1
|
Huang Y, Gao QH, Liu CJ, Su T, Liu J, Liang ZY, Zhao ZJ, Chen LP, Yi YN, Li XR, He J. Diversity in the composition of pleural cavity and oral cavity microbiota in different bacterial empyema. Front Microbiol 2025; 16:1566606. [PMID: 40365062 PMCID: PMC12069347 DOI: 10.3389/fmicb.2025.1566606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Recent studies have proposed primary empyema and demonstrated a correlation between it and the microbial composition of the oral cavity. However, no study has systematically characterized the differences in microbial composition between primary and secondary empyema. Furthermore, the correlation between the characteristics of empyema and oral microbiota remains to be explored. Methods The study included forty-six patients diagnosed with empyema. Hydrothorax was collected from all patients, and mouthwash samples were collected from 24 patients. Both types of samples underwent amplification and sequencing using primer sets specific for the 16S rRNA gene. Results and discussion Compared with the primary empyema group, the pleural cavity microbial diversity of pneumonia complicated with empyema was significantly decreased (p < 0.05). At the phylum level, the relative abundance of Proteobacteria was significantly higher in the primary empyema group than pneumonia with empyema (p < 0.05). At the genus level, the abundance of Streptococcus, Escherichia-Shigella, and Corynebacterium increased in the primary empyema group, while the abundance of Campylobacter, Salmonella, Bacillus, and Staphylococcus decreased (p > 0.05). The shared sequences between the hydrothorax samples and mouthwash samples from the patients with empyema contributed to 94% of the total sequences used in these analyses. Correlation analysis indicated that the presence of Streptococcus constellatus in empyema is positively correlated with leukocytes and neutrophils, and negatively correlated with lymphocytes (p < 0.05).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiao-Ran Li
- Faculty of Life Science and Technology and The Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Jian He
- Faculty of Life Science and Technology and The Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2
|
Huang HL, Lin CH, Lee MR, Huang WC, Sheu CC, Cheng MH, Lu PL, Huang CH, Yeh YT, Yang JM, Chong IW, Liao YC, Wang JY. Sputum bacterial microbiota signature as a surrogate for predicting disease progression of nontuberculous mycobacterial lung disease. Int J Infect Dis 2024; 149:107085. [PMID: 38740280 DOI: 10.1016/j.ijid.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES Predicting progression of nontuberculous mycobacterial lung disease (NTM-LD) remains challenging. This study evaluated whether sputum bacterial microbiome diversity can be the biomarker and provide novel insights into related phenotypes and treatment timing. METHODS We analyzed 126 sputum microbiomes of 126 patients with newly diagnosed NTM-LD due to Mycobacterium avium complex, M. abscessus complex, and M. kansasii between May 2020 and December 2021. Patients were followed for 2 years to determine their disease progression status. We identified consistently representative genera that differentiated the progressor and nonprogressor by using six methodologies. These genera were used to construct a prediction model using random forest with five-fold cross validation. RESULTS Disease progression occurred in 49 (38.6%) patients. Compared with nonprogressors, α-diversity was lower in the progressors. Significant compositional differences existed in the β-diversity between groups (P = 0.001). The prediction model for NTM-LD progression constructed using seven genera (Burkholderia, Pseudomonas, Sphingomonas, Candidatus Saccharibacteria, Phocaeicola, Pelomonas, and Phascolarctobacterium) with significantly differential abundance achieved an area under curve of 0.871. CONCLUSION Identification of the composition of sputum bacterial microbiome facilitates prediction of the course of NTM-LD, and maybe used to develop precision treatment involving modulating the respiratory microbiome composition to ameliorate NTM-LD.
Collapse
Affiliation(s)
- Hung-Ling Huang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chieh-Hua Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Big Data Center, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Mycobacterial Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Meng-Hsuan Cheng
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Hsieh Huang
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Kimura M, Fujiwara S, Kuroda H, Kanamori M, Kawamoto M. Choroid plexitis caused by Burkholderia cepacia complex after COVID-19. Int J Infect Dis 2024; 147:107201. [PMID: 39103011 DOI: 10.1016/j.ijid.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
Burkholderia cepacia complex (BCC) encompasses opportunistic pathogen with various clinical manifestations ranging from no symptoms to severe respiratory infections and septicemia. Central nervous system infections caused by BCC are rare. To the best of our knowledge, we present the first reported case of choroid plexitis caused by BCC after severe COVID-19. A 67-year-old woman who had been previously diagnosed with COVID-19 presented with a mild fever and headache. Gadolinium-enhanced T1-weighted brain magnetic resonance imaging showed contrast effects in the right choroid plexus and encapsulated abscess. Gram staining of cerebrospinal fluid revealed the presence of gram-negative rods. Broad-range polymerase chain reaction amplification of 16S ribosomal RNA from the cerebrospinal fluid, followed by sequence analysis, identified BCC; thus, choroid plexitis caused by BCC was diagnosed. After prolonged antimicrobial treatment with a multiantibiotic regimen, the patient recovered completely. This case highlights the importance of long-term therapy with a carefully selected multiantibiotic regimen to achieve complete recovery after BCC infection.
Collapse
Affiliation(s)
- Masamune Kimura
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan; Kobe University Graduate School of Medicine, Division of Neurology, Kobe, Japan.
| | - Satoru Fujiwara
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan
| | - Hirokazu Kuroda
- Kobe City Medical Center General Hospital, Department of Infectious Diseases, Kobe, Japan
| | - Maki Kanamori
- Kobe City Medical Center General Hospital, Department of General Internal Medicine, Kobe, Japan
| | - Michi Kawamoto
- Kobe City Medical Center General Hospital, Department of Neurology, Kobe, Japan
| |
Collapse
|
5
|
Ma H, Dong Z, Zhang X, Liu C, Liu Z, Zhou X, He J, Zhang S. Airway bacterial microbiome signatures correlate with occupational pneumoconiosis progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116875. [PMID: 39142114 DOI: 10.1016/j.ecoenv.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Recent evidence has pinpointed a key role of the microbiome in human respiratory health and disease. However, significant knowledge gaps still exist regarding the connection between bacterial communities and adverse effects caused by particulate matters (PMs). Here, we characterized the bacterial microbiome along different airway sites in occupational pneumoconiosis (OP) patients. The sequencing data revealed that OP patients exhibited distinct dysbiosis in the composition and function of the respiratory microbiota. To different extents, there was an overall increase in the colonization of microbiota, such as Streptococcus, implying a possible intrusion pathway provided by exogenous PMs. Compared to those of healthy subjects, unhealthy living habits (i.e., smoking) had a greater impact on microbiome changes in OP patients. Importantly, the associations between the bacterial community and disease indicators indicated that specific bacterial species, including Prevotella, Actinobacillus, and Leptotrichia, might be surrogate markers of OP disease progression. Collectively, our results highlighted the potential participation of the bacterial microbiota in the pathogenesis of respiratory diseases and helped in the discovery of microbiome-based diagnostics for PM-induced disorders.
Collapse
Affiliation(s)
- Huimin Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Stomatology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zheng Dong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Xu Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Conghe Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhihao Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xi Zhou
- Occupational Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250062, China; Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Jin He
- Occupational Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250062, China; Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
6
|
Wu WC, Pan YF, Zhou WD, Liao YQ, Peng MW, Luo GY, Xin GY, Peng YN, An T, Li B, Luo H, Barrs VR, Beatty JA, Holmes EC, Zhao W, Shi M, Shu Y. Meta-transcriptomic analysis of companion animal infectomes reveals their diversity and potential roles in animal and human disease. mSphere 2024; 9:e0043924. [PMID: 39012105 PMCID: PMC11351045 DOI: 10.1128/msphere.00439-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Companion animals such as cats and dogs harbor diverse microbial communities that can potentially impact human health due to close and frequent contact. To better characterize their total infectomes and assess zoonotic risks, we characterized the overall infectomes of companion animals (cats and dogs) and evaluated their potential zoonotic risks. Meta-transcriptomic analyses were performed on 239 samples from cats and dogs collected across China, identifying 24 viral species, 270 bacterial genera, and two fungal genera. Differences in the overall microbiome and infectome composition were compared across different animal species (cats or dogs), sampling sites (rectal or oropharyngeal), and health status (healthy or diseased). Diversity analyses revealed that viral abundance was generally higher in diseased animals compared to healthy ones, while differences in microbial composition were mainly driven by sampling site, followed by animal species and health status. Disease association analyses validated the pathogenicity of known pathogens and suggested potential pathogenic roles of previously undescribed bacteria and newly discovered viruses. Cross-species transmission analyses identified seven pathogens shared between cats and dogs, such as alphacoronavirus 1, which was detected in both oropharyngeal and rectal swabs albeit with differential pathogenicity. Further analyses showed that some viruses, like alphacoronavirus 1, harbored multiple lineages exhibiting distinct pathogenicity, tissue, or host preferences. Ultimately, a systematic evolutionary screening identified 27 potential zoonotic pathogens in this sample set, with far more bacterial than viral species, implying potential health threats to humans. Overall, our meta-transcriptomic analysis reveals a landscape of actively transcribing microorganisms in major companion animals, highlighting key pathogens, those with the potential for cross-species transmission, and possible zoonotic threats. IMPORTANCE This study provides a comprehensive characterization of the entire community of infectious microbes (viruses, bacteria, and fungi) in companion animals like cats and dogs, termed the "infectome." By analyzing hundreds of samples from across China, the researchers identified numerous known and novel pathogens, including 27 potential zoonotic agents that could pose health risks to both animals and humans. Notably, some of these zoonotic pathogens were detected even in apparently healthy pets, highlighting the importance of surveillance. The study also revealed key microbial factors associated with respiratory and gastrointestinal diseases in pets, as well as potential cross-species transmission events between cats and dogs. Overall, this work sheds light on the complex microbial landscapes of companion animals and their potential impacts on animal and human health, underscoring the need for monitoring and management of these infectious agents.
Collapse
Affiliation(s)
- Wei-Chen Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Wu-Di Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yu-Qi Liao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Min-Wu Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Geng-Yan Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ya-Ni Peng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Tongqing An
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Li
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary, Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong SAR, China
| | - Julia A. Beatty
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong SAR, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Wenjing Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mang Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Islam ANMS, Farhana N, Choudhury R, Jahan NA, Uddin MJ, Refat MNH, Nasreen F, Khanam F. Microbial infection among SARS-COV-2-infected patients in a COVID-19-dedicated tertiary care hospital of Bangladesh: a cross-sectional study. Access Microbiol 2024; 6:000727.v3. [PMID: 39165251 PMCID: PMC11334578 DOI: 10.1099/acmi.0.000727.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Objectives. This study aimed to determine patterns of respiratory, blood-borne and uropathogenic microbial pathogens among SARS-CoV-2-infected patients in a COVID-19-(coronavirus disease 2019) dedicated tertiary care hospital in Dhaka, Bangladesh. Design.This was a cross-sectional study. Setting. In a COVID-19-dedicated tertiary care hospital in Dhaka, Bangladesh, conducted from March to June 2021. Participants. Hospitalized individuals with COVID-19 infection regardless of age or sex. Primary and secondary outcome measures. The percentage of co-infected COVID-19 patients and the characterization of the micro-organisms responsible for co-infection served as the primary outcome measures. Finding any associations between co-infection and age, co-infection and sex and co-infection and comorbidity was the secondary outcome variable. Interventions. Not applicable. Results.Out of 79 patients, 61 % were male, and the mean age was 49.53 years. Co-infection was seen in 7.7 % of patients, out of which 5.1 % of isolates were from urine samples, followed by 2.6 % from blood. Bacteria isolated from urine were Enterococcus (2.6 %), coagulase-negative Staphylococcus (CONS) (1.3 %) and Enterobacter spp. (1.3 %). Pseudomonas spp. was the only organism isolated from blood sample. Mixed growth was found in nasopharyngeal and throat swabs, with the predominant species being Staphylococcus aureus and Streptococcus spp. At the time of data collection, 55.7 % of patients had been given antimicrobials, and 30.4 % of patients had been given a single antimicrobial. HBsAg was positive in 1.3 % of patients and none were anti-hepatitis C or dengue NS1Ag positive. Conclusion. Microbial infection has been seen to be associated with SARS-CoV-2 infections and is of great value in prescribing antimicrobials and reducing fatal outcomes of hospitalized patients.
Collapse
Affiliation(s)
- A. N. M. Shamsul Islam
- Department of Public Health and Hospital Administration, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Nasreen Farhana
- Department of Microbiology and Mycology, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Rafaat Choudhury
- Department of Microbiology and Mycology, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Naznin Akter Jahan
- Department of Nutrition and Biochemistry, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Mohammad Jamal Uddin
- Department of Parasitology, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Md. Nazmul Hassan Refat
- Department of Public Health and Hospital Administration, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Fatima Nasreen
- Department of Microbiology and Mycology, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Fahmida Khanam
- Department of Microbiology and Mycology, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| |
Collapse
|
8
|
Atencio LA, Quintero IJ, Almanza A, Eskildsen G, Sánchez-Gallego J, Herrera M, Fernández-Marín H, Loaiza JR, Mejía LC. Insights into the Naso-Oropharyngeal Bacterial Composition in Suspected SARS-CoV-2 Cases. Pathogens 2024; 13:615. [PMID: 39204216 PMCID: PMC11357247 DOI: 10.3390/pathogens13080615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. While research on COVID-19 has mainly focused on its epidemiology, pathogenesis, and treatment, studies on the naso-oropharyngeal microbiota have emerged in the last few years as an overlooked area of research. Here, we analyzed the bacterial community composition of the naso-oropharynx in 50 suspected SARS-CoV-2 cases (43 detected, 7 not detected) from Veraguas province (Panama) distributed across five age categories. Statistical analysis revealed no significant differences (p < 0.05) in bacterial alpha and beta diversities between the groups categorized by SARS-CoV-2 test results, age, or patient status. The genera Corynebacterium, Staphylococcus, Prevotella, Streptococcus, and Tepidiphilus were the most abundant in both detected and not-detected SARS-CoV-2 group. The linear discriminant analysis effect size (LEfSe) for biomarker exploration indicated that Veillonella and Prevotella were enriched in detected and hospitalized patients with SARS-CoV-2 relative to non-detected patients, while Thermoanaerobacterium and Haemophilus were enriched in non-detected patients with SARS-CoV-2. The results also indicated that the genus Corynebacterium was found to decrease in patients with detected SARS-CoV-2 relative to those with non-detected SARS-CoV-2. Understanding the naso-oropharyngeal microbiota provides insights into the diversity, composition, and resilience of the microbial community in patients with SARS-CoV-2.
Collapse
Affiliation(s)
- Librada A. Atencio
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
| | - Indira J. Quintero
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
| | - Alejandro Almanza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
| | - Gilberto Eskildsen
- Departamento de Microbiología Humana, Facultad de Medicina, Universidad de Panamá, Panama City 0819-07289, Panama;
| | - Joel Sánchez-Gallego
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA;
- Coiba Scientific Station (COIBA AIP), Gustavo Lara Street, Bld. 145B, City of Knowledge, Clayton, Panama City 0843-01853, Panama
| | | | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología, e Innovación (SENACYT), Panama City 0816-02852, Panama
| | - José R. Loaiza
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología, e Innovación (SENACYT), Panama City 0816-02852, Panama
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Luis C. Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (I.J.Q.); (A.A.); (H.F.-M.)
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología, e Innovación (SENACYT), Panama City 0816-02852, Panama
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
- Departamento de Genética y Biología Molecular, Universidad de Panamá, Estafeta Universitaria Apartado 3366, Zona 4, Panama City 0819-07289, Panama
| |
Collapse
|
9
|
Duong H, Minogue E, Fullbrook S, Barry T, Reddington K. A culture-independent nucleic acid diagnostics method for use in the detection and quantification of Burkholderia cepacia complex contamination in aqueous finished pharmaceutical products. PLoS One 2024; 19:e0303773. [PMID: 38753829 PMCID: PMC11098509 DOI: 10.1371/journal.pone.0303773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The Burkholderia cepacia complex (Bcc) is the number one bacterial complex associated with contaminated Finished Pharmaceutical Products (FPPs). This has resulted in multiple healthcare related infection morbidity and mortality events in conjunction with significant FPP recalls globally. Current microbiological quality control of FPPs before release for distribution depends on lengthy, laborious, non-specific, traditional culture-dependent methods which lack sensitivity. Here, we present the development of a culture-independent Bcc Nucleic Acid Diagnostic (NAD) method for detecting Bcc contaminants associated with Over-The-Counter aqueous FPPs. The culture-independent Bcc NAD method was validated to be specific for detecting Bcc at different contamination levels from spiked aqueous FPPs. The accuracy in Bcc quantitative measurements was achieved by the high degree of Bcc recovery from aqueous FPPs. The low variation observed between several repeated Bcc quantitative measurements further demonstrated the precision of Bcc quantification in FPPs. The robustness of the culture-independent Bcc NAD method was determined when its accuracy and precision were not significantly affected during testing of numerous aqueous FPP types with different ingredient matrices, antimicrobial preservative components and routes of administration. The culture-independent Bcc NAD method showed an ability to detect Bcc in spiked aqueous FPPs at a concentration of 20 Bcc CFU/mL. The rapid (≤ 4 hours from sample in to result out), robust, culture-independent Bcc NAD method presented provides rigorous test specificity, accuracy, precision, and sensitivity. This method, validated with equivalence to ISO standard ISO/TS 12869:2019, can be a valuable diagnostic tool in supporting microbiological quality control procedures to aid the pharmaceutical industry in preventing Bcc contamination of aqueous FPPs for consumer safety.
Collapse
Affiliation(s)
- Huong Duong
- Nucleic Acid Diagnostics Research Laboratory (NADRL), School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Elizabeth Minogue
- Nucleic Acid Diagnostics Research Laboratory (NADRL), School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Shannon Fullbrook
- Nucleic Acid Diagnostics Research Laboratory (NADRL), School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Thomas Barry
- Nucleic Acid Diagnostics Research Laboratory (NADRL), School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Kate Reddington
- Microbial Diagnostics Research Laboratory, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Janc J, Słabisz N, Woźniak A, Łysenko L, Chabowski M, Leśnik P. Infection with the multidrug-resistant Klebsiella pneumoniae New Delhi metallo-B-lactamase strain in patients with COVID-19: Nec Hercules contra plures?. Front Cell Infect Microbiol 2024; 14:1297312. [PMID: 38690325 PMCID: PMC11060079 DOI: 10.3389/fcimb.2024.1297312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Background During the coronavirus disease 2019 (COVID-19) pandemic, in patients treated for SARS-CoV-2 infection, infections with the Klebsiella pneumoniae bacteria producing New Delhi metallo-B-lactamase (NDM) carbapenemase in the USA, Brazil, Mexico, and Italy were observed, especially in intensive care units (ICUs). This study aimed to assess the impact of Klebsiella pneumoniae NDM infection and other bacterial infections on mortality in patients treated in ICUs due to COVID-19. Methods The 160 patients who qualified for the study were hospitalized in ICUs due to COVID-19. Three groups were distinguished: patients with COVID-19 infection only (N = 72), patients with COVID-19 infection and infection caused by Klebsiella pneumoniae NDM (N = 30), and patients with COVID-19 infection and infection of bacterial etiology other than Klebsiella pneumoniae NDM (N = 58). Mortality in the groups and chosen demographic data; biochemical parameters analyzed on days 1, 3, 5, and 7; comorbidities; and ICU scores were analyzed. Results Bacterial infection, including with Klebsiella pneumoniae NDM type, did not elevate mortality rates. In the group of patients who survived the acute phase of COVID-19 the prolonged survival time was demonstrated: the median overall survival time was 13 days in the NDM bacterial infection group, 14 days in the other bacterial infection group, and 7 days in the COVID-19 only group. Comparing the COVID-19 with NDM infection and COVID-19 only groups, the adjusted model estimated a statistically significant hazard ratio of 0.28 (p = 0.002). Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups. Conclusion In patients treated for SARS-CoV-2 infection acquiring a bacterial infection due to prolonged hospitalization associated with the treatment of COVID-19 did not elevate mortality rates. The data suggests that in severe COVID-19 patients who survived beyond the first week of hospitalization, bacterial infections, particularly Klebsiella pneumoniae NDM, do not significantly impact mortality. Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups.
Collapse
Affiliation(s)
- Jarosław Janc
- Department of Anaesthesiology and Intensive Therapy, Hospital of Ministry of the Interior and Administration, Wrocław, Poland
| | - Natalia Słabisz
- Department of Microbiology, 4th Military Clinical Hospital, Wrocław, Poland
| | - Anna Woźniak
- Department of Nursing and Midwifery, Wroclaw Medical University, Wrocław, Poland
| | - Lidia Łysenko
- Departament of Anaesthesiology and Intensive Care Unit, Wroclaw Medical University, Wrocław, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, Wrocław, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wrocław University of Science and Technology, Wrocław, Poland
| | - Patrycja Leśnik
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
11
|
Xie L, Luo G, Yang Z, Wu WC, Chen J, Ren Y, Zeng Z, Ye G, Pan Y, Zhao WJ, Chen YQ, Hou W, Sun Y, Guo D, Yang Z, Li J, Holmes EC, Li Y, Chen L, Shi M. The clinical outcome of COVID-19 is strongly associated with microbiome dynamics in the upper respiratory tract. J Infect 2024; 88:106118. [PMID: 38342382 DOI: 10.1016/j.jinf.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVES The respiratory tract is the portal of entry for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a variety of respiratory pathogens other than SARS-CoV-2 have been associated with severe cases of COVID-19 disease, the dynamics of the upper respiratory microbiota during disease the course of disease, and how they impact disease manifestation, remain uncertain. METHODS We collected 349 longitudinal upper respiratory samples from a cohort of 65 COVID-19 patients (cohort 1), 28 samples from 28 recovered COVID-19 patients (cohort 2), and 59 samples from 59 healthy controls (cohort 3). All COVID-19 patients originated from the earliest stage of the epidemic in Wuhan. Based on a modified clinical scale, the disease course was divided into five clinical disease phases (pseudotimes): "Healthy" (pseudotime 0), "Incremental" (pseudotime 1), "Critical" (pseudotime 2), "Complicated" (pseudotime 3), "Convalescent" (pseudotime 4), and "Long-term follow-up" (pseudotime 5). Using meta-transcriptomics, we investigated the features and dynamics of transcriptionally active microbes in the upper respiratory tract (URT) over the course of COVID-19 disease, as well as its association with disease progression and clinical outcomes. RESULTS Our results revealed that the URT microbiome exhibits substantial heterogeneity during disease course. Two clusters of microbial communities characterized by low alpha diversity and enrichment for multiple pathogens or potential pathobionts (including Acinetobacter and Candida) were associated with disease progression and a worse clinical outcome. We also identified a series of microbial indicators that classified disease progression into more severe stages. Longitudinal analysis revealed that although the microbiome exhibited complex and changing patterns during COVID-19, a restoration of URT microbiomes from early dysbiosis toward more diverse status in later disease stages was observed in most patients. In addition, a group of potential pathobionts were strongly associated with the concentration of inflammatory indicators and mortality. CONCLUSION This study revealed strong links between URT microbiome dynamics and disease progression and clinical outcomes in COVID-19, implying that the treatment of severe disease should consider the full spectrum of microbial pathogens present.
Collapse
Affiliation(s)
- Linlin Xie
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gengyan Luo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhongzhou Yang
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei-Chen Wu
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jintao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuting Ren
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangming Ye
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunbao Pan
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-Jing Zhao
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Deying Guo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yirong Li
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Liangjun Chen
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Mang Shi
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
12
|
Yang Z, Cai K, Liao Y, Wu WC, Xing L, Hu M, Ren J, Zhang J, Zhu X, Yuan K, Wang S, Huang H, Yang C, Zhang M, Shi M, Lu H. Total Infectome Characterization of Respiratory Infections during the 2022-23 COVID-19 Outbreak in China Revealed Extensive Coinfections with Links to SARS-CoV-2 Status, Age, and Disease Severity. Pathogens 2024; 13:216. [PMID: 38535561 PMCID: PMC10974474 DOI: 10.3390/pathogens13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/11/2025] Open
Abstract
Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People's Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total "Infectome" was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China.
Collapse
Affiliation(s)
- Zhongzhou Yang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Kanru Cai
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Yuqi Liao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Wei-Chen Wu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Li Xing
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Minxuan Hu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Jiali Ren
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Jieyun Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Xiuyun Zhu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Ke Yuan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Shunyao Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Chunhui Yang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Mingxia Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Mang Shi
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China
| |
Collapse
|
13
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
14
|
He KY, Lei XY, Zhang L, Wu DH, Li JQ, Lu LY, Laila UE, Cui CY, Xu ZX, Jian YP. Development and management of gastrointestinal symptoms in long-term COVID-19. Front Microbiol 2023; 14:1278479. [PMID: 38156008 PMCID: PMC10752947 DOI: 10.3389/fmicb.2023.1278479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Emerging evidence reveals that SARS-CoV-2 possesses the capability to disrupt the gastrointestinal (GI) homeostasis, resulting in the long-term symptoms such as loss of appetite, diarrhea, gastroesophageal reflux, and nausea. In the current review, we summarized recent reports regarding the long-term effects of COVID-19 (long COVID) on the gastrointestine. Objective To provide a narrative review of abundant clinical evidence regarding the development and management of long-term GI symptoms in COVID-19 patients. Results Long-term persistent digestive symptoms are exhibited in a majority of long-COVID patients. SARS-CoV-2 infection of intestinal epithelial cells, cytokine storm, gut dysbiosis, therapeutic drugs, psychological factors and exacerbation of primary underlying diseases lead to long-term GI symptoms in COVID-19 patients. Interventions like probiotics, prebiotics, fecal microbiota transplantation, and antibiotics are proved to be beneficial in preserving intestinal microecological homeostasis and alleviating GI symptoms. Conclusion Timely diagnosis and treatment of GI symptoms in long-COVID patients hold great significance as they may contribute to the mitigation of severe conditions and ultimately lead to the improvement of outcomes of the patients.
Collapse
Affiliation(s)
- Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Li-Yuan Lu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Umm E. Laila
- School of Life Sciences, Henan University, Kaifeng, China
| | - Cui-Yun Cui
- Department of Blood Transfusion, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Wang L, Cao JB, Xia BB, Li YJ, Zhang X, Mo GX, Wang RJ, Guo SQ, Zhang YQ, Xiao K, Zhu GF, Liu PF, Song LC, Ma XH, Xiang PC, Wang J, Liu YH, Xie F, Zhang XD, Li XX, Sun WL, Cao Y, Wang KF, Zhang WH, Zhao WC, Yan P, Chen JC, Yang YW, Yu ZK, Tang JS, Xiao L, Zhou JM, Xie LX, Wang J. Metatranscriptome of human lung microbial communities in a cohort of mechanically ventilated COVID-19 Omicron patients. Signal Transduct Target Ther 2023; 8:432. [PMID: 37949875 PMCID: PMC10638395 DOI: 10.1038/s41392-023-01684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infected a substantial proportion of Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF) samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis for future clinical treatment and reduction of fatality.
Collapse
Affiliation(s)
- Lin Wang
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jia-Bao Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin-Bin Xia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Juan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Guo-Xin Mo
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Rui-Juan Wang
- Department of Respiratory Medicine, PLA Strategic Support Force Medical Center, Beijing, 100101, China
| | - Si-Qi Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Qing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Guang-Fa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Peng-Fei Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Li-Cheng Song
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Xi-Hui Ma
- Respiratory Research Institute, Department of Pulmonary & Critical Care Medicine, Beijing Key Laboratory of OTIR, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Ping-Chao Xiang
- Shougang hospital of Peking University, Beijing, 100144, China
| | - Jiang Wang
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Yu-Hong Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Fei Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Xu-Dong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Xin Li
- Department of Respiratory Medicine, Beijing Changping Hospital, Beijing, 102200, China
| | - Wan-Lu Sun
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Cao
- Pulmonary research institute, Senior Department of Respiratory and Critical Care Medicine, the 8th medical center of Chinese PLA general hospital, Beijing, 100091, China
| | - Kai-Fei Wang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wen-Hui Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chao Zhao
- Department of Respiratory Medicine, PLA Strategic Support Force Medical Center, Beijing, 100101, China
| | - Peng Yan
- China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, China
| | - Ji-Chao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Yu-Wei Yang
- Respiratory Research Institute, Department of Pulmonary & Critical Care Medicine, Beijing Key Laboratory of OTIR, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Zhong-Kuo Yu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jing-Si Tang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Xiao
- Respiratory Research Institute, Department of Pulmonary & Critical Care Medicine, Beijing Key Laboratory of OTIR, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jie-Min Zhou
- Vision Medicals Center for Infectious Diseases, Guangzhou, 510700, China
| | - Li-Xin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Gao J, Lin D, Hou C, Shen Y, Li Y, Wu D, Xu Y. The clinical value of anal swabs for microbial detection in allogeneic haematopoietic stem cell transplantation. Transplant Cell Ther 2023; 29:619.e1-619.e9. [PMID: 37499872 DOI: 10.1016/j.jtct.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
The intestinal microbiota plays critical roles in allogeneic hematopoietic stem cell transplantation (allo-HSCT). Rapid and effective microbial detection methods have important guiding value for the selection of intervention strategies for allo-HSCT recipients. We evaluated the application of the anal swab test before transplantation in allo-HSCT recipients. A total of 120 patients who underwent anal swab testing before allo-HSCT were retrospectively analyzed and divided into 3 groups: sterile (aseptic growth-negative), G+ (gram-positive bacterial colonization), and G- (gram-negative bacterial colonization). On 16S rRNA sequencing, gram-negative bacteria predominated in the G- group before and after transplantation. Compared with the sterile group, the percentage of natural killer cells was higher and the percentage of T cells was lower after transplantation in the G- group at 1 month after transplantation. The percentage of CD4+ and CD4+CD8+ T cells was lower and the percentage of regulatory T cells was higher in the G- group. The plasma levels of proinflammatory cytokines (TNF-α, IFN-γ, IL-6, and IL-17A) at 2 weeks post-transplantation were lower in the G- group than in the sterile group, as was the cumulative incidence of grade III-IV acute graft-versus-host disease (GVHD). Gram-negative bacterial colonization before allo-HSCT was associated with low rates of bloodstream infections within 100 days post-transplantation and cytomegalovirus reactivation at 100 days to 2 years post-transplantation. Moreover, patients in the G- group had a higher rate of 2-year GVHD-free, relapse-free survival compared with patients in the sterile group. The detection results using anal swabs were consistent with the gram-negative or gram-positive bacteria abundance of 16S rRNA sequencing results and associated with immune homeostasis and clinical outcomes after allo-HSCT. Anal swab testing may have potential advantages as a simple and effective method for microbial detection in allo-HSCT.
Collapse
Affiliation(s)
- Jun Gao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dandan Lin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yangzi Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
18
|
Fazel P, Sedighian H, Behzadi E, Kachuei R, Imani Fooladi AA. Interaction Between SARS-CoV-2 and Pathogenic Bacteria. Curr Microbiol 2023; 80:223. [PMID: 37222840 DOI: 10.1007/s00284-023-03315-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
The novel human coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which results in the coronavirus disease 2019 (COVID-19), has caused a serious threat to global public health. Therefore, many studies are performed on the causes and prevalence of this disease and the possible co-occurrence of the infection with other viral and bacterial pathogens is investigated. Respiratory infections predispose patients to co-infections and these lead to increased disease severity and mortality. Numerous types of antibiotics have been employed for the prevention and treatment of bacterial co-infection and secondary bacterial infections in patients with a SARS-CoV-2 infection. Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co-infection rather than virus itself. Therefore, bacterial co-infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID-19. In this review, we will summarize the bacterial co-infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID-19.
Collapse
Affiliation(s)
- Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Eqlid, Fars, Iran
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq, Mollasadra St, P.O. Box 19395-5487, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq, Mollasadra St, P.O. Box 19395-5487, Tehran, Iran.
| |
Collapse
|
19
|
Ojala T, Kankuri E, Kankainen M. Understanding human health through metatranscriptomics. Trends Mol Med 2023; 29:376-389. [PMID: 36842848 DOI: 10.1016/j.molmed.2023.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
Metatranscriptomics has revolutionized our ability to explore and understand transcriptional programs in microbial communities. Moreover, it has enabled us to gain deeper and more specific insight into the microbial activities in human gut, respiratory, oral, and vaginal communities. Perhaps the most important contribution of metatranscriptomics arises, however, from the analyses of disease-associated communities. We review the advantages and disadvantages of metatranscriptomics analyses in understanding human health and disease. We focus on human tissues low in microbial biomass and conditions associated with dysbiotic microbiota. We conclude that a more widespread use of metatranscriptomics and increased knowledge on microbe activities will uncover critical interactions between microbes and host in human health and provide diagnostic basis for culturing-independent, direct functional pathogen identification.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland; Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
21
|
Yadav A, Pandey R. Viral infectious diseases severity: co-presence of transcriptionally active microbes (TAMs) can play an integral role for disease severity. Front Immunol 2022; 13:1056036. [PMID: 36532032 PMCID: PMC9755851 DOI: 10.3389/fimmu.2022.1056036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Humans have been challenged by infectious diseases for all of their recorded history, and are continually being affected even today. Next-generation sequencing (NGS) has enabled identification of, i) culture independent microbes, ii) emerging disease-causing pathogens, and iii) understanding of the genome architecture. This, in turn, has highlighted that pathogen/s are not a monolith, and thereby allowing for the differentiation of the wide-ranging disease symptoms, albeit infected by a primary pathogen. The conventional 'one disease - one pathogen' paradigm has been positively revisited by considering limited yet important evidence of the co-presence of multiple transcriptionally active microbes (TAMs), potential pathogens, in various infectious diseases, including the COVID-19 pandemic. The ubiquitous microbiota presence inside humans gives reason to hypothesize that the microbiome, especially TAMs, contributes to disease etiology. Herein, we discuss current evidence and inferences on the co-infecting microbes particularly in the diseases caused by the RNA viruses - Influenza, Dengue, and the SARS-CoV-2. We have highlighted that the specific alterations in the microbial taxonomic abundances (dysbiosis) is functionally connected to the exposure of primary infecting pathogen/s. The microbial presence is intertwined with the differential host immune response modulating differential disease trajectories. The microbiota-host interactions have been shown to modulate the host immune responses to Influenza and SARS-CoV-2 infection, wherein the active commensal microbes are involved in the generation of virus-specific CD4 and CD8 T-cells following the influenza virus infection. Furthermore, COVID-19 dysbiosis causes an increase in inflammatory cytokines such as IL-6, TNF-α, and IL-1β, which might be one of the important predisposing factors for severe infection. Through this article, we aim to provide a comprehensive view of functional microbiomes that can have a significant regulatory impact on predicting disease severity (mild, moderate and severe), as well as clinical outcome (survival and mortality). This can offer fresh perspectives on the novel microbial biomarkers for stratifying patients for severe disease symptoms, disease prevention and augmenting treatment regimens.
Collapse
Affiliation(s)
- Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Durán-Manuel EM, Loyola-Cruz MÁ, Cruz-Cruz C, Ibáñez-Cervantes G, Gaytán-Cervantes J, González-Torres C, Quiroga-Vargas E, Calzada-Mendoza CC, Cureño-Díaz MA, Fernández-Sánchez V, Castro-Escarpulli G, Bello-López JM. Massive sequencing of the V3-V4 hypervariable region of bronchoalveolar lavage from patients with COVID-19 and VAP reveals the collapse of the pulmonary microbiota. J Med Microbiol 2022; 71. [PMID: 36748614 DOI: 10.1099/jmm.0.001634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a predisposing factor for the development of healthcare-associated infections, of which ventilator-associated pneumonia (VAP) is one.Hypothesis. VAP is caused by ESKAPE bacteria and other pathogens not detected by microbiological culture.Aim. To elucidate the bacterial pathogens of severe coronavirus disease 2019 (COVID-19) and VAP patients by massive sequencing and to predict their degree of relationship with the age and sex of the patients.Methods. Analysis of ribosomal libraries of the V3-V4 hypervariable region obtained by Illumina sequencing of bronchoalveolar lavages from COVID-19 and VAP (first wave) patients from Hospital Juárez de México.Results. Acinetobacter and Pseudomonas were the main bacterial genera in the bronchoalveolar lavages (BALs) analysed. Other members of the ESKAPE group, such as Enterococcus and Klebsiella, were also identified. Taxonomic composition per patient showed that non-ESKAPE genera were present with significant relative abundances, such as Prevotella, Stenotrophomas, Enterococcus, Mycoplasma, Serratia and Corynebacterium. Kruskal-Wallis analysis proved that VAP acquisition is an adverse event that is not influenced by the sex and age of COVID-19 patients.Discussion. Metagenomic findings in COVID-19/VAP patients highlight the importance of implementing comprehensive microbiological diagnostics by including alternative tools for the detection of the causal agents of healthcare-associated infections (HAIs).Conclusions. Timely identification of bacteria 'not sought' in diagnostic bacteriology laboratories will allow specific and targeted treatments. Implications for the restricted diagnosis of VAP causative agents in COVID-19 patients and the presence of pathogens not detected by classical microbiology are analysed and discussed.
Collapse
Affiliation(s)
- Emilio Mariano Durán-Manuel
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Clemente Cruz-Cruz
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
| | - Gabriela Ibáñez-Cervantes
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | | | - Claudia Camelia Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
23
|
Kumar D, Pandit R, Sharma S, Raval J, Patel Z, Joshi M, Joshi CG. Nasopharyngeal microbiome of COVID-19 patients revealed a distinct bacterial profile in deceased and recovered individuals. Microb Pathog 2022; 173:105829. [PMID: 36252893 PMCID: PMC9568276 DOI: 10.1016/j.micpath.2022.105829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The bacterial co-infections in SARS-CoV-2 patients remained the least explored subject of clinical manifestations that may also determine the disease severity. Nasopharyngeal microbial community structure within SARS-CoV-2 infected patients could reveal interesting microbiome dynamics that may influence the disease outcomes. Here, in this research study, we analyzed distinct nasopharyngeal microbiome profile in the deceased (n = 48) and recovered (n = 29) COVID-19 patients and compared it with control SARS-CoV-2 negative individuals (control) (n = 33). The nasal microbiome composition of the three groups varies significantly (PERMANOVA, p-value <0.001), where deceased patients showed higher species richness compared to the recovered and control groups. Pathogenic genera, including Corynebacterium (LDA score 5.51), Staphylococcus, Serratia, Klebsiella and their corresponding species were determined as biomarkers (p-value <0.05, LDA cutoff 4.0) in the deceased COVID-19 patients. Ochrobactrum (LDA score 5.79), and Burkholderia (LDA 5.29), were found in the recovered group which harbors ordinal bacteria (p-value <0.05, LDA-4.0) as biomarkers. Similarly, Pseudomonas (LDA score 6.19), and several healthy nasal cavity commensals including Veillonella, and Porphyromonas, were biomarkers for the control individuals. Healthy commensal bacteria may trigger the immune response and alter the viral infection susceptibility and thus, may play important role and possible recovery that needs to be further explored. This research finding provide vital information and have significant implications for understanding the microbial diversity of COVID-19 patients. However, additional studies are needed to address the microbiome-based therapeutics and diagnostics interventions.
Collapse
Affiliation(s)
- Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Janvi Raval
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Zarna Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India.
| |
Collapse
|
24
|
Zhu T, Jin J, Chen M, Chen Y. The impact of infection with COVID-19 on the respiratory microbiome: A narrative review. Virulence 2022; 13:1076-1087. [PMID: 35763685 PMCID: PMC9794016 DOI: 10.1080/21505594.2022.2090071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected millions of individuals with various implications. Consistent with the crucial role of the microbiome in determining health and disease in humans, various studies have investigated the gut and respiratory microbiome effect on the COVID-19. Microbiota dysbiosis might support the entry, replication, and establishment of SARS-CoV-2 infection by modulating various mechanisms. One of the main mechanisms that the modulation of respiratory microbiota composition during the COVID-19 infection affects the magnitude of the disease is changes in innate and acquired immune responses, including inflammatory markers and cytokines and B- and T-cells. The diversity of respiratory microbiota in COVID-19 patients is controversial; some studies reported low microbial diversity, while others found high diversity, suggesting the role of respiratory microbiota in this disease. Modulating microbiota diversity and profile by supplementations and nutrients can be applied prophylactic and therapeutic in combating COVID-19. Here, we discussed the lung microbiome dysbiosis during various lung diseases and its interaction with immune cells, focusing on COVID-19.
Collapse
Affiliation(s)
- Taiping Zhu
- Internal Medicine Department, Chun’an Maternal and Child Health Hospital, Hangzhou, Zhejiang, China
| | - Jun Jin
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Minhua Chen
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China,CONTACT Minhua Chen
| | - Yingjun Chen
- Department of Infectious Diseases, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
25
|
Kaushik P, Kumari M, Singh NK, Suri A. The role of gut microbiota in etiopathogenesis of long COVID syndrome. Horm Mol Biol Clin Investig 2022:hmbci-2022-0079. [DOI: 10.1515/hmbci-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 04/04/2023]
Affiliation(s)
- Priya Kaushik
- Biochemistry , SGT University , Gurugram , Haryana , India
| | | | | | - Arpita Suri
- Biochemistry , SGT University , Gurugram , Haryana , India
| |
Collapse
|
26
|
Chen J, Liu X, Liu W, Yang C, Jia R, Ke Y, Guo J, Jia L, Wang C, Chen Y. Comparison of the respiratory tract microbiome in hospitalized COVID-19 patients with different disease severity. J Med Virol 2022; 94:5284-5293. [PMID: 35838111 PMCID: PMC9349541 DOI: 10.1002/jmv.28002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Little is known about the characteristics of respiratory tract microbiome in Coronavirus disease 2019 (COVID-19) inpatients with different severity. We conducted a study that expected to clarify these characteristics as much as possible. A cross-sectional study was conducted to characterize respiratory tract microbial communities of 69 COVID-19 inpatients from 64 nasopharyngeal swabs and 5 sputum specimens using 16S ribosomal RNA gene V3-V4 region sequencing. The bacterial profiles were analyzed to find potential biomarkers by the two-step method, the combination of random forest model and the linear discriminant analysis effect size, and explore the connections with clinical characteristics by Spearman's rank test. Compared with mild COVID-19 patients, severe patients had significantly decreased bacterial diversity (p-values were less than 0.05 in the alpha and beta diversity) and relative lower abundance of opportunistic pathogens, including Actinomyces, Prevotella, Rothia, Streptococcus, Veillonella. Eight potential biomarkers including Treponema, Leptotrichia, Lachnoanaerobaculum, Parvimonas, Alloprevotella, Porphyromonas, Gemella, and Streptococcus were found to distinguish the mild COVID-19 patients from the severe COVID-19 patients. The genera of Actinomyces and Prevotella were negatively correlated with age in two groups. Intensive care unit admission, neutrophil count, and lymphocyte count were significantly correlated with different genera in the two groups. In addition, there was a positive correlation between Klebsiella and white blood cell count in two groups. The respiratory tract microbiome had significant differences in COVID-19 patients with different severity. The value of the respiratory tract microbiome as predictive biomarkers for COVID-19 severity deserves further exploration.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
- School of Public HealthChina Medical UniversityShenyangChina
| | - Xiong Liu
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Wei Liu
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Chaojie Yang
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Ruizhong Jia
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Yuehua Ke
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Jinpeng Guo
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Leili Jia
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Changjun Wang
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| | - Yong Chen
- Department of Emergency ResponseChinese PLA Center for Disease Control and PreventionBeijingChina
| |
Collapse
|
27
|
Gurunathan S, Lee AR, Kim JH. Antifungal Effect of Nanoparticles against COVID-19 Linked Black Fungus: A Perspective on Biomedical Applications. Int J Mol Sci 2022; 23:12526. [PMID: 36293381 PMCID: PMC9604067 DOI: 10.3390/ijms232012526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
28
|
Yi X, Gao J, Wang Z. The human lung microbiome-A hidden link between microbes and human health and diseases. IMETA 2022; 1:e33. [PMID: 38868714 PMCID: PMC10989958 DOI: 10.1002/imt2.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Once thought to be sterile, the human lung is now well recognized to harbor a consortium of microorganisms collectively known as the lung microbiome. The lung microbiome is altered in an array of lung diseases, including chronic lung diseases such as chronic obstructive pulmonary disease, asthma, and bronchiectasis, acute lung diseases caused by pneumonia, sepsis, and COVID-19, and other lung complications such as those related to lung transplantation, lung cancer, and human immunodeficiency virus. The effects of lung microbiome in modulating host immunity and inflammation in the lung and distal organs are being elucidated. However, the precise mechanism by which members of microbiota produce structural ligands that interact with host genes and pathways remains largely uncharacterized. Multiple unique challenges, both technically and biologically, exist in the field of lung microbiome, necessitating the development of tailored experimental and analytical approaches to overcome the bottlenecks. In this review, we first provide an overview of the principles and methodologies in studying the lung microbiome. We next review current knowledge of the roles of lung microbiome in human diseases, highlighting mechanistic insights. We finally discuss critical challenges in the field and share our thoughts on broad topics for future investigation.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| |
Collapse
|
29
|
Gang J, Wang H, Xue X, Zhang S. Microbiota and COVID-19: Long-term and complex influencing factors. Front Microbiol 2022; 13:963488. [PMID: 36033885 PMCID: PMC9417543 DOI: 10.3389/fmicb.2022.963488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the World Health Organization statistics, more than 500 million individuals have been infected and more than 6 million deaths have resulted worldwide. Although COVID-19 mainly affects the respiratory system, considerable evidence shows that the digestive, cardiovascular, nervous, and reproductive systems can all be involved. Angiotensin-converting enzyme 2 (AEC2), the target of SARS-CoV-2 invasion of the host is mainly distributed in the respiratory and gastrointestinal tract. Studies found that microbiota contributes to the onset and progression of many diseases, including COVID-19. Here, we firstly conclude the characterization of respiratory, gut, and oral microbial dysbiosis, including bacteria, fungi, and viruses. Then we explore the potential mechanisms of microbial involvement in COVID-19. Microbial dysbiosis could influence COVID-19 by complex interactions with SARS-CoV-2 and host immunity. Moreover, microbiota may have an impact on COVID-19 through their metabolites or modulation of ACE2 expression. Subsequently, we generalize the potential of microbiota as diagnostic markers for COVID-19 patients and its possible association with post-acute COVID-19 syndrome (PACS) and relapse after recovery. Finally, we proposed directed microbiota-targeted treatments from the perspective of gut microecology such as probiotics and prebiotics, fecal transplantation and antibiotics, and other interventions such as traditional Chinese medicine, COVID-19 vaccines, and ACE2-based treatments.
Collapse
Affiliation(s)
- Jiaqi Gang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangsheng Xue
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Shu Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Li F, Wang Y, Song X, Wang Z, Jia J, Qing S, Huang L, Wang Y, Wang S, Ren Z, Zheng K, Wang Y. The intestinal microbial metabolite nicotinamide n-oxide prevents herpes simplex encephalitis via activating mitophagy in microglia. Gut Microbes 2022; 14:2096989. [PMID: 35793266 PMCID: PMC9262364 DOI: 10.1080/19490976.2022.2096989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex encephalitis (HSE), a complication of herpes simplex virus type I (HSV-1) infection causes neurological disorder or even death in immunocompromised adults and newborns. However, the intrinsic factors controlling the HSE outcome remain unclear. Here, we show that HSE mice exhibit gut microbiota dysbiosis and altered metabolite configuration and tryptophan-nicotinamide metabolism. HSV-1 neurotropic infection activated microglia, with changed immune properties and cell numbers, to stimulate antiviral immune response and contribute substantially to HSE. In addition, depletion of gut microbiota by oral antibiotics (ABX)-treatment triggered the hyper-activation of microglia, which in turn enhanced inflammatory immune response, and cytokine production, resulting in aggregated viral burden and HSE pathology. Furthermore, exogenous administration of nicotinamide n-oxide (NAMO), an oxidative product of nicotinamide derived from gut microbiota, to ABX-treated or untreated HSE mice significantly diminished microglia-mediated proinflammatory response and limited HSV-1 infection in CNS. Mechanistic study revealed that HSV-1 activates microglia by increasing mitochondrial damage via defective mitophagy, whereas microbial metabolite NAMO restores NAD+-dependent mitophagy to inhibit microglia activation and HSE progression. NAMO also prevented neuronal cell death triggered by HSV-1 infection or microglia-mediated microenvironmental toxicity. Finally, we show that NAMO is mainly generated by neomycin-sensitive bacteria, especially Lactobacillus_gasseri and Lactobacillus_reuteri. Together, these data demonstrate that gut microbial metabolites act as intrinsic restrictive factors against HSE progression via regulating mitophagy in microglia, implying further exploration of bacterial or nutritional approaches for treating neurotropic virus-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China,Infectious Diseases Institute, Guangzhou Eighth People’s Hospital, Guangdong, China
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shurong Qing
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lianzhou Huang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yuan Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shuai Wang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China,Zhe Ren Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China,Kai Zheng School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China,CONTACT Yifei Wang
| |
Collapse
|
31
|
Maksimova EA, Kozlov AV, Lyamin AV, Zhestkov AV, Gusyakova OA, Zolotov MO. Microflora of sputum and autopsy material of patients with COVID-19. Klin Lab Diagn 2022; 67:380-384. [PMID: 35749605 DOI: 10.51620/0869-2084-2022-67-6-380-384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid spread of a new coronavirus infection in the country actualizes the conduct of bacteriological studies of clinical material obtained from the respiratory tract of patients with COVID-19. During the experiments, 230 sputum samples and 260 autopsy lung samples from patients with COVID-19 were analyzed. 946 high-risk strains were isolated and identified by MALDI-ToF mass spectrometry on a Microflex LT instrument (Bruker®). According to the results of bacteriological cultures of sputum, a predominance of gram-positive ones was revealed, amounting to 50.5% (222 strains) of the total number of isolated pathogens. However, falling into this group is manifested by natural representatives of the microflora of the human mucous membranes from the genera Streptococcus, Rothia and Lactobacillus (109 strains in total), which can be manifested by the detection of improper sputum collection, causing contamination by the substance of intense salivation and nasopharyngeal discharge. In turn, the "classic" gram-positive causative agents of pneumonia were detected much less frequently: S. aureus in 5 cases, S. pneumoniae in 6 patients. The causative agents in the order Enterobacterales are represented by 42 strains, among which the most likely species are K.pneumoniae (27 strains). In the group of non-fermenting gram-negative bacteria, A. baumanii (29 strains) prevailed, and P. aeruginosa was also identified in 2 cases. When analyzing the results of a microbiological study of autopsy material (lungs) of patients with COVID-19, significant differences in the qualitative and quantitative composition of the microflora were revealed, compared with sputum. In the group of gram-positive bacteria, 15 strains of the natural microflora of the mucous membranes were identified, while sensitive species dominated among gram-negative pathogens: K. pneumoniae (102 strains), A. baumanii (75 strains), P. aeruginosa (11 strains). Regular microbiological monitoring is essential for antibiotic therapy and prevention of secondary bacterial infection. In the event of a fatal outcome, the results of microbiological analysis of autopsy material can determine the cause of death of the patient.
Collapse
|
32
|
De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol 2022; 12:736397. [PMID: 35433495 PMCID: PMC9009446 DOI: 10.3389/fcimb.2022.736397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease COVID-19 is caused by the highly contagious single-stranded RNA virus, SARS-coronavirus 2 (SARS-CoV-2), which has a high rate of evolution like other RNA viruses. The first genome sequences of SARS-CoV-2 were available in early 2020. Subsequent whole-genome sequencing revealed that the virus had accumulated several mutations in genes associated with viral replication and pathogenesis. These variants showed enhanced transmissibility and infectivity. Soon after the first outbreak due to the wild-type strain in December 2019, a genetic variant D614G emerged in late January to early February 2020 and became the dominant genotype worldwide. Thereafter, several variants emerged, which were found to harbor mutations in essential viral genes encoding proteins that could act as drug and vaccine targets. Numerous vaccines have been successfully developed to assuage the burden of COVID-19. These have different rates of efficacy, including, although rarely, a number of vaccinated individuals exhibiting side effects like thrombosis. However, the recent emergence of the Britain strain with 70% more transmissibility and South African variants with higher resistance to vaccines at a time when several countries have approved these for mass immunization has raised tremendous concern regarding the long-lasting impact of currently available prophylaxis. Apart from studies addressing the pathophysiology, pathogenesis, and therapeutic targets of SARS-CoV-2, analysis of the gut, oral, nasopharyngeal, and lung microbiome dysbiosis has also been undertaken to find a link between the microbiome and the pathogenesis of COVID-19. Therefore, in the current scenario of skepticism regarding vaccine efficacy and challenges over the direct effects of currently available drugs looming large, investigation of alternative therapeutic avenues based on the microbiome can be a rewarding finding. This review presents the currently available understanding of microbiome dysbiosis and its association with cause and consequence of COVID-19. Taking cues from other inflammatory diseases, we propose a hypothesis of how the microbiome may be influencing homeostasis, pro-inflammatory condition, and the onset of inflammation. This accentuates the importance of a healthy microbiome as a protective element to prevent the onset of COVID-19. Finally, the review attempts to identify areas where the application of microbiome research can help in reducing the burden of the disease.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| |
Collapse
|
33
|
Su F, Zhang J, Zhu Y, Lv H, Ge Y. Identification of sacrococcygeal and pelvic abscesses infected with invasive
Mycoplasma hominis
by MALDI‐TOF MS. J Clin Lab Anal 2022; 36:e24329. [PMID: 35285086 PMCID: PMC8993641 DOI: 10.1002/jcla.24329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Fang Su
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
| | - Junwu Zhang
- Department of Clinical Laboratory Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Wenzhou China
| | - Yongze Zhu
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
| | - Huoyang Lv
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
| | - Yumei Ge
- Center of Clinical Laboratory Medicine the Zhejiang Provincial People’s Hospital People’s Hospital of Hangzhou Medical College Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province Zhejiang China
| |
Collapse
|
34
|
Targeting the Pulmonary Microbiota to Fight against Respiratory Diseases. Cells 2022; 11:cells11050916. [PMID: 35269538 PMCID: PMC8909000 DOI: 10.3390/cells11050916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system of the respiratory tract possesses an effective “defense barrier” against the invading pathogenic microorganisms; therefore, the lungs of healthy organisms are considered to be sterile for a long time according to the strong pathogens-eliminating ability. The emergence of next-generation sequencing technology has accelerated the studies about the microbial communities and immune regulating functions of lung microbiota during the past two decades. The acquisition and maturation of respiratory microbiota during childhood are mainly determined by the birth mode, diet structure, environmental exposure and antibiotic usage. However, the formation and development of lung microbiota in early life might affect the occurrence of respiratory diseases throughout the whole life cycle. The interplay and crosstalk between the gut and lung can be realized by the direct exchange of microbial species through the lymph circulation, moreover, the bioactive metabolites produced by the gut microbiota and lung microbiota can be changed via blood circulation. Complicated interactions among the lung microbiota, the respiratory viruses, and the host immune system can regulate the immune homeostasis and affect the inflammatory response in the lung. Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be used to maintain the microbial homeostasis of intestinal microbiota and lung microbiota. Therefore, various kinds of interventions on manipulating the symbiotic microbiota might be explored as novel effective strategies to prevent and control respiratory diseases.
Collapse
|
35
|
Rattanaburi S, Sawaswong V, Chitcharoen S, Sivapornnukul P, Nimsamer P, Suntronwong N, Puenpa J, Poovorawan Y, Payungporn S. Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients. Exp Biol Med (Maywood) 2022; 247:409-415. [PMID: 34775842 PMCID: PMC8919321 DOI: 10.1177/15353702211057473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/16/2021] [Indexed: 01/04/2023] Open
Abstract
The upper respiratory tract is inhabited by diverse range of commensal microbiota which plays a role in protecting the mucosal surface from pathogens. Alterations of the bacterial community from respiratory viral infections could increase the susceptibility to secondary infections and disease severities. We compared the upper respiratory bacterial profiles among Thai patients with influenza or COVID-19 by using 16S rDNA high-throughput sequencing based on MiSeq platform. The Chao1 richness was not significantly different among groups, whereas the Shannon diversity of Flu A and Flu B groups were significantly lower than Non-Flu & COVID-19 group. The beta diversity revealed that the microbial communities of influenza (Flu A and Flu B), COVID-19, and Non-Flu & COVID-19 were significantly different; however, the comparison of the community structure was similar between Flu A and Flu B groups. The bacterial classification revealed that Enterobacteriaceae was predominant in influenza patients, while Staphylococcus and Pseudomonas were significantly enriched in the COVID-19 patients. These implied that respiratory viral infections might be related to alteration of upper respiratory bacterial community and susceptibility to secondary bacterial infections. Moreover, the bacteria that observed in Non-Flu & COVID-19 patients had high abundance of Streptococcus, Prevotella, Veillonella, and Fusobacterium. This study provides the basic knowledge for further investigation of the relationship between upper respiratory microbiota and respiratory disease which might be useful for better understanding the mechanism of viral infectious diseases.
Collapse
Affiliation(s)
- Somruthai Rattanaburi
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwalak Chitcharoen
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Giannos P, Prokopidis K. Gut Dysbiosis and Long COVID-19: Feeling Gutted. J Med Virol 2022; 94:2917-2918. [PMID: 35233795 PMCID: PMC9088471 DOI: 10.1002/jmv.27684] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Panagiotis Giannos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, UK
| | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| |
Collapse
|
37
|
Ortega-Peña S, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Staphylococcus epidermidis Controls Opportunistic Pathogens in the Nose, Could It Help to Regulate SARS-CoV-2 (COVID-19) Infection? Life (Basel) 2022; 12:341. [PMID: 35330092 PMCID: PMC8954679 DOI: 10.3390/life12030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the guardian of the nasal cavity because it prevents the colonization and infection of respiratory pathogens (bacteria and viruses) through the secretion of antimicrobial molecules and inhibitors of biofilm formation, occupying the space of the membrane mucosa and through the stimulation of the host's innate and adaptive immunity. There is a strong relationship between the low number of S. epidermidis in the nasal cavity and the increased risk of serious respiratory infections. The direct application of S. epidermidis into the nasal cavity could be an effective therapeutic strategy to prevent respiratory infections and to restore nasal cavity homeostasis. This review shows the mechanisms that S. epidermidis uses to eliminate respiratory pathogens from the nasal cavity, also S. epidermidis is proposed to be used as a probiotic to prevent the development of COVID-19 because S. epidermidis induces the production of interferon type I and III and decreases the expression of the entry receptors of SARS-CoV-2 (ACE2 and TMPRSS2) in the nasal epithelial cells.
Collapse
Affiliation(s)
- Silvestre Ortega-Peña
- Laboratorio Tejido Conjuntivo, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación “Luís Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Mario E. Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (S.R.-M.); (M.E.C.-D.)
| | - Juan C. Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
38
|
Wang Y, Li J, Zhang L, Sun HX, Zhang Z, Xu J, Xu Y, Lin Y, Zhu A, Luo Y, Zhou H, Wu Y, Lin S, Sun Y, Xiao F, Chen R, Wen L, Chen W, Li F, Ou R, Zhang Y, Kuo T, Li Y, Li L, Sun J, Sun K, Zhuang Z, Lu H, Chen Z, Mai G, Zhuo J, Qian P, Chen J, Yang H, Wang J, Xu X, Zhong N, Zhao J, Li J, Zhao J, Jin X. Plasma cell-free RNA characteristics in COVID-19 patients. Genome Res 2022; 32:228-241. [PMID: 35064006 PMCID: PMC8805721 DOI: 10.1101/gr.276175.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)–related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.
Collapse
|
39
|
Hernández-Terán A, Mejía-Nepomuceno F, Herrera MT, Barreto O, García E, Castillejos M, Boukadida C, Matias-Florentino M, Rincón-Rubio A, Avila-Rios S, Mújica-Sánchez M, Serna-Muñoz R, Becerril-Vargas E, Guadarrama-Pérez C, Ahumada-Topete VH, Rodríguez-Llamazares S, Martínez-Orozco JA, Salas-Hernández J, Pérez-Padilla R, Vázquez-Pérez JA. Dysbiosis and structural disruption of the respiratory microbiota in COVID-19 patients with severe and fatal outcomes. Sci Rep 2021; 11:21297. [PMID: 34716394 PMCID: PMC8556282 DOI: 10.1038/s41598-021-00851-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 outbreak has caused over three million deaths worldwide. Understanding the pathology of the disease and the factors that drive severe and fatal clinical outcomes is of special relevance. Studying the role of the respiratory microbiota in COVID-19 is especially important as the respiratory microbiota is known to interact with the host immune system, contributing to clinical outcomes in chronic and acute respiratory diseases. Here, we characterized the microbiota in the respiratory tract of patients with mild, severe, or fatal COVID-19, and compared it to healthy controls and patients with non-COVID-19-pneumonia. We comparatively studied the microbial composition, diversity, and microbiota structure between the study groups and correlated the results with clinical data. We found differences in the microbial composition for COVID-19 patients, healthy controls, and non-COVID-19 pneumonia controls. In particular, we detected a high number of potentially opportunistic pathogens associated with severe and fatal levels of the disease. Also, we found higher levels of dysbiosis in the respiratory microbiota of patients with COVID-19 compared to the healthy controls. In addition, we detected differences in diversity structure between the microbiota of patients with mild, severe, and fatal COVID-19, as well as the presence of specific bacteria that correlated with clinical variables associated with increased risk of mortality. In summary, our results demonstrate that increased dysbiosis of the respiratory tract microbiota in patients with COVID-19 along with a continuous loss of microbial complexity structure found in mild to fatal COVID-19 cases may potentially alter clinical outcomes in patients. Taken together, our findings identify the respiratory microbiota as a factor potentially associated with the severity of COVID-19.
Collapse
Affiliation(s)
- Alejandra Hernández-Terán
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Fidencio Mejía-Nepomuceno
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - María Teresa Herrera
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Omar Barreto
- Coordinación de Atención Médica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Emma García
- Coordinación de Atención Médica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Manuel Castillejos
- Departamento de Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Celia Boukadida
- Centro de Investigación en Enfermedades Infecciosas, CIENI, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Margarita Matias-Florentino
- Centro de Investigación en Enfermedades Infecciosas, CIENI, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Alma Rincón-Rubio
- Centro de Investigación en Enfermedades Infecciosas, CIENI, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, CIENI, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Mario Mújica-Sánchez
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Ricardo Serna-Muñoz
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Eduardo Becerril-Vargas
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Cristobal Guadarrama-Pérez
- Servicio de Urgencias Médicas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Víctor Hugo Ahumada-Topete
- Departamento de Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Sebastián Rodríguez-Llamazares
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - José Arturo Martínez-Orozco
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Jorge Salas-Hernández
- Dirección General INER, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Rogelio Pérez-Padilla
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico
| | - Joel Armando Vázquez-Pérez
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER, Mexico, Mexico.
| |
Collapse
|
40
|
Jeican II, Gheban D, Barbu-Tudoran L, Inișca P, Albu C, Ilieș M, Albu S, Vică ML, Matei HV, Tripon S, Lazăr M, Aluaș M, Siserman CV, Muntean M, Trombitas V, Iuga CA, Opincariu I, Junie LM. Respiratory Nasal Mucosa in Chronic Rhinosinusitis with Nasal Polyps versus COVID-19: Histopathology, Electron Microscopy Analysis and Assessing of Tissue Interleukin-33. J Clin Med 2021; 10:4110. [PMID: 34575221 PMCID: PMC8468618 DOI: 10.3390/jcm10184110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most studied rhinological disorders. Modifications of the respiratory nasal mucosa in COVID-19 patients are so far unknown. This paper presents a comparative morphological characterization of the respiratory nasal mucosa in CRSwNP versus COVID-19 and tissue interleukin (IL)-33 concentration. (2) Methods: We analyzed CRSwNP and COVID-19 samples through histopathology, scanning and transmission electron microscopy and performed proteomic determination of IL-33. (3) Results: Histopathologically, stromal edema (p < 0.0001) and basal membrane thickening (p = 0.0768) were found more frequently in CRSwNP than in COVID-19. Inflammatory infiltrate was mainly eosinophil-dominant in CRSwNP and lymphocyte-dominant in COVID-19 (p = 0.3666). A viral cytopathic effect was identified in COVID-19. Scanning electron microscopy detected biofilms only in CRSwNP, while most COVID-19 samples showed microbial aggregates (p = 0.0148) and immune cells (p = 0.1452). Transmission electron microscopy of CRSwNP samples identified biofilms, mucous cell hyperplasia (p = 0.0011), eosinophils, fibrocytes, mastocytes, and collagen fibers. Extracellular suggestive structures for SARS-CoV-2 and multiple Golgi apparatus in epithelial cells were detected in COVID-19 samples. The tissue IL-33 concentration in CRSwNP (210.0 pg/7 μg total protein) was higher than in COVID-19 (52.77 pg/7 μg total protein) (p < 0.0001), also suggesting a different inflammatory pattern. (4) Conclusions: The inflammatory pattern is different in each of these disorders. Results suggested the presence of nasal dysbiosis in both conditions, which could be a determining factor in CRSwNP and a secondary factor in COVID-19.
Collapse
Affiliation(s)
- Ionuț Isaia Jeican
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; (L.B.-T.); (S.T.)
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Patricia Inișca
- Department of Pathology, County Emergency Hospital, 330084 Deva, Romania;
| | - Camelia Albu
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Imogen Medical Research Institute, County Clinical Emergency Hospital, 400014 Cluj-Napoca, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.I.); (C.A.I.)
| | - Silviu Albu
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
| | - Mihaela Laura Vică
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.)
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.)
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
| | - Septimiu Tripon
- Electron Microscopy Laboratory, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; (L.B.-T.); (S.T.)
- Electron Microscopy Integrated Laboratory, National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Mihaela Lazăr
- Cantacuzino National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania;
| | - Maria Aluaș
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Costel Vasile Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Monica Muntean
- Department of Infectious Disease, Clinical Hospital of Infectious Disease, Iuliu Hatieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
| | - Veronica Trombitas
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (I.I.J.); (V.T.)
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.I.); (C.A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Iulian Opincariu
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Lia Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
41
|
Contamination of Hospital Surfaces with Bacterial Pathogens under the Current COVID-19 Outbreak. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179042. [PMID: 34501634 PMCID: PMC8431522 DOI: 10.3390/ijerph18179042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 pandemic remains a global health issue for several reasons, such as the low vaccination rates and a lack of developed herd immunity to the evolution of SARS-CoV-2, as well as its potential inclination to elude neutralizing antibodies. It should be noted that the severity of the COVID-19 disease is significantly affected by the presence of co-infections. Comorbid conditions are caused not only by pathogenic and opportunistic microorganisms but also by some representatives of the environmental microbiome. The presence of patients with moderate and severe forms of the disease in hospitals indicates the need for epidemiological monitoring of (1) bacterial pathogens circulating in hospitals, especially the ESKAPE group pathogens, and (2) the microbiome of various surfaces in hospitals. In our study, we used combined methods based on PCR and NGS sequencing, which are widely used for epidemiological monitoring. Through this approach, we identified the DNA of pathogenic bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, CoNS, and Achromobacter spp.) on various surfaces. We also estimated the microbiome diversity of surfaces and identified the potential reservoirs of infections using 16S rRNA profiling. Although we did not assess the viability of identified microorganisms, our results indicate the possible risks of insufficient regular disinfection of surfaces, regardless of department, at the Infectious Diseases Hospital. Controlling the transmission of nosocomial diseases is critical to the successful treatment of COVID-19 patients, the rational use of antimicrobial drugs, and timely decontamination measures.
Collapse
|
42
|
Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotechnol 2021; 6:135-143. [PMID: 34151035 PMCID: PMC8200311 DOI: 10.1016/j.synbio.2021.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2, the causative agent for COVID-19, infect human mainly via respiratory tract, which is heavily inhabited by local microbiota. However, the interaction between SARS-CoV-2 and nasopharyngeal microbiota, and the association with metabolome has not been well characterized. Here, metabolomic analysis of blood, urine, and nasopharyngeal swabs from a group of COVID-19 and non-COVID-19 patients, and metagenomic analysis of pharyngeal samples were used to identify the key features of COVID-19. Results showed lactic acid, l-proline, and chlorogenic acid methyl ester (CME) were significantly reduced in the sera of COVID-19 patients compared with non-COVID-19 ones. Nasopharyngeal commensal bacteria including Gemella morbillorum, Gemella haemolysans and Leptotrichia hofstadii were notably depleted in the pharynges of COVID-19 patients, while Prevotella histicola, Streptococcus sanguinis, and Veillonella dispar were relatively increased. The abundance of G. haemolysans and L. hofstadii were significantly positively associated with serum CME, which might be an anti-SARS-CoV-2 bacterial metabolite. This study provides important information to explore the linkage between nasopharyngeal microbiota and disease susceptibility. The findings were based on a very limited number of patients enrolled in this study; a larger size of cohort will be appreciated for further investigation.
Collapse
|