1
|
Chen B, Khan H, Yu Z, Yao L, Freeburne E, Jo K, Johnson C, Heemskerk I. Extended culture of 2D gastruloids to model human mesoderm development. Nat Methods 2025:10.1038/s41592-025-02669-4. [PMID: 40335707 DOI: 10.1038/s41592-025-02669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025]
Abstract
Micropatterned human pluripotent stem cells treated with BMP4 (two-dimensional (2D) gastruloids) are among the most widely used stem cell models for human gastrulation. Due to its simplicity and reproducibility, this system is ideal for high-throughput quantitative studies of tissue patterning and has led to many insights into the mechanisms of mammalian gastrulation. However, 2D gastruloids have been studied only up to about 2 days owing to a loss of organization beyond this time with earlier protocols. Here we report an extended 2D gastruloid model to up to 10 days. We discovered a phase of highly reproducible morphogenesis between 2 and 4 days during which directed migration from the primitive streak-like region gives rise to a mesodermal layer beneath an epiblast-like layer. Multiple types of mesoderm arise with striking spatial organization including lateral plate mesoderm-like cells on the colony border and paraxial mesoderm-like cells further inside the colony. Single-cell transcriptomics showed strong similarity of these cells to mesoderm in human and nonhuman primate embryos. Our results illustrate that extended culture of 2D gastruloids provides a powerful model for human mesoderm differentiation and morphogenesis.
Collapse
Affiliation(s)
- Bohan Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hina Khan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhiyuan Yu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - LiAng Yao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Idse Heemskerk
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zhang L, Zhou J, Kong W. Extracellular matrix in vascular homeostasis and disease. Nat Rev Cardiol 2025; 22:333-353. [PMID: 39743560 DOI: 10.1038/s41569-024-01103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
The extracellular matrix is an essential component and constitutes a dynamic microenvironment of the vessel wall with an indispensable role in vascular homeostasis and disease. From early development through to ageing, the vascular extracellular matrix undergoes various biochemical and biomechanical alterations in response to diverse environmental cues and exerts precise regulatory control over vessel remodelling. Advances in novel technologies that enable the comprehensive evaluation of extracellular matrix components and cell-matrix interactions have led to the emergence of therapeutic strategies that specifically target this fine-tuned network. In this Review, we explore various aspects of extracellular matrix biology in vascular development, disorders and ageing, emphasizing the effect of the extracellular matrix on disease initiation and progression. Additionally, we provide an overview of the potential therapeutic implications of targeting the extracellular matrix microenvironment in vascular diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
3
|
Dong Z, Li S, Huang Y, Chen T, Ding Y, Tan Q. RNA N 6-methyladenosine demethylase FTO promotes diabetic wound healing through TRIB3-mediated autophagy in an m 6A-YTHDF2-dependent manner. Cell Death Dis 2025; 16:222. [PMID: 40157922 PMCID: PMC11954964 DOI: 10.1038/s41419-025-07494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/01/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) RNA modification impaired autophagy results in delayed diabetic wound healing. In this study, it was found that fat mass and obesity-associated protein (FTO) was significantly downregulated in the epidermis of diabetic patients, STZ-induced mice and db/db mice (type I and II diabetic mice) with prolonged hyperglycemia, as well as in different types of keratinocyte cell lines treated with short-term high glucose medium. The knockout of FTO affected the biological functions of keratinocytes, including enhanced apoptosis, inhibited autophagy, and delayed wound healing, producing consistent results with high-glucose medium treatment. High-throughput analysis revealed that tribbles pseudokinase 3 (TRIB3) served as the downstream target gene of FTO. In addition, both in vitro and in vivo experiments, TRIB3 overexpression partially rescued biological functions caused by FTO-depletion, promoting keratinocyte migration and proliferation via autophagy. Epigenetically, FTO modulated m6A modification in the 3'UTR of TRIB3 mRNA and enhanced TRIB3 stability in a YTHDF2-dependent manner. Collectively, this study identifies FTO as an accelerator of diabetic wound healing and modulates autophagy via regulating TRIB3 in keratinocytes, thereby benefiting the development of a m6A-targeted therapy for refractory diabetic wounds.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Shiyan Li
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yumeng Huang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, 210008, China
| | - Tianzhe Chen
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, 210008, China
| | - Qian Tan
- Department of Burn and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
4
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
5
|
Luxán G. Enhancing our understanding of endothelial cells. eLife 2025; 14:e106133. [PMID: 40067164 PMCID: PMC11896606 DOI: 10.7554/elife.106133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
What determines whether an endothelial cell becomes part of an artery, a vein or a capillary?
Collapse
Affiliation(s)
- Guillermo Luxán
- Institute of Cardiovascular Regeneration, Goethe University FrankfurtFrankfurt am MainGermany
- Cardiopulmonary InstituteFrankfurt am MainGermany
- DZHK, site Rhine-MainFrankfurt am MainGermany
| |
Collapse
|
6
|
Abello J, Yin Y, Zhao Y, Maurer J, Lee J, Bodell C, Richee J, Clevenger AJ, Burton Z, Goeckel ME, Lin M, Grainger S, Halabi CM, Raghavan SA, Sah R, Stratman AN. Endothelial cell Piezo1 promotes vascular smooth muscle cell differentiation on large arteries. Eur J Cell Biol 2025; 104:151473. [PMID: 39729736 DOI: 10.1016/j.ejcb.2024.151473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a, a blood flow responsive transcription factor, expression levels and altered targeting of vSMCs between arteries and veins. Increasing Piezo1 activity suppressed klf2a and increased vSMC association with the cardinal vein, while inhibition of Piezo1 activity increased klf2a levels and decreased vSMC association with arteries. We supported the small molecule findings with in vivo genetic suppression of piezo1 and 2 in zebrafish, resulting in loss of transgelin+ vSMCs on the dorsal aorta. Further, endothelial cell (EC)-specific Piezo1 knockout in mice was sufficient to decrease vSMC accumulation along the descending dorsal aorta during development, thus phenocopying our zebrafish data, and supporting functional conservation of Piezo1 in mammals. To determine the underlying mechanism, we used in vitro modeling assays to demonstrate that differential sensing of pulsatile versus laminar flow forces across endothelial cells changes the expression of mural cell differentiation genes. Together, our findings suggest a crucial role for EC Piezo1 in sensing force within large arteries to mediate mural cell differentiation and stabilization of the arterial vasculature.
Collapse
Affiliation(s)
- Javier Abello
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ying Yin
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yonghui Zhao
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Josh Maurer
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Jihui Lee
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Cherokee Bodell
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jahmiera Richee
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Zarek Burton
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Megan E Goeckel
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Michelle Lin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA; Center for Cardiovascular Research, Washington University, St Louis, MO, USA
| | - Amber N Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Pan Z, Yao Q, Kong W, Ma X, Tian L, Zhao Y, Zhu S, Chen S, Sun M, Liu J, Jiang S, Ma J, Liu Q, Peng X, Li X, Hong Z, Hong Y, Wang X, Liu J, Zhang J, Zhang W, Sun B, Pahlavan S, Xia Y, Shen W, Liu Y, Jiang W, Xie Z, Kong W, Wang X, Wang K. Generation of iPSC-derived human venous endothelial cells for the modeling of vascular malformations and drug discovery. Cell Stem Cell 2025; 32:227-245.e9. [PMID: 39579761 DOI: 10.1016/j.stem.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Venous malformations (VMs) represent prevalent vascular anomalies typically attributed to non-inherited somatic mutations within venous endothelial cells (VECs). The lack of robust disease models for VMs impedes drug discovery. Here, we devise a robust protocol for the generation of human induced VECs (iVECs) through manipulation of cell-cycle dynamics via the retinoic signaling pathway. We introduce an L914F mutation into the TIE2 gene locus of induced pluripotent stem cells (iPSCs) and show that the mutated iVECs form dilated blood vessels after transplantation into mice, thereby recapitulating the phenotypic characteristics observed in VMs. Moreover, utilizing a deep neural network and a high-throughput digital RNA with perturbation of genes sequencing (DRUG-seq) approach, we perform drug screening and demonstrate that bosutinib effectively rescues the disease phenotype in vitro and in vivo. In summary, by leveraging genome editing and stem cell technology, we generate VM models that enable the development of additional therapeutics.
Collapse
Affiliation(s)
- Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Qiyang Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaojing Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Liangliang Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Shuntian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sheng Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengze Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China
| | - Simin Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jianxun Ma
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Qijia Liu
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Xiaohong Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jiarui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Bingbing Sun
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Youchen Xia
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyong Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| |
Collapse
|
8
|
Estrada CC, Wilson C, Gujarati N, Ahmed S, Bronstein R, Daehn IS, Revelo MP, Guo Y, Mallipattu SK. Induction of plasmalemmal vesicle-associated protein exacerbates glomerular endothelial injury in thrombotic microangiopathy. Am J Physiol Renal Physiol 2025; 328:F190-F203. [PMID: 39706169 DOI: 10.1152/ajprenal.00283.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
Glomerular endothelial cell (GEnC) injury is a common feature across the wide spectrum of glomerular diseases. We recently reported that the endothelial-specific knockout of Krüppel-like factor 4 (Klf4) increases the susceptibility to GEnC injury and subsequent development of subacute thrombotic microangiopathy (TMA). However, the mechanism(s) mediating GEnCs response to injury in TMA are poorly understood. Single-nucleus RNA-sequencing demonstrated enrichment in pathways involved in angiogenesis, permeability, focal adhesion, dedifferentiation, and cytoskeletal organization in the endothelial cluster in mice with TMA. Plasmalemmal vesicle-associated protein (Plvap), a structural component of fenestral diaphragms, was highly enriched specifically in injured GEnCs. Induction of Plvap in cultured GEnCs increased proliferation, migration, and cell permeability with an accompanying loss of mature GEnC markers. Immunostaining for PLVAP in human kidney biopsies confirmed the increase in glomerular PLVAP in TMA, which correlated with a higher grade of glomerular injury. To date, this is the first study to show that the induction of Plvap in GEnCs shifts the cells to an immature state, which might exacerbate glomerular injury in TMA.NEW & NOTEWORTHY This study investigated the mechanism(s) underlying glomerular endothelial cell (GEnC) injury in thrombotic microangiopathy (TMA). We identified plasmalemmal vesicle-associated protein (PLVAP) as specifically upregulated in injured GEnCs in TMA, which was accompanied by pathways involved in angiogenesis and loss of differentiation. Induction of Plvap increased proliferation and migration of GEnCs. Human kidney biopsies with TMA demonstrated an increase in glomerular PLVAP, which correlated with histological markers of GEnC injury, confirming its pathologic role in TMA.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
- Division of Nephrology, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Craig Wilson
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
- Division of Nephrology, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Nehaben Gujarati
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Sumaya Ahmed
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Robert Bronstein
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
- Division of Nephrology, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| |
Collapse
|
9
|
Ware TMB, Teixeira AF, Iaria J, Luwor RB, Zhu HJ. Systemic brain dissemination of glioblastoma requires transdifferentiation into endothelial-like cells via TGF-β-ALK1-Smad1/5 signaling. Neoplasia 2025; 60:101110. [PMID: 39724753 PMCID: PMC11732171 DOI: 10.1016/j.neo.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Glioblastoma is the most aggressive type of brain cancer, but treatment improvements for glioblastoma patients remain stagnated for over 20 years. This is despite the large number of clinical trials that have attempted to replicate the success of therapeutics developed for other cancer types. This discrepancy highlights the urgent need to decipher the unique biology of glioblastomas. Here, we show that glioblastoma tumour cells are highly plastic, integrating into blood vessel walls to disseminate throughout the brain. This relies on the transdifferentiation of glioblastoma tumor cells into endothelial-like cells in a process we termed endothelialisation. Mechanistically, in addition to TGF-β-ALK5-Smad2/3 signaling, glioblastoma tumour cells also activate TGF-β-ALK1-Smad1/5 signaling - a mechanism previously thought to be limited to endothelial cells. Consequently, therapeutic targeting of TGF-β-ALK1-Smad1/5 activity impaired endothelialisation-driven glioblastoma progression. This study identifies a previously unknown component of glioblastoma biology and establishes a therapeutic approach to reduce the progression of this disease.
Collapse
Affiliation(s)
- Thomas M B Ware
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China
| | - Josephine Iaria
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China; Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia; Federation University, Ballarat, Victoria 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville 3050 Victoria, Australia; Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, Jiangsu, PR China; Lead contact.
| |
Collapse
|
10
|
Xing M, Wang F, Chu R, Wang H, Sun Y, Qian M, Jiang H, Midgley AC, Dai G, Zhao Q. Localized COUP-TFII pDNA Delivery Modulates Stem/Progenitor Cell Differentiation to Enhance Endothelialization and Inhibit Calcification of Decellularized Allografts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409744. [PMID: 39656938 PMCID: PMC11792037 DOI: 10.1002/advs.202409744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Decellularized allografts have emerged as promising candidates for vascular bypass grafting, owing to their inherent bioactivity and minimal immunogenicity. However, graft failure that results from suboptimal regeneration and pathological remodeling has hindered their clinical adoption. Recent advances in vascular biology highlight the pivotal role of COUP-TFII in orchestrating endothelial identity, angiogenesis, safeguarding against atherosclerosis, and mitigating vascular calcification. Here, plasmid DNA (pDNA) encoding COUP-TFII is incorporated into decellularized allografts to realize localized delivery. Comprehensive in vitro investigation complemented by a bone marrow transplantation model on genetic-lineage-tracing mouse revealed the underlying mechanisms of COUP-TFII in regulating vascular regeneration and remodeling. COUP-TFII augmented endothelialization and inhibited calcification in decellularized allografts by modulating the Ang1/Tie2/PI3K/AKT signaling pathway that dictates the fate of Sca-1+ stem/progenitor cells. Heparin-polyethyleneimine nanoparticles (HEPI) are prepared as COUP-TFII pDNA nanocarriers (COUP-TFII@HPEI) and used to modify decellularized allografts, achieving long-term and stable overexpression of COUP-TFII. Functionalized grafts are evaluated in rat abdominal artery replacement models, demonstrating enhanced neo-artery regeneration without calcification. The study provides an effective strategy to enhance the applicability of decellularized allograft and illustrates their translational prospects for vascular bypass grafting.
Collapse
Affiliation(s)
- Mengmeng Xing
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Ruowen Chu
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - He Wang
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Yuyao Sun
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Meng Qian
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Huan Jiang
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Adam C. Midgley
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
| | - Guohao Dai
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesKey Laboratory of Bioactive Materials (Ministry of Education), College of Life SciencesNankai UniversityTianjin300071China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and RemodelingHealth Science CenterPeking UniversityBeijing100191China
| |
Collapse
|
11
|
Li J, Zhou Y, Shu T, Lei W, Tang Q, Yang Y, Zhang J, Chen W, Zhou B, Hu Q, Xing Y, Wang J, Wang C. Differentiation of lung tissue-resident c-Kit + cells into microvascular endothelial cells alleviates pulmonary vascular remodeling. Dev Cell 2025:S1534-5807(25)00030-9. [PMID: 39909047 DOI: 10.1016/j.devcel.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Pulmonary vascular remodeling (PVR), encompassing microvascular loss and muscularization, contributes to multiple respiratory diseases. c-Kit+ cells exhibit differentiation potential into both endothelial cells (ECs) and smooth muscle cells. The potential role of lung c-Kit+ cell differentiation in PVR, however, remains unclear. Lung c-Kit+ cells increase in pulmonary hypertension patients and in the SU5416/hypoxia (SuHx)-induced PVR mouse model. Employing genetic lineage tracing and single-cell RNA sequencing (scRNA-seq), we elucidate that lung-resident c-Kit+ cells display an aerocyte and venular endothelial differentiation in the SuHx model. Ablation of tissue-resident c-Kit+ cells exacerbates PVR. We identify an Nr2f2-expressing c-Kit+ cell subgroup, which exhibitsvenous EC differentiation and increases during PVR. Notably, the elevation of Nr2f2 in c-Kit+ cells via AAV enhances differentiation and mitigates PVR. These findings underscore the protective role of lung tissue-resident c-Kit+ cells in PVR, achieved by differentiating into mature ECs. Targeting NR2F2 expression in c-Kit+ cells emerges as a promising strategy for reversing PVR.
Collapse
Affiliation(s)
- Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yitian Zhou
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Wenqi Lei
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Qihao Tang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yang Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenhui Chen
- Department of Lung Transplantation, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
12
|
Rütsche D, Nanni M, Cheng P, Caflisch N, Tastanova A, Jenni C, Levesque MP, Moehrlen U, Klar AS, Biedermann T. Human Dermal Microvascular Arterial and Venous Blood Endothelial Cells and Their Use in Bioengineered Dermo-Epidermal Skin Substitutes. SMALL METHODS 2025:e2401588. [PMID: 39871784 DOI: 10.1002/smtd.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Indexed: 01/29/2025]
Abstract
The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin. Transcriptomic analysis reveals that arterial and venous endothelial cell markers NRP1 (neuropilin 1) and NR2F2 (nuclear receptor subfamily 2 group F member 2) are broadly expressed in fetal and juvenile skin. In contrast, expression of NRP1 and NR2F2 on the protein level is cell-type specific and is retained in 2D (2-dimensional) cultures in vitro. Finally, distinct arterial and venous capillaries are bioengineered in 3D (3-dimensional) hydrogels and rapid anastomosis is demonstrated with the host vasculature in vivo. In summary, the bioengineering of human arterial, venous, and lymphatic capillaries is established, hence paving the way for these cells to be used in regenerative medicine and future clinical applications.
Collapse
Affiliation(s)
- Dominic Rütsche
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
| | - Monica Nanni
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, Schlieren, 8952, Switzerland
| | - Nicolà Caflisch
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, Schlieren, 8952, Switzerland
| | - Céline Jenni
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, Schlieren, 8952, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| |
Collapse
|
13
|
Nornes S, Bruche S, Adak N, McCracken IR, De Val S. Evaluating the transcriptional regulators of arterial gene expression via a catalogue of characterized arterial enhancers. eLife 2025; 14:e102440. [PMID: 39819837 PMCID: PMC11896612 DOI: 10.7554/elife.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025] Open
Abstract
The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.
Collapse
Affiliation(s)
- Svanhild Nornes
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
| | - Susann Bruche
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
| | - Niharika Adak
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
- University Medical Centre GroningenGroningenNetherlands
| | - Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
| | - Sarah De Val
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and GeneticsOxfordUnited Kingdom
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
14
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Hou S, Guo X, Du J, Ding X, Ning X, Wang H, Chen H, Liu B, Lan Y. New insights into the endothelial origin of hematopoietic system inspired by "TIF" approaches. BLOOD SCIENCE 2024; 6:e00199. [PMID: 39027902 PMCID: PMC11254119 DOI: 10.1097/bs9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) are derived from a specialized subset of endothelial cells named hemogenic endothelial cells (HECs) via a process of endothelial-to-hematopoietic transition during embryogenesis. Recently, with the usage of multiple single-cell technologies and advanced genetic lineage tracing techniques, namely, "TIF" approaches that combining transcriptome, immunophenotype and function/fate analyses, massive new insights have been achieved regarding the cellular and molecular evolution underlying the emergence of HSPCs from embryonic vascular beds. In this review, we focus on the most recent advances in the enrichment markers, functional characteristics, developmental paths, molecular controls, and the embryonic site-relevance of the key intermediate cell populations bridging embryonic vascular and hematopoietic systems, namely HECs and pre-hematopoietic stem cells, the immediate progenies of some HECs, in mouse and human embryos. Specifically, using expression analyses at both transcriptional and protein levels and especially efficient functional assays, we propose that the onset of Kit expression is at the HEC stage, which has previously been controversial.
Collapse
Affiliation(s)
- Siyuan Hou
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xia Guo
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Du
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Ding
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaowei Ning
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Meng L, Yang Y, He S, Chen H, Zhan Y, Yang R, Li Z, Zhu J, Zhou J, Li Y, Xie L, Chen G, Zheng S, Yao X, Dong R. Single-cell sequencing of the vermiform appendix during development identifies transcriptional relationships with appendicitis in preschool children. BMC Med 2024; 22:383. [PMID: 39267041 PMCID: PMC11395239 DOI: 10.1186/s12916-024-03611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The development of the human vermiform appendix at the cellular level, as well as its function, is not well understood. Appendicitis in preschool children, although uncommon, is associated with a high perforation rate and increased morbidity. METHODS We performed single-cell RNA sequencing (scRNA-seq) on the human appendix during fetal and pediatric stages as well as preschool-age inflammatory appendices. Transcriptional features of each cell compartment were discussed in the developing appendix. Cellular interactions and differentiation trajectories were also investigated. We compared scRNA-seq profiles from preschool appendicitis to those of matched healthy controls to reveal disease-associated changes. Bulk transcriptomic data, immunohistochemistry, and real-time quantitative PCR were used to validate the findings. RESULTS Our analysis identified 76 cell types in total and described the cellular atlas of the developing appendix. We discovered the potential role of the BMP signaling pathway in appendiceal epithelium development and identified HOXC8 and PITX2 as the specific regulons of appendix goblet cells. Higher pericyte coverage, endothelial angiogenesis, and goblet mucus scores together with lower epithelial and endothelial tight junction scores were found in the preschool appendix, which possibly contribute to the clinical features of preschool appendicitis. Preschool appendicitis scRNA-seq profiles revealed that the interleukin-17 signaling pathway may participate in the inflammation process. CONCLUSIONS Our study provides new insights into the development of the appendix and deepens the understanding of appendicitis in preschool children.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yifan Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shiwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fujian, China
| | - Huifen Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Zifeng Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jiajie Zhu
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jin Zhou
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Lulu Xie
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Gong Chen
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| | - Xiaoying Yao
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Rui Dong
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|
17
|
Cano E, Schwarzkopf J, Kanda M, Lindberg EL, Hollfinger I, Pogontke C, Braeuning C, Fischer C, Hübner N, Gerhardt H. Intramyocardial Sprouting Tip Cells Specify Coronary Arterialization. Circ Res 2024; 135:671-684. [PMID: 39092506 PMCID: PMC11361357 DOI: 10.1161/circresaha.124.324868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The elaborate patterning of coronary arteries critically supports the high metabolic activity of the beating heart. How coronary endothelial cells coordinate hierarchical vascular remodeling and achieve arteriovenous specification remains largely unknown. Understanding the molecular and cellular cues that pattern coronary arteries is crucial to develop innovative therapeutic strategies that restore functional perfusion within the ischemic heart. METHODS Single-cell transcriptomics and histological validation were used to delineate heterogeneous transcriptional states of the developing and mature coronary endothelium with a focus on sprouting endothelium and arterial cell specification. Genetic lineage tracing and high-resolution 3-dimensional imaging were used to characterize the origin and mechanisms of coronary angiogenic sprouting, as well as to fate-map selective endothelial lineages. Integration of single-cell transcriptomic data from ischemic adult mouse hearts and human embryonic data served to assess the conservation of transcriptional states across development, disease, and species. RESULTS We discover that coronary arteries originate from cells that have previously transitioned through a specific tip cell phenotype. We identify nonoverlapping intramyocardial and subepicardial tip cell populations with differential gene expression profiles and regulatory pathways. Esm1-lineage tracing confirmed that intramyocardial tip cells selectively contribute to coronary arteries and endocardial tunnels, but not veins. Notably, prearterial cells are detected from development stages to adulthood, increasingly in response to ischemic injury, and in human embryos, suggesting that tip cell-to-artery specification is a conserved mechanism. CONCLUSIONS A tip cell-to-artery specification mechanism drives arterialization of the intramyocardial plexus and endocardial tunnels throughout life and is reactivated upon ischemic injury. Differential sprouting programs govern the formation and specification of the venous and arterial coronary plexus.
Collapse
Affiliation(s)
- Elena Cano
- Integrative Vascular Biology Laboratory (E.C., J.S., I.H., H.G.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany (E.C., J.S., N.H., H.G.)
- Charité-Universitätsmedizin, Berlin, Germany (E.C., J.S., N.H., H.G.)
- Department of Animal Biology, University of Málaga, Spain (E.C., C.P.)
- Cardiovascular Development and Disease, Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA - BIONAND Platform), Málaga, Spain (E.C., C.P.)
| | - Jennifer Schwarzkopf
- Integrative Vascular Biology Laboratory (E.C., J.S., I.H., H.G.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany (E.C., J.S., N.H., H.G.)
- Charité-Universitätsmedizin, Berlin, Germany (E.C., J.S., N.H., H.G.)
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences (M.K., E.L.L., N.H.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University, Japan (M.K.)
| | - Eric L. Lindberg
- Cardiovascular and Metabolic Sciences (M.K., E.L.L., N.H.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Medicine, Ludwig-Maximiliams-University Munich, Germany (E.L.L.)
| | - Irene Hollfinger
- Integrative Vascular Biology Laboratory (E.C., J.S., I.H., H.G.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cristina Pogontke
- Department of Animal Biology, University of Málaga, Spain (E.C., C.P.)
- Cardiovascular Development and Disease, Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA - BIONAND Platform), Málaga, Spain (E.C., C.P.)
| | | | | | - Norbert Hübner
- Cardiovascular and Metabolic Sciences (M.K., E.L.L., N.H.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany (E.C., J.S., N.H., H.G.)
- Charité-Universitätsmedizin, Berlin, Germany (E.C., J.S., N.H., H.G.)
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory (E.C., J.S., I.H., H.G.), Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany (E.C., J.S., N.H., H.G.)
- Charité-Universitätsmedizin, Berlin, Germany (E.C., J.S., N.H., H.G.)
- Berlin Institute of Health (BIH), Germany (H.G.)
| |
Collapse
|
18
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
19
|
Yokomizo T. Hematopoietic cluster formation: an essential prelude to blood cell genesis. Exp Hematol 2024; 136:104284. [PMID: 39032856 DOI: 10.1016/j.exphem.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Adult blood cells are produced in the bone marrow by hematopoietic stem cells (HSCs), the origin of which can be traced back to fetal developmental stages. Indeed, during mouse development, at days 10-11 of gestation, the aorta-gonad-mesonephros (AGM) region is a primary site of HSC production, with characteristic cell clusters related to stem cell genesis observed in the dorsal aorta. Similar clusters linked with hematopoiesis are also observed in the other sites such as the yolk sac and placenta. In this review, I outline the formation and function of these clusters, focusing on the well-characterized intra-aortic hematopoietic clusters (IAHCs).
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
20
|
Iovino L, Krenning G, Hadland B. Editorial: Unconventional roles of endothelial cells. Front Cell Dev Biol 2024; 12:1439419. [PMID: 39040045 PMCID: PMC11260730 DOI: 10.3389/fcell.2024.1439419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
| | - Guido Krenning
- University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
21
|
Abello J, Yin Y, Zhao Y, Maurer J, Lee J, Bodell C, Clevenger AJ, Burton Z, Goeckel ME, Lin M, Grainger S, Halabi CM, Raghavan SA, Sah R, Stratman AN. Endothelial cell Piezo1 promotes vascular smooth muscle cell differentiation on large arteries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598539. [PMID: 38915529 PMCID: PMC11195244 DOI: 10.1101/2024.06.11.598539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a levels and altered targeting of vSMCs between arteries and veins. Increasing Piezo1 activity suppressed klf2a and increased vSMC association with the cardinal vein, while inhibition of Piezo1 activity increased klf2a levels and decreased vSMC association with arteries. We supported the small molecule data with in vivo genetic suppression of piezo1 and 2 in zebrafish, resulting in loss of transgelin+ vSMCs on the dorsal aorta. Further, endothelial cell (EC)-specific Piezo1 knockout in mice was sufficient to decrease vSMC accumulation along the descending dorsal aorta during development, thus phenocopying our zebrafish data, and supporting functional conservation of Piezo1 in mammals. To determine mechanism, we used in vitro modeling assays to demonstrate that differential sensing of pulsatile versus laminar flow forces across endothelial cells changes the expression of mural cell differentiation genes. Together, our findings suggest a crucial role for EC Piezo1 in sensing force within large arteries to mediate mural cell differentiation and stabilization of the arterial vasculature.
Collapse
Affiliation(s)
- Javier Abello
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ying Yin
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yonghui Zhao
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Josh Maurer
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Jihui Lee
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Cherokee Bodell
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Abigail J. Clevenger
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Zarek Burton
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Megan E. Goeckel
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Michelle Lin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Carmen M. Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shreya A. Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cardiovascular Research, Washington University, St Louis, MO, USA
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Buffering Mechanism in Aortic Arch Artery Formation and Congenital Heart Disease. Circ Res 2024; 134:e112-e132. [PMID: 38618720 PMCID: PMC11081845 DOI: 10.1161/circresaha.123.322767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.
Collapse
Affiliation(s)
- AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Christina A. Vyzas
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Kevin Eng
- Department of Statistics, Rutgers University, School of Arts and Sciences, Piscataway, NJ 08854
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
23
|
Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells. Dev Cell 2024; 59:1110-1131.e22. [PMID: 38569552 PMCID: PMC11072092 DOI: 10.1016/j.devcel.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Collapse
Affiliation(s)
- Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Alana Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison M Banuelos
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kouta Niizuma
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kensuke Kayamori
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte Mason
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Leyla Yilmaz
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Lan W, Li J, Ye Z, Liu Y, Luo S, Lu X, Cao Z, Chen Y, Chen H, Li Z. A subset of megakaryocytes regulates development of hematopoietic stem cell precursors. EMBO J 2024; 43:1722-1739. [PMID: 38580775 PMCID: PMC11065989 DOI: 10.1038/s44318-024-00079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024] Open
Abstract
Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.
Collapse
Affiliation(s)
- Wenlang Lan
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinping Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zehua Ye
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yumin Liu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sifan Luo
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xun Lu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhan Cao
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yifan Chen
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongtian Chen
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Zhang K, Kan H, Mao A, Yu F, Geng L, Zhou T, Feng L, Ma X. Integrated Single-Cell Transcriptomic Atlas of Human Kidney Endothelial Cells. J Am Soc Nephrol 2024; 35:578-593. [PMID: 38351505 PMCID: PMC11149048 DOI: 10.1681/asn.0000000000000320] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
Key Points We created a comprehensive reference atlas of normal human kidney endothelial cells. We confirmed that endothelial cell types in the human kidney were also highly conserved in the mouse kidney. Background Kidney endothelial cells are exposed to different microenvironmental conditions that support specific physiologic processes. However, the heterogeneity of human kidney endothelial cells has not yet been systematically described. Methods We reprocessed and integrated seven human kidney control single-cell/single-nucleus RNA sequencing datasets of >200,000 kidney cells in the same process. Results We identified five major cell types, 29,992 of which were endothelial cells. Endothelial cell reclustering identified seven subgroups that differed in molecular characteristics and physiologic functions. Mapping new data to a normal kidney endothelial cell atlas allows rapid data annotation and analysis. We confirmed that endothelial cell types in the human kidney were also highly conserved in the mouse kidney and identified endothelial marker genes that were conserved in humans and mice, as well as differentially expressed genes between corresponding subpopulations. Furthermore, combined analysis of single-cell transcriptome data with public genome-wide association study data showed a significant enrichment of endothelial cells, especially arterial endothelial cells, in BP heritability. Finally, we identified M1 and M12 from coexpression networks in endothelial cells that may be deeply involved in BP regulation. Conclusions We created a comprehensive reference atlas of normal human kidney endothelial cells that provides the molecular foundation for understanding how the identity and function of kidney endothelial cells are altered in disease, aging, and between species. Finally, we provide a publicly accessible online tool to explore the datasets described in this work (https://vascularmap.jiangnan.edu.cn ).
Collapse
Affiliation(s)
- Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Kan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Zhang Y, Kang Z, Liu M, Wang L, Liu F. Single-cell omics identifies inflammatory signaling as a trans-differentiation trigger in mouse embryos. Dev Cell 2024; 59:961-978.e7. [PMID: 38508181 DOI: 10.1016/j.devcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhixin Kang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Préau L, Lischke A, Merkel M, Oegel N, Weissenbruch M, Michael A, Park H, Gradl D, Kupatt C, le Noble F. Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype. Nat Commun 2024; 15:3118. [PMID: 38600061 PMCID: PMC11006894 DOI: 10.1038/s41467-024-47434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context.
Collapse
Affiliation(s)
- Laetitia Préau
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany
| | - Anna Lischke
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Melanie Merkel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Neslihan Oegel
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Maria Weissenbruch
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Andria Michael
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Hongryeol Park
- Dept. Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Roentgen Strasse 20, 48149, Muenster, Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, and DZHK (German Center for Cardiovascular Research), partner site Munich, Munich, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 4, 76131, Karlsruhe, Germany.
- Institute for Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany.
- Institute of Experimental Cardiology, University of Heidelberg, Im Neuenheimer Feld 669, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
28
|
Loh KM, Ang LT. Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Semin Cell Dev Biol 2024; 155:62-75. [PMID: 37393122 DOI: 10.1016/j.semcdb.2023.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Owing to their manifold roles in health and disease, there have been intense efforts to synthetically generate blood vessels in vitro from human pluripotent stem cells (hPSCs). However, there are multiple types of blood vessel, including arteries and veins, which are molecularly and functionally different. How can we specifically generate either arterial or venous endothelial cells (ECs) from hPSCs in vitro? Here, we summarize how arterial or venous ECs arise during embryonic development. VEGF and NOTCH arbitrate the bifurcation of arterial vs. venous ECs in vivo. While manipulating these two signaling pathways biases hPSC differentiation towards arterial and venous identities, efficiently generating these two subtypes of ECs has remained challenging until recently. Numerous questions remain to be fully addressed. What is the complete identity, timing and combination of extracellular signals that specify arterial vs. venous identities? How do these extracellular signals intersect with fluid flow to modulate arteriovenous fate? What is a unified definition for endothelial progenitors or angioblasts, and when do arterial vs. venous potentials segregate? How can we regulate hPSC-derived arterial and venous ECs in vitro, and generate organ-specific ECs? In turn, answers to these questions could avail the production of arterial and venous ECs from hPSCs, accelerating vascular research, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
McCracken IR, Smart N. Control of coronary vascular cell fate in development and regeneration. Semin Cell Dev Biol 2024; 155:50-61. [PMID: 37714806 DOI: 10.1016/j.semcdb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
The coronary vasculature consists of a complex hierarchal network of arteries, veins, and capillaries which collectively function to perfuse the myocardium. However, the pathways controlling the temporally and spatially restricted mechanisms underlying the formation of this vascular network remain poorly understood. In recent years, the increasing use and refinement of transgenic mouse models has played an instrumental role in offering new insights into the cellular origins of the coronary vasculature, as well as identifying a continuum of transitioning cell states preceding the full maturation of the coronary vasculature. Coupled with the emergence of single cell RNA sequencing platforms, these technologies have begun to uncover the key regulatory factors mediating the convergence of distinct cellular origins to ensure the formation of a collectively functional, yet phenotypically diverse, vascular network. Furthermore, improved understanding of the key regulatory factors governing coronary vessel formation in the embryo may provide crucial clues into future therapeutic strategies to reactivate these developmentally functional mechanisms to drive the revascularisation of the ischaemic adult heart.
Collapse
Affiliation(s)
- Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom.
| |
Collapse
|
31
|
Chen J, Zhang X, DeLaughter DM, Trembley MA, Saifee S, Xiao F, Chen J, Zhou P, Seidman CE, Seidman JG, Pu WT. Molecular and Spatial Signatures of Mouse Embryonic Endothelial Cells at Single-Cell Resolution. Circ Res 2024; 134:529-546. [PMID: 38348657 PMCID: PMC10906678 DOI: 10.1161/circresaha.123.323956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Mature endothelial cells (ECs) are heterogeneous, with subtypes defined by tissue origin and position within the vascular bed (ie, artery, capillary, vein, and lymphatic). How this heterogeneity is established during the development of the vascular system, especially arteriovenous specification of ECs, remains incompletely characterized. METHODS We used droplet-based single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization to define EC and EC progenitor subtypes from E9.5, E12.5, and E15.5 mouse embryos. We used trajectory inference to analyze the specification of arterial ECs (aECs) and venous ECs (vECs) from EC progenitors. Network analysis identified candidate transcriptional regulators of arteriovenous differentiation, which we tested by CRISPR (clustered regularly interspaced short palindromic repeats) loss of function in human-induced pluripotent stem cells undergoing directed differentiation to aECs or vECs (human-induced pluripotent stem cell-aECs or human-induced pluripotent stem cell-vECs). RESULTS From the single-cell transcriptomes of 7682 E9.5 to E15.5 ECs, we identified 19 EC subtypes, including Etv2+Bnip3+ EC progenitors. Spatial transcriptomic analysis of 15 448 ECs provided orthogonal validation of these EC subtypes and established their spatial distribution. Most embryonic ECs were grouped by their vascular-bed types, while ECs from the brain, heart, liver, and lung were grouped by their tissue origins. Arterial (Eln, Dkk2, Vegfc, and Egfl8), venous (Fam174b and Clec14a), and capillary (Kcne3) marker genes were identified. Compared with aECs, embryonic vECs and capillary ECs shared fewer markers than their adult counterparts. Early capillary ECs with venous characteristics functioned as a branch point for differentiation of aEC and vEC lineages. CONCLUSIONS Our results provide a spatiotemporal map of embryonic EC heterogeneity at single-cell resolution and demonstrate that the diversity of ECs in the embryo arises from both tissue origin and vascular-bed position. Developing aECs and vECs share common venous-featured capillary precursors and are regulated by distinct transcriptional regulatory networks.
Collapse
Affiliation(s)
- Jian Chen
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | | | | | - Shaila Saifee
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Feng Xiao
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Jiehui Chen
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
32
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Identification of novel buffering mechanisms in aortic arch artery development and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530833. [PMID: 38370627 PMCID: PMC10871175 DOI: 10.1101/2023.03.02.530833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Rationale The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease (CHD) arising from defective morphogenesis of pharyngeal arch arteries (PAA) and their derivatives. Objective To uncover mechanisms underlying the robustness of PAA morphogenesis. Methods and Results The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived ECs is regulated by VEGFR2 and Tbx1 . Remarkably, when SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated three-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of one VEGFR2 allele (VEGFR2 SHF-HET ) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2 SHF-KO ) abolishes it. The decrease in SHF-derived ECs in VEGFR2 SHF-HET and VEGFR2 SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2 SHF-KO mutants. Blocking the compensatory response in VEGFR2 SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1 +/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and CHD. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. Conclusions Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling. Nonstandard Abbreviations and Acronyms in Alphabetical Order CHD - congenital heart disease; ECs - endothelial cells; IAA-B - interrupted aortic arch type B; PAA - pharyngeal arch arteries; RERSA - retro-esophageal right subclavian artery; SHF - second heart field; VEGFR2 - Vascular endothelial growth factor receptor 2.
Collapse
|
33
|
Zhang Y, Liu F. The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro. J Genet Genomics 2024; 51:3-15. [PMID: 37734711 DOI: 10.1016/j.jgg.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The hematopoietic system composed of hematopoietic stem and progenitor cells (HSPCs) and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions. From gastrulation onwards, there successively emerge primitive hematopoiesis (that produces specialized hematopoietic cells), pro-definitive hematopoiesis (that produces lineage-restricted progenitor cells), and definitive hematopoiesis (that produces multipotent HSPCs). These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites. The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues. Owing to the progressive methodology (e.g., high-throughput lineage tracing and single-cell functional and omics analyses), our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated; meanwhile, new paradigms to characterize rare cell types, cell heterogeneity and its causes, and comprehensive regulatory landscapes have been provided. Here, we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis. Moreover, we discuss recent advances in the in vitro induction and expansion of HSPCs, with a focus on the implications for clinical applications.
Collapse
Affiliation(s)
- Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Dubourg V, Schwerdt G, Schreier B, Kopf M, Mildenberger S, Benndorf RA, Gekle M. EGFR activation differentially affects the inflammatory profiles of female human aortic and coronary artery endothelial cells. Sci Rep 2023; 13:22827. [PMID: 38129563 PMCID: PMC10739936 DOI: 10.1038/s41598-023-50148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Endothelial cells (EC) are key players in vascular function, homeostasis and inflammation. EC show substantial heterogeneity due to inter-individual variability (e.g. sex-differences) and intra-individual differences as they originate from different organs or vessels. This variability may lead to different responsiveness to external stimuli. Here we compared the responsiveness of female human primary EC from the aorta (HAoEC) and coronary arteries (HCAEC) to Epidermal Growth Factor Receptor (EGFR) activation. EGFR is an important signal integration hub for vascular active substances with physiological and pathophysiological relevance. Our transcriptomic analysis suggested that EGFR activation differentially affects the inflammatory profiles of HAoEC and HCAEC, particularly by inducing a HCAEC-driven leukocyte attraction but a downregulation of adhesion molecule and chemoattractant expression in HAoEC. Experimental assessments of selected inflammation markers were performed to validate these predictions and the results confirmed a dual role of EGFR in these cells: its activation initiated an anti-inflammatory response in HAoEC but a pro-inflammatory one in HCAEC. Our study highlights that, although they are both arterial EC, female HAoEC and HCAEC are distinguishable with regard to the role of EGFR and its involvement in inflammation regulation, what may be relevant for vascular maintenance but also the pathogenesis of endothelial dysfunction.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| |
Collapse
|
35
|
Sanofi-Cell Research outstanding paper award of 2022. Cell Res 2023; 33:891. [PMID: 38017108 PMCID: PMC10709561 DOI: 10.1038/s41422-023-00904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Affiliation(s)
- Cell Research Editorial Team
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
McCracken IR, Baker AH, Smart N, De Val S. Transcriptional regulators of arterial and venous identity in the developing mammalian embryo. CURRENT OPINION IN PHYSIOLOGY 2023; 35:None. [PMID: 38328689 PMCID: PMC10844100 DOI: 10.1016/j.cophys.2023.100691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process.
Collapse
Affiliation(s)
- Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| | - Sarah De Val
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| |
Collapse
|
37
|
Luo X, Liu Z, Xu R. Adult tissue-specific stem cell interaction: novel technologies and research advances. Front Cell Dev Biol 2023; 11:1220694. [PMID: 37808078 PMCID: PMC10551553 DOI: 10.3389/fcell.2023.1220694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Adult tissue-specific stem cells play a dominant role in tissue homeostasis and regeneration. Various in vivo markers of adult tissue-specific stem cells have been increasingly reported by lineage tracing in genetic mouse models, indicating that marked cells differentiation is crucial during homeostasis and regeneration. How adult tissue-specific stem cells with indicated markers contact the adjacent lineage with indicated markers is of significance to be studied. Novel methods bring future findings. Recent advances in lineage tracing, synthetic receptor systems, proximity labeling, and transcriptomics have enabled easier and more accurate cell behavior visualization and qualitative and quantitative analysis of cell-cell interactions than ever before. These technological innovations have prompted researchers to re-evaluate previous experimental results, providing increasingly compelling experimental results for understanding the mechanisms of cell-cell interactions. This review aimed to describe the recent methodological advances of dual enzyme lineage tracing system, the synthetic receptor system, proximity labeling, single-cell RNA sequencing and spatial transcriptomics in the study of adult tissue-specific stem cells interactions. An enhanced understanding of the mechanisms of adult tissue-specific stem cells interaction is important for tissue regeneration and maintenance of homeostasis in organisms.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Goldwaser EL, Wang DJJ, Adhikari BM, Chiappelli J, Shao X, Yu J, Lu T, Chen S, Marshall W, Yuen A, Kvarta M, Ma Y, Du X, Gao S, Saeedi O, Bruce H, Donnelly P, O’Neill H, Shuldiner AR, Mitchell BD, Kochunov P, Hong LE. Evidence of Neurovascular Water Exchange and Endothelial Vascular Dysfunction in Schizophrenia: An Exploratory Study. Schizophr Bull 2023; 49:1325-1335. [PMID: 37078962 PMCID: PMC10483475 DOI: 10.1093/schbul/sbad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Mounting evidence supports cerebrovascular contributions to schizophrenia spectrum disorder (SSD) but with unknown mechanisms. The blood-brain barrier (BBB) is at the nexus of neural-vascular exchanges, tasked with regulating cerebral homeostasis. BBB abnormalities in SSD, if any, are likely more subtle compared to typical neurological insults and imaging measures that assess large molecule BBB leakage in major neurological events may not be sensitive enough to directly examine BBB abnormalities in SSD. STUDY DESIGN We tested the hypothesis that neurovascular water exchange (Kw) measured by non-invasive diffusion-prepared arterial spin label MRI (n = 27 healthy controls [HC], n = 32 SSD) is impaired in SSD and associated with clinical symptoms. Peripheral vascular endothelial health was examined by brachial artery flow-mediated dilation (n = 44 HC, n = 37 SSD) to examine whether centrally measured Kw is related to endothelial functions. STUDY RESULTS Whole-brain average Kw was significantly reduced in SSD (P = .007). Exploratory analyses demonstrated neurovascular water exchange reductions in the right parietal lobe, including the supramarginal gyrus (P = .002) and postcentral gyrus (P = .008). Reduced right superior corona radiata (P = .001) and right angular gyrus Kw (P = .006) was associated with negative symptoms. Peripheral endothelial function was also significantly reduced in SSD (P = .0001). Kw in 94% of brain regions in HC positively associated with peripheral endothelial function, which was not observed in SSD, where the correlation was inversed in 52% of brain regions. CONCLUSIONS This study provides initial evidence of neurovascular water exchange abnormalities, which appeared clinically associated, especially with negative symptoms, in schizophrenia.
Collapse
Affiliation(s)
- Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Wyatt Marshall
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa Yuen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland Medical Center, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Donnelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugh O’Neill
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Ning X, Du J, Gong Y, Yao Y, Bai Z, Ni Y, Li Y, Li Z, Zhao H, Zhou J, Liu B, Lan Y, Hou S. Divergent expression of Neurl3 from hemogenic endothelial cells to hematopoietic stem progenitor cells during development. J Genet Genomics 2023; 50:661-675. [PMID: 37230320 DOI: 10.1016/j.jgg.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Prior to the generation of hematopoietic stem cells (HSCs) from the hemogenic endothelial cells (HECs) mainly in the dorsal aorta in midgestational mouse embryos, multiple hematopoietic progenitors including erythro-myeloid progenitors and lymphoid progenitors are generated from yolk sac HECs. These HSC-independent hematopoietic progenitors have recently been identified as major contributors to functional blood cell production until birth. However, little is known about yolk sac HECs. Here, combining integrative analyses of multiple single-cell RNA-sequencing datasets and functional assays, we reveal that Neurl3-EGFP, in addition to marking the continuum throughout the ontogeny of HSCs from HECs, can also serve as a single enrichment marker for yolk sac HECs. Moreover, while yolk sac HECs have much weaker arterial characteristics than either arterial endothelial cells in the yolk sac or HECs within the embryo proper, the lymphoid potential of yolk sac HECs is largely confined to the arterial-biased subpopulation featured by the Unc5b expression. Interestingly, the B lymphoid potential of hematopoietic progenitors, but not for myeloid potentials, is exclusively detected in Neurl3-negative subpopulations in midgestational embryos. Taken together, these findings enhance our understanding of blood birth from yolk sac HECs and provide theoretical basis and candidate reporters for monitoring step-wise hematopoietic differentiation.
Collapse
Affiliation(s)
- Xiaowei Ning
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
| | - Junjie Du
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yingpeng Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhijie Bai
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanyan Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Haixin Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China; State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Siyuan Hou
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
40
|
Yoo H, La H, Park C, Yoo S, Lee H, Song H, Do JT, Choi Y, Hong K. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023; 11:1176115. [PMID: 37397258 PMCID: PMC10311421 DOI: 10.3389/fcell.2023.1176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.
Collapse
|
41
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
42
|
Leonard EV, Hasan SS, Siekmann AF. Temporally and regionally distinct morphogenetic processes govern zebrafish caudal fin blood vessel network expansion. Development 2023; 150:dev201030. [PMID: 36938965 PMCID: PMC10113958 DOI: 10.1242/dev.201030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sana Safatul Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Burr SP, Klimm F, Glynos A, Prater M, Sendon P, Nash P, Powell CA, Simard ML, Bonekamp NA, Charl J, Diaz H, Bozhilova LV, Nie Y, Zhang H, Frison M, Falkenberg M, Jones N, Minczuk M, Stewart JB, Chinnery PF. Cell lineage-specific mitochondrial resilience during mammalian organogenesis. Cell 2023; 186:1212-1229.e21. [PMID: 36827974 DOI: 10.1016/j.cell.2023.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/28/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Florian Klimm
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Mathematics, Imperial College London, London, UK; EPSRC Centre for Mathematics of Precision Healthcare, Imperial College, London, UK; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, D-14195 Berlin, Germany; Department of Computer Science, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany
| | - Angelos Glynos
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Malwina Prater
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Pamella Sendon
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Pavel Nash
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Nina A Bonekamp
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience (MCTN), Medical Faculty Mannheim/Heidelberg University, Heidelberg, Germany
| | - Julia Charl
- Institute of Biochemistry, University of Cologne, Otto-Fischer-Strasse 12-14, Cologne, Germany
| | - Hector Diaz
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Lyuba V Bozhilova
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Yu Nie
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Haixin Zhang
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michele Frison
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Nick Jones
- Department of Mathematics, Imperial College London, London, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Biosciences Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
44
|
Abstract
Vascular endothelial cells form the inner layer of blood vessels where they have a key role in the development and maintenance of the functional circulatory system and provide paracrine support to surrounding non-vascular cells. Technical advances in the past 5 years in single-cell genomics and in in vivo genetic labelling have facilitated greater insights into endothelial cell development, plasticity and heterogeneity. These advances have also contributed to a new understanding of the timing of endothelial cell subtype differentiation and its relationship to the cell cycle. Identification of novel tissue-specific gene expression patterns in endothelial cells has led to the discovery of crucial signalling pathways and new interactions with other cell types that have key roles in both tissue maintenance and disease pathology. In this Review, we describe the latest findings in vascular endothelial cell development and diversity, which are often supported by large-scale, single-cell studies, and discuss the implications of these findings for vascular medicine. In addition, we highlight how techniques such as single-cell multimodal omics, which have become increasingly sophisticated over the past 2 years, are being utilized to study normal vascular physiology as well as functional perturbations in disease.
Collapse
Affiliation(s)
- Emily Trimm
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Investigation of SAMD1 ablation in mice. Sci Rep 2023; 13:3000. [PMID: 36810619 PMCID: PMC9944271 DOI: 10.1038/s41598-023-29779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
SAM domain-containing protein 1 (SAMD1) has been implicated in atherosclerosis, as well as in chromatin and transcriptional regulation, suggesting a versatile and complex biological function. However, its role at an organismal level is currently unknown. Here, we generated SAMD1-/- and SAMD1+/- mice to explore the role of SAMD1 during mouse embryogenesis. Homozygous loss of SAMD1 was embryonic lethal, with no living animals seen after embryonic day 18.5. At embryonic day 14.5, organs were degrading and/or incompletely developed, and no functional blood vessels were observed, suggesting failed blood vessel maturation. Sparse red blood cells were scattered and pooled, primarily near the embryo surface. Some embryos had malformed heads and brains at embryonic day 15.5. In vitro, SAMD1 absence impaired neuronal differentiation processes. Heterozygous SAMD1 knockout mice underwent normal embryogenesis and were born alive. Postnatal genotyping showed a reduced ability of these mice to thrive, possibly due to altered steroidogenesis. In summary, the characterization of SAMD1 knockout mice suggests a critical role of SAMD1 during developmental processes in multiple organs and tissues.
Collapse
|
46
|
Wang H, Liu D, Chen H, Jiao Y, Zhao H, Li Z, Hou S, Ni Y, Zhang R, Wang J, Zhou J, Liu B, Lan Y. Nupr1 Negatively Regulates Endothelial to Hematopoietic Transition in the Aorta-Gonad-Mesonephros Region. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203813. [PMID: 36638254 PMCID: PMC9951349 DOI: 10.1002/advs.202203813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In the aorta of mid-gestational mouse embryos, a specialized endothelial subpopulation termed hemogenic endothelial cells (HECs) develops into hematopoietic stem and progenitor cells (HSPCs), through a conserved process of endothelial-to-hematopoietic transition (EHT). EHT is tightly controlled by multiple intrinsic and extrinsic mechanisms. Nevertheless, the molecular regulators restraining this process remain poorly understood. Here, it is uncovered that, one of the previously identified HEC signature genes, Nupr1, negatively regulates the EHT process. Nupr1 deletion in endothelial cells results in increased HSPC generation in the aorta-gonad-mesonephros region. Furthermore, single-cell transcriptomics combined with serial functional assays reveals that loss of Nupr1 promotes the EHT process by promoting the specification of hematopoiesis-primed functional HECs and strengthening their subsequent hematopoietic differentiation potential toward HSPCs. This study further finds that the proinflammatory cytokine, tumor necrosis factor α (TNF-α), is significantly upregulated in Nupr1-deficient HECs, and the use of a specific TNF-α neutralizing antibody partially reduces excessive HSPC generation in the explant cultures from Nupr1-deficient embryos. This study identifies a novel negative regulator of EHT and the findings indicate that Nupr1 is a new potential target for future hematopoietic stem cell regeneration research.
Collapse
Affiliation(s)
- Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
| | - Di Liu
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Haifeng Chen
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
| | - Yuqing Jiao
- Chinese PLA Medical SchoolChinese PLA General HospitalBeijing100853China
| | - Haixin Zhao
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Zongcheng Li
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhouGuangdong510632China
| | - Yanli Ni
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Rong Zhang
- School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jinyong Wang
- Institute of Zoology of the Chinese Academy of SciencesBeijing100101China
| | - Jie Zhou
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
- State Key Laboratory of ProteomicsAcademy of Military Medical SciencesAcademy of Military SciencesBeijing100071China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
- State Key Laboratory of Experimental HematologyDepartment of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
- State Key Laboratory of ProteomicsAcademy of Military Medical SciencesAcademy of Military SciencesBeijing100071China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|
47
|
Hou S, Liu C, Yao Y, Bai Z, Gong Y, Wang C, He J, You G, Zhang G, Liu B, Lan Y. Hematopoietic Stem Cell Development in Mammalian Embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:1-16. [PMID: 38228955 DOI: 10.1007/978-981-99-7471-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are situated at the top of the adult hematopoietic hierarchy in mammals and give rise to the majority of blood cells throughout life. Recently, with the advance of multiple single-cell technologies, researchers have unprecedentedly deciphered the cellular and molecular evolution, the lineage relationships, and the regulatory mechanisms underlying HSC emergence in mammals. In this review, we describe the precise vascular origin of HSCs in mouse and human embryos, emphasizing the conservation in the unambiguous arterial characteristics of the HSC-primed hemogenic endothelial cells (HECs). Serving as the immediate progeny of some HECs, functional pre-HSCs of mouse embryos can now be isolated at single-cell level using defined surface marker combinations. Heterogeneity regrading cell cycle status or lineage differentiation bias within HECs, pre-HSCs, or emerging HSCs in mouse embryos has been figured out. Several epigenetic regulatory mechanisms of HSC generation, including long noncoding RNA, DNA methylation modification, RNA splicing, and layered epigenetic modifications, have also been recently uncovered. In addition to that of HSCs, the cellular and molecular events underlying the development of multiple hematopoietic progenitors in human embryos/fetus have been unraveled with the use of series of single-cell technologies. Specifically, yolk sac-derived myeloid-biased progenitors have been identified as the earliest multipotent hematopoietic progenitors in human embryo, serving as an important origin of fetal liver monocyte-derived macrophages. Moreover, the development of multiple hematopoietic lineages in human embryos such as T and B lymphocytes, innate lymphoid cells, as well as myeloid cells like monocytes, macrophages, erythrocytes, and megakaryocytes has also been depicted and reviewed here.
Collapse
Affiliation(s)
- Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingpeng Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhijie Bai
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jian He
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guoju You
- State Key Laboratory of Primate Biomedical Research, State Key Laboratory of Experimental Hematology, School of Medicine, Tsinghua University, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Subramanian A, Zakeri P, Mousa M, Alnaqbi H, Alshamsi FY, Bettoni L, Damiani E, Alsafar H, Saeys Y, Carmeliet P. Angiogenesis goes computational - The future way forward to discover new angiogenic targets? Comput Struct Biotechnol J 2022; 20:5235-5255. [PMID: 36187917 PMCID: PMC9508490 DOI: 10.1016/j.csbj.2022.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Multi-omics technologies are being increasingly utilized in angiogenesis research. Yet, computational methods have not been widely used for angiogenic target discovery and prioritization in this field, partly because (wet-lab) vascular biologists are insufficiently familiar with computational biology tools and the opportunities they may offer. With this review, written for vascular biologists who lack expertise in computational methods, we aspire to break boundaries between both fields and to illustrate the potential of these tools for future angiogenic target discovery. We provide a comprehensive survey of currently available computational approaches that may be useful in prioritizing candidate genes, predicting associated mechanisms, and identifying their specificity to endothelial cell subtypes. We specifically highlight tools that use flexible, machine learning frameworks for large-scale data integration and gene prioritization. For each purpose-oriented category of tools, we describe underlying conceptual principles, highlight interesting applications and discuss limitations. Finally, we will discuss challenges and recommend some guidelines which can help to optimize the process of accurate target discovery.
Collapse
Affiliation(s)
- Abhishek Subramanian
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Pooya Zakeri
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fatima Yousif Alshamsi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leo Bettoni
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ernesto Damiani
- Robotics and Intelligent Systems Institute, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
49
|
Weng Y, Wang H, Wu D, Xu S, Chen X, Huang J, Feng Y, Li L, Wang Z. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL. Cell Res 2022; 32:814-830. [PMID: 35821090 PMCID: PMC9436969 DOI: 10.1038/s41422-022-00687-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bone regeneration originates from proliferation and differentiation of osteoprogenitors via either endochondral or intramembranous ossification; and the regeneration capacities decline with age and estrogen loss. Maxillary sinus floor lifting (MSFL) is a commonly used surgical procedure for guiding bone regeneration in maxilla. Radiographic analysis of 1210 clinical cases of maxilla bone regeneration after MSFL revealed that the intrasinus osteogenic efficacy was independent of age and gender, however; and this might be related to the Schneiderian membrane that lines the sinus cavity. In view of the particularity of this biological process, our present study aimed to elucidate the underlying mechanism of MSFL-induced bone regeneration. We first established a murine model to simulate the clinical MSFL. By single-cell RNA-sequencing and flow cytometry-based bulk RNA-sequencing, we identified a novel Krt14+Ctsk+ subset of cells that display both epithelial and mesenchymal properties and the transcriptomic feature of osteoprogenitors. Dual recombinases-mediated lineage tracing and loss-of-function analyses showed that these Krt14+Ctsk+ progenitors contribute to both MSFL-induced osteogenesis and physiological bone homeostasis by differentiating into Krt14-Ctsk+ descendants which show robust osteogenic capacity. In addition, we detected a similar population of Krt14+Ctsk+ cells in human samples of Schneiderian membrane, which show a highly similar osteogenic potential and transcriptomic feature to the corresponding cells in mice. The identification of this Krt14+Ctsk+ population, featured by osteoprogenitor characteristics and dual epithelial-mesenchymal properties, provides new insight into the understanding of bone regeneration and may open more possibilities for clinical applications.
Collapse
Affiliation(s)
- Yuteng Weng
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Haicheng Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Di Wu
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuyu Xu
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaofan Chen
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jie Huang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yanhuizhi Feng
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lin Li
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zuolin Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
50
|
Gage BK, Merlin S, Olgasi C, Follenzi A, Keller GM. Therapeutic correction of hemophilia A by transplantation of hPSC-derived liver sinusoidal endothelial cell progenitors. Cell Rep 2022; 39:110621. [PMID: 35385743 DOI: 10.1016/j.celrep.2022.110621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) form the predominant microvasculature in the liver where they carry out many functions including the secretion of coagulation factor VIII (FVIII). To investigate the early origins of this lineage, we develop an efficient and scalable protocol to produce human pluripotent stem cell (hPSC)-derived LSEC progenitors characterized as venous endothelial cells (VECs) from different mesoderm subpopulations. Using a sensitive and quantitative vascular competitive transplantation assay, we demonstrate that VECs generated from BMP4 and activin A-induced KDR+CD235a/b+ mesoderm are 50-fold more efficient at LSEC engraftment than venous cells from BMP4 and WNT-induced KDR+CD235a/b- mesoderm. When transplanted into immunocompromised hemophilia A mice (NSG-HA), these VECs engraft the liver, proliferate, and mature to functional LSECs that secrete bioactive FVIII capable of correcting the bleeding phenotype. Together, these findings highlight the importance of appropriate mesoderm induction for generating hPSC-derived LSECs capable of functioning in a preclinical model of hemophilia A.
Collapse
Affiliation(s)
- Blair K Gage
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada.
| | - Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristina Olgasi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada.
| |
Collapse
|