1
|
Wang B, Gu B, Gao L, Ma C, Li X, Wang Y, Hu J, Wang N, Xiang L, Yu Y, Deng J, Wang X, He P, Zou D, Tao P, Ma Y, Song K, Han Z, Zhang T, Chen H. SERPINE1 Facilitates Metastasis in Gastric Cancer Through Anoikis Resistance and Tumor Microenvironment Remodeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500136. [PMID: 40207795 DOI: 10.1002/smll.202500136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/19/2025] [Indexed: 04/11/2025]
Abstract
SERPINE1 is a serine protease inhibitor upregulated in various malignancies and pivotal in gastric cancer (GC) metastasis and the tumor microenvironment (TME). This study elucidates the mechanisms by which SERPINE1 mediates anoikis resistance and fosters an immunosuppressive TME in advanced GC. SERPINE1 is highly expressed in GC tissues and metastatic lesions and serves as an independent risk factor for poor prognosis. The transcriptional activation of SERPINE1 by CEBPB triggers the PI3K/AKT and EMT signaling pathway via autocrine mechanisms, enhancing anoikis resistance and metastatic potential in GC cells. Furthermore, SERPINE1 facilitates M2 macrophage polarization by binding to lipoprotein receptor-related protein 1 (LRP1) in a paracrine manner, suppressing CD8+ T-cell infiltration and functionality in the TME. Therapeutic intervention combining SERPINE1 inhibition with PD-1 blockade exhibits synergistic antitumor effects. Clinically, high SERPINE1 expression is associated with an increased risk of recurrence following immune checkpoint inhibitor therapy in patients with advanced GC. These findings suggest that SERPINE1 is a critical driver of GC progression through anoikis resistance and TME remodeling. Hence, SERPINE1 can offer a promising therapeutic target and represent a predictive biomarker for immunotherapy outcomes in GC.
Collapse
Affiliation(s)
- Bofang Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lei Gao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Chenhui Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xuemei Li
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jike Hu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Na Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lin Xiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Pathology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yang Yu
- Department of Thyroid Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junge Deng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xueyan Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Puyi He
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Dan Zou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Pengxian Tao
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Yanling Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Kewei Song
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhijian Han
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hao Chen
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The Key Laboratory of Humanized Animal Models, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Lucchetti D, Colella F, d'Amati A, Servidei T, Gessi M, Chiara P, Cellini B, Toma F, Giacò L, Persiani F, Perelli L, Mantini G, Genovese G, Masetto I, Ruggiero A, Sgambato A. Spatial Analysis Identifies CD147 as a Novel Marker of High-Grade Childhood Posterior Fossa Ependymoma. J Transl Med 2025; 105:104175. [PMID: 40250710 DOI: 10.1016/j.labinv.2025.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Ependymoma (EPN) is the third most common malignant tumor of the central nervous system in children. The spatial and temporal heterogeneity of cancer cell populations can impact the ability of EPN to overcome microenvironmental constraints. Data set analysis revealed that CD147 expression is increased in glioma, and its expression correlates with detrimental survival and higher mutational burden. We performed spatial phenotyping of tumor microenvironment in childhood posterior fossa type A EPN (PFA-EPN) central nervous system World Health Organization grade 2 (G2; n = 5) and grade 3 (G3; n = 7). Tumors were comprehensively assessed using multiplex immunofluorescence panels to detect immune, microglial, endothelial, and tumor cells. We observed significant differences in immune cell populations according to grading: a high number of T cells and cytotoxic T cell infiltration were features of G2 when compared with G3 cancers. The distance between CD4+ and CD8+ cells was lower in G3 tumors, highlighting an increase in cell interactions between T-cell populations in more aggressive tumors. Two tumor-associated macrophage subsets with distinct functional phenotypes (CD68+MCP1+ and CD68+CD44+), associated with tumor progression, were previously identified by single-cell RNA sequencing analyses in spinal EPN. We demonstrated that the CD68+CD44+ population was higher in G3 compared with G2 PFA. CD147+ microglia cells were closer to CD8+ cells and CD147+ tumor-proliferating cells in G3 than G2 counterparts. In G3 tumors, CD4+ cells were more distant from CD147+ microglial cells and from CD8+ lymphocytes and were closer to CD147+ tumor-proliferating cells. We provided evidence that CD147+ microglial cells could be playing a key role in PFA-EPN progression, promoting CD8+ T cells' exclusion. These findings highlight grading-related differences in PFA-EPN tumor microenvironment.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Colella
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Antonio d'Amati
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Italy; Neuropathology Unit, Division of Histopathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Division of Histopathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Parillo Chiara
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Beatrice Cellini
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Federica Toma
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luciano Giacò
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Federica Persiani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giulia Mantini
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy.
| | - Alessandro Sgambato
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
3
|
Shmidt D, Mamonkin M. SOHO State of the Art Updates and Next Questions | CAR T Cells in T Cell Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:77-88. [PMID: 38955579 DOI: 10.1016/j.clml.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Chimeric antigen receptor (CAR T) therapy produced excellent activity in patients with relapsed/refractory B-lineage malignancies. However, extending these therapies to T cell cancers requires overcoming unique challenges. In the recent years, multiple approaches have been developed in preclinical models and some were tested in clinical trials in patients with treatment-refractory T-cell malignanices with promising early results. Here, we review main hurdles impeding the success of CAR T therapy in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL), discuss potential solutions, and summarize recent progress in both preclinical and clinical development of CAR T therapy for these diseases.
Collapse
Affiliation(s)
- Daniil Shmidt
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
4
|
Peralta RM, Xie B, Lontos K, Nieves-Rosado H, Spahr K, Joshi S, Ford BR, Quann K, Frisch AT, Dean V, Philbin M, Cillo AR, Gingras S, Poholek AC, Kane LP, Rivadeneira DB, Delgoffe GM. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism. Nat Immunol 2024; 25:2297-2307. [PMID: 39516648 PMCID: PMC11588660 DOI: 10.1038/s41590-024-01999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
CD8+ T cells are critical mediators of antitumor immunity but differentiate into a dysfunctional state, known as T cell exhaustion, after persistent T cell receptor stimulation in the tumor microenvironment (TME). Exhausted T (Tex) cells are characterized by upregulation of coinhibitory molecules and reduced polyfunctionality. T cells in the TME experience an immunosuppressive metabolic environment via reduced levels of nutrients and oxygen and a buildup of lactic acid. Here we show that terminally Tex cells uniquely upregulate Slc16a11, which encodes monocarboxylate transporter 11 (MCT11). Conditional deletion of MCT11 in T cells reduced lactic acid uptake by Tex cells and improved their effector function. Targeting MCT11 with an antibody reduced lactate uptake specifically in Tex cells, which, when used therapeutically in tumor-bearing mice, resulted in reduced tumor growth. These data support a model in which Tex cells upregulate MCT11, rendering them sensitive to lactic acid present at high levels in the TME.
Collapse
Affiliation(s)
- Ronal M Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hector Nieves-Rosado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kellie Spahr
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Supriya Joshi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Quann
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew T Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Victoria Dean
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mary Philbin
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sebastian Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Chen X, Cheng G, Zhu L, Liu T, Yang X, Liu R, Ou Z, Zhang S, Tan W, Lin D, Wu C. Alarmin S100A8 imparts chemoresistance of esophageal cancer by reprogramming cancer-associated fibroblasts. Cell Rep Med 2024; 5:101576. [PMID: 38776909 PMCID: PMC11228400 DOI: 10.1016/j.xcrm.2024.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Chemotherapy remains the first-line treatment for advanced esophageal cancer. However, durable benefits are achieved by only a limited subset of individuals due to the elusive chemoresistance. Here, we utilize patient-derived xenografts (PDXs) from esophageal squamous-cell carcinoma to investigate chemoresistance mechanisms in preclinical settings. We observe that activated cancer-associated fibroblasts (CAFs) are enriched in the tumor microenvironment of PDXs resistant to chemotherapy. Mechanistically, we reveal that cancer-cell-derived S100A8 triggers the intracellular RhoA-ROCK-MLC2-MRTF-A pathway by binding to the CD147 receptor of CAFs, inducing CAF polarization and leading to chemoresistance. Therapeutically, we demonstrate that blocking the S100A8-CD147 pathway can improve chemotherapy efficiency. Prognostically, we found the S100A8 levels in peripheral blood can serve as an indicator of chemotherapy responsiveness. Collectively, our study offers a comprehensive understanding of the molecular mechanisms underlying chemoresistance in esophageal cancer and highlights the potential value of S100A8 in the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Rucheng Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zhengjie Ou
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
6
|
Lin L, Zhang S, Yang W. Comment on "An Injectable Hydrogel to Modulate T Cells for Cancer Immunotherapy". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302812. [PMID: 38072801 DOI: 10.1002/smll.202302812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Indexed: 05/03/2024]
Abstract
Recent clinical successes of immune checkpoint blockade (ICB) therapies represents a milestone as a novel anti-tumor strategy beyond surgery, radiotherapy, chemotherapy, and targeted therapy in cancer therapy. T cells, especially CD8+ T cells, play crucial roles in anti-tumor immune responses. However, most T cells in the tumor microenvironment express high inhibitory receptors, such as PD-1, TIM-3, and LAG-3, and decreased T cell response in response to stimuli. Applying ICB therapies, such as anti-PD-1, promotes T cell activation and increases cytotoxic T lymphocyte (CTL) response, leading to the enhanced anti-tumor immune response in patients with malignancy. Therefore, studies aimed to define novel targets that can restrain T cell terminal exhaustion are urgently required to provide new strategies for patients resistant to immunotherapy. The previously published study by Zhang et al. (An Injectable Hydrogel to Modulate T Cells for Cancer Immunotherapy, https://doi.org/10.1002/smll.202202663) introduces a new type of injectable hydrogel that can regulate the function of T cells, thereby improving their effectiveness in cancer immunotherapy. However, it remains to be discussed for its conclusion, as the flow cell assay of this article may not be proper.
Collapse
Affiliation(s)
- Liangbin Lin
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Sunfu Zhang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| |
Collapse
|
7
|
Chen Y, Yu D, Qian H, Shi Y, Tao Z. CD8 + T cell-based cancer immunotherapy. J Transl Med 2024; 22:394. [PMID: 38685033 PMCID: PMC11057112 DOI: 10.1186/s12967-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system in humans is a defense department against both exogenous and endogenous hazards, where CD8+ T cells play a crucial role in opposing pathological threats. Various immunotherapies based on CD8+ T cells have emerged in recent decades, showing their promising results in treating intractable diseases. However, in the fight against the constantly changing and evolving cancers, the formation and function of CD8+ T cells can be challenged by tumors that might train a group of accomplices to resist the T cell killing. As cancer therapy stepped into the era of immunotherapy, understanding the physiological role of CD8+ T cells, studying the machinery of tumor immune escape, and thereby formulating different therapeutic strategies become the imperative missions for clinical and translational researchers to fulfill. After brief basics of CD8+ T cell-based biology is covered, this review delineates the mechanisms of tumor immune escape and discusses different cancer immunotherapy regimens with their own advantages and setbacks, embracing challenges and perspectives in near future.
Collapse
Affiliation(s)
- Yanxia Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dingning Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Department of Laboratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Zhimin Tao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
8
|
Ethgen LM, Pastore C, Lin C, Reed DR, Hung LY, Douglas B, Sinker D, Herbert DR, Belle NM. A Trefoil factor 3-Lingo2 axis restrains proliferative expansion of type-1 T helper cells during GI nematode infection. Mucosal Immunol 2024; 17:238-256. [PMID: 38336020 PMCID: PMC11086637 DOI: 10.1016/j.mucimm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Host defense at the mucosal interface requires collaborative interactions between diverse cell lineages. Epithelial cells damaged by microbial invaders release reparative proteins such as the Trefoil factor family (TFF) peptides that functionally restore barrier integrity. However, whether TFF peptides and their receptors also serve instructive roles for immune cell function during infection is incompletely understood. Here, we demonstrate that the intestinal trefoil factor, TFF3, restrains (T cell helper) TH1 cell proliferation and promotes host-protective type 2 immunity against the gastrointestinal parasitic nematode Trichuris muris. Accordingly, T cell-specific deletion of the TFF3 receptor, leucine-rich repeat and immunoglobulin containing nogo receptor 2 (LINGO2), impairs TH2 cell commitment, allows proliferative expansion of interferon (IFN)g+ cluster of differentiation (CD)4+ TH1 cells and blocks normal worm expulsion through an IFNg-dependent mechanism. This study indicates that TFF3, in addition to its known tissue reparative functions, drives anti-helminth immunity by controlling the balance between TH1/TH2 subsets.
Collapse
Affiliation(s)
- Lucas M Ethgen
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Sinker
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Nicole M Belle
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Ma XK, Liu TL, Ren YN, Ma XP, Yao Y, Hou XG, Ding J, Wang F, Huang HF, Zhu H, Yang Z. 124I-labeled anti-CD147 antibody for noninvasive detection of CD147-positive pan-cancers: construction and preclinical studies. Acta Pharmacol Sin 2024; 45:436-448. [PMID: 37749238 PMCID: PMC10789738 DOI: 10.1038/s41401-023-01162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Extracellular matrix metalloproteinase inducer CD147 is a glycoprotein on the cell surface. There is minimal expression of CD147 in normal epithelial and fetal tissues, but it is highly expressed in a number of aggressive tumors. CD147 has been implicated in pan-cancer immunity and progression. With the development of CD147-targeting therapeutic strategy, accurate detection of CD147 expression in tumors and its changes during the therapy is necessary. In this study we constructed a novel radiotracer by labeling the anti-CD147 mAb with radionuclide 124/125I (124/125I-anti-CD147) for noninvasive detection of CD147 expression in pan-cancers, and characterized its physicochemical properties, affinity, metabolic characteristics, biodistribution and immunoPET imaging with 124I-IgG and 18F-FDG as controls. By examining the expression of CD147 in cancer cell lines, we found high CD147 expression in colon cancer cells LS174T, FADU human pharyngeal squamous cancer cells and 22RV1 human prostate cancer cells, and low expression of CD147 in human pancreatic cancer cells ASPC1 and human gastric cancer cells BGC823. 124/125I-anti-CD147 was prepared using N-bromine succinimide (NBS) as oxidant and purified by PD-10 column. Its radiochemical purity (RCP) was over 99% and maintained over 85% in saline or 5% human serum albumin (HSA) for more than 7 d; the RCP of 125I-anti-CD147 in blood was over 90% at 3 h post injection (p.i.) in healthy mice. The Kd value of 125I-anti-CD147 to CD147 protein was 6.344 nM, while that of 125I-IgG was over 100 nM. 125I-anti-CD147 showed much greater uptake in CD147 high-expression cancer cells compared to CD147 low-expression cancer cells. After intravenous injection in healthy mice, 125I-anti-CD147 showed high initial uptake in blood pool and liver, the uptake was decreased with time. The biological half-life of distribution and clearance phases in healthy mice were 0.63 h and 19.60 h, respectively. The effective dose of 124I-anti-CD147 was estimated as 0.104 mSv/MBq. We conducted immunoPET imaging in tumor-bearing mice, and demonstrated a significantly higher tumor-to-muscle ratio of 124I-anti-CD147 compared to that of 124I-IgG and 18F-FDG in CD147 (+) tumors. The expression levels of CD147 in cells and tumors were positively correlated with the maximum standardized uptake value (SUVmax) (P < 0.01). In conclusion, 124/125I-anti-CD147 displays high affinity to CD147, and represents potential for the imaging of CD147-positive tumors. The development of 124I-anti-CD147 may provide new insights into the regulation of tumor microenvironment and formulation of precision diagnosis and treatment programs for tumors.
Collapse
Affiliation(s)
- Xiao-Kun Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Te-Li Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ya-Nan Ren
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical College, Guizhou University, Guiyang, 550025, China
| | - Xiao-Pan Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical College, Guizhou University, Guiyang, 550025, China
| | - Yuan Yao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xing-Guo Hou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hai-Feng Huang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
10
|
Li L, Li S, Zhang X, Mei L, Fu X, Dai M, Wei N. Establishing the role of BRCA1 in the diagnosis, prognosis and immune infiltrates of breast invasive cancer by bioinformatics analysis and experimental validation. Aging (Albany NY) 2024; 16:1077-1095. [PMID: 38224491 PMCID: PMC10866431 DOI: 10.18632/aging.205366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Breast cancer susceptibility gene 1 (BRCA1) is a well-known gene that acts a vital role in suppressing the growth of tumors. Previous studies have primarily focused on the genetic mutations of BRCA1 and its association with hereditary breast invasive carcinoma (BRCA). However, little research has been done to investigate the relationship between BRCA1 and immune infiltrates and prognosis in BRCA. METHODS We obtained the expression profiles and clinical information of patients with BRCA from the Cancer Genome Atlas (TCGA) database. The levels of the BRCA1 gene between BRCA tissues and normal breast tissues were compared through the Wilcoxon rank-sum test. Additionally, we performed WB and RT-qPCR techniques to detect the expression of BRCA1. We conducted functional enrichment analyses. Furthermore, we assessed immune cell infiltration using a single-sample gene set enrichment analysis. The methylation status of the BRCA1 gene was analyzed using the UALCAN and MethSurv databases. The Cox regression analysis and (KM) Kaplan-Meier method were employed to determine the prognostic value of BRCA1. In order to provide a practical tool for predicting the overall survival rates at different time points, we also constructed a nomogram. RESULTS Our analysis revealed that the expression of BRCA1 was significantly higher in BRCA tissues compared to normal tissues. Furthermore, this increased level of BRCA1 was found to be associated with specific BRCA subtypes, including T2, stage II, ER positive, ect. Importantly, the overexpression of BRCA1 was shown to be a negative prognostic marker for the overall survival rates of BRCA patients. Moreover, low methylation status of the BRCA1 gene was related to a poorer prognosis. Furthermore, our results indicated that high levels of BRCA1 are related to a decrease in level of killer immune cells, such as natural killer (NK) cells, macrophages, CD8+ T cells, and plasma-like dendritic cells (pDCs) within the tumor microenvironment. CONCLUSIONS Our study is the first to provide evidence indicating that the presence of BRCA1 can serve as a reliable marker for both diagnosing and determining the prognosis of BRCA. Moreover, BRCA1 acts as a crucial indicator of the cancer's potential to infiltrate and invade the immune system, which has important implications for developing targeted therapies in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shuangyan Li
- Department of Oncology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xuyang Zhang
- Department of Hepatobiliary, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Liying Mei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Xueqin Fu
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Min Dai
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Na Wei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| |
Collapse
|
11
|
Kalinina A, Grigorieva E, Smirnova A, Kazansky D, Khromykh L. Pharmacokinetic Parameters of Recombinant Human Cyclophilin A in Mice. Eur J Drug Metab Pharmacokinet 2024; 49:57-69. [PMID: 38040985 DOI: 10.1007/s13318-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Cyclophilin A (CypA) is an isomerase that functions as a chaperone, housekeeping protein, and cyclosporine A (CsA) ligand. Secreted CypA is a proinflammatory factor, chemoattractant, immune regulator, and factor of antitumor immunity. Experimental data suggest clinical applications of recombinant human CypA (rhCypA) as a biotherapeutic for cancer immunotherapy, stimulation of tissue regeneration, treatment of brain pathologies, and as a supportive treatment for CsA-based therapies. The objective of this study is to analyze the pharmacokinetics of rhCypA in a mouse model. METHODS rhCypA was isotope-labeled with 125I and injected intraperitoneally (i.p.) or subcutaneously (s/c) into female mice as a single dose of 100 μg per mouse, equivalent to the estimated first-in-human dose. Analysis of 125I-rhCypA biodistribution and excretion was performed by direct radiometry of the blood, viscera, and urine of mice 0.5-72 h following its administration. RESULTS rhCypA showed rapid and even tissue-organ distribution, with the highest tropism (fT = 1.56) and accumulation (maximum concentration, Cmax = 137-167 μg/g) in the kidneys, its primary excretory organ. rhCypA showed the lowest tropism to the bone marrow and the brain (fT = 0.07) but the longest retention in these organs [mean retention time (MRT) = 25-28 h]. CONCLUSION This study identified promising target organs for rhCypA's potential therapeutic effects. The mode of rhCypA accumulation and retention in organs could be primarily due to the expression of its receptors in them. For the first time, rhCypA was shown to cross the blood-brain barrier and accumulate in the brain. These rhCypA pharmacokinetic data could be extrapolated to humans as preliminary data for possible clinical trials.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Elena Grigorieva
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Anna Smirnova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Dmitry Kazansky
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Ludmila Khromykh
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation.
| |
Collapse
|
12
|
Wang Y, Zhang L, Zhang L, Li J, Sheng Z, Du Y, Zuo Z, Yu X. Intervention with extracellular matrix metalloproteinase inducer in osteoclasts attenuates periodontitis-induced bone resorption. Odontology 2024; 112:148-157. [PMID: 37227552 DOI: 10.1007/s10266-023-00819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) plays critical roles in the regulation of inflammation and bone metabolism. The roles of EMMPRIN signaling in osteoclasts are worthy of deep study. The present study aimed to investigate bone resorption in periodontitis through the intervention of EMMPRIN signaling. The distribution of EMMPRIN in human periodontitis was observed. RANKL-induced osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) were treated with EMMPRIN inhibitor in vitro. Rats with ligation-induced periodontitis were treated with EMMPRIN inhibitor and harvested for microcomputed tomography scanning, histologic observation, immunohistochemistry, and double immunofluorescence analysis. Positive expressions of EMMPRIN could be found in the CD68+-infiltrating cells. Downregulated EMMPRIN restrained osteoclast differentiation of BMMs in vitro, which also inhibited MMP-9 expression (*P < 0.05). In vivo, EMMPRIN inhibitor restrained ligation-induced bone resorption by decreasing tartrate-resistant acid phosphatase-positive osteoclasts. Both EMMPRIN-positive and MMP-9-positive osteoclasts were less common in the EMMPRIN inhibitor groups than in the control groups. Intervention of EMMPRIN signaling in osteoclasts could probably provide a potential therapeutic target for attenuating ligation-induced bone resorption.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Stomatology, Binzhou Medical College, Yantai, 264003, Shandong, People's Republic of China
- Department of Endodontics, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China
| | - Lixia Zhang
- Department of Pedodontics, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China
| | - Linlin Zhang
- Department of Endodontics, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China
| | - Jianbin Li
- School of Stomatology, Binzhou Medical College, Yantai, 264003, Shandong, People's Republic of China
- Department of Endodontics, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China
| | - Zhenxian Sheng
- School of Stomatology, Binzhou Medical College, Yantai, 264003, Shandong, People's Republic of China
- Department of Endodontics, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China
| | - Yi Du
- Department of Endodontics, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China.
| | - Zhibin Zuo
- Department of Periodontosis, Central Laboratory, Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China.
| | - Xijiao Yu
- School of Stomatology, Binzhou Medical College, Yantai, 264003, Shandong, People's Republic of China.
- Department of Endodontics, Central Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Zhong F, Li W, Zhao C, Jin L, Lu X, Zhao Y, Pu J, Ge H. Basigin Deficiency Induces Spontaneous Polycystic Kidney in Mice. Hypertension 2024; 81:114-125. [PMID: 37955149 DOI: 10.1161/hypertensionaha.123.21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Polycystic kidney disease is the most common hereditary kidney disorder with early and frequent hypertension symptoms. The mechanisms of cyst progression in polycystic kidney disease remain incompletely understood. METHODS Bsg (basigin) heterozygous and homozygous knockout mice were generated using cas9 system, and Bsg overexpression was achieved by adeno-associated virus serotype 9 injection. Renal morphology was investigated through histological and imaging analysis. Molecular analysis was performed through transcriptomic profiling and biochemical approaches. RESULTS Bsg-deficient mice exhibited significantly elevated arterial blood pressure. Further investigation demonstrated that Bsg deficiency triggers spontaneous cystic formation in mouse kidneys, which shares similar cyst pathological features and common transcriptional regulatory pathways with human polycystic kidney disease. Moreover, Bsg disruption promoted polycystin-1 ubiquitination and degradation, leading to activation of polycystic kidney disease associated cAMP and AMPK signaling pathways in Bsg knockout mouse kidneys. Finally, adeno-associated virus serotype 9 mediated Bsg reexpression reversed cystic progression in Bsg knockout mice in vivo, and Bsg overexpression inhibited the expansion of Madin-Darby canine kidney cysts in vitro. CONCLUSIONS Our findings show that Bsg deficiency leads to an early-onset spontaneous polycystic kidney phenotype, suggesting that dysregulated Bsg signaling may be a contributing factor in cystogenesis.
Collapse
Affiliation(s)
- Fangyuan Zhong
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Wenli Li
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Chenxu Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Lixing Jin
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiyuan Lu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Heng Ge
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
14
|
Nyalali AMK, Leonard AU, Xu Y, Li H, Zhou J, Zhang X, Rugambwa TK, Shi X, Li F. CD147: an integral and potential molecule to abrogate hallmarks of cancer. Front Oncol 2023; 13:1238051. [PMID: 38023152 PMCID: PMC10662318 DOI: 10.3389/fonc.2023.1238051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
CD147 also known as EMMPRIN, basigin, and HAb18G, is a single-chain type I transmembrane protein shown to be overexpressed in aggressive human cancers of CNS, head and neck, breasts, lungs, gastrointestinal, genitourinary, skin, hematological, and musculoskeletal. In these malignancies, the molecule is integral to the diverse but complimentary hallmarks of cancer: it is pivotal in cancerous proliferative signaling, growth propagation, cellular survival, replicative immortality, angiogenesis, metabolic reprogramming, immune evasion, invasion, and metastasis. CD147 also has regulatory functions in cancer-enabling characteristics such as DNA damage response (DDR) and immune evasion. These neoplastic functions of CD147 are executed through numerous and sometimes overlapping molecular pathways: it transduces signals from upstream molecules or ligands such as cyclophilin A (CyPA), CD98, and S100A9; activates a repertoire of downstream molecules and pathways including matrix metalloproteinases (MMPs)-2,3,9, hypoxia-inducible factors (HIF)-1/2α, PI3K/Akt/mTOR/HIF-1α, and ATM/ATR/p53; and also functions as an indispensable chaperone or regulator to monocarboxylate, fatty acid, and amino acid transporters. Interestingly, induced loss of functions to CD147 prevents and reverses the acquired hallmarks of cancer in neoplastic diseases. Silencing of Cd147 also alleviates known resistance to chemoradiotherapy exhibited by malignant tumors like carcinomas of the breast, lung, pancreas, liver, gastric, colon, ovary, cervix, prostate, urinary bladder, glioblastoma, and melanoma. Targeting CD147 antigen in chimeric and induced-chimeric antigen T cell or antibody therapies is also shown to be safer and more effective. Moreover, incorporating anti-CD147 monoclonal antibodies in chemoradiotherapy, oncolytic viral therapy, and oncolytic virus-based-gene therapies increases effectiveness and reduces on and off-target toxicity. This study advocates the expedition and expansion by further exploiting the evidence acquired from the experimental studies that modulate CD147 functions in hallmarks of cancer and cancer-enabling features and strive to translate them into clinical practice to alleviate the emergency and propagation of cancer, as well as the associated clinical and social consequences.
Collapse
Affiliation(s)
- Alphonce M. K. Nyalali
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Surgery, Songwe Regional Referral Hospital, Mbeya, Tanzania
- Department of Orthopedics and Neurosurgery, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Angela U. Leonard
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
- Department of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yongxiang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Junlin Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinrui Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Tibera K. Rugambwa
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Xiaohan Shi
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Feng Li
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Zhu Q, Yang Y, Deng X, Chao N, Chen Z, Ye Y, Zhang W, Liu W, Zhao S. High CD8 +tumor-infiltrating lymphocytes indicate severe exhaustion and poor prognosis in angioimmunoblastic T-cell lymphoma. Front Immunol 2023; 14:1228004. [PMID: 37781365 PMCID: PMC10540231 DOI: 10.3389/fimmu.2023.1228004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Background Exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs), characterized by the overexpression of immune checkpoints (IC), is a major impediment to anti-tumor immunity. However, the exhaustion status of CD8+TILs in angioimmunoblastic T cell lymphoma (AITL) remains unclear. Therefore, we aimed to elucidate the exhaustion status of CD8+TILs in AITL and its influence on prognosis. Methods The correlation between CD8+TILs and IC expression in AITL was analyzed using single-cell RNA sequencing (n = 2), flow cytometry (n = 20), and RNA sequencing (n = 20). Biological changes related to CD8+TILs exhaustion at different cytotoxic T lymphocyte (CTL) levels (mean expression levels of CD8A, CD8B, GZMA, GZMB, and PRF1) in AITL were evaluated using RNA sequencing (n = 20) and further validated using the GEO dataset (n = 51). The impact of CD8 protein expression and CTL levels on patient prognosis was analyzed using flow cytometry and RNA sequencing, respectively. Results Our findings demonstrated that the higher the infiltration of CD8+TILs, the higher was the proportion of exhausted CD8+TILs characterized by the overexpression of multiple IC. This was accompanied by extensive exhaustion-related biological changes, which suggested severe exhaustion in CD8+TILs and may be one of the main reasons for the poor prognosis of patients with high CD8+TILs and CTL. Conclusion Our study comprehensively reveals the exhaustion status of CD8+TILs and their potential negative impact on AITL prognosis, which facilitates further mechanistic studies and is valuable for guiding immunotherapy strategies.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yiming Yang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Xueqin Deng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ningning Chao
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zihang Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunxia Ye
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Shen S, Li Z, Jiang Y, Duan W, Li H, Du S, Esteller M, Shen H, Hu Z, Zhao Y, Christiani DC, Chen F. A Large-Scale Exome-Wide Association Study Identifies Novel Germline Mutations in Lung Cancer. Am J Respir Crit Care Med 2023; 208:280-289. [PMID: 37167549 PMCID: PMC10395715 DOI: 10.1164/rccm.202212-2199oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/11/2023] [Indexed: 05/13/2023] Open
Abstract
Rationale: Genome-wide association studies have identified common variants of lung cancer. However, the contribution of rare exome-wide variants, especially protein-coding variants, to cancers remains largely unexplored. Objectives: To evaluate the role of human exomes in genetic predisposition to lung cancer. Methods: We performed exome-wide association studies to detect the association of exomes with lung cancer in 30,312 patients and 652,902 control subjects. A scalable and accurate implementation of a generalized mixed model was used to detect the association signals for loss-of-function, missense, and synonymous variants and gene-level sets. Furthermore, we performed association and Bayesian colocalization analyses to evaluate their relationships with intermediate exposures. Measurements and Main Results: We systematically analyzed 216,739 single-nucleotide variants in the human exome. The loss-of-function variants exhibited the most notable effects on lung cancer risk. We identified four novel variants, including two missense variants (rs202197044TET3 [Pmeta (P values of meta-analysis) = 3.60 × 10-8] and rs202187871POT1 [Pmeta = 2.21 × 10-8]) and two synonymous variants (rs7447927TMEM173 [Pmeta = 1.32 × 10-9] and rs140624366ATRN [Pmeta = 2.97 × 10-9]). rs202197044TET3 was significantly associated with emphysema (odds ratio, 3.55; Pfdr = 0.015), whereas rs7447927POT1 was strongly associated with telomere length (β = 1.08; Pfdr (FDR corrected P value) = 3.76 × 10-53). Functional evidence of expression of quantitative trait loci, splicing quantitative trait loci, and isoform expression was found for the four novel genes. Gene-level association tests identified several novel genes, including POT1 (protection of telomeres 1), RTEL1, BSG, and ZNF232. Conclusions: Our findings provide insights into the genetic architecture of human exomes and their role in lung cancer predisposition.
Collapse
Affiliation(s)
- Sipeng Shen
- Department of Biostatistics and
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine
- China International Cooperation Center of Environment and Human Health
| | | | | | - Weiwei Duan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, and
| | | | - Sha Du
- Department of Biostatistics and
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine
| | - Yang Zhao
- Department of Biostatistics and
- Key Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, China
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; and
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Feng Chen
- Department of Biostatistics and
- Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine
- China International Cooperation Center of Environment and Human Health
| |
Collapse
|
18
|
Fu PP, Wang Q, Zhang Q, Jin Y, Liu J, Chen KX, Guo YW, Liu SH, Li XW. Bioactivity-Driven Synthesis of the Marine Natural Product Naamidine J and Its Derivatives as Potential Tumor Immunological Agents by Inhibiting Programmed Death-Ligand 1. J Med Chem 2023; 66:5427-5438. [PMID: 37040446 DOI: 10.1021/acs.jmedchem.2c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The total synthesis of the marine natural product naamidine J and a rapid structure modification toward its derivatives were achieved on the basis of several rounds of structure-relationship analyses of their tumor immunological activities. These compounds were tested for programmed death-ligand 1 (PD-L1) protein expression in human colorectal adenocarcinoma RKO cells. Among them, compound 11c was found to efficiently suppress constitutive PD-L1 expression in RKO cells with low toxicity and further exerted its antitumor effect in MC38 tumor-bearing C57BL/6 mice by reducing PD-L1 expression and enhancing tumor-infiltrating T-cell immunity. This research work may provide insight for the discovery of new marine natural product-derived tumor immunological drug leads.
Collapse
Affiliation(s)
- Pan-Pan Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - San-Hong Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
19
|
Hong T, Dong D, Li J, Wang L. PARP9 knockdown confers protection against chemoresistance and immune escape of breast cancer cells by blocking the PI3K/AKT pathway. Arch Med Sci 2023; 20:1228-1248. [PMID: 39439687 PMCID: PMC11493048 DOI: 10.5114/aoms/161444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/18/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction This study probes the mechanism of the PARP9/PI3K/AKT/PD-L1 axis in the chemoresistance and immune escape of breast cancer cells. Material and methods The expression of related genes was detected in MCF-7/FUL cells. After MCF-7/FUL cells were treated with sh-PARP9 and/or the PI3K/AKT pathway activator, drug resistance, proliferation, migration, invasion, and apoptosis were measured. Afterward, MCF-7/FUL cells were co-cultured with CD8+ T cells to examine the positive rate and density of MCF-7/FUL cells, the percentage and apoptosis of CD8+ T cells, and the expression of immune-related factors in cell supernatants. Nude mice were subcutaneously injected with sh-PARP9-transfected MCF-7/FUL cells for in vivo validation. Results PARP9 was highly expressed in MCF-7/FUL cells. Sh-PARP9 transfection suppressed cell migration, proliferation, and invasion while accelerating apoptosis in MCF-7/FUL cells, accompanied by downregulated PD-L1, p-PI3K, and p-AKT expression, and reduced IC50 and FUL resistance. After co-culture of MCF-7/FUL cells with CD8+ T cells, the percentage of CD8+ T cells, the expression of immune-related factors in supernatants, and the positive rate of MCF-7/FUL cells increased, while the apoptosis of CD8+ T cells and the density of adherent MCF-7/FUL cells were diminished. These trends were negated by further activating the PI3K/AKT pathway. PARP9 knockdown suppressed xenograft growth, decreased p-PI3K, p-AKT, PD-L1, and cyclin D1 expression, and augmented p-Cdc2 and cleaved caspase 3 levels in nude mice. Conclusions PARP9 knockdown blocked the PI3K/AKT pathway to downregulate PD-L1, thus depressing chemoresistance and immune escape in breast cancer.
Collapse
Affiliation(s)
- Tao Hong
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dingxiang Dong
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Li
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Fu J, Song B, Du J, Liu S, He J, Xiao T, Zhou B, Li D, Liu X, He T, Cheng J, Fu J. Impact of BSG/CD147 gene expression on diagnostic, prognostic and therapeutic strategies towards malignant cancers and possible susceptibility to SARS-CoV-2. Mol Biol Rep 2023; 50:2269-2281. [PMID: 36574092 PMCID: PMC9793814 DOI: 10.1007/s11033-022-08231-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Binghui Song
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jiayue He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Ting Xiao
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Department of Gynecology and Obstetrics, Guangdong Women and Children Hospital, Guangzhou, 511400 Guangdong China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Tao He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- Institute for Cancer Medicine and Basic Medical School, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|
21
|
Huang D, Rao D, Jin Q, Lai M, Zhang J, Lai Z, Shen H, Zhong T. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol 2023; 14:1149931. [PMID: 37090718 PMCID: PMC10115957 DOI: 10.3389/fimmu.2023.1149931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the third leading cause of cancer-related deaths worldwide. HCC is characterized by insidious onset, and most patients are diagnosed at an advanced stage with a poor prognosis. Identification of biomarkers for HCC onset and progression is imperative to development of effective diagnostic and therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell invasion, metastasis and angiogenesis through multiple mechanisms. In this review, we describe the molecular structure of CD147 and its role in regulating HCC invasion, metastasis and angiogenesis. We highlight its potential as a diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Department of traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| |
Collapse
|
22
|
Zhou YQ, Wang K, Wang XY, Cui HY, Zhao Y, Zhu P, Chen ZN. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg Microbes Infect 2022; 11:1135-1144. [PMID: 35343395 PMCID: PMC9037224 DOI: 10.1080/22221751.2022.2059403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants is threatening public health around the world. Endocytosis functions as an important way for viral infection, and SARS-CoV-2 bears no exception. However, the specific endocytic mechanism of SARS-CoV-2 remains unknown. In this study, we used endocytic inhibitors to evaluate the role of different endocytic routes in SARS-CoV-2 pseudovirus infection and found that the viral infection was associated with caveolar/lipid raft- and cytoskeleton-mediated endocytosis, but independent of the clathrin-mediated endocytosis and macropinocytosis. Meanwhile, the knockdown of CD147 and Rab5a in Vero E6 and Huh-7 cells inhibited SARS-CoV-2 pseudovirus infection, and the co-localization of spike protein, CD147, and Rab5a was observed in pseudovirus-infected Vero E6 cells, which was weakened by CD147 silencing, illustrating that SARS-CoV-2 pseudovirus entered the host cells via CD147-mediated endocytosis. Additionally, Arf6 silencing markedly inhibited pseudovirus infection in Vero E6 and Huh-7 cells, while little change was observed in CD147 knockout-Vero E6 cells. This finding indicated Arf6-mediated CD147 trafficking plays a vital role in SARS-CoV-2 entry. Taken together, our findings provide new insights into the CD147-Arf6 axis in mediating SARS-CoV-2 pseudovirus entry into the host cells, and further suggest that blockade of this pathway seems to be a feasible approach to prevent the SARS-CoV-2 infection clinically.
Collapse
Affiliation(s)
- Yun-Qi Zhou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xue-Yan Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhi-Nan Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
23
|
Tian Y, Wen C, Zhang Z, Liu Y, Li F, Zhao Q, Yao C, Ni K, Yang S, Zhang Y. CXCL9-modified CAR T cells improve immune cell infiltration and antitumor efficacy. Cancer Immunol Immunother 2022; 71:2663-2675. [PMID: 35352167 PMCID: PMC10991162 DOI: 10.1007/s00262-022-03193-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cells remain unsatisfactory in treating solid tumors. The frequency of tumor-infiltrating T cells is closely related to the good prognosis of patients. Augmenting T cell accumulation in the tumor microenvironment is essential for tumor clearance. To overcome insufficient immune cell infiltration, innovative CAR designs need to be developed immediately. CXCL9 plays a pivotal role in regulating T cell migration and inhibiting tumor angiogenesis. Therefore, we engineered CAR T cells expressing CXCL9 (CART-CXCL9). The addition of CXCL9 enhanced cytokine secretion and cytotoxicity of CAR T cells and endowed CAR T cells with the ability to recruit activated T cells and antiangiogenic effect. In tumor-bearing mice, CART-CXCL9 cells attracted more T cell trafficking to the tumor site and inhibited angiogenesis than conventional CAR T cells. Additionally, CART-CXCL9 cell therapy slowed tumor growth and prolonged mouse survival, displaying superior antitumor activity. Briefly, modifying CAR T cells to express CXCL9 could effectively improve CAR T cell efficacy against solid tumors.
Collapse
Affiliation(s)
- Yonggui Tian
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Chunli Wen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Yanfen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Chang Yao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Kaiyuan Ni
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China
| | - Shengli Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
24
|
Lau P, Zhang G, Zhao S, Liang L, Zhang H, Zhou G, Hung MC, Chen X, Liu H. Sphingosine kinase 1 promotes tumor immune evasion by regulating the MTA3-PD-L1 axis. Cell Mol Immunol 2022; 19:1153-1167. [PMID: 36050478 PMCID: PMC9508236 DOI: 10.1038/s41423-022-00911-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
Immune checkpoint blockade (ICB) exhibits considerable benefits in malignancies, but its overall response rate is limited. Previous studies have shown that sphingosine kinases (SPHKs) are critical in the tumor microenvironment (TME), but their role in immunotherapy is unclear. We performed integrative analyses including bioinformatics analysis, functional study, and clinical validation to investigate the role of SPHK1 in tumor immunity. Functionally, we demonstrated that the inhibition of SPHK1 significantly suppressed tumor growth by promoting antitumor immunity in immunocompetent melanoma mouse models and tumor T-cell cocultures. A mechanistic analysis revealed that MTA3 functions as the downstream target of SPHK1 in transcriptionally regulating tumor PD-L1. Preclinically, we found that anti-PD-1 monoclonal antibody (mAb) treatment significantly rescued tumor SPHK1 overexpression or tumor MTA3 overexpression-mediated immune evasion. Significantly, we identified SPHK1 and MTA3 as biological markers for predicting the efficacy of anti-PD-1 mAb therapy in melanoma patients. Our findings revealed a novel role for SPHK1 in tumor evasion mediated by regulating the MTA3-PD-L1 axis, identified SPHK1 and MTA3 as predictors for assessing the efficacy of PD-1 mAb treatment, and provided a therapeutic possibility for the treatment of melanoma patients.
Collapse
Affiliation(s)
- Poyee Lau
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Guanxiong Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Long Liang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Hailun Zhang
- Department of Research and Development, Beijing GAP Biotechnology Co., Ltd, Beijing, 102600, China
| | - Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, China
- Department of Biotechnology, Asia University, Taichung, Taiwan, China
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China.
| |
Collapse
|
25
|
Luo T, Yu S, Ouyang J, Zeng F, Gao L, Huang S, Wang X. Identification of a apoptosis-related LncRNA signature to improve prognosis prediction and immunotherapy response in lung adenocarcinoma patients. Front Genet 2022; 13:946939. [PMID: 36171881 PMCID: PMC9510691 DOI: 10.3389/fgene.2022.946939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Apoptosis is closely associated with the development of various cancers, including lung adenocarcinoma (LUAD). However, the prognostic value of apoptosis-related lncRNAs (ApoRLs) in LUAD has not been fully elucidated. In the present study, we screened 2, 960 ApoRLs by constructing a co-expression network of mRNAs-lncRNAs associated with apoptosis, and identified 421 ApoRLs that were differentially expressed between LUAD samples and normal lung samples. Sixteen differentially expressed apoptosis-related lncRNAs (DE-ApoRLs) with prognostic relevance to LUAD patients were screened using univariate Cox regression analysis. An apoptosis-related lncRNA signature (ApoRLSig ) containing 10 ApoRLs was constructed by applying the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression method, and all LUAD patients in the TCGA cohort were divided into high or low risk groups. Moreover, patients in the high-risk group had a worse prognosis (p < 0.05). When analyzed in conjunction with clinical features, we found ApoRLSig to be an independent predictor of LUAD patients and established a prognostic nomogram combining ApoRLSig and clinical features. Gene set enrichment analysis (GSEA) revealed that ApoRLSig is involved in many malignancy-associated immunomodulatory pathways. In addition, there were significant differences in the immune microenvironment and immune cells between the high-risk and low-risk groups. Further analysis revealed that the expression levels of most immune checkpoint genes (ICGs) were higher in the high-risk group, which suggested that the immunotherapy effect was better in the high-risk group than in the low-risk group. And we found that the high-risk group was also better than the low-risk group in terms of chemotherapy effect. In conclusion, we successfully constructed an ApoRLSig which could predict the prognosis of LUAD patients and provide a novel strategy for the antitumor treatment of LUAD patients.
Collapse
Affiliation(s)
- Ting Luo
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Shiqun Yu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Jin Ouyang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Fanfan Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Liyun Gao
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Shaoxin Huang
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, Jiangxi, China
- *Correspondence: Xin Wang,
| |
Collapse
|
26
|
Li B, Wang B. USP7 Enables Immune Escape of Glioma Cells by Regulating PD-L1 Expression. Immunol Invest 2022; 51:1921-1937. [PMID: 35852892 DOI: 10.1080/08820139.2022.2083972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bing Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, PR China
| | - Bin Wang
- Department of Interventional Radiology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, P.R. China
| |
Collapse
|
27
|
Immunometabolic Markers in a Small Patient Cohort Undergoing Immunotherapy. Biomolecules 2022; 12:biom12050716. [PMID: 35625643 PMCID: PMC9139165 DOI: 10.3390/biom12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although the discovery of immune checkpoints was hailed as a major breakthrough in cancer therapy, generating a sufficient response to immunotherapy is still limited. Thus, the objective of this exploratory, hypothesis-generating study was to identify potentially novel peripheral biomarkers and discuss the possible predictive relevance of combining scarcely investigated metabolic and hormonal markers with immune subsets. Sixteen markers that differed significantly between responders and non-responders were identified. In a further step, the correlation with progression-free survival (PFS) and false discovery correction (Benjamini and Hochberg) revealed potential predictive roles for the immune subset absolute lymphocyte count (rs = 0.51; p = 0.0224 *), absolute basophil count (rs = 0.43; p = 0.04 *), PD-1+ monocytes (rs = −0.49; p = 0.04 *), hemoglobin (rs = 0.44; p = 0.04 *), metabolic markers LDL (rs = 0.53; p = 0.0224 *), free androgen index (rs = 0.57; p = 0.0224 *) and CRP (rs = −0.46; p = 0.0352 *). The absolute lymphocyte count, LDL and free androgen index were the most significant individual markers, and combining the immune subsets with the metabolic markers into a biomarker ratio enhanced correlation with PFS (rs = −0.74; p ≤ 0.0001 ****). In summary, in addition to well-established markers, we identified PD-1+ monocytes and the free androgen index as potentially novel peripheral markers in the context of immunotherapy. Furthermore, the combination of immune subsets with metabolic and hormonal markers may have the potential to enhance the power of future predictive scores and should, therefore, be investigated further in larger trials.
Collapse
|
28
|
Extracellular Vesicles—A New Potential Player in the Immunology of Renal Cell Carcinoma. J Pers Med 2022; 12:jpm12050772. [PMID: 35629194 PMCID: PMC9144962 DOI: 10.3390/jpm12050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
The incidence of renal cell carcinoma (RCC) has doubled in the developed world within the last fifty years, and now it is responsible for 2–3% of diagnosed cancers. The delay in diagnosis and the not fully understood pathogenesis are the main challenges that have to be overcome. It seems that extracellular vesicles (EVs) are one of the key players in tumor development since they ensure a proper microenvironment for the tumor cells. The stimulation of angiogenesis and immunosuppression is mediated by molecules contained in EVs. It was shown that EVs derived from cancer cells can inhibit T cell proliferation, natural killer lymphocyte activation, and dendritic cell maturation by this mechanism. Moreover, EVs may be a biomarker for the response to anti-cancer treatment. In this review, we sum up the knowledge about the role of EVs in RCC pathogenesis and show their future perspectives in this field.
Collapse
|
29
|
Ghasemi K, Ghasemi K. A Brief look at antitumor effects of doxycycline in the treatment of colorectal cancer and combination therapies. Eur J Pharmacol 2022; 916:174593. [PMID: 34973952 DOI: 10.1016/j.ejphar.2021.174593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is considered the second most frequent cancer globally and one of the deadliest malignancies in humans. On the other hand, over time and facing the challenges of cancer treatment, several therapeutic approaches, including surgery, radiotherapy, chemotherapy, and immunotherapy, are being developed. Evidence showed that combination therapies had given relatively satisfactory clinical outcomes in inhibiting tumor progression and increasing patient survival compared with monotherapy. Among the available compounds and drugs used in chemotherapy, doxycycline, an antimicrobial drug, has been suitable for treating several malignancies such as CRC. It has been revealed that doxycycline has anti-tumor properties and can help control tumor growth in various mechanisms, such as inhibiting anti-apoptotic and angiogenic proteins. In addition, studies have shown that combination therapy with doxycycline and other anti-tumor drugs, such as doxorubicin, anti-angiogenic factors, and anti-check-point blockers, can inhibit tumor progression. Therefore, this review summarized the anti-tumor mechanisms of doxycycline in CRC treatment and related combination therapies.
Collapse
Affiliation(s)
- Kimia Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Fertility and Infertility Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kosar Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy; Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
30
|
Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C, Zhou Y. N 6-methyladenosine-modified circIGF2BP3 inhibits CD8 + T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer 2021; 20:105. [PMID: 34416901 PMCID: PMC8377850 DOI: 10.1186/s12943-021-01398-4] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background An in-depth understanding of immune evasion mechanisms in tumors is crucial to overcome resistance and enable innovative advances in immunotherapy. Circular RNAs (circRNAs) have been implicated in cancer progression. However, much remains unknown regarding whether circRNAs impact immune escape in non-small-cell lung carcinoma (NSCLC). Methods We performed bioinformatics analysis to profile and identify the circRNAs mediating immune evasion in NSCLC. A luciferase reporter assay, RNA immunoprecipitation (RIP), RNA pulldown assays and fluorescence in situ hybridization were performed to identify the interactions among circIGF2BP3, miR-328-3p, miR-3173-5p and plakophilin 3 (PKP3). In vitro T cell-mediated killing assays and in vivo syngeneic mouse models were used to investigate the functional roles of circIGF2BP3 and its downstream target PKP3 in antitumor immunity in NSCLC. The molecular mechanism of PKP3-induced PD-L1 upregulation was explored by immunoprecipitation, RIP, and ubiquitination assays. Results We demonstrated that circIGF2BP3 (hsa_circ_0079587) expression was increased in NSCLC and negatively correlated with CD8+ T cell infiltration. Functionally, elevated circIGF2BP3 inactivated cocultured T cells in vitro and compromised antitumor immunity in an immunocompetent mouse model, and this effect was dependent on CD8+ T cells. Mechanistically, METTL3 mediates the N6-methyladenosine (m6A) modification of circIGF2BP3 and promotes its circularization in a manner dependent on the m6A reader protein YTHDC1. circIGF2BP3 competitively upregulates PKP3 expression by sponging miR-328-3p and miR-3173-5p to compromise the cancer immune response. Furthermore, PKP3 engages with the RNA-binding protein FXR1 to stabilize OTUB1 mRNA, and OTUB1 elevates PD-L1 abundance by facilitating its deubiquitination. Tumor PD-L1 deletion completely blocked the impact of the circIGF2BP3/PKP3 axis on the CD8+ T cell response. The inhibition of circIGF2BP3/PKP3 enhanced the treatment efficacy of anti-PD-1 therapy in a Lewis lung carcinoma mouse model. Collectively, the PKP3/PD-L1 signature and the infiltrating CD8+ T cell status stratified NSCLC patients into different risk groups. Conclusion Our results reveal the function of circIGF2BP3 in causing immune escape from CD8+ T cell-mediated killing through a decrease in PD-L1 ubiquitination and subsequent proteasomal degradation by stabilizing OTUB1 mRNA in a PKP3-dependent manner. This work sheds light on a novel mechanism of PD-L1 regulation in NSCLC and provides a rationale to enhance the efficacy of anti-PD-1 treatment in NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01398-4.
Collapse
Affiliation(s)
- Zhenchuan Liu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, Shanghai, 200065, People's Republic of China
| | - Tingting Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Zhengmin Rd. 507, Shanghai, 200443, People's Republic of China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Zhengmin Rd. 507, Shanghai, 200443, People's Republic of China
| | - Kaiqing Wu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, Shanghai, 200065, People's Republic of China
| | - Shaorui Gu
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, Shanghai, 200065, People's Republic of China
| | - Lei Li
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, Shanghai, 200065, People's Republic of China
| | - Chenglai Dong
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, Shanghai, 200065, People's Republic of China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Zhengmin Rd. 507, Shanghai, 200443, People's Republic of China.
| | - Yongxin Zhou
- Department of Thoracic Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Xincun Rd. 389, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
31
|
Cheng H, Ma K, Zhang L, Li G. The tumor microenvironment shapes the molecular characteristics of exhausted CD8 + T cells. Cancer Lett 2021; 506:55-66. [PMID: 33662493 DOI: 10.1016/j.canlet.2021.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
The persistent antigen stimulation during chronic infections and cancer results in CD8+ T cell exhaustion. The exhausted T (Tex) cells within the tumor microenvironment (TME) are characterized by increased expression of multiple co-inhibitory receptors simultaneously, progressive loss of effector function, poor proliferation and self-renewal capacity, and dysregulated metabolic activity. Emerging insights into molecular mechanisms underlying T cell exhaustion have proposed potential approaches to improve the efficacy of cancer immunotherapy via restoring the effector function of Tex cells. In this review, we summarize the fundamental characteristics (e.g., inhibitory receptors and transcriptional factors) regarding Tex cell differentiation and discuss in particular how those exhaustion features are acquired and shaped by key factors within the TME. Additionally, we discuss the progress and limitations of current cancer immunotherapeutic strategies targeting Tex cells in clinical setting.
Collapse
Affiliation(s)
- Hongcheng Cheng
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China; Key Laboratory of Synthetic Biology Regulatory Element, Chinese Academy of Medical Sciences, Beijing, China
| | - Kaili Ma
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.
| | - Guideng Li
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China; Key Laboratory of Synthetic Biology Regulatory Element, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|