshaghi H, Sareh S, Afkhaminia A. A Comparison of Clinical and Laboratory Features in Neonatal Proven Sepsis and COVID-19. Pediatr Infect Dis J 2025; 44:351-356. [PMID: 40063969 DOI: 10.1097/inf.0000000000004618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
BACKGROUND The clinical manifestations of COVID-19 in neonates are generally mild and commonly require only supportive treatment. However, it is important to note that they can sometimes present with symptoms like bacterial sepsis, which can lead to confusion in diagnosis. In this study, our objective was to compare laboratory data and clinical manifestations between 2 groups to identify opportunities for reducing the unnecessary use of antibiotics. METHODS The study was conducted as a cross-sectional study between January 2020 and 2023 on neonates who were admitted to the neonatal intensive care unit or the neonatal ward of Children's Medical Center in Tehran, Iran. We specifically compared the laboratory data and clinical characteristics of neonates who tested positive for either a blood culture or a reverse transcription polymerase chain reaction for COVID-19. RESULTS Sixty-seven neonates in COVID-19 group and 68 neonates in the bacterial sepsis group entered. Prominent symptoms in the bacterial sepsis group include vomiting, seizure, apnea, mottling, increased need for ventilation and laboratory findings showing elevated levels of C-reactive protein and thrombocytopenia. In the COVID-19 group, patient exhibit symptoms such as cough, diarrhea, fever and laboratory findings that indicate neutropenia and leukopenia. Symptoms of nervous involvement were rare in this group. CONCLUSION It is crucial to carefully assess the symptoms, laboratory results and overall condition of the patient before deciding on antibiotic initiation. By combining rapid COVID-19 testing and clinical variables, it is possible to identify low-risk infants who are unlikely to have bacterial infections.
Collapse
Affiliation(s)
- Razieh Sangsari
- From the Division of Neonatology - School of Medicine, Department of Pediatrics, Tehran University of Medical Sciences, Children's Medical Center, Pediatric Center of Excellence, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
4
|
Zhu J, Huang Z, Lin Y, Zhu W, Zeng B, Tang D. Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections. Front Immunol 2025; 16:1534241. [PMID: 40170840 PMCID: PMC11959011 DOI: 10.3389/fimmu.2025.1534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory viral infections are a major global public health concern, and current antiviral therapies still have limitations. In recent years, research has revealed significant similarities between the immune systems of the gut and lungs, which interact through the complex physiological network known as the "gut-lung axis." As one of the largest immune organs, the gut, along with the lungs, forms an inter-organ immune network, with strong parallels in innate immune mechanisms, such as the activation of pattern recognition receptors (PRRs). Furthermore, the gut microbiota influences antiviral immune responses in the lungs through mechanisms such as systemic transport of gut microbiota-derived metabolites, immune cell migration, and cytokine regulation. Studies have shown that gut dysbiosis can exacerbate the severity of respiratory infections and may impact the efficacy of antiviral therapies. This review discusses the synergistic role of the gut-lung axis in antiviral immunity against respiratory viruses and explores potential strategies for modulating the gut microbiota to mitigate respiratory viral infections. Future research should focus on the immune mechanisms of the gut-lung axis to drive the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Jianing Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zihang Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ying Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenxu Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
5
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Baek YH. Understanding the impact on digestive disease in the post-COVID-19 condition: Editorial on "Long-term gastrointestinal and hepatobiliary outcomes of COVID-19: A multinational population-based cohort study from South Korea, Japan, and the UK". Clin Mol Hepatol 2025; 31:319-322. [PMID: 39370714 PMCID: PMC11791587 DOI: 10.3350/cmh.2024.0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024] Open
Affiliation(s)
- Yang-Hyun Baek
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
7
|
Peramaiyan R, Anthony J, Varalakshmi S, Sekar AK, Ali EM, A AHS, Abdallah BM. Comparison of the role of vitamin D in normal organs and those affected by COVID-19. Int J Med Sci 2025; 22:240-251. [PMID: 39781525 PMCID: PMC11704692 DOI: 10.7150/ijms.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/23/2024] [Indexed: 01/12/2025] Open
Abstract
The outbreak of COVID-19 has opened up new avenues for exploring the importance of vitamin D in immunity, in addition to its role in calcium absorption. Recently, vitamin D supplementation has been found to enhance T regulatory lymphocytes, which are reduced in individuals with COVID-19. Increased risk of pneumonia and increases in inflammatory cytokines have been reported to be major threats associated with vitamin-D deficiency. Although vaccination reduces the threat of COVID-19 to a certain extent, herd immunity is the long-term solution to overcoming such diseases. Co-administration of vitamin D with certain inactivated vaccines has been reported to enhance the systemic immune response through stimulation of the production of antigen-specific mucosal immunity. COVID-19 was found to induce multiple organ damage, and vitamin D has a beneficial role in various organs, such as the intestines, pancreas, prostate, kidneys, liver, heart, brain, and immune cells. The consequences that occur after COVID-19 infection known as long COVID-19 are also a concern as they accumulate and target multiple organs, leading to immune dysregulation. The present review covers the overall role and impact of vitamin D and its deficiency for various organs in normal conditions and after COVID-19 infection, which is still a serious issue.
Collapse
Affiliation(s)
- Rajendran Peramaiyan
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Josephine Anthony
- Department of Research, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai - 600 078, Tamil Nadu, India
| | - Sureka Varalakshmi
- Department of Research, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai - 600 078, Tamil Nadu, India
| | - Ashok Kumar Sekar
- Centre for Biotechnology, Anna University, Chennai-600 025, Tamil Nadu, India
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Al Hashedi Sallah A
- Central Laboratories, Department of microbiology, King Faisal University, 31982, Al-Ahsa, Kingdom of Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Changela S, Ashraf S, Lu JY, Duong KE, Henry S, Wang SH, Duong TQ. New-onset gastrointestinal disorders in COVID-19 patients 3.5 years post-infection in the inner-city population in the Bronx. Sci Rep 2024; 14:31850. [PMID: 39738536 PMCID: PMC11685902 DOI: 10.1038/s41598-024-83232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
This study examined the incidence, characteristics, and risk factors of new gastrointestinal disorders (GID) associated with SARS-CoV-2 infection up to 3.5 years post-infection. This retrospective study included 35,102 COVID-19 patients and 682,594 contemporary non-COVID-19 patients without past medical history of GID (controls) from the Montefiore Health System in the Bronx (3/1/2020 to 7/31/2023). Comparisons were made with unmatched and propensity-matched (1:2) controls. The primary outcome was new GID which included peptic ulcer, inflammatory bowel disease, irritable bowel syndrome, diverticulosis, diverticulitis, and biliary disease. Multivariate Cox proportional hazards model analysis was performed with adjustment for covariates. There were 2,228 (6.34%) COVID-19 positive patients who developed new GID compared to 38,928 (5.70%) controls. COVID-19 patients had an elevated risk of developing new GID (adjusted HR = 1.18 (95% CI 1.12-1.25) compared to propensity-matched controls, after adjusting for confounders that included smoking, obesity, diabetes, hypertension. These findings underscore the need for additional research and follow-up of at-risk individuals for developing GID post infection.
Collapse
Affiliation(s)
- Sagar Changela
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Samad Ashraf
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Justin Y Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kevin E Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Stephen H Wang
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Center for Health & Data Innovation, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
9
|
Caldarelli M, Rio P, Giambra V, Palucci I, Gasbarrini A, Gambassi G, Cianci R. SARS-CoV-2 and Environmental Changes: The Perfect Storm. Curr Issues Mol Biol 2024; 46:11835-11852. [PMID: 39590297 PMCID: PMC11592541 DOI: 10.3390/cimb46110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on the global economy. It also provided insights into how the looming global climate crisis might be addressed, as there are several similarities between the challenges proposed by COVID-19 and those expected from the coming climate emergency. COVID-19 is an immediate health threat, but climate change represents a more gradual and insidious risk that will lead to long-term consequences for human health. Research shows that climate change, air pollution and the pandemics have a negative impact on health. Recent studies show that COVID-19 mortality increases with climate extremes. The goal of our review is to analyze the clinical findings of COVID-19 and how they are affected by the climate change, while also providing insight into the emergence of new variants and their ability to evade the immune system. We selected and synthesized data from primary studies, reviews, meta-analyses, and systematic reviews. Selection was based on rigorous methodological and relevance criteria. Indeed, a new variant of SARS-CoV-2, named JN.1, has emerged as the dominant, first in the United States and then worldwide; the variant has specific mutations in its spike proteins that increase its transmissibility. According to the World Health Organization (WHO), JN.1 is currently the most reported variant of interest (VOI), having been identified in 132 countries. We highlight the link between climate change and pandemics, emphasizing the need for global action, targeted medical approaches and scientific innovation.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Ivana Palucci
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| |
Collapse
|
10
|
Qin Z, Liu Y, Jia X, Zhou J, Li H, Wang X, Zhang S, Chang H, Wang G. One-step synthesized multisize AuAg alloy nanoparticles with high SERS sensitivity in directly detecting SARS-CoV-2 spike protein. Anal Chim Acta 2024; 1317:342919. [PMID: 39030015 DOI: 10.1016/j.aca.2024.342919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread disease transmission, challenging the stability of global healthcare systems. Surface-enhanced Raman scattering (SERS) as an easy operation, fast, and low-cost technology illustrates a good potential in detecting SARS-CoV-2. In the study, one-step fabrication of gold-silver alloy nanoparticles (AuAgNPs) with adjustable metal proportions and diameters is employed as SERS substrates. The angiotensin-converting enzyme 2 (ACE2) functionalized AuAgNPs are applied as sensor surfaces to detect SARS-CoV-2 S protein. By optimizing the SERS substrates, ACE2/Au35Ag65NPs illustrate higher performance in detecting the SARS-CoV-2 S protein with a limit of detection (LOD) of 10 fg/mL in both phosphate-buffered saline (PBS) and pharyngeal swabs solution (PSS). It also provides excellent reproducibility with a relative standard deviation (RSD) of 7.7 % and 7.9 %, respectively. This easily preparable and highly reproducible SERS substrate has good potential in the practical application of detecting SARS-CoV-2.
Collapse
Affiliation(s)
- Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China.
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Shaohui Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan, 430074, Hubei, China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, 545006, Guangxi, China.
| |
Collapse
|
11
|
Paužuolis M, Fatykhova D, Zühlke B, Schwecke T, Neyazi M, Samperio-Ventayol P, Aguilar C, Schlegel N, Dökel S, Ralser M, Hocke A, Krempl C, Bartfeld S. SARS-CoV-2 tropism to intestinal but not gastric epithelial cells is defined by limited ACE2 expression. Stem Cell Reports 2024; 19:629-638. [PMID: 38670110 PMCID: PMC11103887 DOI: 10.1016/j.stemcr.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primarily affects the lung but can also cause gastrointestinal (GI) symptoms. In vitro experiments confirmed that SARS-CoV-2 robustly infects intestinal epithelium. However, data on infection of adult gastric epithelium are sparse and a side-by-side comparison of the infection in the major segments of the GI tract is lacking. We provide this direct comparison in organoid-derived monolayers and demonstrate that SARS-CoV-2 robustly infects intestinal epithelium, while gastric epithelium is resistant to infection. RNA sequencing and proteome analysis pointed to angiotensin-converting enzyme 2 (ACE2) as a critical factor, and, indeed, ectopic expression of ACE2 increased susceptibility of gastric organoid-derived monolayers to SARS-CoV-2. ACE2 expression pattern in GI biopsies of patients mirrors SARS-CoV-2 infection levels in monolayers. Thus, local ACE2 expression limits SARS-CoV-2 expression in the GI tract to the intestine, suggesting that the intestine, but not the stomach, is likely to be important in viral replication and possibly transmission.
Collapse
Affiliation(s)
- Mindaugas Paužuolis
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Boris Zühlke
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Schwecke
- Core Facility for High-Throughput Mass Spectrometry, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mastura Neyazi
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Pilar Samperio-Ventayol
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Carmen Aguilar
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Simon Dökel
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Markus Ralser
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany; The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andreas Hocke
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Krempl
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Sina Bartfeld
- Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Würzburg, Würzburg, Germany; Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Lang K. What do we know about covid-19's effects on the gut? BMJ 2024; 385:q842. [PMID: 38692677 DOI: 10.1136/bmj.q842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
|
13
|
Antia A, Alvarado DM, Zeng Q, Casorla-Perez LA, Davis DL, Sonnek NM, Ciorba MA, Ding S. SARS-CoV-2 Omicron BA.1 Variant Infection of Human Colon Epithelial Cells. Viruses 2024; 16:634. [PMID: 38675974 PMCID: PMC11055019 DOI: 10.3390/v16040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - David M. Alvarado
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| | - Luis A. Casorla-Perez
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Deanna L. Davis
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Naomi M. Sonnek
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Matthew A. Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (D.M.A.); (D.L.D.); (N.M.S.)
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; (A.A.); (Q.Z.)
| |
Collapse
|
14
|
Dele-Ojo BF, Adesokan A, Fadare JO, Ajayi PO, Raimi TH, Dada SA, Ojo OD, Ogunmodede JA, Ipinnimo TM, Ariyo OE, Godman B. Short-term COVID-19 vaccine adverse effects among adults in Ekiti State, Nigeria. Curr Med Res Opin 2024; 40:621-627. [PMID: 38323854 DOI: 10.1080/03007995.2024.2316217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND The safety of the COVID-19 vaccines has been a topic of concern globally. This issue of safety is associated with vaccine hesitancy due to concerns about the adverse effects of the vaccines. Consequently, this study determined the short-term safety profile of the Oxford/AstraZeneca COVID-19 vaccine in Ekiti State, Nigeria. METHODS Descriptive cross-sectional study conducted between May and July 2021 among individuals who had received the first dose of the first batch of the Oxford/AstraZeneca COVID-19 vaccine at Ekiti State University Teaching Hospital (EKSUTH), Ado-Ekiti, Nigeria. A Google form was used to collect data on the adverse effects of the vaccine. RESULTS Out of over 1,000 individuals who were approached, 758 respondents completed the study. A large percentage (57.4%) of those who received the vaccines were healthcare workers. Adverse effects were reported in 70.8% of the participants with most manifesting on the first day of the vaccination. The predominant adverse effects were injection site soreness (28.5%), followed by fatigue (18.7%) and muscle pain (8.6%). There was no report of severe adverse effects such as anaphylactic reactions, thrombosis, myocarditis, transient myelitis, or Guillen-Barre syndrome. CONCLUSION This study found that self-reported adverse effects of the Oxford/AstraZeneca COVID-19 vaccine were mild and short in duration. This outcome has promising implications for improving COVID-19 vaccine uptake in the immediate environment and Nigeria.
Collapse
Affiliation(s)
- Bolade Folasade Dele-Ojo
- Department of Medicine, Ekiti State University Teaching Hospital, Ado-Ekiti, Nigeria
- Department of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| | - Adedapo Adesokan
- Emergency Medicine Department, Kingsmill Hospital, Sutton-in-Ashfield, Scotland
| | | | - Paul Oladapo Ajayi
- Department of Community Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| | - Taiwo Hussean Raimi
- Department of Medicine, Ekiti State University Teaching Hospital, Ado-Ekiti, Nigeria
- Department of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| | - Samuel Ayokunle Dada
- Department of Medicine, Ekiti State University Teaching Hospital, Ado-Ekiti, Nigeria
- Department of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| | - Owolabi Dele Ojo
- Department of Surgery, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | | | - Olumuyiwa Elijah Ariyo
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Brian Godman
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Department of Pharmacoepidemiology, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
15
|
Romani L, Del Chierico F, Pane S, Ristori MV, Pirona I, Guarrasi V, Cotugno N, Bernardi S, Lancella L, Perno CF, Rossi P, Villani A, Campana A, Palma P, Putignani L, the CACTUS Study Team CarducciFrancesca CalòCancriniCaterinaChiurchiùSaradegli AttiMarta CiofiCursiLauraCutreraRenatoD’AmoreCarmenD’ArgenioPatriziaDe IorisMaria A.De LucaMaiaFinocchiAndreaMannoEmma ConcettaMorrocchiElenaPansaPaolaSessaLiberaZangariPaola. Exploring nasopharyngeal microbiota profile in children affected by SARS-CoV-2 infection. Microbiol Spectr 2024; 12:e0300923. [PMID: 38289047 PMCID: PMC10913489 DOI: 10.1128/spectrum.03009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/12/2023] [Indexed: 03/06/2024] Open
Abstract
The relationship between COVID-19 and nasopharyngeal (NP) microbiota has been investigated mainly in the adult population. We explored the NP profile of children affected by COVID-19, compared to healthy controls (CTRLs). NP swabs of children with COVID-19, collected between March and September 2020, were investigated at the admission (T0), 72 h to 7 days (T1), and at the discharge (T2) of the patients. NP microbiota was analyzed by 16S rRNA targeted-metagenomics. Data from sequencing were investigated by QIIME 2.0 and PICRUSt 2. Multiple machine learning (ML) models were exploited to classify patients compared to CTRLs. The NP microbiota of COVID-19 patients (N = 71) was characterized by reduction of α-diversity compared to CTRLs (N = 59). The NP microbiota of COVID-19 cohort appeared significantly enriched in Streptococcus, Haemophilus, Staphylococcus, Veillonella, Enterococcus, Neisseria, Moraxella, Enterobacteriaceae, Gemella, Bacillus, and reduced in Faecalibacterium, Akkermansia, Blautia, Bifidobacterium, Ruminococcus, and Bacteroides, compared to CTRLs (FDR < 0.001). Exploiting ML models, Enterococcus, Pseudomonas, Streptococcus, Capnocytopagha, Tepidiphilus, Porphyromonas, Staphylococcus, and Veillonella resulted as NP microbiota biomarkers, in COVID-19 patients. No statistically significant differences were found comparing the NP microbiota profile of COVID-19 patients during the time-points or grouping patients on the basis of high, medium, and low viral load (VL). This evidence provides specific pathobiont signatures of the NP microbiota in pediatric COVID-19 patients, and the reduction of anaerobic protective commensals. Our data suggest that the NP microbiota may have a specific disease-related signature since infection onset without changes during disease progression, regardless of the SARS-CoV-2 VL. IMPORTANCE Since the beginning of pandemic, we know that children are less susceptible to severe COVID-19 disease. A potential role of the nasopharyngeal (NP) microbiota has been hypothesized but to date, most of the studies have been focused on adults. We studied the NP microbiota modifications in children affected by SARS-CoV-2 infection showing a specific NP microbiome profile, mainly composed by pathobionts and almost missing protective anaerobic commensals. Moreover, in our study, specific microbial signatures appear since the first days of infection independently from SARS-CoV-2 viral load.
Collapse
Affiliation(s)
- L. Romani
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - F. Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S. Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - M. V. Ristori
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - I. Pirona
- GenomeUp SRL, Viale Pasteur, Rome, Italy
| | | | - N. Cotugno
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - S. Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - L. Lancella
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - C. F. Perno
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Rossi
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - A. Villani
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - A. Campana
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - L. Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - the CACTUS Study TeamCarducciFrancesca CalòCancriniCaterinaChiurchiùSaradegli AttiMarta CiofiCursiLauraCutreraRenatoD’AmoreCarmenD’ArgenioPatriziaDe IorisMaria A.De LucaMaiaFinocchiAndreaMannoEmma ConcettaMorrocchiElenaPansaPaolaSessaLiberaZangariPaola
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- GenomeUp SRL, Viale Pasteur, Rome, Italy
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
16
|
Duloquin G, Pommier T, Georges M, Giroud M, Guenancia C, Béjot Y, Laurent G, Rabec C. Is COVID-19 Infection a Multiorganic Disease? Focus on Extrapulmonary Involvement of SARS-CoV-2. J Clin Med 2024; 13:1397. [PMID: 38592697 PMCID: PMC10932259 DOI: 10.3390/jcm13051397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
First described in December 2019 in Wuhan (China), COVID-19 disease rapidly spread worldwide, constituting the biggest pandemic in the last 100 years. Even if SARS-CoV-2, the agent responsible for COVID-19, is mainly associated with pulmonary injury, evidence is growing that this virus can affect many organs, including the heart and vascular endothelial cells, and cause haemostasis, CNS, and kidney and gastrointestinal tract abnormalities that can impact in the disease course and prognosis. In fact, COVID-19 may affect almost all the organs. Hence, SARS-CoV-2 is essentially a systemic infection that can present a large number of clinical manifestations, and it is variable in distribution and severity, which means it is potentially life-threatening. The goal of this comprehensive review paper in the series is to give an overview of non-pulmonary involvement in COVID-19, with a special focus on underlying pathophysiological mechanisms and clinical presentation.
Collapse
Affiliation(s)
- Gauthier Duloquin
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Thibaut Pommier
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Marjolaine Georges
- Department of Pneumology and Intensive Care Unit, Reference Centre for Rare Lung Diseases, Dijon University Hospital, 14 Boulevard Gaffarel, 21000 Dijon, France;
- Centre des Sciences du Goût et de l’Alimentation, INRA, UMR 6265 CNRS 1234, University of Bourgogne Franche-Comté, 21000 Dijon, France
| | - Maurice Giroud
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Charles Guenancia
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Yannick Béjot
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Gabriel Laurent
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Claudio Rabec
- Department of Pneumology and Intensive Care Unit, Reference Centre for Rare Lung Diseases, Dijon University Hospital, 14 Boulevard Gaffarel, 21000 Dijon, France;
| |
Collapse
|
17
|
Ma Y, Zhang L, Wei R, Dai W, Zeng R, Luo D, Jiang R, Zhuo Z, Yang Q, Li J, Leung FW, Duan C, Sha W, Chen H. Risks of digestive diseases in long COVID: evidence from a population-based cohort study. BMC Med 2024; 22:14. [PMID: 38195495 PMCID: PMC10777515 DOI: 10.1186/s12916-023-03236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND In the post-pandemic era, a wide range of COVID-19 sequelae is of growing health concern. However, the risks of digestive diseases in long COVID have not been comprehensively understood. To investigate the long-term risk of digestive diseases among COVID patients. METHODS In this large-scale retrospective cohort study with up to 2.6 years follow-up (median follow-up: 0.7 years), the COVID-19 group (n = 112,311), the contemporary comparison group (n = 359,671) and the historical comparison group (n = 370,979) predated the COVID-19 outbreak were built using UK Biobank database. Each digestive outcome was defined as the diagnosis 30 days or more after the onset of COVID-19 infection or the index date. Hazard ratios (HRs) and corresponding 95% confidence intervals (CI) were computed utilizing the Cox regression models after inverse probability weighting. RESULTS Compared with the contemporary comparison group, patients with previous COVID-19 infection had higher risks of digestive diseases, including gastrointestinal (GI) dysfunction (HR 1.38 (95% CI 1.26 to 1.51)); peptic ulcer disease (HR 1.23 (1.00 to 1.52)); gastroesophageal reflux disease (GERD) (HR 1.41 (1.30 to 1.53)); gallbladder disease (HR 1.21 (1.06 to 1.38)); severe liver disease (HR 1.35 (1.03 to 1.76)); non-alcoholic liver disease (HR 1.27 (1.09 to 1.47)); and pancreatic disease (HR 1.36 (1.11 to 1.66)). The risks of GERD were increased stepwise with the severity of the acute phase of COVID-19 infection. Even after 1-year follow-up, GERD (HR 1.64 (1.30 to 2.07)) and GI dysfunction (HR 1.35 (1.04 to 1.75)) continued to pose risks to COVID-19 patients. Compared to those with one SARS-CoV-2 infection, reinfected patients were at a higher risk of pancreatic diseases (HR 2.57 (1.23 to 5.38)). The results were consistent when the historical cohort was used as the comparison group. CONCLUSIONS Our study provides insights into the association between COVID-19 and the long-term risk of digestive system disorders. COVID-19 patients are at a higher risk of developing digestive diseases. The risks exhibited a stepwise escalation with the severity of COVID-19, were noted in cases of reinfection, and persisted even after 1-year follow-up. This highlights the need to understand the varying risks of digestive outcomes in COVID-19 patients over time, particularly those who experienced reinfection, and develop appropriate follow-up strategies.
Collapse
Affiliation(s)
- Yuying Ma
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lijun Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Rui Wei
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Weiyu Dai
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Dongling Luo
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510080, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Felix W Leung
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90024, USA.
- Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, CA, 91343, USA.
| | - Chongyang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Shantou University Medical College, Shantou, 515000, Guangdong, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
18
|
Loi LK, Yang CC, Lin YC, Su YF, Juan YC, Chen YH, Chang HC. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon 2023; 9:e22614. [PMID: 38107325 PMCID: PMC10724569 DOI: 10.1016/j.heliyon.2023.e22614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The entry of SARS-CoV-2 into host cells involves the interaction between the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor. Given that the spike protein evolves rapidly to evade host immunity, therapeutics that block ACE2 accessibility, such as spike decoys, could serve as an alternative strategy for attenuating viral infection. Here, we constructed a drug screening platform based on oral epithelial cells to rapidly identify peptides or compounds capable of blocking the spike-ACE2 interaction. We engineered short decoy peptides, 8 to 14 amino acids in length, using the spike protein's receptor-binding motif (RBM) and demonstrated that these peptides can effectively inhibit virus attachment to host cells. Additionally, we discovered that diminazene aceturate (DIZE), an ACE2 activator, similarly inhibited virus binding. Our research thus validates the potential of decoy peptides as a new therapeutic strategy against SARS-CoV-2 infections, opening avenues for further development and study.
Collapse
Affiliation(s)
- Lai-Keng Loi
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Chen Juan
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Hsin Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Chuan Chang
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
19
|
Cizmic A, Eichel VM, Weidner NM, Wise PA, Müller F, Rompen IF, Bartenschlager R, Schnitzler P, Nickel F, Müller-Stich BP. Viral load of SARS-CoV-2 in surgical smoke in minimally invasive and open surgery: a single-center prospective clinical trial. Sci Rep 2023; 13:20299. [PMID: 37985848 PMCID: PMC10662446 DOI: 10.1038/s41598-023-47058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
At the beginning of the COVID-19 pandemic, it was assumed that SARS-CoV-2 could be transmitted through surgical smoke generated by electrocauterization. Minimally invasive surgery (MIS) was targeted due to potentially higher concentrations of the SARS-CoV-2 particles in the pneumoperitoneum. Some surgical societies even recommended open surgery instead of MIS to prevent the potential spread of SARS-CoV-2 from the pneumoperitoneum. This study aimed to detect SARS-CoV-2 in surgical smoke during open and MIS. Patients with SARS-CoV-2 infection who underwent open surgery or MIS at Heidelberg University Hospital were included in the study. A control group of patients without SARS-CoV-2 infection undergoing MIS or open surgery was included for comparison. The trial was approved by the Ethics Committee of Heidelberg University Medical School (S-098/2021). The following samples were collected: nasopharyngeal and intraabdominal swabs, blood, urine, surgical smoke, and air samples from the operating room. An SKC BioSampler was used to sample the surgical smoke from the pneumoperitoneum during MIS and the approximate surgical field during open surgery in 15 ml of sterilized phosphate-buffered saline. An RT-PCR test was performed on all collected samples to detect SARS-CoV-2 viral particles. Twelve patients with proven SARS-CoV-2 infection underwent open abdominal surgery. Two SARS-CoV-2-positive patients underwent an MIS procedure. The control group included 24 patients: 12 underwent open surgery and 12 MIS. One intraabdominal swab in a patient with SARS-CoV-2 infection was positive for SARS-CoV-2. However, during both open surgery and MIS, none of the surgical smoke samples showed any detectable viral particles of SARS-CoV-2. The air samples collected at the end of the surgical procedure showed no viral particles of SARS-CoV-2. Major complications (CD ≥ IIIa) were more often observed in SARS-CoV-2 positive patients (10 vs. 4, p = 0.001). This study showed no detectable viral particles of SARS-CoV-2 in surgical smoke sampled during MIS and open surgery. Thus, the discussed risk of transmission of SARS-CoV-2 via surgical smoke could not be confirmed in the present study.
Collapse
Affiliation(s)
- Amila Cizmic
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa M Eichel
- Department of Infectious Diseases, Section Infection Control University Hospital Heidelberg, Heidelberg, Germany
| | - Niklas M Weidner
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp A Wise
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Müller
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ingmar F Rompen
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Felix Nickel
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beat P Müller-Stich
- Department of Digestive Surgery, University Digestive Healthcare Center Basel, Kleinriehenstrasse 30, 4058, Basel, Switzerland.
| |
Collapse
|
20
|
Vernia F, Ashktorab H, Cesaro N, Monaco S, Faenza S, Sgamma E, Viscido A, Latella G. COVID-19 and Gastrointestinal Tract: From Pathophysiology to Clinical Manifestations. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1709. [PMID: 37893427 PMCID: PMC10608106 DOI: 10.3390/medicina59101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
Background: Since its first report in Wuhan, China, in December 2019, COVID-19 has become a pandemic, affecting millions of people worldwide. Although the virus primarily affects the respiratory tract, gastrointestinal symptoms are also common. The aim of this narrative review is to provide an overview of the pathophysiology and clinical manifestations of gastrointestinal COVID-19. Methods: We conducted a systematic electronic search of English literature up to January 2023 using Medline, Scopus, and the Cochrane Library, focusing on papers that analyzed the role of SARS-CoV-2 in the gastrointestinal tract. Results: Our review highlights that SARS-CoV-2 directly infects the gastrointestinal tract and can cause symptoms such as diarrhea, nausea/vomiting, abdominal pain, anorexia, loss of taste, and increased liver enzymes. These symptoms result from mucosal barrier damage, inflammation, and changes in the microbiota composition. The exact mechanism of how the virus overcomes the acid gastric environment and leads to the intestinal damage is still being studied. Conclusions: Although vaccination has increased the prevalence of less severe symptoms, the long-term interaction with SARS-CoV-2 remains a concern. Understanding the interplay between SARS-CoV-2 and the gastrointestinal tract is essential for future management of the virus.
Collapse
Affiliation(s)
- Filippo Vernia
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division, Howard University College of Medicine, Washington, DC 20060, USA
| | - Nicola Cesaro
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Sabrina Monaco
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Susanna Faenza
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Emanuele Sgamma
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| |
Collapse
|
21
|
Wan EYF, Zhang R, Mathur S, Yan VKC, Lai FTT, Chui CSL, Li X, Wong CKH, Chan EWY, Lau CS, Wong ICK. Post-acute sequelae of COVID-19 in older persons: multi-organ complications and mortality. J Travel Med 2023; 30:taad082. [PMID: 37310901 DOI: 10.1093/jtm/taad082] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/10/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Evidence on long-term associations between coronavirus disease 2019 (COVID-19) and risks of multi-organ complications and mortality in older population is limited. This study evaluates these associations. RESEARCH DESIGN AND METHODS The cohorts included patients aged ≥60 year diagnosed with COVID-19 infection (cases), between 16 March 2020 and 31 May 2021 from the UK Biobank; and between 01 April 2020 and 31 May 2022 from the electronic health records in Hong Kong. Each patient was randomly matched with individuals without COVID-19 infection based on year of birth and sex and were followed for up to 18 months until 31 August 2021 for UKB, and up to 28 months until 15 August 2022 for HK cohort. Patients with COVID-19 infection over 6 months after the date of last dose of vaccination and their corresponding controls were excluded from our study. Characteristics between cohorts were further adjusted with Inverse Probability Treatment Weighting. For evaluating long-term association of COVID-19 with multi-organ disease complications and mortality after 21-days of diagnosis, Cox regression was employed. RESULT 10,759 (UKB) and 165,259 (HK) older adults with COVID-19 infection with matched 291,077 (UKB) and 1,100,394 (HK) non-COVID-19-diagnosed older adults were recruited. Older adults with COVID-19 were associated with a significantly higher risk of cardiovascular outcomes [major cardiovascular disease (stroke, heart failure and coronary heart disease): hazard ratio(UKB): 1.4 (95% Confidence interval: 1.1,1.6), HK:1.2 (95% CI: 1.1,1.3)]; myocardial infarction: HR(UKB): 1.8 (95% CI: 1.3,2.4), HK:1.2 (95% CI: 1.0,1.4)]; respiratory outcomes [interstitial lung disease: HR(UKB: 3.4 (95% CI: 2.5,4.5), HK: 4.0 (95% CI: 1.3,12.8); chronic pulmonary disease: HR(UKB): 1.7 (95% CI: 1.3,2.2), HK:1.6 (95% CI: 1.3,2.1)]; neuropsychiatric outcomes [seizure: HR(UKB): 2.6 (95% CI: 1.7,4.1), HK: 1.6 (95% CI: 1.2,2.1)]; and renal outcomes [acute kidney disease: HR(UKB): 1.4 (95% CI: 1.1,1.6), HK:1.6 (95% CI: 1.3,2.1)]; and all-cause mortality [HR(UKB): 4.9 (95% CI: 4.4,5.4), HK:2.5 (95% CI: 2.5,2.6)]. CONCLUSION COVID-19 is associated with long-term risks of multi-organ complications in older adults (aged ≥ 60). Infected patients in this age-group may benefit from appropriate monitoring of signs/symptoms for developing these complications.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ran Zhang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sukriti Mathur
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Ka Chun Yan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Francisco Tsz Tsun Lai
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518053, China
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
22
|
Golla R, Vuyyuru SK, Kante B, Kedia S, Ahuja V. Disorders of gut-brain interaction in post-acute COVID-19 syndrome. Postgrad Med J 2023; 99:834-843. [PMID: 37130814 DOI: 10.1136/pmj-2022-141749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
The novel coronavirus SARS-CoV-2 is responsible for the devastating pandemic which has caused more than 5 million deaths across the world until today. Apart from causing acute respiratory illness and multiorgan dysfunction, there can be long-term multiorgan sequalae after recovery, which is termed 'long COVID-19' or 'post-acute COVID-19 syndrome'. Little is known about long-term gastrointestinal (GI) consequences, occurrence of post-infection functional gastrointestinal disorders and impact the virus may have on overall intestinal health. In this review, we put forth the various mechanisms which may lead to this entity and possible ways to diagnose and manage this disorder. Hence, making physicians aware of this spectrum of disease is of utmost importance in the present pandemic and this review will help clinicians understand and suspect the occurrence of functional GI disease post recovery from COVID-19 and manage it accordingly, avoiding unnecessary misconceptions and delay in treatment.
Collapse
Affiliation(s)
- Rithvik Golla
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Sudheer Kumar Vuyyuru
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Bhaskar Kante
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Saurabh Kedia
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Vineet Ahuja
- Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
23
|
Hu T, Li L, Ma Q. Research Progress of Immunomodulation on Anti-COVID-19 and the Effective Components from Traditional Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1337-1360. [PMID: 37465964 DOI: 10.1142/s0192415x23500611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
SARS-CoV-2 has posed a threat to the health of people around the world because of its strong transmission and high virulence. Currently, there is no specific medicine for the treatment of COVID-19. However, for a wide variety of medicines used to treat COVID-19, traditional Chinese medicine (TCM) plays a major role. In this paper, the effective treatment of COVID-19 using TCM was consulted first, and several Chinese medicines that were frequently used apart from their huge role in treating it were found. Then, when exploring the active ingredients of these herbs, it was discovered that most of them contained flavonoids. Therefore, the structure and function of the potential active substances of flavonoids, including flavonols, flavonoids, and flavanes, respectively, are discussed in this paper. According to the screening data, these flavonoids can bind to the key proteins of SARS-CoV-2, 3CLpro, PLpro, and RdRp, respectively, or block the interface between the viral spike protein and ACE2 receptor, which could inhibit the proliferation of coronavirus and prevent the virus from entering human cells. Besides, the effects of flavonoids on the human body systems are expounded on in this paper, including the respiratory system, digestive system, and immune system, respectively. Normally, flavonoids boost the body's immune system. However, they can suppress the immune system when over immunized. Ultimately, this study hopes to provide a reference for the clinical drug treatment of COVID-19 patients, and more TCM can be put into the market accordingly, which is expected to promote the development of TCM on the international stage.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Li Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/ Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China
| |
Collapse
|
24
|
Haq IU, Krukiewicz K, Tayyab H, Khan I, Khan M, Yahya G, Cavalu S. Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med 2023; 12:jcm12072645. [PMID: 37048725 PMCID: PMC10095019 DOI: 10.3390/jcm12072645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus–host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hamnah Tayyab
- Department of Internal Medicine, King Edward Medical College, Lahore 54000, Pakistan
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
25
|
Prevalence and prognosis of acute pancreatitis in critically ill patients with COVID-19. Hepatobiliary Pancreat Dis Int 2023:S1499-3872(23)00038-3. [PMID: 36973110 PMCID: PMC10017175 DOI: 10.1016/j.hbpd.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Background Coronavirus disease 2019 (COVID-19) is a global pandemic issue. In addition to the well-known respiratory and fever symptoms, gastrointestinal symptoms have also been reported. This study aimed to evaluate the prevalence and prognosis of patients with COVID-19 infection complicated with acute pancreatitis in intensive care unit (ICU). Methods This is a retrospective observational cohort study, patients aged 18 years or older, admitted into the ICU in a single tertiary center from January 1, 2020, to April 30, 2022 were enrolled. Patients were identified by electronic medical records and reviewed manually. The primary outcome was the prevalence of acute pancreatitis among ICU patients with COVID-19. The secondary outcomes were the length of hospital stay, need for mechanical ventilation (MV), need for continuous renal replacement therapy (CRRT), and in-hospital mortality. Results A total of 4133 patients, admitted into the ICU, were screened. Among these patients, 389 were infected by COVID-19, and 86 were diagnosed with acute pancreatitis. COVID-19 positive patients were more likely to present with acute pancreatitis than COVID-19 negative patients (odds ratio = 5.42, 95% confidence interval: 2.35-6.58, P < 0.01). However, the length of hospital stay, need for MV, need for CRRT, and in-hospital mortality was not significantly different between acute pancreatitis patients with and without COVID-19 infection. Conclusion Severe COVID-19 infections may cause acute pancreas damage in critically ill patients. However, the prognosis may not differ between acute pancreatitis patients with and without COVID-19 infection.
Collapse
|
26
|
Cappell MS, Tobi M, Friedel DM. The Impact of COVID-19 Infection on Miscellaneous Inflammatory Disorders of the Gastrointestinal Tract. Gastroenterol Clin North Am 2023; 52:115-138. [PMID: 36813420 PMCID: PMC9537253 DOI: 10.1016/j.gtc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The novel coronavirus pandemic of COVID-19 has emerged as a highly significant recent threat to global health with about 600,000,000 known infections and more than 6,450,000 deaths worldwide since its emergence in late 2019. COVID-19 symptoms are predominantly respiratory, with mortality largely related to pulmonary manifestations, but the virus also potentially infects all parts of the gastrointestinal tract with related symptoms and manifestations that affect patient treatment and outcome. COVID-19 can directly infect the gastrointestinal tract because of the presence of widespread angiotensin-converting enzyme 2 receptors in the stomach and small intestine that can cause local COVID-19 infection and associated inflammation. This work reviews the pathopysiology, clinical manifestations, workup, and treatment of miscellaneous inflammatory disorders of the gastrointestinal tract other than inflammatory bowel disease.
Collapse
Affiliation(s)
- Mitchell S Cappell
- Division of Gastroenterology, Department of Medicine, Aleda E. Lutz Veterans Hospital, Gastroenterology Service, Main Building, Room 3212, 1500 Weiss Street, Saginaw, MI 48602, USA.
| | - Martin Tobi
- Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, 4747 John R. Street, Detroit, MI 48201, USA
| | - David M Friedel
- Division of Therapeutic Endoscopy, Division of Gastroenterology, Department of Medicine, NY of New York University Langone Hospital, 259 1st Street, Mineola, NY 11501, USA
| |
Collapse
|
27
|
Mezhibovsky E, Hoang SH, Szeto S, Roopchand DE. In silico analysis of dietary polyphenols and their gut microbial metabolites suggest inhibition of SARS-CoV-2 infection, replication, and host inflammatory mediators. J Biomol Struct Dyn 2023; 41:14339-14357. [PMID: 36803516 PMCID: PMC10439978 DOI: 10.1080/07391102.2023.2180669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
The outcome of SARS-CoV-2 infection ranges from asymptomatic to severe COVID-19 and death resulting from an exaggerated immune response termed cytokine storm. Epidemiological data have associated consumption of a high-quality plant-based diet with decreased incidence and severity of COVID-19. Dietary polyphenols and their microbial metabolites (MMs) have anti-viral and anti-inflammatory activities. Autodock Vina and Yasara were used in molecular docking and dynamics studies to investigate potential interactions of 7 parent polyphenols (PPs) and 11 MMs with the α- and Omicron variants of the SARS-CoV-2 spike glycoprotein (SGP), papain-like pro-tease (PLpro) and 3 chymotrypsin-like protease (3CLpro), as well as host inflammatory mediators including complement component 5a (C5a), C5a receptor (C5aR), and C-C chemokine receptor type 5 (CCR5). PPs and MMs interacted to varying degrees with residues on target viral and host inflammatory proteins showing potential as competitive inhibitors. Based on these in silico findings, PPs and MMs may inhibit SARS-CoV-2 infection, replication, and/or modulate host immunity in the gut or periphery. Such inhibition may explain why people that consume a high-quality plant-based diet have less incidence and severity of COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
- Department of Nutritional Sciences Graduate Program, Rutgers University
| | - Skyler H. Hoang
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
| | - Samantha Szeto
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
| | - Diana E. Roopchand
- Department of Food Science, Rutgers University, NJ Institute for Food, Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), 61 Dudley Rd., New Brunswick, NJ 08901 USA
| |
Collapse
|
28
|
Udoakang AJ, Djomkam Zune AL, Tapela K, Nganyewo NN, Olisaka FN, Anyigba CA, Tawiah-Eshun S, Owusu IA, Paemka L, Awandare GA, Quashie PK. The COVID-19, tuberculosis and HIV/AIDS: Ménage à Trois. Front Immunol 2023; 14:1104828. [PMID: 36776887 PMCID: PMC9911459 DOI: 10.3389/fimmu.2023.1104828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
In December 2019, a novel pneumonic condition, Coronavirus disease 2019 (COVID- 19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in China and spread globally. The presentation of COVID-19 is more severe in persons with underlying medical conditions such as Tuberculosis (TB), Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) and other pneumonic conditions. All three diseases are of global concern and can significantly affect the lungs with characteristic cytokine storm, immunosuppression, and respiratory failure. Co-infections of SARS-CoV-2 with HIV and Mycobacterium tuberculosis (Mtb) have been reported, which may influence their pathogenesis and disease progression. Pulmonary TB and HIV/AIDS patients could be more susceptible to SARS-CoV-2 infection leading to lethal synergy and disease severity. Therefore, the biological and epidemiological interactions of COVID-19, HIV/AIDS, and TB need to be understood holistically. While data is needed to predict the impact of the COVID-19 pandemic on these existing diseases, it is necessary to review the implications of the evolving COVID-19 management on HIV/AIDS and TB control, including therapy and funding. Also, the impact of long COVID on patients, who may have this co-infection. Thus, this review highlights the implications of COVID-19, HIV/AIDS, and TB co-infection compares disease mechanisms, addresses growing concerns, and suggests a direction for improved diagnosis and general management.
Collapse
Affiliation(s)
- Aniefiok John Udoakang
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
| | - Alexandra Lindsey Djomkam Zune
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Nora Nghochuzie Nganyewo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Frances Ngozi Olisaka
- Environmental and Public Health Microbiology, Department of Biological Science, Benson Idahosa University, Benin City, Edo State, Nigeria
| | - Claudia Adzo Anyigba
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
29
|
Khreefa Z, Barbier MT, Koksal AR, Love G, Del Valle L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023; 12:cells12020262. [PMID: 36672197 PMCID: PMC9856332 DOI: 10.3390/cells12020262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The novel coronavirus, SARS-CoV-2, rapidly spread worldwide, causing an ongoing global pandemic. While the respiratory system is the most common site of infection, a significant number of reported cases indicate gastrointestinal (GI) involvement. GI symptoms include anorexia, abdominal pain, nausea, vomiting, and diarrhea. Although the mechanisms of GI pathogenesis are still being examined, viral components isolated from stool samples of infected patients suggest a potential fecal-oral transmission route. In addition, viral RNA has been detected in blood samples of infected patients, making hematologic dissemination of the virus a proposed route for GI involvement. Angiotensin-converting enzyme 2 (ACE2) receptors serve as the cellular entry mechanism for the virus, and these receptors are particularly abundant throughout the GI tract, making the intestine, liver, and pancreas potential extrapulmonary sites for infection and reservoirs sites for developing mutations and new variants that contribute to the uncontrolled spread of the disease and resistance to treatments. This transmission mechanism and the dysregulation of the immune system play a significant role in the profound inflammatory and coagulative cascades that contribute to the increased severity and risk of death in several COVID-19 patients. This article reviews various potential mechanisms of gastrointestinal, liver, and pancreatic injury.
Collapse
Affiliation(s)
- Zaid Khreefa
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Mallory T. Barbier
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gordon Love
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
30
|
Muacevic A, Adler JR, Yeo E, Tran D, Pak E. Pain Complaints and Intubation Risk in COVID-19: A Retrospective Cohort Study. Cureus 2023; 15:e33851. [PMID: 36819338 PMCID: PMC9932571 DOI: 10.7759/cureus.33851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Background Since coronavirus disease 2019 (COVID-19) emerged, increasing cases have been identified worldwide. COVID-19 continues to lead to significant morbidity and mortality, despite developing a vaccination for the disease. While much has been studied regarding the initial presentation and treatment of patients with COVID-19, to our knowledge, no study has uncovered that COVID-19-positive patients with abdominal pain are at a higher risk of requiring intubation. Methodology In this retrospective cohort study, we identified 104 patients who presented to the emergency room of a single tertiary care center with laboratory-confirmed COVID-19 between February 1, 2020, and April 27, 2020, and collected data on reported pain complaints. Results In this retrospective cohort study, the most common pain complaints were chest pain (25.5%), myalgia (23.4%), and abdominal pain (17.0%). Less common pain complaints included headaches (14.9%) and neck/back pain (6.3%). Of these pain complaints, only patients who reported having abdominal pain were more likely to be intubated (37.5% of patients with abdominal pain were intubated compared to 8.3% of patients without abdominal pain, with a p-value of 0.001). Conclusions Abdominal pain in a patient with COVID-19 infection significantly increases their chances of requiring intubation based on the results of this study.
Collapse
|
31
|
Sankova MV, Nikolenko VN, Sankov SV, Sinelnikov MY. SARS-CoV-2 and microbiome. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:279-337. [DOI: 10.1016/b978-0-443-18566-3.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Ardura MI, Kim SC. Infectious Complications of Pediatric Inflammatory Bowel Disease. PEDIATRIC INFLAMMATORY BOWEL DISEASE 2023:687-697. [DOI: 10.1007/978-3-031-14744-9_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Muacevic A, Adler JR, Poothakulath Krishnan R. Systematic Review and Meta-Analysis on Angiotensin Converting Enzyme 2 in Head and Neck Region. Cureus 2023; 15:e33673. [PMID: 36819393 PMCID: PMC9928136 DOI: 10.7759/cureus.33673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
The objective of this systematic review was to investigate the expression of angiotensin converting enzyme 2 (ACE 2) in the head and neck region. We examined the evidence of the association of ACE 2 expression in oral tissues, salivary glands, and head and neck carcinoma. We searched Pub Med/Medline, Biorxiv, and Google Scholar to identify relevant literature. Studies reporting ACE 2 expression in human oral tissues and with a focus on head and neck carcinoma samples were included. From 110 studies, we extracted 15 studies analyzing the distribution and expression of ACE 2 in different head and neck tissues - olfactory mucosa and nasopharynx n=5, oral mucosa n=5, salivary gland n=5, head and neck squamous cell carcinoma patients n=3. ACE 2 was found to be expressed at a 4.43-fold increase in the head and neck region (OR, 4.43; 95% CI, 3.76-5.22; I2= 97%, Ph=<0.00001) when compared with controls (other tissues except for head and neck region). RNA expression of ACE 2 was 60% higher in head and neck squamous cell carcinoma patients than that in the normal tissues (OR=0.60, 95% CI, 0.04-9.26, Ph=0.00001). In conclusion, the meta-analysis of the studies indicated that ACE 2 is highly expressed in olfactory mucosa, nasopharynx, oral mucosa, and salivary glands. Furthermore, the results indicate that ACE 2 expression is increased in patients with head and neck cancer.
Collapse
|
34
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
35
|
Bacorn M, Romero-Soto HN, Levy S, Chen Q, Hourigan SK. The Gut Microbiome of Children during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10122460. [PMID: 36557713 PMCID: PMC9783902 DOI: 10.3390/microorganisms10122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome has been shown to play a critical role in maintaining a healthy state. Dysbiosis of the gut microbiome is involved in modulating disease severity and potentially contributes to long-term outcomes in adults with COVID-19. Due to children having a significantly lower risk of severe illness and limited sample availability, much less is known about the role of the gut microbiome in children with COVID-19. It is well recognized that the developing gut microbiome of children differs from that of adults, but it is unclear if this difference contributes to the different clinical presentations and complications. In this review, we discuss the current knowledge of the gut microbiome in children with COVID-19, with gut microbiome dysbiosis being found in pediatric COVID-19 but specific taxa change often differing from those described in adults. Additionally, we discuss possible mechanisms of how the gut microbiome may mediate the presentation and complications of COVID-19 in children and the potential role for microbial therapeutics.
Collapse
|
36
|
Shen S, Gong M, Wang G, Dua K, Xu J, Xu X, Liu G. COVID-19 and Gut Injury. Nutrients 2022; 14:nu14204409. [PMID: 36297092 PMCID: PMC9608818 DOI: 10.3390/nu14204409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/28/2023] Open
Abstract
COVID-19 induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a pandemic and it has led to more than 620 million patients with 6.56 million deaths globally. Males are more susceptible to COVID-19 infection and associated with a higher chance to develop severe COVID-19 than females. Aged people are at a high risk of COVID-19 infection, while young children have also increased cases. COVID-19 patients typically develop respiratory system pathologies, however symptoms in the gastrointestinal (GI) tract are also very common. Inflammatory cell recruitments and their secreted cytokines are found in the GI tract in COVID-19 patients. Microbiota changes are the key feature in COVID-19 patients with gut injury. Here, we review all current known mechanisms of COVID-19-induced gut injury, and the most acceptable one is that SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) receptor on host cells in the GI tract. Interestingly, inflammatory bowel disease (IBD) is an inflammatory disorder, but the patients with IBD do not have the increased risk to develop COVID-19. There is currently no cure for COVID-19, but anti-viruses and monoclonal antibodies reduce viral load and shorten the recovery time of the disease. We summarize current therapeutics that target symptoms in the GI tract, including probiotics, ACE2 inhibitors and nutrients. These are promising therapeutic options for COVID-19-induced gut injury.
Collapse
Affiliation(s)
- Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales, Sydney, NSW 2217, Australia
| | - Muxue Gong
- School of Clinical Medicine, Bengbu Medicine College, Bengbu 233030, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jincheng Xu
- Stomatology Department, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- School of Dental Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Xiaoyue Xu
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
37
|
Brahma S, Naik A, Lordan R. Probiotics: A gut response to the COVID-19 pandemic but what does the evidence show? Clin Nutr ESPEN 2022; 51:17-27. [PMID: 36184201 PMCID: PMC9393107 DOI: 10.1016/j.clnesp.2022.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), research has focused on understanding the etiology of coronavirus disease 2019 (COVID-19). Identifying and developing prophylactic and therapeutics strategies to manage the pandemic is still of critical importance. Among potential targets, the role of the gut and lung microbiomes in COVID-19 has been questioned. Consequently, probiotics were touted as potential prophylactics and therapeutics for COVID-19. In this review we highlight the role of the gut and lung microbiome in COVID-19 and potential mechanisms of action of probiotics. We also discuss the progress of ongoing clinical trials for COVID-19 that aim to modulate the microbiome using probiotics in an effort to develop prophylactic and therapeutic strategies. To date, despite the large interest in this area of research, there is promising but limited evidence to suggest that probiotics are an effective prophylactic or treatment strategy for COVID-19. However, the role of the microbiome in pathogenesis and as a potential target for therapeutics of COVID-19 cannot be discounted.
Collapse
Affiliation(s)
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ronan Lordan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Honarmand A, Sheybani F, Aflatoonian E, Saberinia A. COVID-19 patients at referral to hospital during the first peak of disease: Common clinical findings including myalgia and fatigue. Eur J Transl Myol 2022; 32:10731. [PMID: 36036352 PMCID: PMC9580529 DOI: 10.4081/ejtm.2022.10731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 01/08/2023] Open
Abstract
The wide range of manifestations and clinical symptoms of COVID-19 has made it a unique disease. Investigating the epidemiology of different clinical manifestations of this disease in patients referred to medical centers is one of the most effective steps in adopting a suitable diagnostic and treatment approach. These findings also provide a basis for comparing the evolution of the virus and its clinical manifestations over time and at different peaks of the disease. Therefore, the present study was aimed at investigating common clinical findings at the time of referral in patients with COVID-19 in Afzalipour Hospital, Kerman, during the first peak of the disease. This descriptive-analytical cross-sectional study was performed on hospitalized patients diagnosed with COVID-19, between March 2020 and June 2020. The patients were included in the study by census method, and the research variables related to demographic indicators, disease course and clinical symptoms were extracted from the patients' medical records, and then subjected to statistical analysis. In this study, a total of 210 patients were examined, consisted mainly of male patients (59.5%). The mean age was found to be 53.95 ± 19.55 years. Also, 20.3% of patients needed admission in the intensive care unit. In addition, 1% of patients were infected in February 2020, 24% in March 2020, 47.4% in April 2020 and 27.4% in May 2020. The mean onset of symptoms until hospitalization was also found as 6.51 days. The most common clinical symptoms included shortness of breath (75.7%), dry cough (52.9%), fever (50.5%), myalgia (45.7%) and fatigue (41.9%). Fever at admission time was significantly more common in ages less than 50 years (p=0.034). Our study showed that the most common clinical symptoms were shortness of breath, dry cough, fever, myalgia and fatigue. No statistically significant difference was found in common symptoms between men and women. Among the common clinical symptoms, only fever at admission time was observed to be significantly higher in those under 50 years of age.
Collapse
Affiliation(s)
- Amin Honarmand
- Department of Emergency Medicine, School of Medicine, Kerman University of Medical Sciences, Kerman.
| | | | - Elahe Aflatoonian
- Department of Education, Kerman University of Medical Sciences, Kerman.
| | - Amin Saberinia
- Department of Emergency Medicine, School of Medicine, Health in Disasters and Emergencies Research Center, Kerman University of Medical Sciences, Kerman.
| |
Collapse
|
39
|
Wu J, Ding Y, Wang J, Lyu F, Tang Q, Song J, Luo Z, Wan Q, Lan X, Xu Z, Chen L. Single‐cell RNA
sequencing in oral science: Current awareness and perspectives. Cell Prolif 2022; 55:e13287. [PMID: 35842899 PMCID: PMC9528768 DOI: 10.1111/cpr.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/10/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
The emergence of single‐cell RNA sequencing enables simultaneous sequencing of thousands of cells, making the analysis of cell population heterogeneity more efficient. In recent years, single‐cell RNA sequencing has been used in the investigation of heterogeneous cell populations, cellular developmental trajectories, stochastic gene transcriptional kinetics, and gene regulatory networks, providing strong support in life science research. However, the application of single‐cell RNA sequencing in the field of oral science has not been reviewed comprehensively yet. Therefore, this paper reviews the development and application of single‐cell RNA sequencing in oral science, including fields of tissue development, teeth and jaws diseases, maxillofacial tumors, infections, etc., providing reference and prospects for using single‐cell RNA sequencing in studying the oral diseases, tissue development, and regeneration.
Collapse
Affiliation(s)
- Jie Wu
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology Sun Yat‐sen University Guangzhou China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Jinyu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Fengyuan Lyu
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
- Center of Stomatology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Jiangyuan Song
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine College of Life Science and Technolog Huazhong University of Science and Technology Wuhan China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy Huazhong University of Science and Technology Wuhan China
- Institute of Brain Research Huazhong University of Science and Technology Wuhan China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Molecular Imaging Wuhan China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- School of Stomatology, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| |
Collapse
|
40
|
Romani L, Del Chierico F, Macari G, Pane S, Ristori MV, Guarrasi V, Gardini S, Pascucci GR, Cotugno N, Perno CF, Rossi P, Villani A, Bernardi S, Campana A, Palma P, Putignani L, the CACTUS Study Team CarducciFrancesca Calo`CancriniCaterinaChiurchiùSaraCiofi degli AttiMartaCursiLauraCutreraRenatoD’AmoreCarmenD’ArgenioPatriziaDe IorisMaria A.De LucaMaiaFinocchiAndreaLancellaLauraMannoEmma ConcettaMorrocchiElenaPansaPaolaSessaLiberaZangariPaola. The Relationship Between Pediatric Gut Microbiota and SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:908492. [PMID: 35873161 PMCID: PMC9304937 DOI: 10.3389/fcimb.2022.908492] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
This is the first study on gut microbiota (GM) in children affected by coronavirus disease 2019 (COVID-19). Stool samples from 88 patients with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and 95 healthy subjects were collected (admission: 3–7 days, discharge) to study GM profile by 16S rRNA gene sequencing and relationship to disease severity. The study group was divided in COVID-19 (68), Non–COVID-19 (16), and MIS-C (multisystem inflammatory syndrome in children) (4). Correlations among GM ecology, predicted functions, multiple machine learning (ML) models, and inflammatory response were provided for COVID-19 and Non–COVID-19 cohorts. The GM of COVID-19 cohort resulted as dysbiotic, with the lowest α-diversity compared with Non–COVID-19 and CTRLs and by a specific β-diversity. Its profile appeared enriched in Faecalibacterium, Fusobacterium, and Neisseria and reduced in Bifidobacterium, Blautia, Ruminococcus, Collinsella, Coprococcus, Eggerthella, and Akkermansia, compared with CTRLs (p < 0.05). All GM paired-comparisons disclosed comparable results through all time points. The comparison between COVID-19 and Non–COVID-19 cohorts highlighted a reduction of Abiotrophia in the COVID-19 cohort (p < 0.05). The GM of MIS-C cohort was characterized by an increase of Veillonella, Clostridium, Dialister, Ruminococcus, and Streptococcus and a decrease of Bifidobacterium, Blautia, Granulicatella, and Prevotella, compared with CTRLs. Stratifying for disease severity, the GM associated to “moderate” COVID-19 was characterized by lower α-diversity compared with “mild” and “asymptomatic” and by a GM profile deprived in Neisseria, Lachnospira, Streptococcus, and Prevotella and enriched in Dialister, Acidaminococcus, Oscillospora, Ruminococcus, Clostridium, Alistipes, and Bacteroides. The ML models identified Staphylococcus, Anaerostipes, Faecalibacterium, Dorea, Dialister, Streptococcus, Roseburia, Haemophilus, Granulicatella, Gemmiger, Lachnospira, Corynebacterium, Prevotella, Bilophila, Phascolarctobacterium, Oscillospira, and Veillonella as microbial markers of COVID-19. The KEGG ortholog (KO)–based prediction of GM functional profile highlighted 28 and 39 KO-associated pathways to COVID-19 and CTRLs, respectively. Finally, Bacteroides and Sutterella correlated with proinflammatory cytokines regardless disease severity. Unlike adult GM profiles, Faecalibacterium was a specific marker of pediatric COVID-19 GM. The durable modification of patients’ GM profile suggested a prompt GM quenching response to SARS-CoV-2 infection since the first symptoms. Faecalibacterium and reduced fatty acid and amino acid degradation were proposed as specific COVID-19 disease traits, possibly associated to restrained severity of SARS-CoV-2–infected children. Altogether, this evidence provides a characterization of the pediatric COVID-19–related GM.
Collapse
Affiliation(s)
- Lorenza Romani
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, IRCCS, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Stefania Pane
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Vittoria Ristori
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, IRCCS, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Giuseppe Rubens Pascucci
- Research Unit of Congenital and Perinatal Infections, Bambino Gesu` Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Congenital and Perinatal Infections, Bambino Gesu` Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Multimodal Laboratory Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Rossi
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesu` Children’s Hospital, IRCCS, Rome, Italy
| | - Alberto Villani
- Pediatric Emergency Department and General Pediatrics, Children Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Stefania Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesu` Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| | | |
Collapse
|
41
|
Concas G, Barone M, Francavilla R, Cristofori F, Dargenio VN, Giorgio R, Dargenio C, Fanos V, Marcialis MA. Twelve Months with COVID-19: What Gastroenterologists Need to Know. Dig Dis Sci 2022; 67:2771-2791. [PMID: 34333726 PMCID: PMC8325547 DOI: 10.1007/s10620-021-07158-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Corona virus disease-19 (COVID-19) is the latest global pandemic. COVID-19 is mainly transmitted through respiratory droplets and, apart from respiratory symptoms, patients often present with gastrointestinal symptoms and liver involvement. Given the high percentage of COVID-19 patients that present with gastrointestinal symptoms (GIS), in this review, we report a practical up-to-date reference for the physician in their clinical practice with patients affected by chronic gastrointestinal (GI) diseases (inflammatory bowel disease, coeliac disease, chronic liver disease) at the time of COVID-19. First, we summarised data on the origin and pathogenetic mechanism of SARS-CoV-2. Then, we performed a literature search up to December 2020 examining clinical manifestations of GI involvement. Next, we illustrated and summarised the most recent guidelines on how to adhere to GI procedures (endoscopy, liver biopsy, faecal transplantation), maintaining social distance and how to deal with immunosuppressive treatment. Finally, we focussed on some special conditions such as faecal-oral transmission and gut microbiota. The rapid accumulation of information relating to this condition makes it particularly essential to revise the literature to take account of the most recent publications for medical consultation and patient care.
Collapse
Affiliation(s)
- Giulia Concas
- School of Paediatrics, University of Cagliari, 09124 Cagliari, Italy
| | - Michele Barone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, University Hospital “Policlinico”, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ruggiero Francavilla
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Fernanda Cristofori
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Vanessa Nadia Dargenio
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Rossella Giorgio
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Costantino Dargenio
- Department of Biomedical Science and Human Oncology, Children’s Hospital “Giovanni XXIII”, University of Bari, 70126 Bari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria, University of Cagliari, Cagliari, 09124 Cagliari, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria, University of Cagliari, Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
42
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
43
|
Ambrose PA, Goodman WA. Impact of COVID-19 on Patients with Inflammatory Bowel Disease. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2022; 7:37-44. [PMID: 35966234 PMCID: PMC9373928 DOI: 10.14218/jerp.2021.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in Wuhan, China, in late 2019. Responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 is one of three structurally similar beta-coronaviruses that can cause a strong upregulation of cytokines referred to as cytokine release syndrome (CRS). Unresolved CRS leads to respiratory symptoms, including pneumonia, and in more severe cases, acute respiratory distress syndrome (ARDS). Although COVID-19 is widely known for these hallmark respiratory symptoms, it also impacts the gut, causing gastrointestinal (GI) tract inflammation and diarrhea. COVID-19's GI symptoms may be due to the high intestinal expression of angiotensin converting enzyme-2 receptors, which are for the binding of SARS-CoV-2 viral particles. Reports have shown that SARS-CoV-2 can be passed through fecal matter, with one study finding that 48.1% of COVID-19 patients expressed viral SARS-CoV-2 mRNA in their stool. Given that the GI tract is a target tissue affected by COVID-19, this causes concern for those with underlying GI pathologies, such as inflammatory bowel disease (IBD). Regrettably, there have been only limited studies on the impact of COVID-19 on gut health, and the impact of COVID-19 on intestinal inflammation among IBD patients remains unclear. In particular, questions regarding susceptibility to SARS-CoV-2 infection, clinical impact of COVID-19 on IBD, and the potential influence of age, sex, and immunosuppressant medications are still poorly understood. An improved understanding of these issues is needed to address the unique risks of COVID-19 among IBD patients, as well as the potential impact of SARS-CoV-2 on the host intestinal microbiota.
Collapse
Affiliation(s)
- Paula A. Ambrose
- Department of Pathology, Case Western Reserve University School of Medicine, OH, USA
| | - Wendy A. Goodman
- Department of Pathology, Case Western Reserve University School of Medicine, OH, USA
| |
Collapse
|
44
|
COVID-19 in Latin America and the Caribbean Region: Symptoms and Morbidities in the Epidemiology of Infection. Curr Opin Pharmacol 2022; 63:102203. [PMID: 35255454 PMCID: PMC8896761 DOI: 10.1016/j.coph.2022.102203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 01/06/2023]
Abstract
The COVID-19 pandemic has widespread economic and social effects on Latin America (LA) and the Caribbean (CA). This region, which has a high prevalence of chronic diseases, has been one of the most affected during the pandemic. Multiple symptoms and comorbidities are related to distinct COVID-19 outcomes. However, there has been no explanation as to why different patients present with different arrays of clinical presentations. Studies report that similar to comorbidities, each country in LA and the CA has its own particular health issues. Moreover, economic and social features have yet to be studied in detail to obtain a complete perspective of the disease in the region. Herein, the impact of demographic and economic characteristics in LA and the CA on COVID-19 are presented in combination with symptoms and comorbidities related to the disease as important aspects that can influence management and treatment.
Collapse
|
45
|
Kalabin A, Mani VRK, Valdivieso SC, Donaldson B. Gastrointestinal manifestations in American minority population with COVID-19. LE INFEZIONI IN MEDICINA 2021; 29:550-556. [PMID: 35146363 PMCID: PMC8805467 DOI: 10.53854/liim-2904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The spectrum of gastrointestinal (GI) injuries by the SARS-CoV-2 remain largely unknown. Ethnicity data is missing or unspecified. We analyzed GI involvement in American minority patients with COVID-19 infection. METHODS Retrospective study of hospitalized patients with confirmed COVID-19 in March-April 2020. RESULTS 183 patients included: 114 (62.30%) African-Americans, 58 (31.69%) Hispanics and 11 (6.01%) Asians. 73 females, 110 males; mean age 64.77, mean BMI 29.03 (50.82%); GI manifestations upon presentation: anorexia (29.51%), diarrhea (22.40%), nausea/vomiting (18.03%), abdominal pain (9.84%). No difference observed between three ethnical groups for GI symptoms and liver function tests. C Reactive Protein (CPR) (P=0.008), Lactate (P=0.03) and Prothrombin Time (PT) (P=0.03) were significantly elevated in patients without GI symptoms. No difference was observed for other laboratory tests. Patients with severe disease course/intubated had higher levels of Aspartate Transaminase (AST) (109.17 vs 53.97, P=0.018), Alanine Transaminase (ALT) (79.53 vs 40.03, P=0.02) and total bilirubin (0.82 vs 0.60, P=0.03) vs non-intubated patents as well as body temperature (101.38 vs 100.70, p=0.0006), CRP (24.06 v 15.96, P=0.019) and lactate (3.28 vs 2.13, P=0.009). There was no correlation between severity of the disease and GI symptoms, PT, platelets and albumin. However, CRP and lactate were markedly elevated in deceased vs survived patients: (27.09 vs 16.39, P=0.008) and (3.33 vs 2.10 P=0.005) respectively. CONCLUSIONS ~ 50% of patients presented with GI symptoms and they had lower levels of inflammatory markers, better liver synthetic function, indicating less overall inflammatory response and direct viral damage. Our results suggest that SARS-CoV-2 virus targets GI tract along with the lung tissue, and the degree of hepatocyte damage correlated well with more severe disease.
Collapse
Affiliation(s)
- Aleksandr Kalabin
- Columbia University College of Physicians and Surgeons at Harlem Hospital, New York, NY, USA
| | - Vishnu Raj Kumar Mani
- Columbia University College of Physicians and Surgeons at Harlem Hospital, New York, NY, USA
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Brian Donaldson
- Columbia University College of Physicians and Surgeons at Harlem Hospital, New York, NY, USA
| |
Collapse
|
46
|
Zhang MM, Chen LN, Qian JM. Gastrointestinal manifestations and possible mechanisms of COVID-19 in different periods. J Dig Dis 2021; 22:683-694. [PMID: 34738727 PMCID: PMC8652439 DOI: 10.1111/1751-2980.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a pandemic worldwide. Although COVID-19 mainly affects the respiratory system, gastrointestinal (GI) manifestations have been frequently reported in such cases, even as initial symptoms. There have been several studies on different GI manifestations in patients with mild and severe disease or in remission. In this review article we summarized different GI manifestations of COVID-19 at various disease stages and the possible mechanisms based on published literatures, as well as the significance of GI manifestations in systemic inflammatory injury.
Collapse
Affiliation(s)
- Meng Meng Zhang
- Department of GastroenterologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lu Ni Chen
- Department of Microbiology and Tumor and Cell BiologyKarolinska InstituteSolnaSweden
| | - Jia Ming Qian
- Department of GastroenterologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
47
|
Hadi YB, Mann R, Sohail AH, Graves M, Szoka N, Abunnaja S, Tabone LE, Thakkar S, Singh S. Prior Bariatric Surgery is Associated with a Reduced Risk of Poor Outcomes in COVID-19: Propensity Matched Analysis of a Large Multi-institutional Research Network. Obes Surg 2021; 32:237-244. [PMID: 34813037 PMCID: PMC8608849 DOI: 10.1007/s11695-021-05803-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/08/2023]
Abstract
Purpose Through sustained weight loss and improvement in metabolic co-morbidities, bariatric surgery is hypothesized to reduce the risk of severe COVID-19. Small studies have suggested favorable outcomes; however, large population-based studies are lacking. Materials and Methods We conducted a retrospective cohort study utilizing the multi-institutional research network TriNeTx platform. Participants diagnosed with COVID-19 were identified and divided into cohorts based on prior bariatric surgery (BS). Primary study outcome was a composite event of death or requirement for mechanical ventilation up to 30-day following the diagnosis of COVID-19. Other outcomes included death, hospitalization, critical care need, and acute kidney injury in the 30-day follow-up period. Outcomes were compared in BS and non-BS cohorts after propensity score matching. Results There were significant differences in patient demographics and co-morbidities between the BS and non-BS groups. In the propensity score-matched analysis, there was a lower risk of reaching the primary endpoint of mechanical ventilation or mortality at 30 days after COVID-19 diagnosis in the BS cohort compared to the non-BS cohort (risk ratio (RR) 0.40, 95% CI 0.25–0.65). Mortality rate was lower in the BS cohort (RR 0.42, 95% CI 0.22–0.80), and patients in the BS group were less likely to require critical care (RR 0.54, 95% CI 0.38–0.77), mechanical ventilation (RR 0.43, 95% CI 0.24–0.78) or develop acute kidney injury (RR 0.57, 95% CI 0.43–0.76) after COVID-19 diagnosis. Conclusion Prior bariatric surgery is associated with a reduced risk of poor outcomes of COVID-19. Furthermore, large prospective studies are needed. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11695-021-05803-1.
Collapse
Affiliation(s)
- Yousaf Bashir Hadi
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, 1 Medical Center Dr # 2283, Morgantown, WV, 26506, USA
| | - Rupinder Mann
- Department of Internal Medicine, Saint Agnes Medical Center, 1303 E Herndon Ave, Fresno, CA, 93720, USA
| | - Amir Humza Sohail
- Department of Surgery, NYU Langone Hospital-Long Island, 222 Station Plaza North, Fifth Floor, Suite 510, Mineola, NY, 11501, USA
| | - Miles Graves
- Department of Medicine, West Virginia University School of Medicine, 1 Medical Center Dr # 2283, Morgantown, WV, 26506, USA
| | - Nova Szoka
- Department of Surgery, West Virginia University School of Medicine, 1 Medical Center Dr # 2283, Morgantown, WV, 26506, USA
| | - Salim Abunnaja
- Department of Surgery, West Virginia University School of Medicine, 1 Medical Center Dr # 2283, Morgantown, WV, 26506, USA
| | - Lawrence E Tabone
- Department of Surgery, West Virginia University School of Medicine, 1 Medical Center Dr # 2283, Morgantown, WV, 26506, USA
| | - Shyam Thakkar
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, 1 Medical Center Dr # 2283, Morgantown, WV, 26506, USA
| | - Shailendra Singh
- Section of Gastroenterology and Hepatology, West Virginia University School of Medicine, 1 Medical Center Dr # 2283, Morgantown, WV, 26506, USA.
| |
Collapse
|
48
|
Bein A, Kim S, Goyal G, Cao W, Fadel C, Naziripour A, Sharma S, Swenor B, LoGrande N, Nurani A, Miao VN, Navia AW, Ziegler CGK, Montañes JO, Prabhala P, Kim MS, Prantil-Baun R, Rodas M, Jiang A, O’Sullivan L, Tillya G, Shalek AK, Ingber DE. Enteric Coronavirus Infection and Treatment Modeled With an Immunocompetent Human Intestine-On-A-Chip. Front Pharmacol 2021; 12:718484. [PMID: 34759819 PMCID: PMC8573067 DOI: 10.3389/fphar.2021.718484] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium interfaced with human vascular endothelium to study host cellular and inflammatory responses to infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like mechanical deformations in the Intestine Chips compared to when cultured statically as organoids or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation of the endothelium as demonstrated by loss of barrier function, increased cytokine production, and recruitment of circulating peripheral blood mononuclear cells (PBMCs). Treatment of NL63 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to the endothelium. This model of intestinal infection was also used to test the effects of other drugs that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these data suggest that the human Intestine Chip might be useful as a human preclinical model for studying coronavirus related pathology as well as for testing of potential anti-viral or anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Wuji Cao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Sanjay Sharma
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Ben Swenor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Nina LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Atiq Nurani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Vincent N. Miao
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Andrew W. Navia
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Carly G. K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, United States
| | - José Ordovas Montañes
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Pranav Prabhala
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Min Sun Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Melissa Rodas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Lucy O’Sullivan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Gladness Tillya
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Cambridge, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
49
|
Rahban M, Stanek A, Hooshmand A, Khamineh Y, Ahi S, Kazim SN, Ahmad F, Muronetz V, Samy Abousenna M, Zolghadri S, Saboury AA. Infection of Human Cells by SARS-CoV-2 and Molecular Overview of Gastrointestinal, Neurological, and Hepatic Problems in COVID-19 Patients. J Clin Med 2021; 10:4802. [PMID: 34768321 PMCID: PMC8584649 DOI: 10.3390/jcm10214802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is the body's largest interface between the host and the external environment. People infected with SARS-CoV-2 are at higher risk of microbiome alterations and severe diseases. Recent evidence has suggested that the pathophysiological and molecular mechanisms associated with gastrointestinal complicity in SARS-CoV-2 infection could be explained by the role of angiotensin-converting enzyme-2 (ACE2) cell receptors. These receptors are overexpressed in the gut lining, leading to a high intestinal permeability to foreign pathogens. It is believed that SARS-CoV-2 has a lesser likelihood of causing liver infection because of the diminished expression of ACE2 in liver cells. Interestingly, an interconnection between the lungs, brain, and gastrointestinal tract during severe COVID-19 has been mentioned. We hope that this review on the molecular mechanisms related to the gastrointestinal disorders as well as neurological and hepatic manifestations experienced by COVID-19 patients will help scientists to find a convenient solution for this and other pandemic events.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland;
| | - Amirreza Hooshmand
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Yasaman Khamineh
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Salma Ahi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran;
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Mohamed Samy Abousenna
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center, Cairo 11517, Egypt;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| |
Collapse
|
50
|
Expression and Possible Significance of ACE2 in the Human Liver, Esophagus, Stomach, and Colon. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6949902. [PMID: 34484401 PMCID: PMC8410421 DOI: 10.1155/2021/6949902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been identified as the key receptor of SARS coronavirus that plays a key role in the pathogenesis of SARS. It is known that ACE2 mRNA can be expressed in most organs. However, the protein expression of ACE2 is not clear yet. To explore the role of ACE2 as a precipitating factor in digestive organ damage in COVID-19, this study investigated the expression of ACE2 protein in the human liver, esophagus, stomach, and colon. The result showed that ACE2 can be expressed in the liver, esophagus, stomach, and colon, which suggests SARS-CoV-2 may enter the digestive system through ACE2 and cause liver damage and gastrointestinal damage. It is hoped that the result of the study will provide a new strategy for the prevention and treatment of digestive organ damage under COVID-19.
Collapse
|