1
|
Jaiswal A, Halasz L, Williams DL, Osborne T. Setdb2 Regulates Inflammatory Trigger-Induced Trained Immunity of Macrophages Through Two Different Epigenetic Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644013. [PMID: 40166182 PMCID: PMC11956931 DOI: 10.1101/2025.03.18.644013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
"Trained immunity" of innate immune cells occurs through a sequential two-step process where an initial pathogenic or sterile inflammatory trigger is followed by an amplified response to a later un-related secondary pathogen challenge. The memory effect is mediated at least in part through epigenetic modifications of the chromatin landscape. Here, we investigated the role of the epigenetic modifier Setdb2 in microbial (β-glucan) or sterile trigger (Western-diet-WD/oxidized-LDL-oxLDL)-induced trained immunity of macrophages. Using genetic mouse models and genomic analysis, we uncovered a critical role of Setdb2 in regulating proinflammatory and metabolic pathway reprogramming. We further show that Setdb2 regulates trained immunity through two different complementary mechanisms: one where it positively regulates glycolytic and inflammatory pathway genes via enhancer-promoter looping, and is independent of its enzymatic activity; while the second mechanism is associated with both increased promoter associated H3K9 methylation and repression of interferon response pathway genes. Interestingly, while both mechanisms occur in response to pathogenic training, only the chromatin-looping mechanism operates in response to the sterile inflammatory stimulus. These results reveal a previously unknown bifurcation in the downstream pathways that distinguishes between pathogenic and sterile inflammatory signaling responses associated with the innate immune memory response and may provide potential therapeutic opportunities to target cytokine vs. interferon pathways to limit complications of chronic inflammation.
Collapse
|
2
|
Xu M, Zhou Y, Xu Y, Shao A, Han H, Ye J. Supramolecular Engineering of Nanoceria for Management and Amelioration of Age-Related Macular Degeneration via the Two-Level Blocking of Oxidative Stress and Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408436. [PMID: 39792775 PMCID: PMC11884525 DOI: 10.1002/advs.202408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction. By exploiting the recycling reactive oxygen species (ROS) scavenging capability of nanoceria and the anti-inflammation properties of MOR, the two-level strike during AMD pathogenesis can be precisely blocked by M@CCNP. Remarkably, excellent therapeutic efficacy to CNV is observed in vivo, achieving over 80% reduction in neovascularization and over 60% reduction in leakage area. In summary, the supramolecular engineered nanoceria provides an efficient approach for amelioration of AMD by blocking the two-level strike, and presents significant potential as an exceptional drug delivery platform, particularly for ROS-related diseases.
Collapse
Affiliation(s)
- Mingyu Xu
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Yifan Zhou
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Yufeng Xu
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - An Shao
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Haijie Han
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| | - Juan Ye
- Eye Center, The Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang University88 Jiefang RoadHangzhou310009China
| |
Collapse
|
3
|
Kreis V, Toffano-Nioche C, Denève-Larrazet C, Marvaud JC, Garneau JR, Dumont F, van Dijk EL, Jaszczyszyn Y, Boutserin A, D'Angelo F, Gautheret D, Kansau I, Janoir C, Soutourina O. Dual RNA-seq study of the dynamics of coding and non-coding RNA expression during Clostridioides difficile infection in a mouse model. mSystems 2024; 9:e0086324. [PMID: 39601557 DOI: 10.1128/msystems.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Clostridioides difficile is the leading cause of healthcare-associated diarrhea in industrialized countries. Many questions remain to be answered about the mechanisms governing its interaction with the host during infection. Non-coding RNAs (ncRNAs) contribute to shape virulence in many pathogens and modulate host responses; however, their role in C. difficile infection (CDI) has not been explored. To better understand the dynamics of ncRNA expression contributing to C. difficile infectious cycle and host response, we used a dual RNA-seq approach in a conventional murine model. From the pathogen side, this transcriptomic analysis revealed the upregulation of virulence factors, metabolism, and sporulation genes, as well as the identification of 61 ncRNAs differentially expressed during infection that correlated with the analysis of available raw RNA-seq data sets from two independent studies. From these data, we identified 118 potential new transcripts in C. difficile, including 106 new ncRNA genes. From the host side, we observed the induction of several pro-inflammatory pathways, and among the 185 differentially expressed ncRNAs, the overexpression of microRNAs (miRNAs) previously associated to inflammatory responses or unknown long ncRNAs and miRNAs. A particular host gene expression profile could be associated to the symptomatic infection. In accordance, the metatranscriptomic analysis revealed specific microbiota changes accompanying CDI and specific species associated with symptomatic infection in mice. This first adaptation of in vivo dual RNA-seq to C. difficile contributes to unravelling the regulatory networks involved in C. difficile infectious cycle and host response and provides valuable resources for further studies of RNA-based mechanisms during CDI.IMPORTANCEClostridioides difficile is a major cause of nosocomial infections associated with antibiotic therapy classified as an urgent antibiotic resistance threat. This pathogen interacts with host and gut microbial communities during infection, but the mechanisms of these interactions remain largely to be uncovered. Noncoding RNAs contribute to bacterial virulence and host responses, but their expression has not been explored during C. difficile infection. We took advantage of the conventional mouse model of C. difficile infection to look simultaneously to the dynamics of gene expression in pathogen, its host, and gut microbiota composition, providing valuable resources for future studies. We identified a number of ncRNAs that could mediate the adaptation of C. difficile inside the host and the crosstalk with the host immune response. Promising inflammation markers and potential therapeutic targets emerged from this work open new directions for RNA-based and microbiota-modulatory strategies to improve the efficiency of C. difficile infection treatments.
Collapse
Affiliation(s)
- Victor Kreis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | | | | | | - Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anaïs Boutserin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Francesca D'Angelo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Gautheret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Imad Kansau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Claire Janoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Chen X, Liu Y, Zhou Q, Zhang C, Wang W, Xu M, Zhao Y, Zhao W, Gu D, Tan S. MiR-99a-5p up-regulates LDLR and functionally enhances LDL-C uptake via suppressing PCSK9 expression in human hepatocytes. Front Genet 2024; 15:1469094. [PMID: 39628814 PMCID: PMC11611869 DOI: 10.3389/fgene.2024.1469094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Background MicroRNAs (miRs/miRNAs) play pivotal roles in modulating cholesterol homeostasis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein receptor (LDLR) at the surface of hepatocytes and accelerates its degradation in lysosomes, thereby impairing the clearance of circulating low-density lipoprotein cholesterol (LDL-C) from plasma. Thus, suppressing PCSK9 expression level has become an effective approach for treating hypercholesterolemia. Here, we sought to identify novel miRNAs that inhibit PCSK9 expression. Methods By in silico analyses, miR-99a-5p was predicted to bind to human PCSK9 mRNA. Following transfection of miR-99a-5p or anti-miR-99a-5p in human and mouse hepatocytes, qRT-PCR, Western blot, immunofluorescence, ELISA, flow cytometry, LDL-C uptake, and cellular cholesterol measurement were performed. Results miR-99a-5p overexpression potently inhibited PCSK9 expression, thereby up-regulating LDLR, functionally enhancing LDL-C uptake and increasing intracellular cholesterol levels in human, but not in mouse, cells. Conversely, anti-miR-99a-5p upregulates PCSK9, leading to a reduction in LDLR, attenuation of LDL-C uptake, and a decrease in the intracellular cholesterol levels of human hepatocytes. Furthermore, miR-99a-5p was shown to bind to the predicted target site "UACGGGU" in the 3'-UTR of human PCSK9 mRNA via a luciferase reporter assay in combination with site-directed mutagenesis. Conclusion MiR-99a-5p potently downregulates the expression of PCSK9 by directly interacting with a target site in the human PCSK9 3'-UTR, thereby up-regulating LDLR and functionally enhancing LDL-C uptake in human hepatocytes. MiR-99a-5p could serve as an inhibitor of PCSK9 for treating hypercholesterolemia to inhibit atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Yu Q, Xiao Y, Guan M, Zhou G, Zhang X, Yu J, Han M, Yang W, Wang Y, Li Z. Regulation of ferroptosis in osteoarthritis and osteoarthritic chondrocytes by typical MicroRNAs in chondrocytes. Front Med (Lausanne) 2024; 11:1478153. [PMID: 39564502 PMCID: PMC11573538 DOI: 10.3389/fmed.2024.1478153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disorder impacting bones and joints, worsened by chronic inflammation, immune dysregulation, mechanical stress, metabolic disturbances, and various other contributing factors. The complex interplay of cartilage damage, loss, and impaired repair mechanisms remains a critical and formidable aspect of OA pathogenesis. At the genetic level, multiple genes have been implicated in the modulation of chondrocyte metabolism, displaying both promotive and inhibitory roles. Recent research has increasingly focused on the influence of non-coding RNAs in the regulation of distinct cell types within bone tissue in OA. In particular, an expanding body of evidence highlights the regulatory roles of microRNAs in OA chondrocytes. This review aims to consolidate the most relevant microRNAs associated with OA chondrocytes, as identified in recent studies, and to elucidate their involvement in chondrocyte metabolic processes and ferroptosis. Furthermore, this study explores the complex regulatory interactions between long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in OA, with an emphasis on microRNA-mediated mechanisms. Finally, critical gaps in the current research are identified, offering strategic insights to advance the understanding of OA pathophysiology and guide therapeutic developments in this field.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Guohui Zhou
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Yang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yan Wang
- Scientific Research Center, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Lao Y, Cui X, Xu Z, Yan H, Zhang Z, Zhang Z, Geng L, Li B, Lu Y, Guan Q, Pu X, Zhao S, Zhu J, Qin X, Sun B. Glutaryl-CoA dehydrogenase suppresses tumor progression and shapes an anti-tumor microenvironment in hepatocellular carcinoma. J Hepatol 2024; 81:847-861. [PMID: 38825017 DOI: 10.1016/j.jhep.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND & AIMS Crotonylation, a crotonyl-CoA-based non-enzymatic protein translational modification, affects diverse biological processes, such as spermatogenesis, tissue injury, inflammation, and neuropsychiatric diseases. Crotonylation is decreased in hepatocellular carcinomas (HCCs), but the mechanism remains unknown. In this study, we aim to describe the role of glutaryl-CoA dehydrogenase (GCDH) in tumor suppression. METHODS Three cohorts containing 40, 248 and 17 pairs of samples were used to evaluate the link between GCDH expression levels and clinical characteristics of HCC, as well as responses to anti-programmed cell death protein 1 (PD-1) treatment. Subcutaneous xenograft, orthotopic xenograft, Trp53Δhep/Δhep; MYC- and Ctnnboe; METoe-driven mouse models were adopted to validate the effects of GCDH on HCC suppression. RESULTS GCDH depletion promoted HCC growth and metastasis, whereas its overexpression reversed these processes. As GCDH converts glutaryl-CoA to crotonyl-CoA to increase crotonylation levels, we performed lysine crotonylome analysis and identified the pentose phosphate pathway (PPP) and glycolysis-related proteins PGD, TKT, and ALDOC as GCDH-induced crotonylation targets. Crotonyl-bound targets showed allosteric effects that controlled their enzymatic activities, leading to decreases in ribose 5-phosphate and lactate production, further limiting the Warburg effect. PPP blockade also stimulated peroxidation, synergizing with senescent modulators to induce senescence in GCDHhigh cells. These cells induced the infiltration of immune cells by the SASP (senescence-associated secretory cell phenotype) to shape an anti-tumor immune microenvironment. Meanwhile, the GCDHlow population was sensitized to anti-PD-1 therapy. CONCLUSION GCDH inhibits HCC progression via crotonylation-induced suppression of the PPP and glycolysis, resulting in HCC cell senescence. The senescent cell further shapes an anti-tumor microenvironment via the SASP. The GCDHlow population is responsive to anti-PD-1 therapy because of the increased presence of PD-1+CD8+ T cells. IMPACT AND IMPLICATIONS Glutaryl-CoA dehydrogenase (GCDH) is a favorable prognostic indicator in liver, lung, and renal cancers. In addition, most GCDH depletion-induced toxic metabolites originate from the liver, accumulate locally, and cannot cross the blood-brain barrier. Herein, we show that GCDH inhibits hepatocellular carcinoma (HCC) progression via crotonylation-induced suppression of the pentose phosphate pathway and glycolysis, resulting in HCC cell senescence. We also found that more PD-1+CD8+ T cells are present in the GCDHlow population, who are thus more responsive to anti-PD-1 therapy. Given that the GCDHlow and GCDHhigh HCC population can be distinguished based on serum glucose and ammonia levels, it will be worthwhile to evaluate the curative effects of pro-senescent and immune-therapeutic strategies based on the expression levels of GCDH.
Collapse
Affiliation(s)
- Yuanxiang Lao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Xiaohan Cui
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Hongyao Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Zhenwei Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Longpo Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Binghua Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qifei Guan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Xiaohong Pu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, China
| | - Suwen Zhao
- The iHuman Institute, Shanghai Tech University, Shanghai, China
| | - Jiapeng Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu, China
| | - Xihu Qin
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Jiangsu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
7
|
Sierra-Díaz DC, Cabrera R, Gonzalez-Vasquez LA, Angulo-Aguado M, Llinás-Caballero K, Fonseca-Mendoza DJ, Contreras-Bravo NC, Restrepo CM, Ortega-Recalde O, Morel A. Functional Analysis of BRCA1 3'UTR Variants Predisposing to Breast Cancer. Appl Clin Genet 2024; 17:57-62. [PMID: 38803352 PMCID: PMC11129763 DOI: 10.2147/tacg.s444546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Breast Cancer (BC) is the main female cancer diagnosed worldwide, and it has been described that few genes, such as BRCA1, have a high penetrance for this type of cancer. In this manuscript, we were interested in evaluating the effect of 3'UTR variants on BRCA1 expression. Patients and Methods To accomplish this objective, Whole Exome Sequencing (WES) data of 400 patients with unselected BC was used to filter variants located in the region of interest of BRCA1 gene, finding two of them (c.*36C>G and c.*369_373del). miRGate and miRanda in silico tools were used to predict microRNA (miRNA) interaction. Results The two variants (c.*36C>G, c.*369_373del) were predicted to affect miRNA interaction. After cloning of BRCA1 3'UTR into pMIR-Report vector, the construct was transfected into two BC cell lines (MDA-MB-231 and MCF-7), and the variant c.*36C>G evidenced overexpression of reporter gene luciferase, showing that the transcript was not being degraded by the miRNA in MDA-MB-231 cells. Conclusion The variant seems to protect against Triple Negative BC probably due to the expression level of miRNA in this particular cell line (MDA-MB-231). This is consistent with the clinical history of the patients who harbor BC Hormone Receptors positive (HR+).
Collapse
Affiliation(s)
- Diana Carolina Sierra-Díaz
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Rodrigo Cabrera
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Laura Alejandra Gonzalez-Vasquez
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Mariana Angulo-Aguado
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kevin Llinás-Caballero
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Nora Constanza Contreras-Bravo
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carlos Martin Restrepo
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C, Colombia
| | - Adrien Morel
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Czubala MA, Jenkins RH, Gurney M, Wallace L, Cossins B, Dennis J, Rosas M, Andrews R, Fraser D, Taylor PR. Tissue-specific transcriptional programming of macrophages controls the microRNA transcriptome targeting multiple functional pathways. J Biol Chem 2024; 300:107244. [PMID: 38556087 PMCID: PMC11067537 DOI: 10.1016/j.jbc.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.
Collapse
Affiliation(s)
- Magdalena A Czubala
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK.
| | - Robert H Jenkins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Mark Gurney
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Leah Wallace
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Benjamin Cossins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - James Dennis
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Donald Fraser
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK; Wales Kidney Research Unit, Cardiff University, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Zhang J, Zheng K, Wu Y, Zhang S, Guo A, Sui C. The experimental study of mir-99a-5p negative regulation of TLR8 receptor mediated-mediated innate immune response in rabbit knee cartilage injury. Immun Inflamm Dis 2024; 12:e1211. [PMID: 38602270 PMCID: PMC11007787 DOI: 10.1002/iid3.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Traumatic cartilage injury is an important cause of osteoarthritis (OA) and limb disability, and toll-like receptors (TLRs) mediated innate immune response has been confirmed to play a crucial role in cartilage injury. In the previous study, we found that the activation of TLR8 molecules in injured articular cartilage was more obvious than other TLRs by establishing an animal model of knee impact injury in rabbits, and the changes of TLR8 molecules could significantly affect the process of articular cartilage injury and repair. OBJECTIVE To verify how mir-99a-5p regulates TLR8 receptor mediated innate immune response to treat traumatic cartilage injury. METHODS The impact of a heavy object on the medial condyle of the rabbit's knee joint caused damage to the medial condylar cartilage. Through pathological and imaging analysis, it was demonstrated whether the establishment of an animal model of traumatic cartilage injury was successful. Establishing a cell model by virus transfection of chondrocytes to demonstrate the role of TLR8 in the innate immune response to impact cartilage injury. Through transcriptome sequencing, potential targets of TLR8, mir-99a-5p, were predicted, and basic experiments were conducted to demonstrate how they interact with innate immune responses to impact cartilage damage. RESULTS TLR8 is a receptor protein of the immune system, which is widely expressed in immune cells. In our study, we found that TLR8 expression is localized in lysosomes and endosomes. Mir-99a-5p can negatively regulate TLR8 to activate PI3K-AKT molecular pathway and aggravate cartilage damage. Inhibiting TLR8 expression can effectively reduce the incidence of articular cartilage damage. CONCLUSION Based on the results from this study, mir-99a-5p may be an effective molecular marker for predicting traumatic cartilage injury and targeting TLR8 is a novel and promising approach for the prevention or early treatment of cartilage damage.
Collapse
Affiliation(s)
- Jiebin Zhang
- Provincial Second Clinical College of Anhui Medical UniversityHefeiAnhuiChina
- Department of OrthopaedicsAnhui No. 2 Provincial People's HosipitalHefeiAnhuiChina
| | - Ke Zheng
- Provincial Second Clinical College of Anhui Medical UniversityHefeiAnhuiChina
- Department of OrthopaedicsAnhui No. 2 Provincial People's HosipitalHefeiAnhuiChina
| | - Yichao Wu
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Shengting Zhang
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ao Guo
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Cong Sui
- Department of OrthopaedicsThe First Afffliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
10
|
Duan J, Chen Z, Liang X, Chen Y, Li H, Liu K, Gui L, Wang X, Li Y, Yang J. Engineering M2-type macrophages with a metal polyphenol network for peripheral artery disease treatment. Free Radic Biol Med 2024; 213:138-149. [PMID: 38218551 DOI: 10.1016/j.freeradbiomed.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Functional cell treatment for critical limb ischemia is limited by cell viability loss and dysfunction resulting from a harmful ischemic microenvironment. Metal-polyphenol networks have emerged as novel cell delivery vehicles for protecting cells from the detrimental ischemic microenvironment and prolonging the survival rate of cells in the ischemic microenvironment. M2 macrophages are closely related to tissue repair, and they secrete anti-inflammatory factors that contribute to lesion repair. However, these cells are easily metabolized in the body with low efficiency. Herein, M2 macrophages were decorated with a metal‒polyphenol network that contains copper ions and epigallocatechin gallate (Cu-EGCG@M2) to increase cell survival and therapeutic potential. Cu-EGCG@M2 synergistically promoted angiogenesis through the inherent angiogenesis effect of M2 macrophages and copper ions. We found that Cu-EGCG@M2 increased in vitro viability and strengthened the in vivo therapeutic effect on the ischemic hindlimbs of mice, which promoted the recovery of blood and muscle regeneration, resulting in superior limb salvage. These therapeutic effects were ascribed to the increased survival rate and therapeutic period of M2 macrophages, as well as the ameliorated microenvironment at the ischemic site. Additionally, Cu-EGCG exhibited antioxidant, anti-inflammatory, and proangiogenic effects. Our findings provide a feasible option for cell-based treatment of CLI.
Collapse
Affiliation(s)
- Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China; Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin ECMO Treatment and Training Base, Artificial Cell Engineering Technology Research Center, Tianjin, 300170, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China.
| |
Collapse
|
11
|
Tonyan ZN, Barbitoff YA, Nasykhova YA, Danilova MM, Kozyulina PY, Mikhailova AA, Bulgakova OL, Vlasova ME, Golovkin NV, Glotov AS. Plasma microRNA Profiling in Type 2 Diabetes Mellitus: A Pilot Study. Int J Mol Sci 2023; 24:17406. [PMID: 38139235 PMCID: PMC10744218 DOI: 10.3390/ijms242417406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin resistance and β-cell dysfunction and leading to many micro- and macrovascular complications. In this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the same group of patients depending on body mass index and identified differential expression of miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.
Collapse
Affiliation(s)
- Ziravard N. Tonyan
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Maria M. Danilova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Polina Y. Kozyulina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Anastasiia A. Mikhailova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Olga L. Bulgakova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| | - Margarita E. Vlasova
- St. Martyr George City Hospital, 194354 St. Petersburg, Russia; (M.E.V.); (N.V.G.)
| | - Nikita V. Golovkin
- St. Martyr George City Hospital, 194354 St. Petersburg, Russia; (M.E.V.); (N.V.G.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Z.N.T.); (Y.A.B.); (Y.A.N.); (M.M.D.); (P.Y.K.); (A.A.M.); (O.L.B.)
| |
Collapse
|
12
|
Osna NA, Poluektova LY. Elucidating the role of extracellular vesicles in liver injury induced by HIV. Expert Rev Gastroenterol Hepatol 2023; 17:701-708. [PMID: 37378531 PMCID: PMC10528210 DOI: 10.1080/17474124.2023.2230867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Liver disease is known as one of the leading co-morbidities in HIV infection, with 18% of non-AIDS-related mortality. There is constant crosstalk between liver parenchymal (hepatocytes) and non-parenchymal cells (macrophages, hepatic stellate cells, endothelial cells), and extracellular vesicles (EVs) are one of the most important ways of cell-to-cell communication. AREAS COVERED We briefly cover the role of EVs in liver disease as well as what is known about the role of small EVs, exosomes, in HIV-induced liver disease potentiated by alcohol as one of the second hits. We also touch large EVs, apoptotic bodies (ABs), in HIV-induced liver injury, the mechanisms of their formation and potentiation by second hits, and their role in the progression of liver disease. EXPERT OPINION/COMMENTARY Liver cells are an important source of EVs, which may provide the connection between different organs via secretion into the circulating blood (exosomes) or serve for the communication between the cells within the organ (ABs). Understanding the role of liver EVs in HIV infection and the involvement of second hits in EV generation would provide a new angle for the analysis of HIV-related liver disease pathogenesis and progression to end-stage liver disease.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, the University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, the University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
13
|
Paneru BD, Hill DA. The role of extracellular vesicle-derived miRNAs in adipose tissue function and metabolic health. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00027. [PMID: 37501663 PMCID: PMC10371064 DOI: 10.1097/in9.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Extracellular vesicles (EVs) are nanometer size lipid particles that are released from virtually every cell type. Recent studies have shown that miRNAs carried by EVs play important roles in intercellular and interorgan communication. In the context of obesity and insulin resistance, EV-derived miRNAs functionally bridge major metabolic organs, including the adipose tissue, skeletal muscle, liver, and pancreas, to regulate insulin secretion and signaling. As a result, many of these EV-derived miRNAs have been proposed as potential disease biomarkers and/or therapeutic agents. However, the field's knowledge of EV miRNA-mediated regulation of mammalian metabolism is still in its infancy. Here, we review the evidence indicating that EV-derived miRNAs provide cell-to-cell and organ-to-organ communication to support metabolic health, highlight the potential medical relevance of these discoveries, and discuss the most important knowledge gaps and future directions for this field.
Collapse
Affiliation(s)
- Bam D. Paneru
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David A. Hill
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Institute for Immunology, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Zhang D, Liu Y, Ma J, Xu Z, Duan C, Wang Y, Li X, Han J, Zhuang R. Competitive binding of CD226/TIGIT with PVR regulates macrophage polarization and is involved in vascularized skin graft rejection. Am J Transplant 2023:S1600-6135(23)00404-5. [PMID: 37054890 DOI: 10.1016/j.ajt.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
End-stage organ failure often requires solid organ transplantation. Nevertheless, transplant rejection remains an unresolved issue. The induction of donor-specific tolerance is the ultimate goal in transplantation research. Here, an allograft vascularized skin rejection model using BALB/c-C57/BL6 mice was established to evaluate the regulation of the poliovirus receptor signaling pathway via CD226 knockout (KO) or TIGIT-Fc recombinant protein treatment. In the TIGIT-Fc-treated and CD226KO groups, graft survival time was significantly prolonged, with a Treg cell proportion increase and M2-type macrophage polarization. Donor-reactive recipient T cells became hyporesponsive while responding normally after a third-party antigen challenge. In both groups, serum IL-1β, IL-6, IL-12p70, IL-17A, TNF-α, IFN-γ, and monocyte chemoattractant protein-1 levels decreased, and the IL-10 level increased. In vitro, M2 markers, such as Arg1 and IL-10, were markedly increased by TIGIT-Fc, whereas iNOS, IL-1β, IL-6, IL-12p70, TNF-α, and IFN-γ levels decreased. CD226-Fc had the opposite effect. TIGIT suppressed Th1 and Th17 differentiation by inhibiting macrophage SHP-1 phosphorylation and enhanced ERK1/2-MSK1 phosphorylation and nuclear translocation of CREB. In conclusion, CD226 and TIGIT competitively bind to PVR with activating and inhibitory functions, respectively. Mechanistically, TIGIT promotes IL-10 transcription from macrophages by activating the ERK1/2-MSK1-CREB pathway and enhancing M2-type polarization. CD226/TIGIT-PVR are crucial regulatory molecules of allograft rejection.
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
15
|
Pandey AR, Singh SP, Joshi P, Srivastav KS, Srivastava S, Yadav K, Chandra R, Bisen AC, Agrawal S, Sanap SN, Bhatta RS, Tripathi R, Barthwal MK, Sashidhara KV. Design, synthesis and evaluation of novel pyrrole-hydroxybutenolide hybrids as promising antiplasmodial and anti-inflammatory agents. Eur J Med Chem 2023; 254:115340. [PMID: 37054559 DOI: 10.1016/j.ejmech.2023.115340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
In the pursuance of novel scaffolds with promising antiplasmodial and anti-inflammatory activity, a series of twenty-one compounds embraced with most promising penta-substituted pyrrole and biodynamic hydroxybutenolide in single skeleton was designed and synthesized. These pyrrole-hydroxybutenolide hybrids were evaluated against Plasmodium falciparum parasite. Four hybrids 5b, 5d, 5t and 5u exhibited good activity with IC50 of 0.60, 0.88, 0.97 and 0.96 μM for chloroquine sensitive (Pf3D7) strain and 3.92, 4.31, 4.21 and 1.67 μM for chloroquine resistant (PfK1) strain, respectively. In vivo efficacy of 5b, 5d, 5t and 5u was studied against the P. yoelii nigeriensis N67 (a chloroquine-resistant) parasite in Swiss mice at a dose of 100 mg/kg/day for 4 days via oral route. 5u was found to show maximum 100% parasite inhibition with considerably increased mean survival time. Simultaneously, the series of compounds was screened for anti-inflammatory potential. In preliminary assays, nine compounds showed more than 85% inhibition in hu-TNFα cytokine levels in LPS stimulated THP-1 monocytes and seven compounds showed more than 40% decrease in fold induction in reporter gene activity analyzed via Luciferase assay. 5p and 5t were found to be most promising amongst the series, thus were taken up for further in vivo studies. Wherein, mice pre-treated with them showed a dose dependent inhibition in carrageenan induced paw swelling. Moreover, the results of in vitro and in vivo pharmacokinetic parameters indicated that the synthesized pyrrole-hydroxybutenolide conjugates abide by the required criteria for the development of orally active drug and thus this scaffold can be used as pharmacologically active framework that should be considered for the development of potential antiplasmodial and anti-inflammatory agents.
Collapse
Affiliation(s)
- Alka Raj Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Suriya Pratap Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Prince Joshi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Kunwar Satyadeep Srivastav
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Smriti Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Kanchan Yadav
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Ramesh Chandra
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Renu Tripathi
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Manoj Kumar Barthwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P, India.
| |
Collapse
|
16
|
Yu W, Wang S, Wang Y, Chen H, Nie H, Liu L, Zou X, Gong Q, Zheng B. MicroRNA: role in macrophage polarization and the pathogenesis of the liver fibrosis. Front Immunol 2023; 14:1147710. [PMID: 37138859 PMCID: PMC10149999 DOI: 10.3389/fimmu.2023.1147710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Macrophages, as central components of innate immunity, feature significant heterogeneity. Numerus studies have revealed the pivotal roles of macrophages in the pathogenesis of liver fibrosis induced by various factors. Hepatic macrophages function to trigger inflammation in response to injury. They induce liver fibrosis by activating hepatic stellate cells (HSCs), and then inflammation and fibrosis are alleviated by the degradation of the extracellular matrix and release of anti-inflammatory cytokines. MicroRNAs (miRNAs), a class of small non-coding endogenous RNA molecules that regulate gene expression through translation repression or mRNA degradation, have distinct roles in modulating macrophage activation, polarization, tissue infiltration, and inflammation regression. Considering the complex etiology and pathogenesis of liver diseases, the role and mechanism of miRNAs and macrophages in liver fibrosis need to be further clarified. We first summarized the origin, phenotypes and functions of hepatic macrophages, then clarified the role of miRNAs in the polarization of macrophages. Finally, we comprehensively discussed the role of miRNAs and macrophages in the pathogenesis of liver fibrotic disease. Understanding the mechanism of hepatic macrophage heterogeneity in various types of liver fibrosis and the role of miRNAs on macrophage polarization provides a useful reference for further research on miRNA-mediated macrophage polarization in liver fibrosis, and also contributes to the development of new therapies targeting miRNA and macrophage subsets for liver fibrosis.
Collapse
Affiliation(s)
- Wen Yu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Shu Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yangyang Wang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Lian Liu
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaoting Zou
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
- *Correspondence: Xiaoting Zou, ; Quan Gong, ; Bing Zheng,
| |
Collapse
|
17
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
18
|
Rakib A, Kiran S, Mandal M, Singh UP. MicroRNAs: a crossroad that connects obesity to immunity and aging. Immun Ageing 2022; 19:64. [PMID: 36517853 PMCID: PMC9749272 DOI: 10.1186/s12979-022-00320-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Obesity is characterized by an elevated amount of fat and energy storage in the adipose tissue (AT) and is believed to be the root cause of many metabolic diseases (MDs). Obesity is associated with low-grade chronic inflammation in AT. Like obesity, chronic inflammation and MDs are prevalent in the elderly. The resident immune microenvironment is not only responsible for maintaining AT homeostasis but also plays a crucial role in stemming obesity and related MDs. Mounting evidence suggests that obesity promotes activation in resident T cells and macrophages. Additionally, inflammatory subsets of T cells and macrophages accumulated into the AT in combination with other immune cells maintain low-grade chronic inflammation. microRNAs (miRs) are small non-coding RNAs and a crucial contributing factor in maintaining immune response and obesity in AT. AT resident T cells, macrophages and adipocytes secrete various miRs and communicate with other cells to create a potential effect in metabolic organ crosstalk. AT resident macrophages and T cells-associated miRs have a prominent role in regulating obesity by targeting several signaling pathways. Further, miRs also emerged as important regulators of cellular senescence and aging. To this end, a clear link between miRs and longevity has been demonstrated that implicates their role in regulating lifespan and the aging process. Hence, AT and circulating miRs can be used as diagnostic and therapeutic tools for obesity and related disorders. In this review, we discuss how miRs function as biomarkers and impact obesity, chronic inflammation, and aging.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
19
|
Ruan F, Chen J, Yang J, Wang G. MILD TRAUMATIC BRAIN INJURY ATTENUATES PNEUMONIA-INDUCED LUNG INJURY BY MODULATIONS OF ALVEOLAR MACROPHAGE BACTERICIDAL ACTIVITY AND M1 POLARIZATION. Shock 2022; 58:400-407. [PMID: 36166827 PMCID: PMC9712263 DOI: 10.1097/shk.0000000000001989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Traumatic brain injury is one of the main causes of death and disability worldwide, and results in multisystem complications. However, the mechanism of mild traumatic brain injury (MTBI) on lung injury remains unclear. In this study, we used a murine model of MTBI and pneumonia ( Pseudomonas aeruginosa ;) to explore the relationship between these conditions and the underlying mechanism. Methods: Mice (n = 104) were divided into control, MTBI, pneumonia, and MTBI + pneumonia groups. MTBI was induced by the weight-drop method. Pneumonia was induced by intratracheal injection with P. aeruginosa Xen5 strain. Animals were killed 24 h after bacterial challenging. Histological, cellular, and molecular indices of brain and lung injury were assessed using various methods. Results: Mice in both the MTBI and pneumonia groups had more Fluoro-Jade C-positive neurons than did the controls ( P < 0.01), but mice in the MTBI + pneumonia group had fewer Fluoro-Jade C-positive cells than did the pneumonia group ( P < 0.01). The MTBI + pneumonia mice showed decreased bacterial load ( P < 0.05), reduced lung injury score and pulmonary permeability ( P < 0.01), less inflammatory cells, and lower levels of proinflammatory cytokines (TNF-α and IL-1β; P < 0.01) when compared with the pneumonia group. Molecular analysis indicated lower levels of phosphorylated nuclear factor-κB in the lung of MTBI + pneumonia mice compared with the pneumonia group ( P < 0.01). Furthermore, alveolar macrophages from MTBI mice exhibited enhanced bactericidal capacity compared with those from controls ( P < 0.01). Moreover, MTBI + pneumonia mice exhibited less CD86-positive M1 macrophages compared with the pneumonia group ( P < 0.01). Conclusions: MTBI attenuates pneumonia-induced acute lung injury through the modulation of alveolar macrophage bactericidal capacity and M1 polarization in bacterial pneumonia model.
Collapse
Affiliation(s)
- Feng Ruan
- Department of Emergency Medicine, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| | - Jing Chen
- Department of Ophthalmology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Jianxin Yang
- Department of Emergency Medicine, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| |
Collapse
|
20
|
Wang Y, Zheng X, Luo D, Xu W, Zhou X. MiR-99a alleviates apoptosis and extracellular matrix degradation in experimentally induced spine osteoarthritis by targeting FZD8. BMC Musculoskelet Disord 2022; 23:872. [PMID: 36127685 PMCID: PMC9487131 DOI: 10.1186/s12891-022-05822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Our previous study identified miR-99a as a negative regulator of early chondrogenic differentiation. However, the functional role of miR-99a in the pathogenesis of osteoarthritis (OA) remains unclear. Methods We examined the levels of miR-99a and Frizzled 8 (FZD8) expression in tissue specimens. Human SW1353 chondrosarcoma cells were stimulated with IL-6 and TNF-α to construct an in vitro OA environment. A luciferase reporter assay was performed to analyze the relationship between miR-99a and FZD8. CCK-8 assays, flow cytometry, and ELISA assays were used to assess cell viability, apoptosis, and inflammatory molecule expression, respectively. Percutaneous intra-spinal injections of papain mixed solution were performed to create an OA Sprague–Dawley rat model. Alcian Blue staining, Safranin O Fast Green staining, and Toluidine Blue O staining were performed to detect the degrees of cartilage injury. Results MiR-99a expression was downregulated in the severe spine OA patients when compared with the mild spine OA patients, and was also decreased in the experimentally induced in vitro OA environment when compared with the control environment. Functionally, overexpression of miR-99a significantly suppressed cell apoptosis and extracellular matrix degradation stimulated by IL-6 and TNF-α. FZD8 was identified as a target gene of miR-99a. Furthermore, the suppressive effects of miR-99a on cell injury induced by IL-6 and TNF-α were reversed by FZD8 overexpression. Moreover, the levels of miR-99a expression were also reduced in the induced OA model rats, and miR-99a agomir injection relieved the cartilage damage. At the molecular level, miR-99a overexpression downregulated the levels of MMP13, β-catenin, Bax, and caspase-3 protein expression and upregulated the levels of COL2A1 and Bcl-2 protein expression in the in vitro OA-like chondrocyte model and also in the experimental OA model rats. Conclusions Our data showed that miR-99a alleviated apoptosis and extracellular matrix degradation by targeting FZD8, and thereby suppressed the development and progression of experimentally induced spine osteoarthritis. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05822-8.
Collapse
Affiliation(s)
- Yeyang Wang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China.,The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Dixin Luo
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China
| | - Wangyang Xu
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China
| | - Xiaozhong Zhou
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, China. .,Guangdong Medical University, Zhanjiang, Guangdong Province, China.
| |
Collapse
|
21
|
Yan H, Ma X, Mi Z, He Z, Rong P. Extracellular Polysaccharide from Rhizopus nigricans Inhibits Hepatocellular Carcinoma via miR-494-3p/TRIM36 Axis and Cyclin E Ubiquitination. J Clin Transl Hepatol 2022; 10:608-619. [PMID: 36062277 PMCID: PMC9396321 DOI: 10.14218/jcth.2021.00301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS This study was designed to uncover the mechanism for extracellular polysaccharide (EPS1-1)-mediated effects on hepatocellular carcinoma (HCC) development. METHODS HCC cells were treated with EPS1-1, miR-494-3p mimic, sh-TRIM36, and pcDNA3.1-TRIM36. The levels of miR-494-3p and TRIM36 were measured in normal hepatocytes, THLE-2, and HepG2 and HuH7HCC cell lines, along with the protein expression of cyclin D/E and p21. The proliferation, cell cycle, and apoptosis of HCC cells were assayed. The interactions between miR-494-3p and TRIM36, and between TRIM36 and cyclin E were assessed. Finally, the expression and localization of TRIM36 and cyclin E were monitored, and tumor apoptosis was detected, in tumor xenograft model. RESULTS EPS1-1 suppressed HCC cell proliferation and cyclin D/E expression and promoted apoptosis and p21 expression. miR-494-3p was upregulated and TRIM36 was downregulated in HCC cells. Transfection with miR-494-3p mimic or sh-TRIM36 facilitated HCC cell proliferation and the expression of cyclin D/E protein but they inhibited apoptosis and p21 expression in the presence of EPS1-1. Overexpression of TRIM36 further consolidated EPS1-1-mediated inhibition of HCC proliferation, cyclin D/E, and the promotion of apoptosis and p21 expression. Those effects were reversed by miR-494-3p overexpression. TRIM36 was a target gene of miR-494-3p, and TRIM36 induced cyclin E ubiquitination. EPS1-1 suppressed cyclin E expression, promoted TRIM36 expression and tumor apoptosis, all of which were abrogated by increasing the expression of miR-494-3p in vivo. CONCLUSIONS EPS1-1 protected against HCC by limiting its proliferation and survival through the miR-494-3p/TRIM36 axis and by inducing cyclin E ubiquitination.
Collapse
Affiliation(s)
| | | | | | | | - Pengfei Rong
- Correspondence to: Pengfei Rong, Department of Radiology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China. ORCID: https://orcid.org/0000-0001-5473-1982. Tel: +86-18684706350, Fax: +86-731-88618411, E-mail:
| |
Collapse
|
22
|
miR-99a-5p: A Potential New Therapy for Atherosclerosis by Targeting mTOR and Then Inhibiting NLRP3 Inflammasome Activation and Promoting Macrophage Autophagy. DISEASE MARKERS 2022; 2022:7172583. [PMID: 35968506 PMCID: PMC9374553 DOI: 10.1155/2022/7172583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Objective MicroRNAs have been revealed to be involved in the development of atherosclerosis. The present study is aimed at exploring the potential of miR-99a-5p as a therapy for atherosclerosis. We suspected that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy via constraining mTOR, therefore, alleviating atherosclerosis. Methods The cell viability in ox-LDL-induced THP-1 macrophages was assessed by CCK-8 assay. Bioinformatic analysis was used to predict the target genes of miR-99a-5p. The binding between miR-99a-5p and mTOR was confirmed by luciferase reporter assay. In vivo, a high-fat-diet-induced atherosclerosis model was established in apolipoprotein E knockout mice. Hematoxylin-eosin, oil red O, and Sirius red staining were performed for the determination of atherosclerotic lesions. MTOR and associated protein levels were detected by Western blot analysis. Results miR-99a-5p inhibited NLRP3 inflammasome activation and promoted macrophage autophagy by targeting mTOR. Enforced miR-99a-5p significantly reduced the levels of inflammasome complex and inflammatory cytokines. Furthermore, miR-99a-5p overexpression inhibited the expression of mTOR, whereas mTOR overexpression reversed the trend of the above behaviors. In vivo, the specific overexpression of miR-99a-5p significantly reduced atherosclerotic lesions, accompanied by a significant downregulation of autophagy marker CD68 protein expression. Conclusion We demonstrated for the first time that miR-99a-5p may be considered a therapy for atherosclerosis. The present study has revealed that miR-99a-5p might inhibit NLRP3 inflammasome activation and promote macrophage autophagy by targeting mTOR, therefore, alleviating atherosclerosis.
Collapse
|
23
|
Heianza Y, Krohn K, Xue Q, Yaskolka Meir A, Ziesche S, Ceglarek U, Blüher M, Keller M, Kovacs P, Shai I, Qi L. Changes in circulating microRNAs-99/100 and reductions of visceral and ectopic fat depots in response to lifestyle interventions: the CENTRAL trial. Am J Clin Nutr 2022; 116:165-172. [PMID: 35348584 PMCID: PMC9257465 DOI: 10.1093/ajcn/nqac070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short noncoding RNAs and important posttranscriptional regulators of gene expression. Adipose tissue is a major source of circulating miRNAs; adipose-related circulating miRNAs may regulate body fat distribution and glucose metabolism. OBJECTIVES We investigated how changes in adipose-related circulating microRNAs-99/100 (miR-99/100) in response to lifestyle interventions were associated with improved body fat distribution and reductions of diabetogenic ectopic fat depots among adults with abdominal obesity. METHODS This study included adults with abdominal obesity from an 18-mo diet and physical activity intervention trial. Circulating miR-99a-5p, miR-99b-5p, and miR-100-5p were measured at baseline and 18 mo; changes in these miRNAs in response to the interventions were evaluated. The primary outcomes were changes in abdominal adipose tissue [visceral (VAT), deep subcutaneous (DSAT), and superficial subcutaneous (SSAT) adipose tissue; cm2] (n = 144). The secondary outcomes were changes in ectopic fat accumulation in the liver (n = 141) and pancreas (n = 143). RESULTS Greater decreases in miR-100-5p were associated with more reductions of VAT (β ± SE per 1-SD decrease: -9.63 ± 3.13 cm2; P = 0.0025), DSAT (β ± SE: -5.48 ± 2.36 cm2; P = 0.0218), SSAT (β ± SE: -4.64 ± 1.68 cm2; P = 0.0067), and intrahepatic fat percentage (β ± SE: -1.54% ± 0.49%; P = 0.0023) after the interventions. Similarly, participants with greater decrease in miR-99a-5p had larger 18-mo reductions of VAT (β ± SE: -10.12 ± 3.31 cm2 per 1-SD decrease; P = 0.0027) and intrahepatic fat percentage (β ± SE: -1.28% ± 0.52%; P = 0.015). Further, decreases in circulating miR-99b-5p (β ± SE: per 1-SD decrease: -0.44% ± 0.21%; P = 0.038) and miR-100-5p (β ± SE: -0.50% ± 0.23%; P = 0.033) were associated with a decrease in pancreatic fat percentage, as well as improved glucose metabolism and insulin secretion at 18 mo. CONCLUSIONS Decreases in circulating miR-99-5p/100-5p expression induced by lifestyle interventions were related to improved body fat distribution and ectopic fat accumulation. Our study suggests that changes in circulating adipose-related miR-99-5p/100-5p may be linked to reducing diabetogenic fat depots in patients with abdominal obesity.This trial was registered at clinicaltrials.gov as NCT01530724.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Knut Krohn
- Core Unit DNA Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefanie Ziesche
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Maria Keller
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
24
|
Narenmandula, Hongmei, Ding X, Li K, Hashentuya, Yang D, Wendurige, Yang R, Yang D, Tana, Wang H, Eerdunduleng, Tegexibaiyin, Wang C, Bao X, Menggenduxi. The Traditional Mongolian Medicine Qiqirigan-8 Effects on Lipid Metabolism and Inflammation in Obesity: Pharmacodynamic Evaluation and Relevant Metabolites. Front Pharmacol 2022; 13:863532. [PMID: 35784695 PMCID: PMC9240606 DOI: 10.3389/fphar.2022.863532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Traditional Mongolian Medicine Qiqirigan-8 (MMQ-8) is a Chinese botanical drug with effective pharmacological properties in obesity. However, the pharmacological mechanism of MMQ-8 remains unclear. This study aimed to determine the active metabolites of MMQ-8 and its therapeutic effects on lipid metabolism and inflammation. Methods: The active metabolites of MMQ-8 were identified by ultrahigh-performance liquid chromatograph Q extractive mass spectrometry (UHPLC-QE-MS) assay and network analysis. An obesity rat model induced by high-fat diet was used in the study. Serum levels of lipids and inflammatory factors were detected using biochemical analysis and enzyme-linked immunosorbent assay (ELISA). Pathological analysis of liver tissues and arteries was conducted with hematoxylin and eosin (H&E) staining and immunohistochemistry. Protein expression of the tumor necrosis factor (TNF) signaling pathway was investigated by Western-blot. Simultaneously, bone marrow cells were used for RNA sequencing and relevant results were validated by cell culture and quantitative real-time polymerase chain reaction (RT-qPCR). Results: We identified 69 active metabolites and 551 target genes of MMQ-8. Of these, there are 65 active metabolites and 225 target genes closely related to obesity and inflammation. In vivo, we observed that MMQ-8 had general decreasing effects on body weight, white adipose tissue weight, and serum lipids. MMQ-8 treatment notably decreased the liver function markers and hepatic steatosis, and significantly decreased inflammation. In serum, it notably decreased TNF-α, interleukin (IL)-6, and inducible nitric oxide synthase (INOS), while elevating IL-10 levels. MMQ-8 treatment also significantly inhibited proteins phosphorylation of nuclear factor-kappa B inhibitor alpha (IκBα), mitogen-activated protein kinase (p38), extracellular regulated kinase 1/2(ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and decreased vascular endothelium damage and macrophage infiltration and polarization to M1. These findings coincide with the RNA-sequencing data of bone marrow cells and results of in vitro experiments. Conclusion: We determined the pharmacological actions and relevant metabolites of MMQ-8 in obesity for the first time. Our study revealed MMQ-8 can optimize lipid metabolism and reduce chronic inflammation in obesity. However, more in-depth research is needed, for example, to understand the principle of compound compatibility and the inhibition effects on hepatic steatosis, T cell differentiation, and inflammatory signal transduction.
Collapse
|
25
|
Phu TA, Ng M, Vu NK, Bouchareychas L, Raffai RL. IL-4 polarized human macrophage exosomes control cardiometabolic inflammation and diabetes in obesity. Mol Ther 2022; 30:2274-2297. [PMID: 35292359 PMCID: PMC9171286 DOI: 10.1016/j.ymthe.2022.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiometabolic disease is an increasing cause of morbidity and death in society. While M1-like macrophages contribute to metabolic inflammation and insulin resistance, those polarized to an M2-like phenotype exert protective properties. Building on our observations reporting M2-like macrophage exosomes in atherosclerosis control, we tested whether they could serve to control inflammation in the liver and adipose tissue of obese mice. In thinking of clinical translation, we studied human THP-1 macrophages exposed to interleukin (IL)-4 as a source of exosomes (THP1-IL4-exo). Our findings show that THP1-IL4-exo polarized primary macrophages to an anti-inflammatory phenotype and reprogramed their energy metabolism by increasing levels of microRNA-21/99a/146b/378a (miR-21/99a/146b/378a) while reducing miR-33. This increased lipophagy, mitochondrial activity, and oxidative phosphorylation (OXPHOS). THP1-IL4-exo exerted a similar regulation of these miRs in cultured 3T3-L1 adipocytes. This enhanced insulin-dependent glucose uptake through increased peroxisome proliferator activated receptor gamma (PPARγ)-driven expression of GLUT4. It also increased levels of UCP1 and OXPHOS activity, which promoted lipophagy, mitochondrial activity, and beiging of 3T3-L1 adipocytes. Intraperitoneal infusions of THP1-IL4-exo into obese wild-type and Ldlr-/- mice fed a Western high-fat diet reduced hematopoiesis and myelopoiesis, and favorably reprogramed inflammatory signaling and metabolism in circulating Ly6Chi monocytes. This also reduced leukocyte numbers and inflammatory activity in the circulation, aorta, adipose tissue, and the liver. Such treatments reduced hepatic steatosis and increased the beiging of white adipose tissue as revealed by increased UCP1 expression and OXPHOS activity that normalized blood insulin levels and improved glucose tolerance. Our findings support THP1-IL4-exo as a therapeutic approach to control cardiometabolic disease and diabetes in obesity.
Collapse
Affiliation(s)
- Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Laura Bouchareychas
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA; Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Maurya M, Jaiswal A, Gupta S, Ali W, Gaikwad AN, Dikshit M, Barthwal MK. Galectin-3 S-glutathionylation regulates its effect on adipocyte insulin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119234. [PMID: 35143900 DOI: 10.1016/j.bbamcr.2022.119234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Protein-S-glutathionylation promotes redox signaling in physiological and oxidative distress conditions. Galectin-3 (Gal-3) promotes insulin resistance by down-regulating adipocyte insulin signaling, however, its S-glutathionylation and significance is not known. In this context, we report reversible S-glutathionylation of Gal-3. Site-directed mutagenesis established Gal-3 Cys187 as the putative S-glutathionylation site. Glutathionylated Gal-3 prevents Gal-3(WT)-Insulin Receptor interaction and facilitates insulin-induced murine adipocyte p-IRS1(tyr895) and p-AKT(ser473) signaling and glucose uptake in a Gal-3 Cys187 glutathionylation dependent manner in murine adipocytes, as assessed by Western blotting and 2-NBDG uptake assay respectively. Pre-glutathionylated Gal-3 at Cys187 resisted irreversible oxidation by H2O2. M2 macrophages showed enhanced Gal-3 S-glutathionylation when compared to M1 phenotype. Serum and stromal vascular fraction (SVF) isolated from control mice showed increased Gal-3 S-glutathionylation as compared to db/db mice. A significant increase in Gal-3 S-glutathionylation was observed in metformin-treated db/db mice when compared to db/db mice alone. Similar to murine, enhanced Gal-3 S-glutathionylation is observed in primary human monocyte derived M2 macrophages when compared to the M1 macrophage phenotype and Gal-3 regulates primary human adipocyte insulin signaling in a glutathionylation dependent manner. Collectively, we identified Gal-3 S-glutathionylation as a protective phenomenon, which relieves its inhibitory effect on adipocyte insulin signaling.
Collapse
Affiliation(s)
- Mohita Maurya
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anant Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanchita Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Wahid Ali
- King George's Medical University, Lucknow 226003, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
27
|
Osna NA, Eguchi A, Feldstein AE, Tsukamoto H, Dagur RS, Ganesan M, New-Aaron M, Arumugam MK, Chava S, Ribeiro M, Szabo G, Mueller S, Wang S, Chen C, Weinman SA, Kharbanda KK. Cell-to-Cell Communications in Alcohol-Associated Liver Disease. Front Physiol 2022; 13:831004. [PMID: 35264978 PMCID: PMC8899290 DOI: 10.3389/fphys.2022.831004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
This review covers some important new aspects of the alcohol-induced communications between liver parenchymal and non-parenchymal cells leading to liver injury development. The information exchange between various cell types may promote end-stage liver disease progression and involves multiple mechanisms, such as direct cell-to-cell interactions, extracellular vesicles (EVs) or chemokines, cytokines, and growth factors contained in extracellular fluids/cell culture supernatants. Here, we highlighted the role of EVs derived from alcohol-exposed hepatocytes (HCs) in activation of non-parenchymal cells, liver macrophages (LM), and hepatic stellate cells (HSC). The review also concentrates on EV-mediated crosstalk between liver parenchymal and non-parenchymal cells in the settings of HIV- and alcohol co-exposure. In addition, we overviewed the literature on the crosstalk between cell death pathways and inflammasome activation in alcohol-activated HCs and macrophages. Furthermore, we covered highly clinically relevant studies on the role of non-inflammatory factors, sinusoidal pressure (SP), and hepatic arterialization in alcohol-induced hepatic fibrogenesis. We strongly believe that the review will disclose major mechanisms of cell-to-cell communications pertained to alcohol-induced liver injury progression and will identify therapeutically important targets, which can be used for alcohol-associated liver disease (ALD) prevention.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
- Greater Los Angeles VA HealthCare System, Los Angeles, CA, United States
| | - Raghubendra S. Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Moses New-Aaron
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Srinivas Chava
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Marcelle Ribeiro
- Harvard Medical School and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Gyongyi Szabo
- Harvard Medical School and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Sebastian Mueller
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Shijin Wang
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
28
|
Wang R, Liu Y, Jing L. MiRNA-99a alleviates inflammation and oxidative stress in lipopolysaccharide-stimulated PC-12 cells and rats post spinal cord injury. Bioengineered 2022; 13:4248-4259. [PMID: 35135443 PMCID: PMC8974123 DOI: 10.1080/21655979.2022.2031386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Spinal cord injury (SCI) is caused by spinal fracture after the displacement of the spine or broken bone fragments protruding into the spinal canal, resulting in different degrees of injury to the spinal cord or spinal nerves. Expression levels of miR-99a and nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) in cerebrospinal fluid of SCI patients were analyzed. Rat adrenal gland pheochromocytoma cell line PC-12 were stimulated with lipopolysaccharide (LPS) to mimic the in vitro environment of SCI. A rat mode of SCI was established by laminectomy. Reactive oxygen species (ROS) levels were measured by 2’,7’-Dichlorodihydrofluorescein diacetate staining assay. Western blot was conducted to evaluate the expression levels of apoptotic indexes and proinflammatory cytokines. The interaction between miR-99a and NOX4 was verified by dual-luciferase reporter assay. The expression level of miR-99a was reduced while NOX4 expression was upregulated in cerebrospinal fluid of SCI patients and LPS-treated PC-12 cells. LPS impeded cell viability and promoted inflammation, apoptosis and ROS levels of PC-12 cells. Overexpression of miR-99a significantly promoted cell viability and reduced inflammation, apoptosis and oxidative stress in LPS-stimulated PC-12 cells. Dual-luciferase reporter assays verified that NOX4 was a target of miR-99a. Moreover, the expression of NOX4 was reduced in PC-12 cells after transfection with miR-99a mimic. Overexpression of NOX4 partly abolished the protective effect of miR-99a in LPS-treated PC-12 cells. To sum up, miR-99a suppresses NOX4 expression to relieve the LPS-induced inflammation, apoptosis and the progression of oxidative stress in SCI.
Collapse
Affiliation(s)
- Ruihong Wang
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Yang Liu
- Department of Spine Surgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Li Jing
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
29
|
Heo J, Kang H. Exosome-Based Treatment for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23021002. [PMID: 35055187 PMCID: PMC8778342 DOI: 10.3390/ijms23021002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which lipids accumulate on the walls of blood vessels, thickening and clogging these vessels. It is well known that cell-to-cell communication is involved in the pathogenesis of atherosclerosis. Exosomes are extracellular vesicles that deliver various substances (e.g., RNA, DNA, and proteins) from the donor cell to the recipient cell and that play an important role in intercellular communication. Atherosclerosis can be either induced or inhibited through cell-to-cell communication using exosomes. An understanding of the function of exosomes as therapeutic tools and in the pathogenesis of atherosclerosis is necessary to develop new atherosclerosis therapies. In this review, we summarize the studies on the regulation of atherosclerosis through exosomes derived from multiple cells as well as research on exosome-based atherosclerosis treatment.
Collapse
Affiliation(s)
- Jeongyeon Heo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
30
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
32
|
Kohli H, Childs B, Sullivan TB, Shevtsov A, Burks E, Kalantzakos T, Rieger-Christ K, Vanni AJ. Differential expression of miRNAs involved in biological processes responsible for inflammation and immune response in lichen sclerosus urethral stricture disease. PLoS One 2021; 16:e0261505. [PMID: 34910765 PMCID: PMC8673646 DOI: 10.1371/journal.pone.0261505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/05/2021] [Indexed: 11/27/2022] Open
Abstract
Purpose To better understand the pathophysiology of lichen sclerosus (LS) urethral stricture disease (USD), we aimed to investigate expression profiles of microRNAs (miRNAs) in tissue samples from men undergoing urethroplasty. Methods Urethral stricture tissue was collected from 2005–2020. Histologic features diagnostic of LS were the basis of pathologic evaluation. Foci of areas diagnostic for LS or non-LS strictures were chosen for RNA evaluation. In an initial screening analysis, 13 LS urethral strictures and 13 non-LS strictures were profiled via miRNA RT-qPCR arrays for 752 unique miRNA. A validation analysis of 23 additional samples (9 LS and 14 non-LS) was performed for 15 miRNAs. Statistical analyses were performed using SPSS v25. Gene Ontology (GO) analysis was performed using DIANA-mirPath v. 3.0. Results In the screening analysis 143 miRNAs were detected for all samples. 27 were differentially expressed between the groups (false discovery p-value <0.01). 15 of these miRNAs individually demonstrated an area under the curve (AUC)>0.90 for distinguishing between between LS and non-LS strictures. 11-fold upregulation of MiR-155-5p specifically was found in LS vs. non-LS strictures (p<0.001, AUC = 1.0). In the validation analysis, 13 of the 15 miRNAs tested were confirmed to have differential expression (false discovery p-value <0.10). Conclusions To our knowledge this is the first study evaluating miRNA expression profiles in LS and non-LS USD. We identified several miRNAs that are differentially expressed in USD caused by LS vs other etiologies, which could potentially serve as biomarkers of LS USD. The top eight differentially expressed miRNAs have been linked to immune response processes as well as involvement in wound healing, primarily angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Harjivan Kohli
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Brandon Childs
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Travis B. Sullivan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Artem Shevtsov
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Eric Burks
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas Kalantzakos
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Kimberly Rieger-Christ
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
| | - Alex J. Vanni
- Department of Urology, Lahey Hospital & Medical Center, Burlington, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Gu Y, Zhou H, Yu H, Yang W, Wang B, Qian F, Cheng Y, He S, Zhao X, Zhu L, Zhang Y, Jin M, Lu E. miR-99a regulates CD4 + T cell differentiation and attenuates experimental autoimmune encephalomyelitis by mTOR-mediated glycolysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1173-1185. [PMID: 34820151 PMCID: PMC8598972 DOI: 10.1016/j.omtn.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Multiple microRNAs exhibit diverse functions to regulate inflammatory and autoimmune diseases. MicroRNA-99a (miR-99a) has been shown to be involved in adipose tissue inflammation and to be downregulated in the inflammatory lesions of autoimmune diseases rheumatoid arthritis and systemic lupus erythematosus. In this study, we found that miR-99a was downregulated in CD4+ T cells from experimental autoimmune encephalomyelitis (EAE) mice, an animal model of multiple sclerosis. Overexpression of miR-99a alleviated EAE development by promoting regulator T cells and inhibiting T helper type 1 (Th1) cell differentiation. Bioinformatics and functional analyses further revealed that the anti-inflammatory effects of miR-99a was attributable to its role in negatively regulating glycolysis reprogramming of CD4+ T cells by targeting the mTOR pathway. Additionally, miR-99a expression was induced by transforming growth factor β (TGF-β) to regulate CD4+ T cell glycolysis and differentiation. Taken together, our results characterize a pivotal role of miR-99a in regulating CD4+ T cell differentiation and glycolysis reprogramming during EAE development, which may indicate that miR-99a is a promising therapeutic target for the amelioration of multiple sclerosis and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong Zhou
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongshuang Yu
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wanlin Yang
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bei Wang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fengtao Qian
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiji Cheng
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shan He
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaonan Zhao
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Linqiao Zhu
- Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yanyun Zhang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Children's Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
34
|
Boucher AC, Caldwell KJ, Crispino JD, Flerlage JE. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 2021; 35:3352-3360. [PMID: 34518645 PMCID: PMC8639661 DOI: 10.1038/s41375-021-01414-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.
Collapse
Affiliation(s)
- Austin C Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kenneth J Caldwell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jamie E Flerlage
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
35
|
Transcriptomic Characterization of Cow, Donkey and Goat Milk Extracellular Vesicles Reveals Their Anti-Inflammatory and Immunomodulatory Potential. Int J Mol Sci 2021; 22:ijms222312759. [PMID: 34884564 PMCID: PMC8657891 DOI: 10.3390/ijms222312759] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Milk extracellular vesicles (mEVs) seem to be one of the main maternal messages delivery systems. Extracellular vesicles (EVs) are micro/nano-sized membrane-bound structures enclosing signaling molecules and thus acting as signal mediators between distant cells and/or tissues, exerting biological effects such as immune modulation and pro-regenerative activity. Milk is also a unique, scalable, and reliable source of EVs. Our aim was to characterize the RNA content of cow, donkey, and goat mEVs through transcriptomic analysis of mRNA and small RNA libraries. Over 10,000 transcripts and 2000 small RNAs were expressed in mEVs of each species. Among the most represented transcripts, 110 mRNAs were common between the species with cow acting as the most divergent. The most represented small RNA class was miRNA in all the species, with 10 shared miRNAs having high impact on the immune regulatory function. Functional analysis for the most abundant mRNAs shows epigenetic functions such as histone modification, telomere maintenance, and chromatin remodeling for cow; lipid catabolism, oxidative stress, and vitamin metabolism for donkey; and terms related to chemokine receptor interaction, leukocytes migration, and transcriptional regulation in response to stress for goat. For miRNA targets, shared terms emerged as the main functions for all the species: immunity modulation, protein synthesis, cellular cycle regulation, transmembrane exchanges, and ion channels. Moreover, donkey and goat showed additional terms related to epigenetic modification and DNA maintenance. Our results showed a potential mEVs immune regulatory purpose through their RNA cargo, although in vivo validation studies are necessary.
Collapse
|
36
|
Liu Y, Cheng L, Huang W, Cheng X, Peng W, Shi D. Genome Instability-Related miRNAs Predict Survival, Immune Landscape, and Immunotherapy Responses in Gastric Cancer. J Immunol Res 2021; 2021:2048833. [PMID: 34761007 PMCID: PMC8575650 DOI: 10.1155/2021/2048833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that microRNAs (miRNAs) are involved in genome instability (GI) and drive the occurrence of tumors. However, the role of GI-related miRNAs in gastric cancer (GC) remains largely unknown. Herein, we developed a novel GI-related miRNA signature (GIMiSig) and further investigated its role in prognosis, the immune landscape, and immunotherapy responses in GC patients. METHODS An analysis of somatic mutation data on 434 gastric cancer cases from The Cancer Genome Atlas (TCGA) database was performed, thereby generating genome stability (GS) and GI groups. By detecting differentially expressed miRNAs between the GS and GI groups that were associated with overall survival, 8 miRNAs were identified and used to construct the GIMiSig. RESULTS The GIMiSig showed high accuracy in detecting GC patients. Using GIMiSig to stratify the patients into the high- and low-risk subgroups to predict survival outperformed the use of regular clinical features such as age, gender, or disease stage. Patients with low risk had a more favorable survival time than those with high risk. More importantly, the high-risk patients were associated with decreased UBQLN4 expression, higher accumulation of immune cells, lower Titin (TTN) mutation frequency, worse immunotherapy efficacy, and cancer-associated pathways. Conversely, the low-risk patients were characterized by UBQLN4 overexpression, lower fraction of immune cells, higher TTN mutation frequency, better response to immunotherapy, and GI-related pathways. CONCLUSION In summary, we constructed a novel GIMiSig that could stratify GC patients into distinct risk groups that have different survival outcomes and immunotherapy efficacy. The results may provide new clues for improving GC outcomes.
Collapse
Affiliation(s)
- Yaqiong Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Regenerative Medicine Institute (REMEDI), CURAM, National University of Ireland Galway, H91TK33, Galway, Ireland
| | - Lin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Dazun Shi
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
37
|
Maurya M, Barthwal MK. MicroRNA-99a: a potential double-edged sword targeting macrophage inflammation and metabolism. Cell Mol Immunol 2021; 18:2290-2292. [PMID: 34381178 DOI: 10.1038/s41423-021-00745-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Mohita Maurya
- Department of Pharmacology, Counsil of Scientific and Industrial Research-Central Drug Research Institution, Lucknow, India
| | - Manoj Kumar Barthwal
- Department of Pharmacology, Counsil of Scientific and Industrial Research-Central Drug Research Institution, Lucknow, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
38
|
Nazimek K, Bustos-Morán E, Blas-Rus N, Nowak B, Totoń-Żurańska J, Seweryn MT, Wołkow P, Woźnicka O, Szatanek R, Siedlar M, Askenase PW, Sánchez-Madrid F, Bryniarski K. Antibodies Enhance the Suppressive Activity of Extracellular Vesicles in Mouse Delayed-Type Hypersensitivity. Pharmaceuticals (Basel) 2021; 14:ph14080734. [PMID: 34451831 PMCID: PMC8398949 DOI: 10.3390/ph14080734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Previously, we showed that mouse delayed-type hypersensitivity (DTH) can be antigen-specifically downregulated by suppressor T cell-derived miRNA-150 carried by extracellular vesicles (EVs) that target antigen-presenting macrophages. However, the exact mechanism of the suppressive action of miRNA-150-targeted macrophages on effector T cells remained unclear, and our current studies aimed to investigate it. By employing the DTH mouse model, we showed that effector T cells were inhibited by macrophage-released EVs in a miRNA-150-dependent manner. This effect was enhanced by the pre-incubation of EVs with antigen-specific antibodies. Their specific binding to MHC class II-expressing EVs was proved in flow cytometry and ELISA-based experiments. Furthermore, by the use of nanoparticle tracking analysis and transmission electron microscopy, we found that the incubation of macrophage-released EVs with antigen-specific antibodies resulted in EVs’ aggregation, which significantly enhanced their suppressive activity in vivo. Nowadays, it is increasingly evident that EVs play an exceptional role in intercellular communication and selective cargo transfer, and thus are considered promising candidates for therapeutic usage. However, EVs appear to be less effective than their parental cells. In this context, our current studies provide evidence that antigen-specific antibodies can be easily used for increasing EVs’ biological activity, which has great therapeutic potential.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., 31-121 Krakow, Poland; (K.N.); (B.N.)
- Department of Immunology, Hospital de la Princesa, Health Research Institute of Princesa Hospital (ISS-IP), Autonomous University of Madrid, 28006 Madrid, Spain; (E.B.-M.); (N.B.-R.); (F.S.-M.)
- Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 208011, USA;
| | - Eugenio Bustos-Morán
- Department of Immunology, Hospital de la Princesa, Health Research Institute of Princesa Hospital (ISS-IP), Autonomous University of Madrid, 28006 Madrid, Spain; (E.B.-M.); (N.B.-R.); (F.S.-M.)
| | - Noelia Blas-Rus
- Department of Immunology, Hospital de la Princesa, Health Research Institute of Princesa Hospital (ISS-IP), Autonomous University of Madrid, 28006 Madrid, Spain; (E.B.-M.); (N.B.-R.); (F.S.-M.)
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., 31-121 Krakow, Poland; (K.N.); (B.N.)
| | - Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (J.T.-Ż.); (M.T.S.); (P.W.)
| | - Michał T. Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (J.T.-Ż.); (M.T.S.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (J.T.-Ż.); (M.T.S.); (P.W.)
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland;
| | - Rafał Szatanek
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (R.S.); (M.S.)
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (R.S.); (M.S.)
| | - Philip W. Askenase
- Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 208011, USA;
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital de la Princesa, Health Research Institute of Princesa Hospital (ISS-IP), Autonomous University of Madrid, 28006 Madrid, Spain; (E.B.-M.); (N.B.-R.); (F.S.-M.)
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., 31-121 Krakow, Poland; (K.N.); (B.N.)
- Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT 208011, USA;
- Correspondence: ; Tel.: +48-12-632-58-65
| |
Collapse
|
39
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
40
|
Chen Y, Huang Y, Deng X. External cervical resorption-a review of pathogenesis and potential predisposing factors. Int J Oral Sci 2021; 13:19. [PMID: 34112752 PMCID: PMC8192751 DOI: 10.1038/s41368-021-00121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
External cervical resorption (ECR) refers to a pathological state in which resorption tissues penetrate into the dentin at the cervical aspect of the root. Despite being latent in its initial phase, ECR could cause severe damage to mineralized dental tissue and even involve the pulp if not given timely diagnosis and treatment. Nevertheless, the etiology of ECR is still poorly understood, which adds to the difficulty in early diagnosis. ECR has received growing attention in recent years due to the increasing number of clinical cases. Several potential predisposing factors have been recognized in cross-sectional studies as well as case reports. In the meantime, studies on histopathology and pathogenesis have shed light on possible mechanisms of ECR. This review aims to summarize the latest findings in the pathogenesis and potential predisposing factors of ECR, so as to provide pragmatic reference for clinical practice.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
41
|
Reddy SS, Agarwal H, Jaiswal A, Jagavelu K, Dikshit M, Barthwal MK. Macrophage p47 phox regulates pressure overload-induced left ventricular remodeling by modulating IL-4/STAT6/PPARγ signaling. Free Radic Biol Med 2021; 168:168-179. [PMID: 33736980 DOI: 10.1016/j.freeradbiomed.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
NADPH oxidase (Nox) mediates ROS production and contributes to cardiac remodeling. However, macrophage p47phox, a Nox subunit regulating cardiac remodeling, is unclear. We aimed to investigate the role of macrophage p47phox in hypertensive cardiac remodeling. Pressure-overload induced by Angiotensin II (AngII) for two weeks in young adult male p47phox deficient (KO) mice showed aggravated cardiac dysfunction and hypertrophy as indicated from echocardiographic and histological studies in comparison with wild-type littermates (WT). Additionally, LV of AngII-infused KO mice showed augmented interstitial fibrosis, collagen deposition and, myofibroblasts compared to AngII-infused WT mice. Moreover, these changes in AngII-infused KO mice correlated well with the gene analysis of hypertrophic and fibrotic markers. Similar results were also found in the transverse aortic constriction model. Further, AngII-infused KO mice showed elevated circulating immunokines and increased LV leukocytes infiltration and CD206+ macrophages compared to AngII-infused WT mice. Likewise, LV of AngII-infused KO mice showed upregulated mRNA expression of anti-inflammatory/pro-fibrotic M2 macrophage markers (Ym1, Arg-1) compared to AngII-infused WT mice. AngII and IL-4 treated bone marrow-derived macrophages (BMDMs) from KO mice showed upregulated M2 macrophage markers and STAT6 phosphorylation (Y641) compared to AngII and IL-4 treated WT BMDMs. These alterations were at least partly mediated by macrophage as bone marrow transplantation from KO mice into WT mice aggravated cardiac remodeling. Mechanistically, AngII-infused KO mice showed hyperactivated IL-4/STAT6/PPARγ signaling and downregulated SOCS3 expression compared to AngII-infused WT mice. Our studies show that macrophage p47phox limits anti-inflammatory signaling and extracellular matrix remodeling in response to pressure-overload.
Collapse
Affiliation(s)
- Sukka Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Heena Agarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anant Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
42
|
Zhu X, Guo Q, Zou J, Wang B, Zhang Z, Wei R, Zhao L, Zhang Y, Chu C, Fu X, Li X. MiR-19a-3p Suppresses M1 Macrophage Polarization by Inhibiting STAT1/IRF1 Pathway. Front Pharmacol 2021; 12:614044. [PMID: 34017248 PMCID: PMC8129022 DOI: 10.3389/fphar.2021.614044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages, an important type of immune cells, are generally polarized to classically activated macrophage (M1) or alternatively activated macrophage (M2) to respond to environmental stimuli. Signal transducer and activator of transcription 1 (STAT1), a very important transcription factor, can promote M1 macrophage polarization. However, the mechanisms of regulating STAT1 in macrophage polarization remain unclear. In the present study, STAT1 was markedly elevated, however, miR-19a-3p was down-regulated in interferon (IFN)-γ and lipopolysaccharide (LPS) treated RAW264.7 cells, and dual-luciferase reporter assay identified that miR-19a-3p directly targeted STAT1 by binding to its 3′UTR. Up-regulated miR-19a-3p inhibited M1 polarization by targeting STAT1/interferon regulatory factor 1 (IRF1) and vice versa in vitro. Consistently, overexpression of miR-19a-3p in LPS treated mice by systemically administering agomiR-19a-3p effectively reduced the inflammation in mouse lung tissues, and inhibited M1 macrophage polarization via suppressing STAT1/IRF1 pathway. In summary, our study confirmed that miR-19a-3p, as a direct regulator of STAT1, inhibited M1 macrophages polarization. The miR-19a-3p/STAT1/IRF1 pathway can potentially be used to design novel immunotherapy for modulating macrophage polarization.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qiang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jing Zou
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ran Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lin Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yunhong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chu Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaoxiao Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
43
|
Xun J, Du L, Gao R, Shen L, Wang D, Kang L, Chen C, Zhang Z, Zhang Y, Yue S, Feng S, Xiang R, Mi X, Tan X. Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B. Theranostics 2021; 11:6847-6859. [PMID: 34093857 PMCID: PMC8171095 DOI: 10.7150/thno.51864] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Rationale: Differential activation of macrophages correlates closely with tumor progression, and the epigenetic factor lysine demethylase 6B (KDM6B, previously named JMJD3) mediates the regulation of macrophage polarization through an unknown mechanism. Methods: We developed a suspension coculture system comprising breast cancer cells and macrophages and used RT-qPCR and western blotting to measure KDM6B expression. Bioinformatics and luciferase reporter assays were used to identify candidate microRNAs of cancer cells responsible for the downregulation of KDM6B. To determine if exosomes mediated the transfer of miR-138-5p between cancer cells to macrophages, we treated macrophages with exosomes collected from the conditioned medium of cancer cells. The effects of exosomal miR-138-5p on macrophage polarization were measured using RT-qPCR, flow cytometry, and chromatin immunoprecipitation assays. We employed a mouse model of breast cancer, metastatic to the lung, to evaluate the effects on tumor metastasis of macrophages treated with miR-138-5p-enriched exosomes. To develop a diagnostic evaluation index, the levels of exosomal miR-138-5p in samples from patients with breast cancer were compared to those of controls. Results: Coculture of breast cancer cells led to downregulation of KDM6B expression in macrophages. Cancer cell-derived exosomal miR-138-5p inhibited M1 polarization and promoted M2 polarization through inhibition of KDM6B expression in macrophages. Macrophages treated with exosomal miR-138-5p promoted lung metastasis, and the level of circulating exosomal miR-138-5p positively correlated with the progression of breast cancer. Conclusion: Our data suggest that miR-138-5p was delivered from breast cancer cells to tumor-associated macrophages via exosomes to downregulate KDM6B expression, inhibit M1 polarization, and stimulate M2 polarization. Therefore, exosomal miR-138-5p represents a promising prognostic marker and target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jing Xun
- School of Medicine, Nankai University, Tianjin 300071, China
- Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lingfang Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Ruifang Gao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Long Shen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Lichun Kang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chuan'ai Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhujun Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuxin Feng
- Department of Orthopedics, Tianjin First Central Hospital, Tianjin, 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
MiR-6869-5p Induces M2 Polarization by Regulating PTPRO in Gestational Diabetes Mellitus. Mediators Inflamm 2021; 2021:6696636. [PMID: 34007244 PMCID: PMC8110425 DOI: 10.1155/2021/6696636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
The role of microRNA (miRNA) in gestational diabetes mellitus has been widely investigated during the last decade. However, the altering effect of miR-6869-5p on immunity and placental microenvironment in gestational diabetes mellitus is largely unknown. In our study, the expression of miR-6869-5p was documented to be significantly decreased in placenta-derived mononuclear macrophages, which was also negatively related to PTPRO. Besides, PTPRO was negatively regulated by miR-6869-5p in placenta-derived mononuclear macrophages. In vitro, miR-6869-5p inhibited macrophage proliferation demonstrated by EdU and CCK-8 experiments. The inflammatory response in macrophages was also significantly inhibited by miR-6869-5p, which could regulate PTPRO as a target documented by luciferase reporter assay. Moreover, miR-6869-5p promoted M2 macrophage polarization and thus restrain inflammation. Accordingly, miR-6869-5p is involved in maintaining placental microenvironment balance by preventing from inflammation and inducing M2 macrophages in gestational diabetes mellitus.
Collapse
|
45
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
46
|
Wu Y, Shi T, Wang J, He R. Talabostat Alleviates Obesity and Associated Metabolic Dysfunction via Suppression of Macrophage-Driven Adipose Inflammation. Obesity (Silver Spring) 2021; 29:327-336. [PMID: 33342076 DOI: 10.1002/oby.23058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Adipose tissue macrophages (ATMs) play critical roles in obesity-associated inflammation that contributes to metabolic dysfunction. Talabostat (TB) exerts some therapeutic effects on tumors and obesity. However, it remains unknown whether the metabolic benefits of TB on obesity is dependent on ATM-mediated adipose inflammation. METHODS Male C57BL/6J mice were fed a normal chow diet (NCD) or a high-fat diet for 12 weeks, and mice were orally administered TB daily at a low dose (0.5 mg/kg). RESULTS Administration of TB to mice fed a high-fat diet significantly improved adiposity and obesity-associated metabolic dysfunction, including glucose intolerance and insulin resistance, hyperlipidemia and hepatic steatosis, which were accompanied by increased whole-body energy expenditure. RNA sequencing analysis revealed extensive alterations in the transcriptome profiles associated with lipid metabolism and immune responses in adipose tissue of obese mice. Notably, TB treatment led to a significant reduction in ATM accumulation and a shift of the activation state of ATMs from the proinflammatory M1-like to the anti-inflammatory M2-like phenotype. Moreover, depletion of ATMs significantly abolished the TB-induced metabolic benefits. CONCLUSIONS Our study demonstrates that TB at a low dose could increase energy expenditure and control ATM-mediated adipose inflammation in obese mice, thereby alleviating obesity and its associated metabolic dysfunction.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tiancong Shi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiqiu Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Zhang Y, Shao F, Guan Z, Luo J, Xiao X, Zhou L. Overexpression of miR-99a Alleviates Intestinal Mucosal Barrier Injury in Rats with Severe Acute Pancreatitis. J Interferon Cytokine Res 2021; 41:72-80. [PMID: 33621134 DOI: 10.1089/jir.2020.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute pancreatitis (SAP), which is characterized by acute onset and high mortality, is complicated with systemic inflammatory response syndrome. This study investigated the molecular mechanism underlying SAP-induced intestinal mucosal barrier injury. SAP was established in rats by retrograde injection of sodium taurocholate (STC) into biliopancreatic duct. Transfection of miR-99a mimic was conducted 24 h before the SAP establishment. Histological properties of pancreatic and intestinal tissues were observed by hematoxylin-eosin staining. The serum levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, procalcitonin (PCT), endotoxin (ET), and diamine oxidase (DAO) were measured by enzyme-linked immunosorbent assay. The expressions of miR-99a, NADPH oxidase (NOX)4, zonula occludens (ZO)-1, occludin, and claudin-1 in pancreatic and the intestinal tissue were determined by quantitative reverse transcription polymerase chain reaction or Western blot. STC injection damaged pancreatic and intestinal tissues of the rats. During the model construction, the serum levels of IL-1β, TNF-α, PCT, ET, and DAO were increased, whereas miR-99a expression in pancreatic and intestinal tissues of the rats was decreased. miR-99a mimic alleviated SAP-induced histological abnormality of pancreatic and intestinal tissues; moreover, it reversed the serum levels of IL-1β, TNF-α, PCT, ET, and DAO increased by SAP, decreased SAP-increased NOX4 expression and increased the expressions of ZO-1, occludin, and claudin-1 previously decreased by SAP in pancreatic and the intestinal tissues. Thus, overexpressed miR-99a could alleviate intestinal mucosal barrier injury in rats with SAP.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Feifei Shao
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Zhihui Guan
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Jinming Luo
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Xiaorong Xiao
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Lingmin Zhou
- Department of Critical Care Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
48
|
Liu Y, Luo S, Zhan Y, Wang J, Zhao R, Li Y, Zeng J, Lu Q. Increased Expression of PPAR-γ Modulates Monocytes Into a M2-Like Phenotype in SLE Patients: An Implicative Protective Mechanism and Potential Therapeutic Strategy of Systemic Lupus Erythematosus. Front Immunol 2021; 11:579372. [PMID: 33584646 PMCID: PMC7873911 DOI: 10.3389/fimmu.2020.579372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a spectrum of autoimmune disorders characterized by continuous inflammation and the production of autoantibodies. Monocytes, as precursors of dendritic cells and macrophages, are involved in the pathogenesis of SLE, particularly in the inflammatory reactions. Previous studies have proved that Pam3CSK4, as a synthetic ligand of TLR2, could stimulate monocytes to differentiated into a M2-like phenotype which presented immunosuppressive functions. However, the underlying mechanisms remain to be further studied. Here, we reported an increased expression of PPAR-γ in the CD14+ monocytes from SLE patients, particularly in the treated group of SLE patients and the group with positive anti-dsDNA antibodies. Additionally, PPAR-γ expression decreased in the SLE patients with skin lesion. Furthermore, we demonstrated that Pam3CSK4 stimulation can decrease the expression of CCR7, CD80, IL-1β, IL-6, IL-12, and NF-κB which were related to the M1-like subset of monocytes and increased the expression of ARG1 which was related to the M2-like subset through upregulated PPAR-γ expression and consequently downregulated NF-κB expression in the CD14+ monocytes in a time-dependent manner. ChIP-qPCR results further demonstrated that Pam3CSK4 pretreatment could modulate PPAR-γ expression by regulating histone modification through the inhibition of Sirt1 binding to the PPAR-γ promoter. Taken together, our study indicated a protective role of TLR2/Sirt1/PPAR-γ pathway in the pathogenesis of SLE which provided potential therapeutic strategies.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Shuangyan Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Jiayu Wang
- Xiangya Medical School of Central South University, Changsha, China
| | - Rui Zhao
- Xiangya Medical School of Central South University, Changsha, China
| | - Yingjie Li
- Xiangya Medical School of Central South University, Changsha, China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| |
Collapse
|
49
|
Visceral Adipose Tissue of Prediabetic and Diabetic Females Shares a Set of Similarly Upregulated microRNAs Functionally Annotated to Inflammation, Oxidative Stress and Insulin Signaling. Antioxidants (Basel) 2021; 10:antiox10010101. [PMID: 33445738 PMCID: PMC7828194 DOI: 10.3390/antiox10010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic and hypoxic visceral adipose tissue (VAT) secretes proinflammatory cytokines promoting insulin resistance (IR), prediabetes and type 2 diabetes (T2DM) microRNAs (miRNAs) are markers of metabolic disorders regulating genes critical for e.g., inflammation, glucose metabolism, and antioxidant defense, with raising diagnostic value. The aim of the current study was to evaluate whether hyperglycemia is able to affect the expression of selected miRNAs in VAT of prediabetic (IFG) and diabetic (T2DM) patients vs. normoglycemic (NG) subjects using qPCR. Statistical analyses suggested that miRNAs expression could be sex-dependent. Thus, we determined 15 miRNAs as differentially expressed (DE) among NG, T2DM, IFG females (miR-10a-5p, let-7d-5p, miR-532-5p, miR-127-3p, miR-125b-5p, let-7a-5p, let-7e-5p, miR-199a-3p, miR-365a-3p, miR-99a-5p, miR-100-5p, miR-342-3p, miR-146b-5p, miR-204-5p, miR-409-3p). Majority of significantly changed miRNAs was similarly upregulated in VAT of female T2DM and IFG patients in comparison to NG subjects, positively correlated with FPG and HbA1c, yet, uncorrelated with WHR/BMI. Enrichment analyses indicated involvement of 11 top DE miRNAs in oxidative stress, inflammation and insulin signaling. Those miRNAs expression changes could be possibly associated with low-grade chronic inflammation and oxidative stress in VAT of hyperglycemic subjects.
Collapse
|
50
|
Liu G, Yan D, Yang L, Sun Y, Zhan L, Lu L, Jin Z, Zhang C, Long P, Chen J, Yuan Q. The effect of miR-471-3p on macrophage polarization in the development of diabetic cardiomyopathy. Life Sci 2021; 268:118989. [PMID: 33417962 DOI: 10.1016/j.lfs.2020.118989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
AIMS The imbalance of M1/M2 macrophage ratio promotes the occurrence of diabetic cardiomyopathy (DCM), but the precise mechanisms are not fully understood. The aim of this study was to investigate whether miR-471-3p/silent information regulator 1 (SIRT1) pathway is involved in the macrophage polarization during the development of DCM. METHODS Immunohistochemical staining was used to detect M1 and M2 macrophages infiltration in the heart tissue. Flow cytometry was used to detect the proportion of M1 and M2 macrophages. Expression of miR-471-3p was quantified by real time quantitative-PCR. Transfection of miRNA inhibitor into RAW264.7 cells was performed to investigate the underlying mechanisms. Bioinformatics methods and western blotting were used to explore the target gene of miR-471-3p and further confirmed by dual luciferase reporter assay. KEY FINDINGS We observed that M1 macrophages infiltration in the heart of tissue in DCM while M2 type was decreased. M1/M2 ratio was increased significantly in bone marrow-derived macrophages (BMDMs) from db/db mice and in RAW264.7 cells treated with advanced glycation end products (AGEs). Meanwhile, miR-471-3p was significantly upregulated in RAW264.7 cells induced by AGEs and inhibition of miR-471-3p could reduce the inflammatory polarization of macrophages. Bioinformatics analysis identified SIRT1 as a target of miR-471-3p. Both dual luciferase reporter assay and western blotting verified that miR-471-3p negatively regulated SIRT1 expression. SIRT1 agonist resveratrol could downregulate the increased proportion of M1 macrophages induced by AGEs. CONCLUSION Our results indicated that the development of DCM was related to AGEs-induced macrophage polarized to M1 type through a mechanism involving the miR-471-3p/SIRT1 pathway.
Collapse
Affiliation(s)
- Guangqi Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Yan
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Liu Yang
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, China
| | - Yunwei Sun
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Zhan
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Lili Lu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhigang Jin
- China Resource & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Ping Long
- China Resource & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, China.
| | - Jinhua Chen
- Department of Pharmacy, Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, China.
| | - Qiong Yuan
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|