1
|
Harirah HAA, Mohammed MH, Basha SAZ, Uthirapathy S, Ganesan S, Shankhyan A, Sharma GC, Devi A, Kadhim AJ, S NH. Targeting EZH2 in autoimmune diseases: unraveling epigenetic regulation and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04127-6. [PMID: 40198399 DOI: 10.1007/s00210-025-04127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Approximately 8-10% of the global population is affected by autoimmune diseases (ADs), which encompass a wide array of idiopathic conditions resulting from dysregulated immune responses. The enzymatic component of the polycomb-repressive complex 2 (PRC2), enhancer of zeste homolog 2 (EZH2, also referred to as KMT6), functions as a methyltransferase possessing a SET domain that plays crucial roles in epigenetic regulation, explicitly facilitating the methylation of histone H3 at lysine 27. Notably, EZH2 is catalytically inactive and requires association with EED and SUZ12 to form an active PRC2 complex. Hyperactivation of EZH2 has been implicated in various malignancies, prompting the development of EZH2 inhibitors as therapeutic agents for several cancers, including lymphoma, prostate, breast, and colon cancer. The application of EZH2-targeting therapies has also been explored in the context of autoimmune diseases. While there have been advancements in certain ADs, responses can vary significantly, as evidenced by mixed outcomes in cases such as inflammatory bowel disease. Consequently, the dual role of EZH2 and the therapeutic potential of its inhibitors in the treatment of ADs remain nascent fields of study. This review will elucidate the interplay between EZH2 and autoimmune diseases, highlighting emerging insights and therapeutic avenues.
Collapse
Affiliation(s)
- Hashem Ahmed Abu Harirah
- Medical Laboratory Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | - Sami Ahmed Zaher Basha
- Physical Therapy Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
- Department of Cardiovascular Pulmonary and Geriatrics, Faculty of Physical Therapy, Pharos University, Alexandria, Egypt
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Naher H S
- Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Yu H, Ma Z, Su S, Xu Z, Yi H. RNA modification: a promising code to unravel the puzzle of autoimmune diseases and CD4 + T cell differentiation. Front Immunol 2025; 16:1563150. [PMID: 40196109 PMCID: PMC11973318 DOI: 10.3389/fimmu.2025.1563150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Dynamic changes in various forms of RNA modification are critical to the functional homeostasis of the immune system and the pathophysiology of autoimmune diseases. RNA modification-related proteins play an essential role in these processes. At present, the research methods of RNA modification in autoimmune diseases are mainly to detect the expression changes of RNA modification-related proteins in tissues or cells, but there is a lack of explorations of target RNAs and in-depth mechanisms. Considering the important role of CD4+ T cell dysfunction in the pathogenesis and progression of autoimmune diseases, the regulatory effect of abnormal RNA modification on CD4+ T cells deserves attention, which will provide a perspective for further exploring the mechanism of RNA modification in autoimmune diseases. In this Review, we discuss the abnormal RNA modification changes in patients with autoimmune diseases and highlight the effects of these abnormal changes on CD4+ T cells.
Collapse
Affiliation(s)
- Hui Yu
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Sensen Su
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Zheng Xu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| |
Collapse
|
3
|
Roberts LB, Neves JF, Lee DCH, Valpione S, Tachó-Piñot R, Howard JK, Hepworth MR, Lord GM. MicroRNA-142 regulates gut associated lymphoid tissues and group 3 innate lymphoid cells. Mucosal Immunol 2025; 18:39-52. [PMID: 39245145 PMCID: PMC11835792 DOI: 10.1016/j.mucimm.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The transcriptomic signatures that shape responses of innate lymphoid cells (ILCs) have been well characterised, however post-transcriptional mechanisms which regulate their development and activity remain poorly understood. We demonstrate that ILC groups of the intestinal lamina propria express mature forms of microRNA-142 (miR-142), an evolutionarily conserved microRNA family with several non-redundant regulatory roles within the immune system. Germline Mir142 deletion alters intestinal ILC compositions, resulting in the absence of T-bet+ populations and significant defects in the cellularity and phenotypes of ILC3 subsets including CCR6+ LTi-like ILC3s. These effects were associated with decreased pathology in an innate-immune cell driven model of colitis. Furthermore, Mir142-/- mice demonstrate defective development of gut-associated lymphoid tissues, including a complete absence of mature Peyer's patches. Conditional deletion of Mir142 in ILC3s (RorcΔMir142) supported cell-intrinsic roles for these microRNAs in establishing or maintaining cellularity and functions of LTi-like ILC3s in intestinal associated tissues. RNAseq analysis revealed several target genes and biological pathways potentially regulated by miR-142 microRNAs in these cells. Finally, lack of Mir142 in ILC3 led to elevated IL-17A production. These data broaden our understanding of immune system roles of miR-142 microRNAs, identifying these molecules as critical post-transcriptional regulators of ILC3s and intestinal mucosal immunity.
Collapse
Affiliation(s)
- Luke B Roberts
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom.
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Dave C H Lee
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Sara Valpione
- The Christie NHS Foundation Trust, 550 Wilmslow Road, M20 4BX Manchester, United Kingdom; Division of Cancer Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom; Cancer Research UK National Biomarker Centre, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Roser Tachó-Piñot
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Graham M Lord
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom; Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, United Kingdom.
| |
Collapse
|
4
|
Zhou X, Zhou S, Li Y. An updated review on abnormal epigenetic modifications in the pathogenesis of systemic lupus erythematosus. Front Immunol 2025; 15:1501783. [PMID: 39835138 PMCID: PMC11743643 DOI: 10.3389/fimmu.2024.1501783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. The inconsistent prevalence of SLE between monozygotic twins suggests that environmental factors affect the occurrence of this disease. Abnormal epigenetic regulation is strongly associated with the pathogenesis of SLE. Epigenetic mechanisms may be involved in the development of lupus through DNA methylation, histone modification, noncoding RNAs, and other modifications. This review aims to show numerous studies as a treasure map to better understand the effects of aberrant epigenetic modification in the onset and development of SLE, which will benefit the current basic research and provide potential diagnostic biomarkers or therapeutic targets for SLE.
Collapse
Affiliation(s)
| | | | - Yaping Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya
Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Yin H, Li L, Feng X, Wang Z, Zheng M, Zhao J, Fan X, Wu W, Gao L, Zhan Y, Zhao M, Lu Q. 2D4, a humanized monoclonal antibody targeting CD132, is a promising treatment for systemic lupus erythematosus. Signal Transduct Target Ther 2024; 9:323. [PMID: 39551768 PMCID: PMC11570697 DOI: 10.1038/s41392-024-02017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Current therapies for systemic lupus erythematosus that target a particular factor or cell type exhibit limited effectiveness. To address this limitation, our focus was on CD132, a subunit common to six inflammatory factor receptors implicated in SLE. Our study revealed heightened CD132 expression in SLE patients' lymphocytes, contributing to the production of pro-inflammatory cytokines and immunoglobulins. We developed a novel humanized anti-CD132 monoclonal antibody, named as 2D4. 2D4 efficiently blocked IL-21 and IL-15, with limited effectiveness against IL-2, thereby suppressing T and B cells without disrupting immune tolerance. In the mouse immunization model, 2D4 virtually inhibited T cell-dependent, antigen-specific B-cell response. In lupus murine models, 2D4 mitigated inflammation by suppressing multiple pro-inflammatory cytokines and anti-dsDNA antibody titers, also diminishing proteinuria and glomerulonephritis. Compared to Belimumab, 2D4 exhibited superior efficacy in ameliorating the inflammatory state and preserving renal function. Moreover, 2D4 exhibited the ability to inhibit the production of pro-inflammatory factors and autoantibodies in PBMCs from individuals with SLE, highlighting its therapeutic potential for SLE individuals. Potent, 2D4 has the potential to significantly improve clinical outcomes in SLE and other complex autoimmune disorders.
Collapse
Affiliation(s)
- Huiqi Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liming Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiwei Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zijun Wang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Zheng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junpeng Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Fan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingyu Gao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yijing Zhan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Dai Q, Li M, Tian X, Song Y, Zhao J. Identification of Lupus-Associated Genes in the Pathogenesis of Pre-eclampsia Via Bioinformatic Analysis. Bioinform Biol Insights 2024; 18:11779322241271558. [PMID: 39170671 PMCID: PMC11337183 DOI: 10.1177/11779322241271558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy complication that is more common in patients with systemic lupus erythematosus (SLE). Although the exact causes of these conditions are not fully understood, the immune system plays a key role. To investigate the connection between SLE and PE, we analyzed genes associated with SLE that may contribute to the development of PE. We collected 9 microarray data sets from the NCBI GEO database and used Limma to identify the differentially expressed genes (DEGs). In addition, we employed weighted gene co-expression network analysis (WGCNA) to pinpoint the hub genes of SLE and examined immune infiltration using Cibersort. By constructing a protein-protein interaction (PPI) network and using CytoHubba, we identified the top 20 PE hub genes. Subsequently, we created a nomogram and conducted a receiver operating characteristic (ROC) analysis to predict the risk of PE. Our analysis, including gene set enrichment analysis (GSEA) and PE DEGs enrichment analysis, revealed significant involvement in placenta development and immune response. Two pivotal genes, BCL6 and MME, were identified, and their validity was confirmed using 5 data sets. The nomogram demonstrated good diagnostic performance (AUC: 0.82-0.96). Furthermore, we found elevated expression levels of both genes in SLE peripheral blood mononuclear cells (PBMCs) and PE placental specimens within the case group. Analysis of immune infiltration in the SLE data set showed a strong positive correlation between the expression of both genes and neutrophil infiltration. BCL6 and MME emerged as crucial genes in lupus-related pregnancies associated with the development of PE, for which we devised a nomogram. These findings provide potential candidate genes for further research in the diagnosis and understanding of the pathophysiology of PE.
Collapse
Affiliation(s)
- Qianwen Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yijun Song
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Nalbant E, Akkaya-Ulum YZ. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases. Clin Exp Med 2024; 24:142. [PMID: 38958690 PMCID: PMC11222192 DOI: 10.1007/s10238-024-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 07/04/2024]
Abstract
This comprehensive exploration delves into the pivotal role of microRNAs (miRNAs) within the intricate tapestry of cellular regulation. As potent orchestrators of gene expression, miRNAs exhibit diverse functions in cellular processes, extending their influence from the nucleus to the cytoplasm. The complex journey of miRNA biogenesis, involving transcription, processing, and integration into the RNA-induced silencing complex, showcases their versatility. In the cytoplasm, mature miRNAs finely tune cellular functions by modulating target mRNA expression, while their reach extends into the nucleus, influencing transcriptional regulation and epigenetic modifications. Dysregulation of miRNAs becomes apparent in various pathologies, such as cancer, autoimmune diseases, and inflammatory conditions. The adaptability of miRNAs to environmental signals, interactions with transcription factors, and involvement in intricate regulatory networks underscore their significance. DNA methylation and histone modifications adds depth to understanding the dynamic regulation of miRNAs. Mechanisms like competition with RNA-binding proteins, sponging, and the control of miRNA levels through degradation and editing contribute to this complex regulation process. In this review, we mainly focus on how dysregulation of miRNA expression can be related with skin-related autoimmune and autoinflammatory diseases, arthritis, cardiovascular diseases, inflammatory bowel disease, autoimmune and autoinflammatory diseases, and neurodegenerative disorders. We also emphasize the multifaceted roles of miRNAs, urging continued research to unravel their complexities. The mechanisms governing miRNA functions promise advancements in therapeutic interventions and enhanced insights into cellular dynamics in health and disease.
Collapse
Affiliation(s)
- Emre Nalbant
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Türkiye.
| |
Collapse
|
8
|
Deng T, Wang Z, Geng Q, Wang Z, Jiao Y, Diao W, Xu J, Deng T, Luo J, Tao Q, Xiao C. Methylation of T and B Lymphocytes in Autoimmune Rheumatic Diseases. Clin Rev Allergy Immunol 2024; 66:401-422. [PMID: 39207646 DOI: 10.1007/s12016-024-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The role of abnormal epigenetic modifications, particularly DNA methylation, in the pathogenesis of autoimmune rheumatic diseases (ARDs) has garnered increasing attention. Lymphocyte dysfunction is a significant contributor to the pathogenesis of ARDs. Methylation is crucial for maintaining normal immune system function, and aberrant methylation can hinder lymphocyte differentiation, resulting in functional abnormalities that disrupt immune tolerance, leading to the excessive expression of inflammatory cytokines, thereby exacerbating the onset and progression of ARDs. Recent studies suggest that methylation-related factors have the potential to serve as biomarkers for monitoring the activity of ARDs. This review summarizes the current state of research on the impact of DNA and RNA methylation on the development, differentiation, and function of T and B cells and examines the progress of these epigenetic modifications in studies of six specific ARDs: systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, juvenile idiopathic arthritis, and ankylosing spondylitis. Additionally, we propose that exploring the interplay between RNA methylation and DNA methylation may represent a novel direction for understanding the pathogenesis of ARDs and developing novel treatment strategies.
Collapse
Affiliation(s)
- Tiantian Deng
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zihan Wang
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhaoran Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Jiao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenya Diao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- China-Japan Friendship Hospital, Peking University, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
9
|
Zeng X, Alimu X, Bahabayi A, Zhang Z, Zheng M, Yuan Z, Liu T, Liu C. Helios characterized circulating follicular helper T cells with enhanced functional phenotypes and was increased in patients with systemic lupus erythematosus. Clin Exp Med 2024; 24:5. [PMID: 38240853 PMCID: PMC10799143 DOI: 10.1007/s10238-023-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 01/22/2024]
Abstract
Helios was related to the immunosuppressive capacity and stability of regulatory T cells. However, the significance of Helios in follicular help T (TFH) and follicular regulatory T (TFR) cells is unclear. This research aimed to clarify the significance of Helios (IKZF2) in TFH and TFR cells and its clinical value in systemic lupus erythematosus (SLE). IKZF2 mRNA in different cell subsets was analyzed. Helios+ percentages in TFH and TFR cells were identified in the peripheral blood of 75 SLE patients and 62 HCs (healthy controls). PD-1 and ICOS expression were compared between Helios+ and Helios- cells. The capacity of TFH cells to secrete IL-21 and TFR cells to secrete IL-10 was measured. Correlation analysis and receiver operating characteristic (ROC) curve analysis were conducted to assess the clinical significance of Helios-related TFH and TFR cell subsets in SLE. There was Helios expression in TFH and TFR cells. PD-1 and ICOS were lower in Helios+ TFR than in Helios- TFR. ICOS was increased in Helios+ TFH cells compared with Helios- TFH cells, and ICOS in Helios+ TFH cells was downregulated in SLE. Helios+ TFH cells secreted more IL-21 than Helios- TFH cells, and Helios+ TFH cells from SLE patients had a stronger IL-21 secretion than HCs. Helios+ TFH percentages were negatively correlated with C3 and C4 and positively related to CRP and SLEDAI, and the AUC of Helios+ TFH to distinguish SLE from HC was 0.7959. Helios characterizes circulating TFH cells with enhanced function. Increased Helios+ TFH cells could reflect the autoimmune status of SLE.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
10
|
Araki Y, Mimura T. Epigenetic Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:1019. [PMID: 38256093 PMCID: PMC10816225 DOI: 10.3390/ijms25021019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease in which immune disorders lead to autoreactive immune responses and cause inflammation and tissue damage. Genetic and environmental factors have been shown to trigger SLE. Recent evidence has also demonstrated that epigenetic factors contribute to the pathogenesis of SLE. Epigenetic mechanisms play an important role in modulating the chromatin structure and regulating gene transcription. Dysregulated epigenetic changes can alter gene expression and impair cellular functions in immune cells, resulting in autoreactive immune responses. Therefore, elucidating the dysregulated epigenetic mechanisms in the immune system is crucial for understanding the pathogenesis of SLE. In this paper, we review the important roles of epigenetic disorders in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yasuto Araki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan;
| | | |
Collapse
|
11
|
Zhou HY, Luo Q, Sui H, Du XN, Zhao YJ, Liu L, Guan Q, Zhou Y, Wen QS, Shi Y, Sun Y, Lin HL, Wang DP. Recent advances in the involvement of epigenetics in the pathogenesis of systemic lupus erythematosus. Clin Immunol 2024; 258:109857. [PMID: 38043757 DOI: 10.1016/j.clim.2023.109857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is a typical systemic autoimmune disease that manifests as skin rash, arthritis, lymphadenopathy, and multiple organ lesions. Epigenetics, including DNA methylation, histone modification, and non-coding RNA regulation, mainly affect the function and characteristics of cells through the regulation of gene transcription or translation. Increasing evidence indicates that there are a variety of complex epigenetic effects in patients with SLE, which interfere with the differentiation and function of T, and B lymphocytes, monocytes, and neutrophils, and enhance the expression of SLE-associated pathogenic genes. This paper summarizes our currently knowledge regarding pathogenesis of SLE, and introduces current advances in the epigenetic regulation of SLE from three aspects: immune function, inflammatory response, and lupus complications. We propose that epigenetic changes could be used as potential biomarkers and therapeutic targets of SLE.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Luo
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hua Sui
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Xiang-Ning Du
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang-Jianing Zhao
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Lu Liu
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing Guan
- Integrated TCM and Western Medicine Collage of Dalian Medical University, Dalian, China
| | - Yue Zhou
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qing-Si Wen
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Shi
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Sun
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong-Li Lin
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Da-Peng Wang
- Nephrology Department of First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Qiu Y, Feng D, Jiang W, Zhang T, Lu Q, Zhao M. 3D genome organization and epigenetic regulation in autoimmune diseases. Front Immunol 2023; 14:1196123. [PMID: 37346038 PMCID: PMC10279977 DOI: 10.3389/fimmu.2023.1196123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging field of research that investigates the relationship between gene regulatory function and the spatial structure of chromatin. Chromatin folding can be studied using chromosome conformation capture (3C) technology and 3C-based derivative sequencing technologies, including chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), and high-throughput chromosome conformation capture (Hi-C), which allow scientists to capture 3D conformations from a single site to the entire genome. A comprehensive analysis of the relationships between various regulatory components and gene function also requires the integration of multi-omics data such as genomics, transcriptomics, and epigenomics. 3D genome folding is involved in immune cell differentiation, activation, and dysfunction and participates in a wide range of diseases, including autoimmune diseases. We describe hierarchical 3D chromatin organization in this review and conclude with characteristics of C-techniques and multi-omics applications of the 3D genome. In addition, we describe the relationship between 3D genome structure and the differentiation and maturation of immune cells and address how changes in chromosome folding contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Yang Y, Li M, Zhu Y, Liu K, Liu M, Liu Y, Zhu G, Luo H, Zuo X, Zhang H, Guo M. EZH2 inhibition dampens autoantibody production in lupus by restoring B cell immune tolerance. Int Immunopharmacol 2023; 119:110155. [PMID: 37044035 DOI: 10.1016/j.intimp.2023.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVE The aim of this study was to elucidate the role of enhancer of zeste homolog 2 (EZH2) in the breakdown of B cell immune tolerance and production of autoantibodies in systemic lupus erythematosus (SLE), and to explore the therapeutic effects of EZH2 inhibition on lupus. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from new-onset SLE patients for flow cytometric analysis. Pristane-induced lupus mice were constructed, and the EZH2 inhibitor was administrated by intraperitoneal injection to treat lupus mice. Blood and urine were collected from lupus mice to detect autoantibodies and proteinuria, and renal pathology scores were assessed. Mouse spleen B cells were sorted with magnetic beads and subjected to flow cytometric apoptosis detection, real time quantitative PCR (RT-qPCR), and western blotting (WB). RESULTS EZH2 expression was elevated in diverse B-cell subsets in both SLE patients and pristane-induced lupus mice. The EZH2 inhibitor attenuated lupus-like symptoms and dampened autoantibody production in pristane-induced lupus mice. Inhibition of EZH2 also reduced autoantibody secretion by plasma cells from lupus patients. Mechanistically, EZH2 mediated the impaired apoptosis of autoreactive B cells and the differentiation of autoantibody producing plasma cells by inhibiting multiple cyclin-dependent kinase inhibitor (CKI) genes. CONCLUSION EZH2 mediated the breakdown of B-cell peripheral immune tolerance by inhibiting CKI genes and participated in the generation of autoantibodies in SLE. EZH2 inhibition could serve as a promising drug intervention for the treatment of SLE.
Collapse
Affiliation(s)
- Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yaxi Zhu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Yanjuan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ganqian Zhu
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China.
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
14
|
The critical importance of epigenetics in autoimmune-related skin diseases. Front Med 2023; 17:43-57. [PMID: 36811762 DOI: 10.1007/s11684-022-0980-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2023]
Abstract
Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.
Collapse
|
15
|
Methyl Donor Micronutrients: A Potential Dietary Epigenetic Target in Systemic Lupus Erythematosus Patients. Int J Mol Sci 2023; 24:ijms24043171. [PMID: 36834583 PMCID: PMC9961281 DOI: 10.3390/ijms24043171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by an aberrant immune response and persistent inflammation. Its pathogenesis remains unknown; however, a complex interaction between environmental, genetic, and epigenetic factors has been suggested to cause disease onset. Several studies have demonstrated that epigenetic alterations, such as DNA hypomethylation, miRNA overexpression, and altered histone acetylation, may contribute to SLE onset and the disease's clinical manifestations. Epigenetic changes, especially methylation patterns, are modifiable and susceptible to environmental factors such as diet. It is well known that methyl donor nutrients, such as folate, methionine, choline, and some B vitamins, play a relevant role in DNA methylation by participating as methyl donors or coenzymes in one-carbon metabolism. Based on this knowledge, this critical literature review aimed to integrate the evidence in animal models and humans regarding the role of nutrients in epigenetic homeostasis and their impact on immune system regulation to suggest a potential epigenetic diet that could serve as adjuvant therapy in SLE.
Collapse
|
16
|
Zhao M, Feng D, Hu L, Liu L, Wu J, Hu Z, Long H, Kuang Q, Ouyang L, Lu Q. 3D genome alterations in T cells associated with disease activity of systemic lupus erythematosus. Ann Rheum Dis 2023; 82:226-234. [PMID: 36690410 PMCID: PMC9887402 DOI: 10.1136/ard-2022-222653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Three-dimensional (3D) genome alterations can dysregulate gene expression by rewiring physical interactions within chromosomes in a tissue-specific or cell-specific manner and lead to diseases. We aimed to elucidate the 3D genome structure and its role in gene expression networks dysregulated in systemic lupus erythematosus (SLE). METHODS We performed Hi-C experiments using CD4+ T cells from 7 patients with SLE and 5 age-matched and sex-matched healthy controls (HCs) combined with RNA sequencing analysis. Further integrative analyses, including transcription factor motif enrichment, SPI1 knockdown and histone modifications (H3K27ac, H3K4me1, H3K4me3), were performed for altered loop-associated gene loci in SLE. RESULTS We deciphered the 3D chromosome organisation in T cells of patients with SLE and found it was clearly distinct from that of HCs and closely associated with the disease activity of SLE. Importantly, we identified loops within chromosomes associated with the disease activity of SLE and differentially expressed genes and found some key histone modifications close to these loops. Moreover, we demonstrated the contribution of the transcription factor SPI1, whose motif is located in the altered loop in SLE, to the overexpression of interferon pathway gene. In addition, we identified the potential influences of genetic variations in 3D genome alterations in SLE. CONCLUSIONS Our results highlight the 3D genome structure alterations associated with SLE development and provide a foundation for future interrogation of the relationships between chromosome structure and gene expression control in SLE.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Liu
- Epigenetic Group, Frasergen Bioinformatics Co, Ltd, Wuhan, China
| | - Jiali Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Hu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haojun Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiqi Kuang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lianlian Ouyang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
17
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
18
|
Mei X, Zhang B, Zhao M, Lu Q. An update on epigenetic regulation in autoimmune diseases. J Transl Autoimmun 2022; 5:100176. [PMID: 36544624 PMCID: PMC9762196 DOI: 10.1016/j.jtauto.2022.100176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases (AIDs) generally manifest as chronic immune disorders characterized by significant heterogeneity and complex symptoms. The discordant incidence of AIDs between monozygotic twins guided people to attach importance to environmental factors. Epigenetics is one of the major ways to be influenced, some of them can even occur years before clinical diagnosis. With the advent of high-throughput omics times, the mysterious veil of epigenetic modification in AIDs has been gradually unraveled, and some progress has been made in utilizing it as indicators of diagnosis and disease activity. For example, the hypomethylated IFI44L promoter in diagnosing systematic lupus erythematosus (SLE). More recently, newly identified noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are also believed to be involved in the etiology of AIDs while the initial factor behind those epigenetic alterations can be diverse from metabolism to microbiota. Update and comprehensive insights into epigenetics in AIDs can help us understand the pathogenesis and further orchestrate it to benefit patients in the future. Therefore, we reviewed the latest epigenetic findings in SLE, rheumatoid arthritis (RA), Type 1 diabetes (T1D), systemic sclerosis (SSc) primarily from cellular levels.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Liu Z, Wang M, Cheng A, Ou X, Mao S, Yang Q, Wu Y, Zhao XX, Huang J, Gao Q, Zhang S, Sun D, Tian B, Jia R, Chen S, Liu M, Zhu D. Gene regulation in animal miRNA biogenesis. Epigenomics 2022; 14:1197-1212. [PMID: 36382497 DOI: 10.2217/epi-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
miRNAs are a class of noncoding RNAs of approximately 19-22 nucleotides that are widely found in animals, plants, bacteria and even viruses. Dysregulation of the expression profile of miRNAs is importantly linked to the development of diseases. Epigenetic modifications regulate gene expression and control cellular phenotypes. Although miRNAs are used as an epigenetic regulation tool, the biogenesis of miRNAs is also regulated by epigenetic events. Here the authors review the mechanisms and roles of epigenetic modification (DNA methylation, histone modifications), RNA modification and ncRNAs in the biogenesis of miRNAs, aiming to deepen the understanding of the miRNA biogenesis regulatory network.
Collapse
Affiliation(s)
- Zezheng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| |
Collapse
|
20
|
Zhang Q, Liu Y, Liao J, Wu R, Zhan Y, Zhang P, Luo S. Deficiency of p53 Causes the Inadequate Expression of miR-1246 in B Cells of Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1492-1498. [PMID: 36165173 PMCID: PMC9527209 DOI: 10.4049/jimmunol.2200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023]
Abstract
Underexpression of p53 is considered the leading cause of the decreased miR-1246 expression in B cells of systemic lupus erythematosus (SLE) patients, yet the exact mechanism of action still remains unclear. To further explore the molecular mechanism of p53 upregulating miR-1246 expression, we targeted the methylation and acetylation of histone H3 in the miR-1246 promoter region of SLE B cells. We found that increased histone H3 trimethylation at Lys27 (H3K27me3) and decreased histone H3 acetylation at Lys9 and Lys14 (H3K9/K14ac) in the miR-1246 promoter region are essential for the low expression of miR-1246 in SLE B cells. p53 can promote miR-1246 transcription by recruiting Jumonji domain-containing protein 3 (JMJD3), E1A-binding protein p300 (EP300), and CREB-binding protein (CBP) to bind to the miR-1246 promoter, downregulating H3K27me3 and upregulating H3K9/K14ac. Furthermore, early B cell factor 1 (EBF1), CD40, CD38, and X box binding protein-1 (XBP-1) expression levels in SLE B cells transfected with p53 expression plasmid were significantly decreased, whereas autoantibody IgG production in autologous CD4+ T cells cocultured with overexpressed p53 SLE B cells was reduced. Collectively, our data suggest that the reduction of p53 decreases miR-1246 expression via upregulation of H3K27me3 and downregulation of H3K9/14ac, which in turn results in SLE B cell hyperactivity.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyue Liao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruifang Wu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuangyan Luo
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Xu WD, Huang Q, Huang AF. Emerging role of EZH2 in rheumatic diseases: A comprehensive review. Int J Rheum Dis 2022; 25:1230-1238. [PMID: 35933601 DOI: 10.1111/1756-185x.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/03/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methylated enzyme. It trimethylates histone 3 lysine 27 (H3K27) to regulate epigenetic processes. Recently, studies showed excessive expression of EZH2 in rheumatic diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, and systemic sclerosis. Moreover, epigenetic modification of EZH2 regulates differentiation and proliferation of different immune cells. Therefore, in this review, we comprehensively discuss the role of EZH2 in rheumatic diseases. Collection of the evidence may provide a basis for further understanding the role of EZH2 and give potential for targeting these diseases.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Are BCL6 and EZH2 novel therapeutic targets for systemic lupus erythematosus? Cell Mol Immunol 2022; 19:863-865. [PMID: 35637283 PMCID: PMC9242986 DOI: 10.1038/s41423-022-00882-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
|
23
|
METTL3 stabilizes HDAC5 mRNA in an m 6A-dependent manner to facilitate malignant proliferation of osteosarcoma cells. Cell Death Dis 2022; 8:179. [PMID: 35396379 PMCID: PMC8993827 DOI: 10.1038/s41420-022-00926-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Osteosarcoma (OS) is a prevalent primary bone sarcoma. Methyltransferase-like 3 (METTL3) is dysregulated in human malignancies. This study explored the mechanism of METTL3 in OS cell proliferation. Our results demonstrated that METTL3 was highly expressed in OS, and correlated with the tumor size, clinical stage, and distant metastasis of OS patients. Higher METTL3 expression indicated poorer prognosis. METTL3 silencing inhibited the malignant proliferation of OS cells, while METTL3 overexpression led to an opposite trend. METTL3 upregulated histone deacetylase 5 (HDAC5) expression in OS cells by increasing the m6A level. HDAC5 reduced the enrichment of H3K9/K14ac on miR-142 promoter, thus suppressing miR-142-5p expression and upregulating armadillo-repeat-containing 8 (ARMC8) level. HDAC5 overexpression or miR-142-5p silencing attenuated the inhibitory effect of METTL3 silencing on OS cell proliferation. Xenograft tumor experiment in nude mice confirmed that METTL3 silencing repressed OS cell proliferation in vivo via the HDAC5/miR-142-5p/ARMC8 axis. Collectively, METTL3-mediated m6A modification facilitated OS cell proliferation via the HDAC5/miR-142-5p/ARMC8 axis.
Collapse
|
24
|
Abstract
Significance: Epigenetic dysregulation plays an important role in the pathogenesis and development of autoimmune diseases. Oxidative stress is associated with autoimmunity and is also known to alter epigenetic mechanisms. Understanding the interplay between oxidative stress and epigenetics will provide insights into the role of environmental triggers in the development of autoimmunity in genetically susceptible individuals. Recent Advances: Abnormal DNA and histone methylation patterns in genes and pathways involved in interferon and tumor necrosis factor signaling, cellular survival, proliferation, metabolism, organ development, and autoantibody production have been described in autoimmunity. Inhibitors of DNA and histone methyltransferases showed potential therapeutic effects in animal models of autoimmune diseases. Oxidative stress can regulate epigenetic mechanisms via effects on DNA damage repair mechanisms, cellular metabolism and the local redox environment, and redox-sensitive transcription factors and pathways. Critical Issues: Studies looking into oxidative stress and epigenetics in autoimmunity are relatively limited. The number of available longitudinal studies to explore the role of DNA methylation in the development of autoimmune diseases is small. Future Directions: Exploring the relationship between oxidative stress and epigenetics in autoimmunity will provide clues for potential preventative measures and treatment strategies. Inception cohorts with longitudinal follow-up would help to evaluate epigenetic marks as potential biomarkers for disease development, progression, and treatment response in autoimmunity. Antioxid. Redox Signal. 36, 423-440.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
De Vito F, Musella A, Fresegna D, Rizzo FR, Gentile A, Stampanoni Bassi M, Gilio L, Buttari F, Procaccini C, Colamatteo A, Bullitta S, Guadalupi L, Caioli S, Vanni V, Balletta S, Sanna K, Bruno A, Dolcetti E, Furlan R, Finardi A, Licursi V, Drulovic J, Pekmezovic T, Fusco C, Bruzzaniti S, Hornstein E, Uccelli A, Salvetti M, Matarese G, Centonze D, Mandolesi G. MiR-142-3p regulates synaptopathy-driven disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 2021; 48:e12765. [PMID: 34490928 PMCID: PMC9291627 DOI: 10.1111/nan.12765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Aim We recently proposed miR‐142‐3p as a molecular player in inflammatory synaptopathy, a new pathogenic hallmark of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE), that leads to neuronal loss independently of demyelination. MiR‐142‐3p seems to be unique among potential biomarker candidates in MS, since it is an inflammatory miRNA playing a dual role in the immune and central nervous systems. Here, we aimed to verify the impact of miR‐142‐3p circulating in the cerebrospinal fluid (CSF) of MS patients on clinical parameters, neuronal excitability and its potential interaction with disease modifying therapies (DMTs). Methods and Results In a cohort of 151 MS patients, we found positive correlations between CSF miR‐142‐3p levels and clinical progression, IL‐1β signalling as well as synaptic excitability measured by transcranial magnetic stimulation. Furthermore, therapy response of patients with ‘low miR‐142‐3p’ to dimethyl fumarate (DMF), an established disease‐modifying treatment (DMT), was superior to that of patients with ‘high miR‐142‐3p’ levels. Accordingly, the EAE clinical course of heterozygous miR‐142 mice was ameliorated by peripheral DMF treatment with a greater impact relative to their wild type littermates. In addition, a central protective effect of this drug was observed following intracerebroventricular and ex vivo acute treatments of EAE wild type mice, showing a rescue of miR‐142‐3p‐dependent glutamatergic alterations. By means of electrophysiology, molecular and biochemical analysis, we suggest miR‐142‐3p as a molecular target of DMF. Conclusion MiR‐142‐3p is a novel and potential negative prognostic CSF marker of MS and a promising tool for identifying personalised therapies.
Collapse
Affiliation(s)
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Human Sciences and Quality of Life Promotion, University of Rome, San Raffaele, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy
| | | | | | | | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | | | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.,Unit of Neuroimmunology, IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Sara Balletta
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Krizia Sanna
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", Rome, Italy
| | - Jelena Drulovic
- Clinic of Neurology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Pekmezovic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, Belgrade, Serbia
| | - Clorinda Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Salvetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Human Sciences and Quality of Life Promotion, University of Rome, San Raffaele, Italy
| |
Collapse
|
26
|
Xie S, Wei H, Peng A, Xie A, Li J, Fang C, Shi F, Yang Q, Huang H, Xie H, Pan X, Tian X, Huang J. Ikzf2 Regulates the Development of ICOS + Th Cells to Mediate Immune Response in the Spleen of S. japonicum-Infected C57BL/6 Mice. Front Immunol 2021; 12:687919. [PMID: 34475870 PMCID: PMC8406689 DOI: 10.3389/fimmu.2021.687919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Th cells (helper T cells) have multiple functions in Schistosoma japonicum (S. japonicum) infection. Inducible co-stimulator (ICOS) is induced and expressed in activated T lymphocytes, which enhances the development of B cells and antibody production through the ICOS/ICOSL pathway. It remains unclear about the role and possible regulating mechanism of ICOS+ Th cells in the spleen of S. japonicum-infected C57BL/6 mice. Methods C57BL/6 mice were infected with cercariae of S. japonicum through the abdomen. The expression of ICOS, activation markers, and the cytokine production on CD4+ ICOS+ Th cells were detected by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Moreover, the differentially expressed gene data of ICOS+ and ICOS- Th cells from the spleen of infected mice were obtained by mRNA sequencing. Besides, Western blot and chromatin immunoprecipitation (ChIP) were used to explore the role of Ikzf2 on ICOS expression. Results After S. japonicum infection, the expression of ICOS molecules gradually increased in splenic lymphocytes, especially in Th cells (P < 0.01). Compared with ICOS- Th cells, more ICOS+ Th cells expressed CD69, CD25, CXCR5, and CD40L (P < 0.05), while less of them expressed CD62L (P < 0.05). Also, ICOS+ Th cells expressed more cytokines, such as IFN-γ, IL-4, IL-10, IL-2, and IL-21 (P < 0.05). RNA sequencing results showed that many transcription factors were increased significantly in ICOS+ Th cells, especially Ikzf2 (P < 0.05). And then, the expression of Ikzf2 was verified to be significantly increased and mainly located in the nuclear of ICOS+ Th cells. Finally, ChIP experiments and dual-luciferase reporter assay confirmed that Ikzf2 could directly bind to the ICOS promoter in Th cells. Conclusion In this study, ICOS+ Th cells were found to play an important role in S. japonicum infection to induce immune response in the spleen of C57BL/6 mice. Additionally, Ikzf2 was found to be one important transcription factor that could regulate the expression of ICOS in the spleen of S. japonicum-infected C57BL/6 mice.
Collapse
Affiliation(s)
- Shihao Xie
- Department of Infectious Diseases, Key Laboratory for Major Obsteric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anping Peng
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anqi Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Department of Infectious Diseases, Key Laboratory for Major Obsteric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- Department of Infectious Diseases, Key Laboratory for Major Obsteric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, Key Laboratory for Major Obsteric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- College of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Chen Z, Xie Y, Liu D, Liu P, Li F, Zhang Z, Zhang M, Wang X, Zhang Y, Sun X, Huang Q. Downregulation of miR-142a Contributes to the Enhanced Anti-Apoptotic Ability of Murine Chronic Myelogenous Leukemia Cells. Front Oncol 2021; 11:718731. [PMID: 34386429 PMCID: PMC8354203 DOI: 10.3389/fonc.2021.718731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background Leukemic stem cell (LSC) is thought to be responsible for chronic myelogenous leukemia (CML) initiation and relapse. However, the inherent regulation of LSCs remains largely obscure. Herein, we integratedly analyzed miRNA and gene expression alterations in bone marrow (BM) Lin-Sca1+c-Kit+ cells (LSKs) of a tet-off inducible CML mouse model, Scl/tTA-BCR/ABL (BA). Methods Scl/tTA and TRE-BA transgenic mice were crossed in the presence of doxycycline to get double transgenic mice. Both miRNA and mRNA expression profiles were generated from BM LSKs at 0 and 3 weeks after doxycycline withdrawal. The target genes of differentially expressed miRNAs were predicted, followed by the miRNA-mRNA network construction. In vitro and in vivo experiments were further performed to elucidate their regulation and function in CML progression. Results As a result of the integrated analysis and experimental validation, an anti-apoptotic pathway emerged from the fog. miR-142a was identified to be downregulated by enhanced ERK-phosphorylation in BA-harboring cells, thereby relieving its repression on Ciapin1, an apoptosis inhibitor. Moreover, miR-142a overexpression could partially rescue the abnormal anti-apoptotic phenotype and attenuate CML progression. Conclusion Taken together, this study explored the miRNA-mRNA regulatory networks in murine CML LSKs and demonstrated that ERK-miR-142a-Ciapin1 axis played an essential role in CML pathogenesis.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Jiangxi Academy of Clinical Medical Sciences, Nanchang, China
| | - Zhanglin Zhang
- Department of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengmeng Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Li T, Li H, Li Y, Dong SA, Yi M, Zhang QX, Feng B, Yang L, Shi FD, Yang CS. Multi-Level Analyses of Genome-Wide Association Study to Reveal Significant Risk Genes and Pathways in Neuromyelitis Optica Spectrum Disorder. Front Genet 2021; 12:690537. [PMID: 34367251 PMCID: PMC8335167 DOI: 10.3389/fgene.2021.690537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system and it is understandable that environmental and genetic factors underlie the etiology of NMOSD. However, the susceptibility genes and associated pathways of NMOSD patients who are AQP4-Ab positive and negative have not been elucidated. Methods Secondary analysis from a NMOSD Genome-wide association study (GWAS) dataset originally published in 2018 (215 NMOSD cases and 1244 controls) was conducted to identify potential susceptibility genes and associated pathways in AQP4-positive and negative NMOSD patients, respectively (132 AQP4-positive and 83 AQP4-negative). Results In AQP4-positive NMOSD cases, five shared risk genes were obtained at chromosome 6 in AQP4-positive NMOSD cases by using more stringent p-Values in both methods (p < 0.05/16,532), comprising CFB, EHMT2, HLA-DQA1, MSH5, and SLC44A4. Fifty potential susceptibility gene sets were determined and 12 significant KEGG pathways were identified. Sixty-seven biological process pathways, 32 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained from the GO annotations of the 128 pathways identified. In the AQP4 negative NMOSD group, no significant genes were obtained by using more stringent p-Values in both methods (p < 0.05/16,485). The 22 potential susceptibility gene sets were determined. There were no shared potential susceptibility genes between the AQP4-positive and negative groups, furthermore, four significant KEGG pathways were also identified. Of the GO annotations of the 165 pathways identified, 99 biological process pathways, 37 cellular-component pathways, and 29 molecular-function pathways with a p-Value of <0.05 were obtained. Conclusion The potential molecular mechanism underlying NMOSD may be related to proteins encoded by these novel genes in complements, antigen presentation, and immune regulation. The new results may represent an improved comprehension of the genetic and molecular mechanisms underlying NMOSD.
Collapse
Affiliation(s)
- Ting Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - He Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, China
| | - Ming Yi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Feng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chun-Sheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Roberts LB, Jowett GM, Read E, Zabinski T, Berkachy R, Selkirk ME, Jackson I, Niazi U, Anandagoda N, Araki M, Araki K, Kasturiarachchi J, James C, Enver T, Nimmo R, Reis R, Howard JK, Neves JF, Lord GM. MicroRNA-142 Critically Regulates Group 2 Innate Lymphoid Cell Homeostasis and Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:2725-2739. [PMID: 34021046 PMCID: PMC7610861 DOI: 10.4049/jimmunol.2000647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
MicroRNA-142 isoforms critically regulate ILC2 homeostasis and effector functions. MicroRNA-142 isoforms regulate the ILC2 lineage cell intrinsically. Socs1 and Gfi1 are miR-142 isoform regulated targets in ILC2s.
Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor–biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Geraldine M Jowett
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD program, London, United Kingdom
| | - Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD program, London, United Kingdom
| | - Tomas Zabinski
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Ian Jackson
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Umar Niazi
- Guy's and St Thomas' National Health Service Foundation Trust and King's College London National Institute for Health Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London, United Kingdom
| | - Nelomi Anandagoda
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Jagath Kasturiarachchi
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Chela James
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Tariq Enver
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Rachael Nimmo
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Rita Reis
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Jane K Howard
- School of Life Course Sciences, King's College London, London, United Kingdom; and
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; .,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Liu Y, Luo S, Zhan Y, Wang J, Zhao R, Li Y, Zeng J, Lu Q. Increased Expression of PPAR-γ Modulates Monocytes Into a M2-Like Phenotype in SLE Patients: An Implicative Protective Mechanism and Potential Therapeutic Strategy of Systemic Lupus Erythematosus. Front Immunol 2021; 11:579372. [PMID: 33584646 PMCID: PMC7873911 DOI: 10.3389/fimmu.2020.579372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a spectrum of autoimmune disorders characterized by continuous inflammation and the production of autoantibodies. Monocytes, as precursors of dendritic cells and macrophages, are involved in the pathogenesis of SLE, particularly in the inflammatory reactions. Previous studies have proved that Pam3CSK4, as a synthetic ligand of TLR2, could stimulate monocytes to differentiated into a M2-like phenotype which presented immunosuppressive functions. However, the underlying mechanisms remain to be further studied. Here, we reported an increased expression of PPAR-γ in the CD14+ monocytes from SLE patients, particularly in the treated group of SLE patients and the group with positive anti-dsDNA antibodies. Additionally, PPAR-γ expression decreased in the SLE patients with skin lesion. Furthermore, we demonstrated that Pam3CSK4 stimulation can decrease the expression of CCR7, CD80, IL-1β, IL-6, IL-12, and NF-κB which were related to the M1-like subset of monocytes and increased the expression of ARG1 which was related to the M2-like subset through upregulated PPAR-γ expression and consequently downregulated NF-κB expression in the CD14+ monocytes in a time-dependent manner. ChIP-qPCR results further demonstrated that Pam3CSK4 pretreatment could modulate PPAR-γ expression by regulating histone modification through the inhibition of Sirt1 binding to the PPAR-γ promoter. Taken together, our study indicated a protective role of TLR2/Sirt1/PPAR-γ pathway in the pathogenesis of SLE which provided potential therapeutic strategies.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Shuangyan Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| | - Jiayu Wang
- Xiangya Medical School of Central South University, Changsha, China
| | - Rui Zhao
- Xiangya Medical School of Central South University, Changsha, China
| | - Yingjie Li
- Xiangya Medical School of Central South University, Changsha, China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, China
| |
Collapse
|
31
|
Sun P, Wang N, Zhao P, Wang C, Li H, Chen Q, Mang G, Wang W, Fang S, Du G, Zhang M, Tian J. Circulating Exosomes Control CD4 + T Cell Immunometabolic Functions via the Transfer of miR-142 as a Novel Mediator in Myocarditis. Mol Ther 2020; 28:2605-2620. [PMID: 32882180 PMCID: PMC7704792 DOI: 10.1016/j.ymthe.2020.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
CD4+ T cells undergo immunometabolic activation to mount an immunogenic response during experimental autoimmune myocarditis (EAM). Exosomes are considered key messengers mediating multiple T cell functions in autoimmune responses. However, the role of circulating exosomes in EAM immunopathogenesis and CD4+ T cell dysfunction remains elusive. Our objective was to elucidate the mechanism of action for circulating exosomes in EAM pathogenesis. We found that serum exosomes harvested from EAM mice induced CD4+ T cell immunometabolic dysfunction. Treatment with the exosome inhibitor GW4869 protected mice from developing EAM, underlying that exosomes are indispensable for the pathogenesis of EAM. Furthermore, by transfer of EAM exosomes, we confirmed that circulating exosomes initiate the T cell pathological immune response, driving the EAM pathological process. Mechanistically, EAM-circulating exosomes selectively loaded abundant microRNA (miR)-142. We confirmed methyl-CpG binding domain protein 2 (MBD2) and suppressor of cytokine signaling 1 (SOCS1) as functional target genes of miR-142. The miR-142/MBD2/MYC and miR-142/SOCS1 communication axes are critical to exosome-mediated immunometabolic turbulence. Moreover, the in vivo injection of the miR-142 inhibitor alleviated cardiac injury in EAM mice. This effect was abrogated by pretreatment with EAM exosomes. Collectively, our results indicate a newly endogenous mechanism whereby circulating exosomes regulate CD4+ T cell immunometabolic dysfunction and EAM pathogenesis via cargo miR-142.
Collapse
Affiliation(s)
- Ping Sun
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Naixin Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Peng Zhao
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chao Wang
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Hairu Li
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Qi Chen
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ge Mang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Weiwei Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Guoqing Du
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Jiawei Tian
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
32
|
Sawalha AH. Reply. Arthritis Rheumatol 2020; 72:373-374. [DOI: 10.1002/art.41132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amr H. Sawalha
- Children's Hospital of Pittsburgh University of Pittsburgh School of Medicine and Lupus Center of Excellence Pittsburgh PA
| |
Collapse
|
33
|
Intrinsic T-cell regulator miR-142-3p/5p - a novel therapeutic target? Cell Mol Immunol 2019; 18:508-509. [PMID: 31649309 DOI: 10.1038/s41423-019-0317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/08/2022] Open
|
34
|
Sawalha AH. BCL-6 and EZH2 cooperate to epigenetically repress anti-inflammatory miR-142-3p/5p in lupus CD4+T cells. Cell Mol Immunol 2019; 18:504-505. [PMID: 31511638 DOI: 10.1038/s41423-019-0288-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA. .,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|