1
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Clavreul A, Guette C, Lasla H, Rousseau A, Blanchet O, Henry C, Boissard A, Cherel M, Jézéquel P, Guillonneau F, Menei P, Lemée J. Proteomics of tumor and serum samples from isocitrate dehydrogenase-wildtype glioblastoma patients: is the detoxification of reactive oxygen species associated with shorter survival? Mol Oncol 2024; 18:2783-2800. [PMID: 38803161 PMCID: PMC11547244 DOI: 10.1002/1878-0261.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Proteomics has been little used for the identification of novel prognostic and/or therapeutic markers in isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GB). In this study, we analyzed 50 tumor and 30 serum samples from short- and long-term survivors of IDH-wildtype GB (STS and LTS, respectively) by data-independent acquisition mass spectrometry (DIA-MS)-based proteomics, with the aim of identifying such markers. DIA-MS identified 5422 and 826 normalized proteins in tumor and serum samples, respectively, with only three tumor proteins and 26 serum proteins displaying significant differential expression between the STS and LTS groups. These dysregulated proteins were principally associated with the detoxification of reactive oxygen species (ROS). In particular, GB patients in the STS group had high serum levels of malate dehydrogenase 1 (MDH1) and ribonuclease inhibitor 1 (RNH1) and low tumor levels of fatty acid-binding protein 7 (FABP7), which may have enabled them to maintain low ROS levels, counteracting the effects of the first-line treatment with radiotherapy plus concomitant and adjuvant temozolomide. A blood score built on the levels of MDH1 and RNH1 expression was found to be an independent prognostic factor for survival based on the serum proteome data for a cohort of 96 IDH-wildtype GB patients. This study highlights the utility of circulating MDH1 and RNH1 biomarkers for determining the prognosis of patients with IDH-wildtype GB. Furthermore, the pathways driven by these biomarkers, and the tumor FABP7 pathway, may constitute promising therapeutic targets for blocking ROS detoxification to overcome resistance to chemoradiotherapy in potential GB STS.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de NeurochirurgieCHU d'AngersFrance
- Inserm UMR 1307, CNRS UMR 6075Université de Nantes, CRCI2NA, Université d'AngersFrance
| | - Catherine Guette
- Inserm UMR 1307, CNRS UMR 6075Université de Nantes, CRCI2NA, Université d'AngersFrance
- PROT'ICO – Plateforme OncoprotéomiqueInstitut de Cancérologie de l'Ouest (ICO)AngersFrance
| | - Hamza Lasla
- Omics Data Science UnitInstitut de Cancérologie de l'Ouest (ICO)NantesFrance
- SIRIC ILIAD, Institut de Recherche en Santé, Université de NantesFrance
| | - Audrey Rousseau
- Inserm UMR 1307, CNRS UMR 6075Université de Nantes, CRCI2NA, Université d'AngersFrance
- Département de PathologieCHU d'AngersFrance
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB‐0033‐00038CHU d'AngersFrance
| | - Cécile Henry
- PROT'ICO – Plateforme OncoprotéomiqueInstitut de Cancérologie de l'Ouest (ICO)AngersFrance
| | - Alice Boissard
- PROT'ICO – Plateforme OncoprotéomiqueInstitut de Cancérologie de l'Ouest (ICO)AngersFrance
| | - Mathilde Cherel
- Département de Biologie MédicaleCentre Eugène Marquis, UnicancerRennesFrance
| | - Pascal Jézéquel
- Inserm UMR 1307, CNRS UMR 6075Université de Nantes, CRCI2NA, Université d'AngersFrance
- Omics Data Science UnitInstitut de Cancérologie de l'Ouest (ICO)NantesFrance
- SIRIC ILIAD, Institut de Recherche en Santé, Université de NantesFrance
| | - François Guillonneau
- Inserm UMR 1307, CNRS UMR 6075Université de Nantes, CRCI2NA, Université d'AngersFrance
- PROT'ICO – Plateforme OncoprotéomiqueInstitut de Cancérologie de l'Ouest (ICO)AngersFrance
| | - Philippe Menei
- Département de NeurochirurgieCHU d'AngersFrance
- Inserm UMR 1307, CNRS UMR 6075Université de Nantes, CRCI2NA, Université d'AngersFrance
| | - Jean‐Michel Lemée
- Département de NeurochirurgieCHU d'AngersFrance
- Inserm UMR 1307, CNRS UMR 6075Université de Nantes, CRCI2NA, Université d'AngersFrance
| |
Collapse
|
3
|
Jiang Y, Zhang Y, Suo H, Lv Y, Liu S, Gao Z, Chen Y, Zhang M, Meng X, Gao S. Modulation of miR-466d-3p on Wnt signaling pathway in response to DEPs-induced blood-brain barrier disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116869. [PMID: 39178759 DOI: 10.1016/j.ecoenv.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Diesel exhaust particles (DEPs), a predominant component of ambient particulate matter (PM), are classified as ultrafine particles with the capacity to penetrate the cerebral blood-brain barrier (BBB). This penetration is implicated in the pathogenesis of central nervous system (CNS) disorders. The integrity of the BBB is inextricably linked to cerebrovascular homeostasis and the development of neurodegenerative disease, highlighting the importance of studying the effects and mechanisms of DEPs on BBB function damage. METHODS AND RESULTS Utilizing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we explored the detrimental effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an upregulation in the secretion of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, and diminished tight junction (TJ) protein expression. Microarray analysis revealed that 23 miRNAs were upregulated and 11 were downregulated in response to a 50 μg/mL DEPs treatment, with miR-466d-3p being notably differentially expressed. Wnt3 was identified as a target of miR-466d-3p, with the Wnt signaling pathway being significantly enriched. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/β-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and β-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS Our study further confirmed that DEPs can induce the disruption of BBB integrity through inflammatory processes. We identified alterations in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a key regulator of tight junction (TJ) proteins, essential for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ β-catenin and Wnt/PCP signaling pathway can be activated by DEPs and are regulated by miR-466d-3p. Under the combined effects of Wnt/PCP and inflammation, there is an ultimate increase in BBB hyperpermeability.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Ya Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Huimin Suo
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Yanming Lv
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Siqi Liu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Zhijian Gao
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Yingying Chen
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Mingming Zhang
- School of Bioinformatics, Harbin Medical University, Harbin 150081, China
| | - Xiangning Meng
- Department of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Shuying Gao
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
4
|
The Mega Vascular Cognitive Impairment and Dementia (MEGAVCID) consortium. A genome-wide association meta-analysis of all-cause and vascular dementia. Alzheimers Dement 2024; 20:5973-5995. [PMID: 39046104 PMCID: PMC11497727 DOI: 10.1002/alz.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Dementia is a multifactorial disease with Alzheimer's disease (AD) and vascular dementia (VaD) pathologies making the largest contributions. Yet, most genome-wide association studies (GWAS) focus on AD. METHODS We conducted a GWAS of all-cause dementia (ACD) and examined the genetic overlap with VaD. Our dataset includes 800,597 individuals, with 46,902 and 8702 cases of ACD and VaD, respectively. Known AD loci for ACD and VaD were replicated. Bioinformatic analyses prioritized genes that are likely functionally relevant and shared with closely related traits and risk factors. RESULTS For ACD, novel loci identified were associated with energy transport (SEMA4D), neuronal excitability (ANO3), amyloid deposition in the brain (RBFOX1), and magnetic resonance imaging markers of small vessel disease (SVD; HBEGF). Novel VaD loci were associated with hypertension, diabetes, and neuron maintenance (SPRY2, FOXA2, AJAP1, and PSMA3). DISCUSSION Our study identified genetic risks underlying ACD, demonstrating overlap with neurodegenerative processes, vascular risk factors, and cerebral SVD. HIGHLIGHTS We conducted the largest genome-wide association study of all-cause dementia (ACD) and vascular dementia (VaD). Known genetic variants associated with AD were replicated for ACD and VaD. Functional analyses identified novel loci for ACD and VaD. Genetic risks of ACD overlapped with neurodegeneration, vascular risk factors, and cerebral small vessel disease.
Collapse
|
5
|
Wu X, Shen J, Zhong Y, Zhao X, Zhou W, Gao P, Wang X, An W. Large-Scale Isolation of Milk Exosomes for Skincare. Pharmaceutics 2024; 16:930. [PMID: 39065627 PMCID: PMC11279399 DOI: 10.3390/pharmaceutics16070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small membrane vesicles in a cell culture. They are secreted by most cells and originate from the endosomal pathway. A variety of proteins, lipids, and genetic materials have been shown to be carried by exosomes. Once taken up by neighboring or distant cells, the bioactive compounds in exosomes can regulate the condition of recipient cells. Typically, producing exosomes in large quantities requires cell culture, resulting in high production costs. However, exosomes are abundant in milk and can be isolated on a large scale at a low cost. In our study, we found that milk exosomes can promote the synthesis and reconstruction of stratum corneum lipids, enhance skin barrier function, and provide greater protection for the skin. Furthermore, milk exosomes have anti-inflammatory properties that can reduce skin irritation, redness, and other symptoms, giving immediate relief. They also exhibit antioxidant activity, which helps neutralize free radicals and slows down the skin aging process. Additionally, milk exosomes inhibit melanin production, aiding in skin whitening. Ongoing research has uncovered the benefits of milk exosomes for skin improvement and their application in cosmetics, skin healthcare, and other fields, and these applications are continuing to expand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xudong Wang
- China National Biotech Group (CNBG), Sinopharm Group, National Vaccine & Serum Institute (NVSI), No. 38 Jing Hai Second Road, Beijing 101111, China; (X.W.); (J.S.); (Y.Z.); (X.Z.); (W.Z.); (P.G.)
| | - Wenlin An
- China National Biotech Group (CNBG), Sinopharm Group, National Vaccine & Serum Institute (NVSI), No. 38 Jing Hai Second Road, Beijing 101111, China; (X.W.); (J.S.); (Y.Z.); (X.Z.); (W.Z.); (P.G.)
| |
Collapse
|
6
|
Lv Y, Xie G, Xi Y, Zhang L, Wang J, Wu J. MicroRNA Regulatory Pattern in Diabetic Mouse Cortex at Different Stages Following Ischemic Stroke. J Mol Neurosci 2024; 74:36. [PMID: 38568285 DOI: 10.1007/s12031-024-02207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
After ischemic stroke, microRNAs (miRNAs) participate in various processes, including immune responses, inflammation, and angiogenesis. Diabetes is a key factor increasing the risk of ischemic stroke; however, the regulatory pattern of miRNAs at different stages of diabetic stroke remains unclear. This study comprehensively analyzed the miRNA expression profiles in diabetic mice at 1, 3, and 7 days post-reperfusion following the middle cerebral artery occlusion (MCAO). We identified differentially expressed (DE) miRNAs in diabetic stroke and found significant dysregulation of some novel miRNAs (novel_mir310, novel_mir89, and novel_mir396) post-stroke. These DEmiRNAs were involved in apoptosis and the formation of tight junctions. Finally, we identified three groups of time-dependent DE miRNAs (miR-6240, miR-135b-3p, and miR-672-5p). These have the potential to serve as biomarkers of diabetic stroke. These findings provide a new perspective for future research, emphasizing the dynamic changes in miRNA expression after diabetic stroke and offering potential candidates as biomarkers for future clinical applications.
Collapse
Affiliation(s)
- Yifei Lv
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Guanghui Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yujie Xi
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Liu Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Jiajun Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China.
| |
Collapse
|
7
|
Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther 2024; 30:e14717. [PMID: 38641945 PMCID: PMC11031674 DOI: 10.1111/cns.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.
Collapse
Affiliation(s)
- Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Rusong Li
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Danqing Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Biqin Zhang
- Cancer Center, Department of HematologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Ailin Cui
- Cancer Center, Department of Ultrasound MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Yutian Shao
- Zhejiang BioAsia Life Science InstitutePinghuChina
| | - Zeyu Lai
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Rongrong Chen
- School of Clinical MedicineHangzhou Normal UniversityHangzhouChina
| | - Bingyu Chen
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Wei Zhang
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Lisheng Chu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
8
|
Mak S, Hammes A. Canonical and Non-Canonical Localization of Tight Junction Proteins during Early Murine Cranial Development. Int J Mol Sci 2024; 25:1426. [PMID: 38338705 PMCID: PMC10855338 DOI: 10.3390/ijms25031426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.
Collapse
Affiliation(s)
- Shermin Mak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute for Biology, Free University of Berlin, 14159 Berlin, Germany
| | - Annette Hammes
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
| |
Collapse
|
9
|
Yan H, Sasaki T, Gon Y, Nishiyama K, Kanki H, Mochizuki H. Driver gene KRAS aggravates cancer-associated stroke outcomes. Thromb Res 2024; 233:55-68. [PMID: 38029547 DOI: 10.1016/j.thromres.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The incidence of cancer-associated stroke has increased with the prolonged survival times of cancer patients. Recent genetic studies have led to progress in cancer therapeutics, but relationships between oncogenic mutations and stroke remain elusive. Here, we focused on the driver gene KRAS, which is the predominant RAS isoform mutated in multiple cancer types, in cancer associated stroke study. KRASG13D/- and parental human colorectal carcinoma HCT116 cells were inoculated into mice that were then subjected to a photochemically-induced thrombosis model to establish ischemic stroke. We found that cancer inoculation exacerbated neurological deficits after stroke. Moreover, mice inoculated with KRASG13D/- cells showed worse neurological deficits after stroke compared with mice inoculated with parental cells. Stroke promoted tumor growth, and the KRASG13D/- allele enhanced this growth. Brain RNA sequencing analysis and serum ELISA showed that chemokines and cytokines mediating pro-inflammatory responses were upregulated in mice inoculated with KRASG13D/- cells compared with those inoculated with parental cells. STAT3 phosphorylation was promoted following ischemic stroke in the KRASG13D/- group compared with in the parental group, and STAT3 inhibition significantly ameliorated stroke outcomes by mitigating microglia/macrophage polarization. Finally, we compared the prognosis and mortality of colorectal cancer patients with or without stroke onset between 1 January 2007 and 31 December 2020 using a hospital-based cancer registry and found that colorectal cancer patients with stroke onset within 3 months after cancer diagnosis had a worse prognosis. Our work suggests an interplay between KRAS and ischemic stroke that may offer insight into future treatments for cancer-associated stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Abdel-Reheim MA, Nomier Y, Zaki MB, Abulsoud AI, Mohammed OA, Rashad AA, Oraby MA, Elballal MS, Tabaa MME, Elazazy O, Abd-Elmawla MA, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Elrebehy MA, Helal GK, Doghish AS. Unveiling the regulatory role of miRNAs in stroke pathophysiology and diagnosis. Pathol Res Pract 2024; 253:155085. [PMID: 38183822 DOI: 10.1016/j.prp.2023.155085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Stroke, a major global cause of mortality, leads to a range of problems for those who survive. Besides its brutal events, stroke also tends to have a characteristic of recurrence, making it a complex disease involving intricate regulatory networks. One of the major cellular regulators is the non-coding RNAs (ncRNA), specifically microRNAs (miRNAs), thus the possible functions of miRNAs in the pathogenesis of stroke are discussed as well as the possibility of using miRNA-based therapeutic approaches. Firstly, the molecular mechanisms by which miRNAs regulate vital physiological processes, including synaptic plasticity, oxidative stress, apoptosis, and the integrity of the blood-brain barrier (BBB) are reviewed. The miRNA indirectly impacts stroke outcomes by regulating BBB function and angiogenesis through the targeting of transcription factors and angiogenic factors. In addition, the tendency for some miRNAs to be upregulated in response to hypoxia, which is a prevalent phenomenon in stroke and various neurological disorders, highlights the possibility that it controls hypoxia-inducible factor (HIF) signaling and angiogenesis, thereby influencing the integrity of the BBB as examples of the discussed mechanisms. Furthermore, this review explores the potential therapeutic targets that miRNAs may offer for stroke recovery and highlights their promising capacity to alleviate post-stroke complications. This review provides researchers and clinicians with valuable resources since it attempts to decipher the complex network of miRNA-mediated mechanisms in stroke. Additionally, the review addresses the interplay between miRNAs and stroke risk factors as well as clinical applications of miRNAs as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and health sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Zhang Y, Bai H, Zhang W, Gao J, Gao C, Deng T, Liu X, Sun X, Liu Y, Wang N, Wu Y. miR-212/132 attenuates OVA-induced airway inflammation by inhibiting mast cells activation through MRGPRX2 and ASAP1. Exp Cell Res 2023; 433:113828. [PMID: 37875175 DOI: 10.1016/j.yexcr.2023.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Allergic asthma is a chronic inflammatory disease of airways involving complex mechanisms, including MAS-related GPR family member X2 (MRGPRX2) and its orthologue MRGPRB2 on mast cells (MCs). Although miRNAs have been previously shown to related to allergic asthma, the role of miR-212/132 in this process has not been studied. In this study, the predicted pairing of miRNAs and MRGPRX2 (MRGPRB2) mRNAs was carried out by online databases and the function was verify using in vivo and in vitro experiments. Database prediction showed that miR-212/132 interact with MRGPRX2 and MRGPRB2. miR-212/132 mimics alleviated MRGPRB2 mRNA expression as well as pathology changes in lungs and AHR of mice with airway inflammation in vivo. The expression level of MRGPRB2 in the mice lungs after inhaled OVA was also decreased by miR-212/132 mimics. Meanwhile, miR-212/132 inhibited MCs degranulation and cytokines release triggered by C48/80 in vitro. Further, ASAP1 (ARF GTPase-Activating Protein 1) was selected from the junction related pathways using RNAseq and KEGG enrichment. ASAP1 mRNA level was upregulated in airway inflammation and MCs activation and decreased by miR-212/132 mimics. miR-212/132 attenuated OVA-induced airway inflammation by inhibiting MCs activation through MRGPRX2 and ASAP1.
Collapse
Affiliation(s)
- Yongjing Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Deng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| | - Yuanyuan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Shimizu M, Shiraishi N, Tada S, Sasaki T, Beck G, Nagano S, Kinoshita M, Sumi H, Sugimoto T, Ishida Y, Koda T, Ishikura T, Sugiyama Y, Kihara K, Kanakura M, Nakajima T, Takeda S, Takahashi MP, Yamashita T, Okuno T, Mochizuki H. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. SCIENCE ADVANCES 2023; 9:eadg3193. [PMID: 37992159 PMCID: PMC10665002 DOI: 10.1126/sciadv.adg3193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone-collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoru Tada
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Clinical Research, National Hospital Organization Osaka-Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurotherapeutics, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisae Sumi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Tomoyuki Sugimoto
- Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Yoko Ishida
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Minami Kanakura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka, Japan
| | - Masanori P. Takahashi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
13
|
Kanki H, Matsumoto H, Togami Y, Okuzaki D, Ogura H, Sasaki T, Mochizuki H. Importance of microRNAs by mRNA-microRNA integration analysis in acute ischemic stroke patients. J Stroke Cerebrovasc Dis 2023; 32:107277. [PMID: 37562178 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTS The roles of mRNA and microRNA (miRNA) are well known in many diseases, including ischemic stroke; thus, integration analysis using mRNA and miRNA is important to elucidate pathogenesis. However, their contribution, especially that of miRNA-targeted mRNA, to the severity of acute ischemic stroke remains unclear. Therefore, we examined mRNA and miRNA integration analysis targeted for acute ischemic stroke to clarify the pathway related to acute stroke severity. MATERIAL AND METHODS We performed Ingenuity Pathway Analysis (IPA) using RNA extracted from the whole blood of four healthy controls, six minor acute ischemic stroke patients (MS; National Institutes of Health Stroke Scale [NIHSS] < 8), and six severe acute ischemic stroke patients (SS; NIHSS ≥ 8) on admission. mRNA and miRNA were measured using RNA sequencing and RNA expression variation; canonical pathway analysis (CPA) and upstream regulator analyses were performed. RESULTS Acute ischemic stroke patients demonstrated different RNA expressions to healthy controls. Compared to MS patients, in the SS patients, 1222 mRNA, 96 miRNA, and 935 miRNA-targeted mRNA expressions were identified among differentially expressed RNA expressions (p<0.05, |log2 fold change| >1.1). CPA by IPA using mRNAs or miRNA-targeted mRNAs showed that macrophage-stimulating protein (MSP)-recepteur d'origine nantais (RON) signaling was mostly activated in SS patients compared to in MS patients. In addition, upstream regulator analysis in IPA showed that most mRNAs located upstream are miRNAs. CONCLUSIONS In severe acute stroke, integration of mRNA and microRNA analysis showed activated MSP-RON signaling in macrophages, and multiple miRNAs comprehensively controlled the overall pathophysiology of stroke.
Collapse
Affiliation(s)
- Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Ren ZL, Kang XD, Zheng YX, Shi HF, Chen CA, Shi YY, Wang QG, Cheng FF, Wang XQ, Li CX. Emerging effects of non-coding RNA in vascular endothelial cells during strokes. Vascul Pharmacol 2023; 150:107169. [PMID: 37059212 DOI: 10.1016/j.vph.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-Dong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han-Fen Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Yu-Yu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
16
|
Guo X, Liu R, Jia M, Wang Q, Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 2023:10.1007/s11064-023-03923-x. [PMID: 37017889 DOI: 10.1007/s11064-023-03923-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood-brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood-brain barrier, leading to blood-brain barrier dysfunction and vasogenic edema. Importantly, blood-brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood-brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood-brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood-brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood-brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood-brain barrier dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Xi Guo
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China.
| |
Collapse
|
17
|
Yan H, Kawano T, Kanki H, Nishiyama K, Shimamura M, Mochizuki H, Sasaki T. Role of Polymorphonuclear Myeloid-Derived Suppressor Cells and Neutrophils in Ischemic Stroke. J Am Heart Assoc 2023; 12:e028125. [PMID: 36892072 PMCID: PMC10111556 DOI: 10.1161/jaha.122.028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Background Immune cells play a vital role in the pathology of ischemic stroke. Neutrophils and polymorphonuclear myeloid-derived suppressor cells share a similar phenotype and have attracted increasing attention in immune regulation research, yet their dynamics in ischemic stroke remain elusive. Methods and Results Mice were randomly divided into 2 groups and intraperitoneally treated with anti-Ly6G (lymphocyte antigen 6 complex locus G) monoclonal antibody or saline. Distal middle cerebral artery occlusion and transient middle cerebral artery occlusion were applied to induce experimental stroke, and mice mortality was recorded until 28 days after stroke. Green fluorescent nissl staining was used to measure infarct volume. Cylinder and foot fault tests were used to evaluate neurological deficits. Immunofluorescence staining was conducted to confirm Ly6G neutralization and detect activated neutrophils and CD11b+Ly6G+ cells. Fluorescence-activated cell sorting was performed to evaluate polymorphonuclear myeloid-derived suppressor cell accumulation in brains and spleens after stroke. Anti-Ly6G antibody successfully depleted Ly6G expression in mice cortex but did not alter cortical physiological vasculature. Prophylactic anti-Ly6G antibody treatment ameliorated ischemic stroke outcomes in the subacute phase. Moreover, using immunofluorescence staining, we found that anti-Ly6G antibody suppressed activated neutrophil infiltration into parenchyma and decreased neutrophil extracellular trap formation in penumbra after stroke. Additionally, prophylactic anti-Ly6G antibody treatment reduced polymorphonuclear myeloid-derived suppressor cell accumulation in the ischemic hemisphere. Conclusions Our study suggested a protective effect of prophylactic anti-Ly6G antibody administration against ischemic stroke by reducing activated neutrophil infiltration and neutrophil extracellular trap formation in parenchyma and suppressing polymorphonuclear myeloid-derived suppressor cell accumulation in the brain. This study may provide a novel therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Tomohiro Kawano
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Munehisa Shimamura
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
- Department of Health Development and Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
- Department of Neurotherapeutics, Graduate School of Medicine Osaka University Osaka Japan
| |
Collapse
|
18
|
Shi Q, Li S, Lyu Q, Zhang S, Bai Y, Ma J. Hypoxia Inhibits Cell Cycle Progression and Cell Proliferation in Brain Microvascular Endothelial Cells via the miR-212-3p/MCM2 Axis. Int J Mol Sci 2023; 24:ijms24032788. [PMID: 36769104 PMCID: PMC9917047 DOI: 10.3390/ijms24032788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hypoxia impairs blood-brain barrier (BBB) structure and function, causing pathophysiological changes in the context of stroke and high-altitude brain edema. Brain microvascular endothelial cells (BMECs) are major structural and functional elements of the BBB, and their exact role in hypoxia remains unknown. Here, we first deciphered the molecular events that occur in BMECs under 24 h hypoxia by whole-transcriptome sequencing assay. We found that hypoxia inhibited BMEC cell cycle progression and proliferation and downregulated minichromosome maintenance complex component 2 (Mcm2) expression. Mcm2 overexpression attenuated the inhibition of cell cycle progression and proliferation caused by hypoxia. Then, we predicted the upstream miRNAs of MCM2 through TargetScan and miRanDa and selected miR-212-3p, whose expression was significantly increased under hypoxia. Moreover, the miR-212-3p inhibitor attenuated the inhibition of cell cycle progression and cell proliferation caused by hypoxia by regulating MCM2. Taken together, these results suggest that the miR-212-3p/MCM2 axis plays an important role in BMECs under hypoxia and provide a potential target for the treatment of BBB disorder-related cerebrovascular disease.
Collapse
|
19
|
Yu Z, Zhu M, Shu D, Zhang R, Xiang Z, Jiang A, Liu S, Zhang C, Yuan Q, Hu X. LncRNA PEG11as aggravates cerebral ischemia/reperfusion injury after ischemic stroke through miR-342-5p/PFN1 axis. Life Sci 2023; 313:121276. [PMID: 36496032 DOI: 10.1016/j.lfs.2022.121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
AIM LncRNAs are highly expressed in the CNS and regulate pathophysiological processes. However, the potential role of lncRNAs inischemic stroke (IS) remains unknown. In this study, we investigated the functions and possible molecular mechanism of lncRNA paternal expressed gene 11 antisense (PEG11as) in this process. METHODS Middle cerebral artery occlusion/reperfusion (MCAO/R) mice model and N2a cells model from oxygen-glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral I/R in vivo and in vitro. High-throughput sequencing (RNA-Seq) was used todetect differential expression of lncRNAs in cerebral I/R. QRT-PCR was used to detect the expression of PEG11as and miR-342-5p. Bioinformatics analysis, FISH, luciferase reporter assay, RIP, Western blot, and immunofluorescence were used to detect the interaction between PEG11as, miR-342-5p and PFN1. The effect on neuronal apoptosis was analyzed using loss-of-function combined with TUNEL, Hoechst, and caspase3 activity assays. KEY FINDINGS 254 lncRNAs were differentially expressed in MCAO1h/R6h mice. Among them, PEG11as was significantly up-regulated. PEG11as down-regulated could markedly attenuate the brain infarct volume, alleviate neurological deficit in vivo, and effectively promote neuron survival, attenuate neuronal apoptosis both in vivo and in vitro. FISH assay discovered that PEG11as was mainly located in the cytoplasm. Furthermore, we demonstrated that PEG11as was able to bind miR-342-5p to inhibit miR-342-5p activity, whereas the down-regulated of miR-342-5p resulted in profilin 1 (PFN1) overexpression and thus promoting apoptosis. SIGNIFICANCE This study suggests that PEG11as regulates neuronal apoptosis by miR-342-5p/PFN1 axis, which may contribute to our understanding of pathogenesis and provide a potential therapeutic option for cerebral I/R.
Collapse
Affiliation(s)
- Zhijun Yu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Zhu
- China Resources & WISCO General Hospital, Wuhan, China
| | - Dan Shu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Rong Zhang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zifei Xiang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Aihua Jiang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Sijia Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Qiong Yuan
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine& Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
20
|
MDMX elevation by a novel Mdmx-p53 interaction inhibitor mitigates neuronal damage after ischemic stroke. Sci Rep 2022; 12:21110. [PMID: 36473920 PMCID: PMC9726886 DOI: 10.1038/s41598-022-25427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mdmx and Mdm2 are two major suppressor factors for the tumor suppressor gene p53. In central nervous system, Mdmx suppresses the transcriptional activity of p53 and enhances the binding of Mdm2 to p53 for degradation. But Mdmx dynamics in cerebral infarction remained obscure. Here we investigated the role of Mdmx under ischemic conditions and evaluated the effects of our developed small-molecule Protein-Protein Interaction (PPI) inhibitors, K-181, on Mdmx-p53 interactions in vivo and in vitro. We found ischemic stroke decreased Mdmx expression with increased phosphorylation of Mdmx Serine 367, while Mdmx overexpression by AAV-Mdmx showed a neuroprotective effect on neurons. The PPI inhibitor, K-181 attenuated the neurological deficits by increasing Mdmx expression in post-stroke mice brain. Additionally, K-181 selectively inhibited HDAC6 activity and enhanced tubulin acetylation. Our findings clarified the dynamics of Mdmx in cerebral ischemia and provide a clue for the future pharmaceutic development of ischemic stroke.
Collapse
|
21
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Integrative analysis of expression profile indicates the ECM receptor and LTP dysfunction in the glioma-related epilepsy. BMC Genomics 2022; 23:430. [PMID: 35676651 PMCID: PMC9175475 DOI: 10.1186/s12864-022-08665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Seizures are a common symptom in glioma patients, and they can cause brain dysfunction. However, the mechanism by which glioma-related epilepsy (GRE) causes alterations in brain networks remains elusive. Objective To investigate the potential pathogenic mechanism of GRE by analyzing the dynamic expression profiles of microRNA/ mRNA/ lncRNA in brain tissues of glioma patients. Methods Brain tissues of 16 patients with GRE and 9 patients with glioma without epilepsy (GNE) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60 K. The cDNA was labeled and hybridized to the Agilent LncRNA + mRNA Human Gene Expression Microarray V3.0, 4 × 180 K. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change > 2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. Results We found that 3 differentially expressed miRNAs (miR-10a-5p, miR-10b-5p, miR-629-3p), 6 differentially expressed lncRNAs (TTN-AS1, LINC00641, SNHG14, LINC00894, SNHG1, OIP5-AS1), and 49 differentially expressed mRNAs play a vitally critical role in developing GRE. The expression of GABARAPL1, GRAMD1B, and IQSEC3 were validated more than twofold higher in the GRE group than in the GNE group in the validation cohort. Pathways including ECM receptor interaction and long-term potentiation (LTP) may contribute to the disease’s progression. Meanwhile, We built a lncRNA-microRNA-Gene regulatory network with structural and functional significance. Conclusion These findings can offer a fresh perspective on GRE-induced brain network changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08665-8.
Collapse
|