1
|
Li X, Chen Y, Cao X, Feng W, Chen Y, Zhang J. Inflammatory Macrophage-Targeted Atherosclerosis Treatment by miRNA-Delivered, MRI-Visible, and Anti-Inflammatory Nanomedicine. ACS NANO 2025. [PMID: 40433973 DOI: 10.1021/acsnano.4c16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Atherosclerosis, a principal cause of fatal cardiovascular diseases, is fundamentally a chronic inflammatory disease. Addressing this, the combined regulation of oxidative stress and inflammation through synergistic modalities offers an efficient therapeutic avenue. In this work, we rationally designed and engineered a highly efficient functional nanosystem, referred to as polydopamine nanoparticles doped with arginine and gadolinium ions (AGPDAR-146a), for the targeted delivery of therapeutic oligonucleotides, specifically microRNA-146a (miR-146a), to inflammatory macrophages within atherosclerotic plaques. AGPDAR-146a nanoparticles effectively load and deliver miR-146a, achieving enhanced accumulation in inflammatory macrophages through the specific interaction between miR-146a and class A scavenger receptors. Functionally, AGPDAR-146a nanoparticles excel in eliminating reactive oxygen species and exert anti-inflammatory effects, principally by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and the interferon regulatory factor 5 protein, consequently helping to reduce and stabilize atherosclerotic plaques. Additionally, the intrinsic T1 magnetic resonance imaging capability of AGPDAR-146a nanoparticles enables real-time visualization of the progression of plaque inflammation. Therefore, the engineered nanosystem not only underscores the therapeutic potential of miR-146a in atherosclerosis but also illustrates a versatile microRNA delivery strategy applicable to various diseases characterized by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Yixin Chen
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Xin Cao
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P. R. China
- National Center for Neurological Disorders, Shanghai 200040, P. R. China
| |
Collapse
|
2
|
Samuels M, Karakostas C, Besta S, Lauer Betrán A, Tsilingiri K, Turner C, Shirazi Nia R, Poudine N, Goodyear R, Jones W, Klinakis A, Giamas G. LMTK3 regulation of EV biogenesis and cargo sorting promotes tumour growth by reducing monocyte infiltration and driving pro-tumourigenic macrophage polarisation in breast cancer. Mol Cancer 2025; 24:149. [PMID: 40405280 PMCID: PMC12100856 DOI: 10.1186/s12943-025-02346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Lemur Tail Kinase 3 (LMTK3) promotes cell proliferation, invasiveness and therapy resistance, and its expression correlates with poor survival in several different malignancies, including breast cancer. Crosstalk through extracellular vesicles (EVs) is an increasingly appreciated mechanism of cell communication within the tumour immune microenvironment, which contributes to different aspects of cancer progression and plays a pivotal role in shaping tumour fate. METHODS Nanoparticle tracking analysis and transmission electron microscopy were used to study the effects of LMTK3 on EV size, while single particle interferometry allowed us to examine LMTK3-dependent effects on the subpopulation distribution of EVs. Quantitative mass spectrometry was used to profile LMTK3-dependent proteomics changes in breast cancer-derived EVs. Bioinformatics analysis of clinical data along with in vitro and cell-based assays were implemented to explore the effects of LMTK3-dependent EV protein cargo on the tumour immune microenvironment. To elucidate the mechanism through which LMTK3 impacts endosomal trafficking and regulates EV biogenesis, we used a variety of approaches, including in vitro kinase assays, confocal and electron microscopy, as well as in vivo subcutaneous and orthotopic breast cancer mouse models. RESULTS Here, we report that LMTK3 increases the average size of EVs, modulates immunoregulatory EV proteomic cargo and alters the subpopulation distribution of EVs released by breast cancer cells. Mechanistically, we provide evidence that LMTK3 phosphorylates Rab7, a key regulator of multivesicular body (MVB) trafficking, thereby reducing the fusion of MVBs with lysosomes and subsequent degradation of intralumenal vesicles, resulting in altered EV release. Moreover, LMTK3 causes increased packaging of phosphoserine aminotransferase 1 (PSAT1) in EVs, leading to a paracrine upregulation of phosphoglycerate dehydrogenase (PHGDH) in monocytes when these EVs are taken up. PSAT1 and PHGDH play key roles in the serine biosynthesis pathway, which is closely linked to cancer progression and regulation of monocyte behaviour. LMTK3 EV-induced elevated PHGDH expression in monocytes reduces their infiltration into breast cancer 3D spheroids and in vivo breast cancer mouse models. Furthermore, these infiltrating monocytes preferentially differentiate into pro-tumourigenic M2-like macrophages. Additional breast cancer mouse studies highlight the contribution of LMTK3-dependent EVs in the observed immunosuppressive macrophage phenotype. Finally, in vitro experiments show that pharmacological inhibition of LMTK3 reverses the pro-tumourigenic and immunomodulatory effects mediated by EVs derived from LMTK3 overexpressing cells. CONCLUSION Overall, this study advances our knowledge on the mechanisms of EV biogenesis and highlights a novel oncogenic role of LMTK3 in the breast TME, further supporting it as a target for cancer therapy.
Collapse
Affiliation(s)
- Mark Samuels
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Christos Karakostas
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Simoni Besta
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Andrea Lauer Betrán
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Katerina Tsilingiri
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Charlotte Turner
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Reza Shirazi Nia
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Niloufar Poudine
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Richard Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Apostolos Klinakis
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Georgios Giamas
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
3
|
Lv M, Duan Z, Tan J, Liu J, Wang Q, Wang C, Zhang Z, Sun X, Liu R, Cui Y. PHGDH-mediated serine synthesis in astrocytes supports neuroinflammation by sustaining NADH level to promote histone acetylation. Cell Death Dis 2025; 16:397. [PMID: 40383841 PMCID: PMC12086227 DOI: 10.1038/s41419-025-07732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/26/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Neuroinflammation contributes to the loss of dopamine neurons and motor dysfunctions in Parkinson's disease (PD). How cell metabolism regulates neuroinflammation by modulating epigenetic modifications is largely unknown. In this study, we found that the expression of phosphoglycerate dehydrogenase (PHGDH) which catalyzes the first step of the de novo serine synthesis pathway was mainly expressed in astrocytes and l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) injection triggered the upregulation of PHGDH in astrocytes in substantia nigra. PHGDH inhibition or knockdown reduced proinflammatory cytokine production in primary astrocytes after LPS (lipopolysaccharide) stimulation which was not due to suppressed inflammatory signaling transduction. Mechanistically, PHGDH promotes proinflammatory cytokine transcription by sustaining nicotinamide adenine dinucleotide (NADH) accumulation to facilitate histone acetylation of cytokine promoters. Moreover, PHGDH inhibition-induced inflammatory response decreased neurotoxicity in vitro and alleviated astrocytes-mediated neuroinflammation and neurotoxicity in an MPTP mice model. This study reveals the role and mechanism of PHGDH-mediated serine synthesis in promoting the inflammatory response of astrocytes which may provide a potential target for neurological diseases involving neuroinflammation.
Collapse
Affiliation(s)
- Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhongying Duan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinhua Tan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jiake Liu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Qinqin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Congxiao Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaona Sun
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rui Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Chen J, Zhou F, Zhang L, Lou R, Zhang C, Wan J, Ma X, Lin L. Adipocyte-expressed SIRT3 manipulates carnitine pool to orchestrate metabolic reprogramming and polarization of macrophages. Cell Death Dis 2025; 16:381. [PMID: 40368890 PMCID: PMC12078679 DOI: 10.1038/s41419-025-07699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Obesity is accompanied with accumulation and pro-inflammatory polarization of macrophages in adipose tissue (AT), leading to systematical inflammation and insulin resistance. Impaired lipid metabolism and endocrine function in adipocytes is recognized as a culprit in the onset of adipose tissue inflammation. Lipid levels can be managed via inhibiting both synthesis and transport or via increasing fatty acid oxidation (FAO). The deacetylase Sirtuin 3 (SIRT3) participates in inflammatory responses via regulating mitochondrial function and FAO. Herein, an AT-specific SIRT3 overexpression mice model (AT-SIRT3OE) was generated using adeno-associated virus transduction. AT-specific SIRT3 overexpression did not alter body weight or adiposity in either regular chow diet or high-fat diet (HFD) fed mice. AT-SIRT3OE mice exhibited improved insulin sensitivity in HFD-fed mice, through alleviating infiltration of macrophage and pro-inflammatory macrophage polarization in the epididymal AT. The metabolomics analysis indicated that SIRT3 overexpressed adipocytes accumulated more L-carnitine (LC) and less long-chain acylarnitines in the medium. Furthermore, SIRT3 directly deacetylates and activates carnitine palmitoyltransferase 2 (CPT2), an obligate step in mitochondrial long-chain FAO, to enhance the LC turnover pool in adipocytes, which in turn promoted lipid metabolism and anti-inflammatory polarization in macrophages. Collectively, our study provided new evidence that adipocyte-expressed SIRT3 alleviates inflammatory crosstalk between adipocytes and macrophages through manipulating LC pool. Activating SIRT3 in adipocytes could be a potential strategy to alleviate obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Lei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Ruohan Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Cangman Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jianbo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Xiaojun Ma
- The Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
5
|
Liu S, Gong H, Li P, Hu J, Li Y, Xu R, Cai J, Wang S, Cai J, Ma H, Mi X, Li Y, Zhou Q, Zhou Q, Yang W, Li R, Song L, Fang L. Chemotherapy-induced macrophage CXCL7 expression drives tumor chemoresistance via the STAT1/PHGDH-serine metabolism axis and SAM paracrine feedback to M2 polarization. Cell Death Dis 2025; 16:379. [PMID: 40368902 PMCID: PMC12078479 DOI: 10.1038/s41419-025-07712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Chemotherapy resistance in colorectal cancer (CRC) remains a major obstacle in clinical oncology. Analysis of clinical specimens from chemotherapy-resistant patients revealed elevated CXCL7 expression in tumor-associated macrophages (TAMs). Through integrated in vitro and in vivo studies, we demonstrated that chemotherapy induces tumor cell-macrophage crosstalk, leading to CXCL7 upregulation in TAMs. Using a co-culture system, we observed that CXCL7+ macrophages confer chemoresistance to CRC cells. Mechanistic investigations revealed that CXCL7 activates the CXCR2 receptor on tumor cells, triggering interferon signaling and promoting serine metabolism through STAT1-dependent transcriptional upregulation of phosphoglycerate dehydrogenase (PHGDH), the key enzyme in serine biosynthesis. This metabolic reprogramming enhances the paracrine secretion of S-adenosyl methionine (SAM), which drives chemotherapy resistance. Furthermore, CXCL7-mediated the paracrine secretion of SAM in tumor cells, which in turn promotes M2 macrophage polarization and sustains CXCL7 expression in TAMs. Our findings reveal that a CXCL7-SAM feedback loop between tumor cells and macrophages establishes a chemoresistant niche. This interaction represents a promising therapeutic target for overcoming chemoresistance in CRC.
Collapse
Affiliation(s)
- Shuguang Liu
- Department of pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Hui Gong
- Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Peihang Li
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Jiahao Hu
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Yixuan Li
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Rou Xu
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Junchao Cai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shuqi Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayi Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongmei Ma
- Department of pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China
| | - Xirong Mi
- Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yifan Li
- Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Qingbo Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiming Zhou
- Shenzhen Nanshan People's Hospital, Shenzhen, China.
| | - Weiqiang Yang
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Riqing Li
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen, China.
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Lishan Fang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, China.
| |
Collapse
|
6
|
Bai X, Guo YR, Zhao ZM, Li XY, Dai DQ, Zhang JK, Li YS, Zhang CD. Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies. Cancer Lett 2025; 625:217772. [PMID: 40324582 DOI: 10.1016/j.canlet.2025.217772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Macrophages are innate immune cells distributed throughout the body that play vital roles in organ development, tissue homeostasis, and immune surveillance. Macrophages acquire a binary M1/M2 polarized phenotype through signaling cascades upon sensing different signaling molecules in the environment, thereby playing a core role in a series of immune tasks, rendering precise regulation essential. M1/M2 macrophage phenotypes regulate inflammatory responses, while controlled activation of inflammatory signaling pathways is involved in regulating macrophage polarization. Among the relevant signaling pathways, we focus on the six well-characterized NF-κB, MAPK, JAK-STAT, PI3K/AKT, inflammasome, and cGAS-STING inflammatory pathways, and elucidate their roles and crosstalk in macrophage polarization. Furthermore, the effects of many environmental signals that influence macrophage polarization are investigated by modulating these pathways in vivo and in vitro. We thus detail the physiological and pathophysiological status of these six inflammatory signaling pathways and involvement in regulating macrophage polarization in cancer and beyond, as well as describe potential therapeutic approaches targeting these signaling pathways. In this review, the latest research advances in inflammatory signaling pathways regulating macrophage polarization are reviewed, as targeting these inflammatory signaling pathways provides suitable strategies to intervene in macrophage polarization and various tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Xiao Bai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yun-Ran Guo
- Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhe-Ming Zhao
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Jia-Kui Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yong-Shuang Li
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Chun-Dong Zhang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
7
|
Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ballal S, Sharma R, Debnath S, Sinha A, Rekha A, Khan NH, Alrashoud MM, Kamal M, Imran M. Pathological interplay of NF-κB and M1 macrophages in chronic inflammatory lung diseases. Pathol Res Pract 2025; 269:155903. [PMID: 40081284 DOI: 10.1016/j.prp.2025.155903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/25/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis depend on the pathology of the nuclear factor kappa B (NF-κB) signalling pathway and M1 macrophage polarization. This review discusses the intimate molecular interactions and processes that modulate NF-κB's promotion of M1 macrophages and chronic inflammation/tissue damage within the confines of this review. NF-κB activation in macrophages produces pro-inflammatory mediators (cytokines - TNFα, IL6, IL1β, and reactive oxygen species (ROS), further increasing airway remodeling and fibrosis. MAPK, JAK-STAT, and PI3K-Akt signalling systems cross-talked with the pathway, amplifying its effect on lung disease progression. Therapeutic strategies focused on inhibiting this axis, including inhibition of NF-κB and small molecule/modulation of macrophage polarization, represent potential ways to attenuate inflammation and promote tissue repair. The potential of precision medicine is illustrated by natural compounds such as curcumin and resveratrol and innovative RNA-based and nanoparticle delivery systems. Despite these challenges, specificity, minimizing systemic side effects, and optimized delivery methods remain difficult. To develop targeted therapies, more research must be conducted to refine targeted approaches, including immune profiling and single-cell analysis. This review aims to advance the management of hard-to-treat inflammatory lung diseases by addressing these complexities.
Collapse
Affiliation(s)
- Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf City 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Sourav Debnath
- Chandigarh pharmacy college, Chandigarh Group of colleges, Jhanjeri, Mohali 140307, Punjab, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - A Rekha
- Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | | | - Muhanad Mubarak Alrashoud
- Department of Inpatient Pharmacy, Dr. Sulaiman Alhabib Hospital, Alhamra Branch, Riyadh 13333, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Center for Health Research, Northern Border University, Arar, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
8
|
Yu C, Liu Y, Yu X, Liu J, Cao P, Liu G, Cai Y, Zhang Y, Luan Q. Garlic-Derived Exosome-Like Nanovesicles: A Promising Natural Nanotherapy for Periodontitis via PHGDH/PI3K/AKT-Mediated Metabolic and Inflammatory Regulation. Int J Nanomedicine 2025; 20:5551-5572. [PMID: 40321804 PMCID: PMC12050027 DOI: 10.2147/ijn.s510417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Background Periodontitis is a chronic inflammatory disease that leads to alveolar bone loss, with a complex pathogenesis closely associated with excessive local inflammation and metabolic dysregulation in periodontal tissues. Unfortunately, effective therapeutic strategies targeting inflammation and improving cellular metabolism remain lacking. Garlic-derived exosome-like nanovesicles (GaELNs), as a natural therapeutic agent, have demonstrated significant therapeutic effects in conditions such as colitis, liver dysfunction, osteoarthritis, and adipose tissue inflammation, yet their potential in treating periodontitis has not been explored. Methods In this study, GaELNs were extracted using a simplified and rapid method and characterized for their morphology and concentration. Metabolomic analysis was conducted to determine the bioactive components within GaELNs. In vitro experiments using human gingival fibroblasts assessed GaELNs' cellular uptake, effects on cell proliferation, migration, VEGF expression, and their ability to attenuate lipopolysaccharide-induced oxidative stress and pro-inflammatory cytokine expression. Additionally, a mouse periodontitis model was employed to evaluate the in vivo effects of GaELNs on local inflammation and bone resorption. Results GaELNs exhibited typical exosome-like characteristics with sufficient concentration and high batch-to-batch reproducibility. Metabolomic analysis revealed that GaELNs are enriched with bioactive components possessing anti-inflammatory, antioxidative, and regenerative properties. In vitro, GaELNs were efficiently internalized by human gingival fibroblasts, significantly enhancing their proliferation, migration, and VEGF expression, while markedly reducing LPS-induced oxidative stress and pro-inflammatory factor expression. In the mouse periodontitis model, local administration of GaELNs significantly reduced gingival inflammation and alveolar bone resorption. These therapeutic effects were mediated by upregulation of PHGDH, activation of the PI3K/AKT signaling pathway, increased expression of mTOR and Nrf2, and inhibition of NF-κB activity, which together contributed to improved mitochondrial function and metabolic reprogramming under inflammatory conditions. Conclusion GaELNs demonstrate potent anti-inflammatory, antioxidative, and metabolism-enhancing properties, offering significant therapeutic potential for the treatment of periodontitis by modulating the PHGDH/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chenhao Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| | - Yuanqing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| | - Xiaotong Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People’s Republic of China
| | - Jia Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| | - Pei Cao
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| | - Yu Cai
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| | - Yong Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, People’s Republic of China
| |
Collapse
|
9
|
Chen W, Zhang Y, Chen J, Dong S, Wu X, Wu Y, Du Z, Yang Y, Gong L, Yu J. Heme Oxygenase-1 Modulates Macrophage Polarization Through Endothelial Exosomal miR-184-3p and Reduces Sepsis-Induce Lung Injury. Int J Nanomedicine 2025; 20:5039-5057. [PMID: 40264818 PMCID: PMC12013636 DOI: 10.2147/ijn.s506830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Pulmonary microvascular endothelial cells (PMVECs) are notably implicated in the pathogenesis of sepsis-induced lung injury. Exosomes derived from PMVECs facilitate intercellular communication among various cell types, especially crosstalk with macrophages. Heme oxygenase-1 (HO-1), an early stress-responsive enzyme with inherent protective functions, has been implicated in acute lung injury (ALI) mitigation. But research on the mechanism of HO-1 in macrophage polarization via PMVEC exosomes in sepsis-induced lung injury is lacking. Methods To investigate the role of HO-1 in the interaction between endothelial cells and macrophages, HO-1 knockout mouse model were established. Exosomes from PMVECs were isolated, and differential expression of microRNA (miRNA) was determined by sequencing. An in vitro co-culture system involving Murine Alveolar Macrophage Cell Line (MH-S cells) and HO-1/ PMVECs-derived exosomes (HP-exos) was used to investigate the underlying mechanisms. To further verify the involvement of HO-1 in intercellular communication through exosomal miRNA in vivo, the level of pulmonary inflammation was evaluated, and the polarization of pulmonary macrophages was analyzed. Results The results showed that miR-184-3p was significantly downregulated in HP-exos, and supplementation of miR-184-3p enhanced the polarization of M1 macrophages, thus intensifying lung inflammation. HO-1 regulates the polarization of macrophages by regulating endothelial exosomes. Overexpression of HO-1 downregulates miR-184-3p, which negatively regulates Semaphorin 7A (Sema7a), which attenuated M1 type macrophages (M1) polarization and augmented M2 type macrophages (M2) polarization, thereby partially mitigating lung injury and inflammation. Conclusion Collectively, we elucidated a novel potential therapeutic mechanism that HO-1 alleviate inflammation by modulating the M1/M2 ratio in sepsis-induced ALI by regulating miR-184-3p/Sema7a expression.
Collapse
Affiliation(s)
- Wei Chen
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
| | - Yuan Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, 300100, People’s Republic of China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, People’s Republic of China
| | - Jinkun Chen
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
| | - Shuan Dong
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, 300100, People’s Republic of China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, People’s Republic of China
| | - Xiaoyang Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
| | - Ya Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
| | - Zhuo Du
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
| | - Yibo Yang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
| | - Lirong Gong
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, 300100, People’s Republic of China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, People’s Republic of China
| | - Jianbo Yu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, People’s Republic of China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, 300100, People’s Republic of China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, People’s Republic of China
| |
Collapse
|
10
|
Hu P, Shan X, Dong H, Yu S, Wang B, Xiong H, Ji Z, Jing W, Cui Y, Li Z, Zhou Y, Wang Z, Wang J, Tang J, Wang T, Xie K, Yu Q. Macrophage-specific PHGDH protects against MAFLD by suppressing TAK1. Cell Rep 2025; 44:115426. [PMID: 40096087 DOI: 10.1016/j.celrep.2025.115426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a progressive disease with only one approved treatment currently available. Hepatic phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme of the serine biosynthesis pathway, regulates MAFLD development. However, the role of macrophage PHGDH in MAFLD progression remains unclear. Here, we demonstrate that the lipotoxicity inducer palmitic acid (PA) significantly increases macrophage PHGDH expression and that PHGDH deficiency in macrophages promotes PA-induced inflammatory responses. Myeloid-specific PHGDH deficiency exacerbates MAFLD in mice. Mechanistically, tetrameric PHGDH binds to transforming growth factor-β-activated kinase 1 (TAK1) to inhibit its interaction with TAK1 binding protein 1 (TAB1), sequentially suppressing the activation of TAK1 and downstream NF-κB and MAPK signaling. Inhibition of TAK1 activation slows the development of metabolic dysfunction-associated steatohepatitis (MASH) caused by myeloid PHGDH knockout. Importantly, adeno-associated virus-mediated PHGDH overexpression in liver macrophages alleviates MAFLD in mice. Collectively, these results identify macrophage PHGDH as a promising therapeutic agent for MAFLD.
Collapse
Affiliation(s)
- Penghui Hu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiao Shan
- Department of Health Management Center and Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Hongyuan Dong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Sujun Yu
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baochen Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hui Xiong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zemin Ji
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Weijia Jing
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Cui
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zihan Li
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yanzhao Zhou
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhe Wang
- Department of Health Management Center and Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Jinrong Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiuzhou Tang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Qiujing Yu
- Department of Health Management Center and Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China; Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
11
|
Li P, Fan Z, Huang Y, Luo L, Wu X. Mitochondrial dynamics at the intersection of macrophage polarization and metabolism. Front Immunol 2025; 16:1520814. [PMID: 40196123 PMCID: PMC11973336 DOI: 10.3389/fimmu.2025.1520814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Macrophages are vital sentinels in innate immunity, and their functions cannot be performed without internal metabolic reprogramming. Mitochondrial dynamics, especially mitochondrial fusion and fission, contributes to the maintenance of mitochondrial homeostasis. The link between mitochondrial dynamics and macrophages in the past has focused on the immune function of macrophages. We innovatively summarize and propose a link between mitochondrial dynamics and macrophage metabolism. Among them, fusion-related FAM73b, MTCH2, SLP-2 (Stomatin-like protein 2), and mtSIRT, and fission-related Fis1 and MTP18 may be the link between mitochondrial dynamics and macrophage metabolism association. Furthermore, post-translational modifications (PTMs) of mtSIRT play prominent roles in mitochondrial dynamics-macrophage metabolism connection, such as deacetylates and hypersuccinylation. MicroRNAs such as miR-150, miR-15b, and miR-125b are also possible entry points. The metabolic reprogramming of macrophages through the regulation of mitochondrial dynamics helps improve their adaptability and resistance to adverse environments and provides therapeutic possibilities for various diseases.
Collapse
Affiliation(s)
- Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Zhengbo Fan
- People’s Government of Huangshui Town, Shizhu Tujia Autonomous County, Chongqing, China
| | - Yanlan Huang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liang Luo
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
He F, Lang Z, Huang Y, Qiu Y, Xiong P, Li N, Zhao G, Peng Y. Exogenous L-Serine Alleviates Pasteurella multocida-Induced Inflammation by Reprogramming the Transcription and Metabolism of Macrophages. Vet Sci 2025; 12:254. [PMID: 40267013 PMCID: PMC11945856 DOI: 10.3390/vetsci12030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/05/2025] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
P. multocida is notorious for inducing excessive inflammation with high lethality in multiple animals, such as cattle, pigs, and chickens. Our previous study revealed that L-serine was decreased in the lungs of mice infected with P. multocida capsular type A strain CQ2 (PmCQ2), and 2 mg/kg of L-serine could alleviate PmCQ2-induced lung inflammation in vivo, which may largely depend on macrophages. However, the underlying intrinsic alterations remain unknown. Here, we demonstrated that 10 mM of L-serine significantly inhibited the release of inflammatory cytokines (e.g., IL-1β and TNF-α) by blocking inflammasome activation (including NALP1, NLRP3, NLRC4, AIM2, and Caspase-1) in PmCQ2-infected macrophages. Furthermore, the results of RNA-seq and metabonomics revealed that exogenous L-serine supplementation substantially reprogrammed macrophage transcription and metabolism. Mechanically, L-serine reduced inflammatory responses via the inhibition of glycolysis in macrophages based on a seahorse assay. Together, these findings characterize the intrinsic molecular alterations in activated macrophages and provide new targets for modulating P. multocida infection-induced macrophage inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangfu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (F.H.); (Z.L.); (Y.H.); (Y.Q.); (P.X.); (N.L.)
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (F.H.); (Z.L.); (Y.H.); (Y.Q.); (P.X.); (N.L.)
| |
Collapse
|
13
|
Cao Z, Zhang Y, Jia H, Sun X, Feng Y, Wu H, Xu B, Wei Z. Immune checkpoint inhibitors mediate myocarditis by promoting macrophage polarization via cGAS/STING pathway. Cytokine 2025; 187:156873. [PMID: 39884185 DOI: 10.1016/j.cyto.2025.156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors has opened up new avenues for cancer treatment, but serious cardiac injury has emerged in their use. A large number of data have shown that abnormal activation of cytosolic DNA-sensing cyclic GMP-AMP synthase-interferon gene activator pathway is closely related to cardiovascular inflammation and autoimmune diseases. However, the pathophysiological function of the cGAS-STING cascade in myocarditis induced by Immune checkpoint inhibitors is unclear. METHODS In order to establish a Immune checkpoint inhibitors-associated myocarditis model, BALB/c mice were injected with mouse cardiac troponin I peptide and anti-mouse programmed death 1 antibody. Echocardiography and HE staining were then performed to assess cardiac function and inflammation. Macrophages and damaged DNA in mouse heart tissue were detected by immunofluorescence. The mitochondrial damage of macrophages was observed by electron microscope. In vitro experiments, RAW264.7 was used to detect macrophage polarization after anti-PD-1 antibody induction and STING inhibition by qPCR and flow cytometry. Mitochondrial damage was detected by immunofluorescence, and activation of the cGAS-STING signaling pathway was evaluated by protein imprinting analysis. RESULTS In the Immune checkpoint inhibitors-associated myocarditis model, DNA damage was found to activate the cGAS-STING pathway and macrophages were polarized to M1 type. In vitro experiments, anti-PD-1 antibody activate the cGAS-STING pathway through the release of damaged DNA from macrophage mitochondrial damage, causing macrophage polarization into a pro-inflammatory phenotype leading to autoimmune myocarditis. CONCLUSION Our results suggested that the cGAS-STING pathway played a key role in myocarditis caused by immune checkpoint inhibitors. It provided a new possibility for Immune checkpoint inhibitors to be widely used in clinic.
Collapse
Affiliation(s)
- Zhenzhu Cao
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yu Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Huihui Jia
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| |
Collapse
|
14
|
Chen X, Huang X, Zhang X, Chen Z. Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential. Bone 2025; 192:117382. [PMID: 39730093 DOI: 10.1016/j.bone.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism. Metabolic reprogramming driven by bone and dental conditions alters the epigenetic landscape by modulating the activities of DNA and histone modification enzymes at the metabolite level. Epigenetic mechanisms modulate the expression of metabolic genes, consequently influencing the metabolome. The interplay between epigenetics and metabolomics is crucial in maintaining bone and dental homeostasis by preserving cell proliferation and pluripotency. This review, therefore, aims to examine the effects of metabolic reprogramming in bone and dental-related cells on the regulation of epigenetic modifications, particularly acetylation, methylation, and lactylation. We also discuss the effects of chromatin-modifying enzymes on metabolism and the potential therapeutic benefits of dietary compounds as epigenetic modulators. In this review, we highlight the inconsistencies in current research findings and suggest potential approaches to translate fundamental insights into clinical treatments for bone and tooth diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiatong Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
15
|
Liu L, Li M, Zhang C, Zhong Y, Liao B, Feng J, Deng L. Macrophage metabolic reprogramming: A trigger for cardiac damage in autoimmune diseases. Autoimmun Rev 2025; 24:103733. [PMID: 39716498 DOI: 10.1016/j.autrev.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Macrophage metabolic reprogramming has a central role in the progression of autoimmune and auto-inflammatory diseases. The heart is a major target organ in many autoimmune conditions and can sustain functional and structural impairments, potentially leading to irreversible cardiac damage. There is mounting clinical evidence pointing to a link between autoimmune disease and cardiac damage. However, this association remains poorly understood, and numerous patients do not receive appropriate preventive measures, which poses serious cardiovascular risks and significantly impacts their quality of life. This review discusses the relationship between macrophage metabolic reprogramming and cardiac damage in patients with autoimmune diseases and the role of adaptive immunity in macrophage reprogramming. It also provides an overview of the immunosuppressive therapies used at present. Exploiting the properties of macrophage reprogramming could lead to development of novel treatments for patients with autoimmune-related cardiac damage.
Collapse
Affiliation(s)
- Lin Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Minghao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China.
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, China; Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
16
|
Luo L, Jiang C, Xie S. The mechanism of high mobility group box-1 in the proliferation and macrophage polarization in esophageal squamous cell carcinoma cells. Eur J Med Res 2025; 30:144. [PMID: 40022250 PMCID: PMC11869724 DOI: 10.1186/s40001-025-02390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Previous studies showed that high mobility group box-1 (HMGB1) facilitates the initiation and progression of esophageal squamous cell carcinoma (ESCC), and the current research investigated the detailed mechanisms implicated. METHODS The impact of HMGB1 and IGFBP3 levels on the survival of ESCC was examined by plotting Kaplan-Meier (KM) curves based on the data collected from The Cancer Genome Atlas (TCGA). Quantitative real-time PCR (qRT-PCR) was performed to detect the expressions of HMGB1 in both human esophageal epithelial cells (HEEC) and ESCC cells. After cell transfection, the proliferation of ESCC cells was measured, and the cell metastasis was determined based on the levels of cadherins (CDHs) and Vimentin (VIM). Macrophage polarization was determined by calculating the mean fluorescence intensity (MFI) of CD206 and CD86. In addition, co-immunoprecipitation and immunoblotting were applied to evaluate the interaction between insulin-like growth factor binding protein 3 (IGFBP3)/DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and HMGB1. RESULTS A high level of HMGB1 was predictive of an unfavorable prognosis of ESCC (p < 0.05). HMGB1 showed a higher expression in ESCC cells (p < 0.05), while knockdown of HMGB1 inhibited ESCC cell proliferation, downregulated the levels of CDH2 and VIM and upregulated the level of CDH1 (p < 0.05). In contrast, overexpressed HMGB1 showed the opposite effects (p < 0.05), suggesting the role of HMGB1 in the epithelial-mesenchymal transition (EMT) of ESCC. After the knockout of HMGB1, the MFI of CD86 was increased but that of CD206 was reduced, indicating the polarization towards M1 macrophages (p < 0.05). However, the results were reversed when HMGB1 was overexpressed (p < 0.05). Meanwhile, HMGB1 could interact with the IGFBP3/DNA-PKcs complex (p < 0.05). Low-expressed IGFBP3 was predictive of an unfavorable prognosis of ESCC, and IGFBP3 silencing promoted the proliferation of ESCC cells (p < 0.05). Besides, HMGB1 and IGFBP3 could act antagonistically in influencing the proliferation of ESCC cells and macrophage polarization. CONCLUSIONS Through in vitro experiments, this study found that HMGB1 was linked to the proliferation and polarization of macrophages in ESCC, providing novel evidence for the role of HMGB1 in ESCC development.
Collapse
Affiliation(s)
- Liling Luo
- Department of Radiation Oncology, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Chao Jiang
- Department of Radiation Oncology, The People's Hospital of Shenzhen Baoan District, the Second Affiliated Hospital of Shenzhen University, Shenzhen, 518100, China
| | - Songxi Xie
- Department of Radiation Oncology, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
17
|
Jiang Y, Tao Q, Qiao X, Yang Y, Peng C, Han M, Dong K, Zhang W, Xu M, Wang D, Zhu W, Li X. Targeting amino acid metabolism to inhibit gastric cancer progression and promote anti-tumor immunity: a review. Front Immunol 2025; 16:1508730. [PMID: 40018041 PMCID: PMC11864927 DOI: 10.3389/fimmu.2025.1508730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
The incidence of gastric cancer remains high and poses a serious threat to human health. Recent comprehensive investigations into amino acid metabolism and immune system components within the tumor microenvironment have elucidated the functional interactions between tumor cells, immune cells, and amino acid metabolism. This study reviews the characteristics of amino acid metabolism in gastric cancer, with a particular focus on the metabolism of methionine, cysteine, glutamic acid, serine, taurine, and other amino acids. It discusses the relationship between these metabolic processes, tumor development, and the body's anti-tumor immunity, and analyzes the importance of targeting amino acid metabolism in gastric cancer for chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuchun Jiang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Tao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kebin Dong
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Wen Zhu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Pan J, Lin Y, Liu X, Zhang X, Liang T, Bai X. Harnessing amino acid pathways to influence myeloid cell function in tumor immunity. Mol Med 2025; 31:44. [PMID: 39905317 PMCID: PMC11796060 DOI: 10.1186/s10020-025-01099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Amino acids are pivotal regulators of immune cell metabolism, signaling pathways, and gene expression. In myeloid cells, these processes underlie their functional plasticity, enabling shifts between pro-inflammatory, anti-inflammatory, pro-tumor, and anti-tumor activities. Within the tumor microenvironment, amino acid metabolism plays a crucial role in mediating the immunosuppressive functions of myeloid cells, contributing to tumor progression. This review delves into the mechanisms by which specific amino acids-glutamine, serine, arginine, and tryptophan-regulate myeloid cell function and polarization. Furthermore, we explore the therapeutic potential of targeting amino acid metabolism to enhance anti-tumor immunity, offering insights into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jiongli Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Lin
- Health Science Center, Ningbo University, Ningbo, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Wan T, Li QC, Zhang FS, Zhang XM, Han N, Zhang PX. Biomimetic ECM nerve guidance conduit with dynamic 3D interconnected porous network and sustained IGF-1 delivery for enhanced peripheral nerve regeneration and immune modulation. Mater Today Bio 2025; 30:101403. [PMID: 39790488 PMCID: PMC11713512 DOI: 10.1016/j.mtbio.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs). Nerve conduits made by blending chitosan (CS) with GMs demonstrate suitable degradation rates, reduced swelling rates, increased suture tensile strength, improved elongation at break, and 50 % radial compression performance that meet clinical application requirements. In vitro cytological studies indicate that biomimetic ECM NGCs exhibit good biocompatibility, promote early survival, proliferation, and remyelination potential of Schwann cells (SCs), and support neurite outgrowth. The biomimetic ECM NGCs comprising a 3D interconnected porous network in a 10-mm sciatic nerve defect rat model sustain IGF-1 delivery, promoting early infiltration of macrophages and polarisation towards M2-type macrophages. Furthermore, observations at 12 weeks post-implantation revealed improvements in electrophysiological performance, alleviation of gastrocnemius muscle atrophy, increased peripheral nerve regeneration, and motor function restoration. Thus, biomimetic ECM NGCs offer a therapeutic strategy for peripheral nerve regeneration with promising clinical applications and transformation prospects to regulate immune microenvironments, promoting SC proliferation and differentiation with nerve axon growth.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Qi-Cheng Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
- Peking University People's Hospital Qingdao Hospital, Qingdao, 266000, China
| |
Collapse
|
20
|
Qu F, Xu B, Kang H, Wang H, Ji J, Pang L, Wu Y, Zhou Z. The role of macrophage polarization in ulcerative colitis and its treatment. Microb Pathog 2025; 199:107227. [PMID: 39675441 DOI: 10.1016/j.micpath.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Macrophages have great plasticity. Typically, there are two of activated macrophages: M1 macrophages and M2 macrophages. Of them, M1 macrophages play a major role in responses that are pro-inflammatory, while M2 macrophages play an important part in responses that are anti-inflammatory. Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease of the intestine. The pathophysiology and course of UC are significantly influenced by the inflammatory response triggered by macrophage activation. M1 is a possible cause of increased inflammation in UC whereas M2 has a significant function in the healing of inflammation. The polarization imbalance of intestinal M1/M2 macrophages is closely linked to UC. Thus, by suppressing M1 polarization, encouraging M2 polarization, and reestablishing macrophage polarization balance, the treatment of UC based on macrophage polarization is beneficial for UC. Not only chemical drugs, but also traditional Chinese medicine compounds and herbal extracts have been shown to restore the balance of macrophage polarization, providing a new idea in the treatment of UC.
Collapse
Affiliation(s)
- Fanfan Qu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baoqing Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongchang Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lianjing Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaqian Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenghua Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
21
|
Gao Y, Feng Z, Zhao H, Liu X, Zhu M, Yu X, Liu X, Wu X, Tao J. Integrating single-cell RNA-seq and bulk RNA-seq to explore prognostic value and immune landscapes of methionine metabolism-related signature in breast cancer. Front Genet 2025; 15:1521269. [PMID: 39877420 PMCID: PMC11772272 DOI: 10.3389/fgene.2024.1521269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Background Neoadjuvant, endocrine, and targeted therapies have significantly improved the prognosis of breast cancer (BC). However, due to the high heterogeneity of cancer, some patients cannot benefit from existing treatments. Increasing evidence suggests that amino acids and their metabolites can alter the tumor malignant behavior through reshaping tumor microenvironment and regulation of immune cell function. Breast cancer cell lines have been identified as methionine-dependent, and methionine restriction has been proposed as a potential cancer treatment strategy. Methods We integrated transcriptomic and single-cell RNA sequencing (ScRNA-seq) analyses based on The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. Then we applied weighted gene co-expression network analysis (WGCNA) and Cox regression to evaluate methionine metabolism-related genes (MRGs) in BC, constructing and validating a prognostic model for BC patients. Immune landscapes and immunotherapy were further explored. Finally, in vitro experiments were conducted to assess the expression and function of key genes APOC1. Results In this study, we established and validated a prognostic signature based on eight methionine-related genes to predict overall survival (OS) in BC patients. Patients were further stratified into high-risk and low-risk groups according to prognostic risk score. Further analysis revealed significant differences between two groups in terms of pathway alterations, immune microenvironment characteristics, and immune checkpoint expression. Our study shed light on the relationship between methionine metabolism and immune infiltration in BC. APOC1, a key gene in the prognostic signature, was found to be upregulated in BC and closely associated with immune cell infiltration. Notably, APOC1 was primarily expressed in macrophages. Subsequent in vitro experiments demonstrated that silencing APOC1 reduced the generation of tumor-associated macrophages (TAMs) with an M2 phenotype while significantly decreasing the proliferation, invasion, and migration of MDA-MB-231 and MDA-MB-468 breast cancer cell lines. Conclusion We established a prognostic risk score consisting of genes associated with methionine metabolism, which helps predict prognosis and response to treatment in BC. The function of APOC1 in regulating macrophage polarization was explored.
Collapse
Affiliation(s)
- Yanxian Gao
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziyu Feng
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hailong Zhao
- Department of General Surgery, Huangyuan People’s Hospital, Xining, Qinghai, China
| | - Xinghai Liu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Muyu Zhu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiafei Yu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoan Liu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xian Wu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Tao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
23
|
Wang J, Zhang X, Zhan S, Han F, Wang Q, Liu Y, Huang Z. Possible Metabolic Remodeling based on de novo Biosynthesis of L-serine in Se-Subtoxic or -Deficient Mammals. J Nutr 2025; 155:9-26. [PMID: 39477017 DOI: 10.1016/j.tjnut.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Current research studies point to an increased risk of diabetes with selenium (Se) intake beyond the physiological requirement used to prevent cancers. The existing hypothesis of "selenoprotein overexpression leads to intracellular redox imbalance" cannot clearly explain the U-shaped dose-effect relationship between Se intake and the risk of diabetes. In this review, it is speculated that metabolic remodeling based on the de novo biosynthesis of L-serine may occur in mammals at supranutritional or subtoxic levels of Se. It is also speculated that a large amount of L-serine is consumed by the body during insufficient Se intake, thus resulting in similar metabolic reprogramming. The increase in atypical ceramide and its derivatives due to the lack of L-serine may also play a role in the development of diabetes.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xue Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China; Key Laboratory of Public Nutrition and Health, National Health Commission, Beijing, PR China.
| |
Collapse
|
24
|
Chen T, Zhou Z, Liu Y, Xu J, Zhu C, Sun R, Hu H, Liu Y, Dai L, Holmdahl R, Herrmann M, Zhang L, Muñoz LE, Meng L, Zhao Y. Neutrophils with low production of reactive oxygen species are activated during immune priming and promote development of arthritis. Redox Biol 2024; 78:103401. [PMID: 39471640 PMCID: PMC11550370 DOI: 10.1016/j.redox.2024.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease mediated by immune cell dysfunction for which there is no universally effective prevention and treatment strategy. As primary effector cells, neutrophils are important in the inflammatory joint attack during the development of RA. Here, we used single-cell sequencing technology to thoroughly analyze the phenotypic characteristics of bone marrow-derived neutrophils in type II collagen (COL2)-induced arthritis (CIA) models, including mice primed and boosted with COL2. We identified a subpopulation of neutrophils with high expression of neutrophil cytoplasmic factor 1 (NCF1) in primed mice, accompanied by a characteristic reactive oxygen species (ROS) response, and a decrease in Ncf1 expression in boosted mice with the onset of arthritis. Furthermore, we found that after ROS reduction, arthritis occurred in primed mice but was attenuated in boosted mice. This bidirectional effect of ROS suggested a protective role of ROS during immune priming. Mechanistically, we combined functional assays and metabolomics identifying Ncf1-deficient neutrophils with enhanced migration, chemotactic receptor CXCR2 expression, inflammatory cytokine secretion, and Th1/Th17 differentiation. This alteration was mainly due to the metabolic reprogramming of Ncf1-deficient neutrophils from an energy supply pathway dominated by gluconeogenesis to an inflammatory immune pathway associated with the metabolism of histidine, glycine, serine, and threonine signaling, which in turn induced arthritis. In conclusion, we have systematically identified the functional and inflammatory phenotypic characteristics of neutrophils under ROS regulation, which provides a theoretical basis for understanding the pathogenesis of RA, to further improve prevention strategies and identify novel therapeutic targets.
Collapse
MESH Headings
- Animals
- Neutrophils/immunology
- Neutrophils/metabolism
- Reactive Oxygen Species/metabolism
- Mice
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/genetics
- Receptors, Interleukin-8B/metabolism
- Receptors, Interleukin-8B/genetics
- Male
- NADPH Oxidases/metabolism
- NADPH Oxidases/genetics
- Disease Models, Animal
- Collagen Type II/metabolism
- Collagen Type II/immunology
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Zhen Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jiayi Xu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Chenxi Zhu
- Frontiers Science Center for Disease-related Molecular Network, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Lunzhi Dai
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Lulu Zhang
- College of Foreign Languages and Cultures, Sichuan University, 610064, Chengdu, Sichuan, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
| | - Liesu Meng
- Department of Rheumatology, and National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China; Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Cheng B, Ma J, Tang N, Liu R, Peng P, Wang K. Non-canonical function of PHGDH promotes HCC metastasis by interacting with METTL3. Cell Oncol (Dordr) 2024; 47:2427-2438. [PMID: 39695045 DOI: 10.1007/s13402-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
PURPOSE Phosphoglycerate dehydrogenase (PHGDH), a pivotal enzyme in serine synthesis, plays a key role in the malignant progression of tumors through both its metabolic activity and moonlight functions. This study aims to elucidate the non-canonical function of PHGDH in promoting hepatocellular carcinoma (HCC) metastasis through its interaction with methyltransferase-like 3 (METTL3), potentially uncovering a novel therapeutic target. METHODS Western blot was used to study PHGDH expression changes under anoikis and cellular functional assays were employed to assess its role in HCC metastasis. PHGDH-METTL3 interactions were explored using GST pull-down, Co-immunoprecipitation and immunofluorescence assays. Protein stability and ubiquitination assays were performed to understand PHGDH's impact on METTL3. Flow cytometry, cellular assays and nude mice model were used to confirm PHGDH's effects on anoikis resistance and HCC metastasis in vitro and in vivo. RESULTS PHGDH is upregulated under anoikis conditions, thereby enhancing the metastatic potential of HCC cells. By interacting with METTL3, PHGDH prevents its ubiquitin-dependent degradation, resulting in higher METTL3 protein levels. This interaction upregulates epithelial-mesenchymal transition related genes, contributing to anoikis resistance and HCC metastasis. Nude mice model confirms that PHGDH's interaction with METTL3 is crucial for driving HCC metastasis. CONCLUSION Our research presents the first evidence that PHGDH promotes HCC metastasis by interacting with METTL3. The PHGDH-METTL3 axis may serve as a potential clinical therapeutic target, offering new insights into the multifaceted roles of PHGDH in HCC metastasis.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Ma
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pai Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Liu C, Lin X, Huang M, Zhang S, Che L, Lai Z, Chen X, Pu W, Yang S, Qiu Y, Yu H. Babaodan inhibits cell proliferation and metastasis and enhances anti-tumor effects of camrelizumab by inhibiting M2 phenotype macrophages in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118540. [PMID: 38992397 DOI: 10.1016/j.jep.2024.118540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Babaodan (BBD) is a unique Chinese medication utilized in traditional Chinese medicine. It can eliminate toxins, induce diuresis, and eliminate yellowish hue. In addition to treating acute and chronic viral hepatitis, cholecystitis, cholangitis, and urinary tract infections, BBD has garnered popularity as a substitution treatment for several malignant cancers, particularly hepatocellular carcinoma (HCC). AIM OF THE STUDY To elucidate the efficacy and mechanism of BBD alone and combined with camrelizumab (CLM) for treating HCC. METHODS We investigated the effects of BBD on the HCC tumor microenvironment in vivo. Furthermore, we evaluated its effects on tumor growth and metastasis induced by M2 macrophages in vitro. RESULTS In a mouse model of orthotopic HCC, BBD decreased tumor growth. Furthermore, it increased the M1/M2 macrophage ratio and CD8+ T-cell abundance in mice. In addition, BBD reversed HCC cell proliferation and metastasis induced by M2 macrophages, increased the anti-HCC effect of low-dose CLM, and attenuated organ damage induced by high-dose CLM. Lastly, BBD enhanced the efficacy of CLM via the PI3K/AKT/mTOR signaling pathway. CONCLUSION BBD increases the antitumor effect of CLM by modulating the tumor immune microenvironment and attenuating its the toxic side effects of CLM.
Collapse
Affiliation(s)
- Caiyan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaowei Lin
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Siqi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, 361100, China
| | - Zhicheng Lai
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, 361100, China
| | - Xiyi Chen
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, 361100, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shenshen Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
27
|
Liu J, Chen S, Zhang Z, Song X, Hou Z, Wang Z, Liu T, Yang L, Liu Y, Luo Z. The oxidized hyaluronic acid hydrogels containing paeoniflorin microspheres regulates the polarization of M1/M2 macrophages to promote wound healing. Int J Biol Macromol 2024; 282:137107. [PMID: 39515704 DOI: 10.1016/j.ijbiomac.2024.137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Controlling excessive inflammation of acute wound is an effective means to shorten the healing time. Therefore, targeted control of the inflammatory response of the wound is a promising therapeutic strategy. In this study, paeoniflorin (Pae) was encapsulated in microspheres and combined with oxidized hyaluronic acid hydrogels to prepare the hydrogel loaded with Pae microspheres (Pae-MPs@OHA) to promote the healing of acute wounds in rats. The results demonstrated that the particle size of the Pae-MPs was 6.84 ± 0.51 μm, and the positive charge was 26.87 ± 1.51 mV. The uniform spherical structure of the Pae-MPs was observed by TEM. The Pae-MPs@OHA can maintain colloidal state in the range of 0.1-3.16 Hz. FTIR suggested that Pae could be effectively wrapped in MPs, and SEM indicated that the Pae-MPs@OHA had a uniform network pore structure. The Pae-MPs@OHA can realize the sustained release of Pae for 96 h. Biocompatibility experiments showed that the Pae-MPs@OHA hydrogels were safe and available. The Pae-MPs@OHA hydrogels can accelerate wound healing in rats. HE and masson staining suggested that the Pae-MPs@OHA could reduce inflammatory cell infiltration, promote re-epithelialization and collagen formation. The Pae-MPs@OHA could decrease the number of M1 and increase the number of M2 in macrophages, thus regulating the release of inflammatory factor TNF-α and IL-1β. The results of molecular docking and western blot results also confirmed that the Pae-MPs@OHA could reduce the expression of NF-κB, pNF-κB, NLRP3, ASC and pro-caspase-1. These findings suggest that the Pae-MPs@OHA has great potential for application in the treatment of inflammatory wound.
Collapse
Affiliation(s)
- Jiarui Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Siqi Chen
- School of Public Health, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zijing Zhang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Xitong Song
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zhiquan Hou
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Ziyi Wang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Tao Liu
- University of Michigan, Ann Arbor, School of Pharmacy, Integrated Pharmaceutical Sciences, 428 Church St, Ann Arbor, MI 48109, United States of America
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| | - Zhonghua Luo
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
28
|
Wang Q, Wang J, Zhang X, Liu Y, Han F, Xiang X, Guo Y, Huang ZW. Increased Expression of PHGDH Under High-Selenium Stress In Vivo. Biol Trace Elem Res 2024; 202:5145-5156. [PMID: 38277119 DOI: 10.1007/s12011-024-04079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
The purpose of this study is to explore the glycolytic remodeling under high-selenium (Se) stress. Three groups of male C57BL/6J mice were fed on diets with different Se contents (0.03, 0.15, and 0.30 mg Se/kg). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were measured at the third month. Mice were killed at the fourth month. Plasma, liver, and muscle tissues were fetched for biochemistry and Se analysis. The expressions of insulin signaling pathway (PI3K-AKT-mTOR), glutathione peroxidase 1 (GPX1), selenoprotein N (SELENON), 3-phosphoglycerate dehydrogenase (PHGDH), serine hydroxymethyltransferases 1 (SHMT1), 5,10-methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MS) were analyzed by western blotting (WB) in liver and muscle tissues. The results of GTT and ITT showed that glucose tolerance and insulin tolerance were both abnormal in the 0.03 mg Se/kg and 0.3 mg Se/kg groups. Se concentrations in plasma, liver, and muscle of 0.03 mg Se/kg group were significantly lower than that of 0.15 mg Se/kg and 0.30 mg Se/kg groups (p < 0.05 or p < 0.01). The expressions of P-Akt (Thr-308) in muscle (p < 0.05) and PI3K and mTOR in liver (p < 0.001) of 0.30 mg Se/kg group were downregulated. The expressions of GPX1 in liver and muscle (p < 0.05 and p < 0.001), SELENON in muscle (p < 0.05), PHGDH in liver and muscle (p < 0.05), and SHMT1 (p < 0.05), MTHFR (p < 0.001), and MS (p < 0.001) in muscle of 0.3 mg Se/kg group were upregulated. The de novo serine synthesis pathway (SSP) was found to be activated in liver and muscle tissues of mice with a high-Se diet for the first time.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Jianrong Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Xue Zhang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Xuesong Xiang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen-Wu Huang
- The Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing, China.
| |
Collapse
|
29
|
Li X, Huang Y, Liu X, Zhang L, Wang X, Zhao F, Zou L, Wu K, Chen W, Qin Y, Zeng S, Li B, He Y, Song Y, Li Z, Fan J, Zhao M, Yi L, Ding H, Fan S, Chen J. Classical swine fever virus inhibits serine metabolism-mediated antiviral immunity by deacetylating modified PHGDH. mBio 2024; 15:e0209724. [PMID: 39207107 PMCID: PMC11481501 DOI: 10.1128/mbio.02097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Classical swine fever virus (CSFV), an obligate intracellular pathogen, hijacks cellular metabolism to evade immune surveillance and facilitate its replication. The precise mechanisms by which CSFV modulates immune metabolism remain largely unknown. Our study reveals that CSFV infection disrupts serine metabolism, which plays a crucial role in antiviral immunity. Notably, we discovered that CSFV infection leads to the deacetylation of PHGDH, a key enzyme in serine metabolism, resulting in autophagic degradation. This deacetylation impairs PHGDH's enzymatic activity, reduces serine biosynthesis, weakens innate immunity, and promotes viral proliferation. Molecularly, CSFV infection induces the association of HDAC3 with PHGDH, leading to deacetylation at the K364 site. This modification attracts the E3 ubiquitin ligase RNF125, which facilitates the addition of K63-linked ubiquitin chains to PHGDH-K364R. Subsequently, PHGDH is targeted for lysosomal degradation by p62 and NDP52. Furthermore, the deacetylation of PHGDH disrupts its interaction with the NAD+ substrate, destabilizing the PHGDH-NAD complex, impeding the active site, and thereby inhibiting de novo serine synthesis. Additionally, our research indicates that deacetylated PHGDH suppresses the mitochondria-MAVS-IRF3 pathway through its regulatory effect on serine metabolism, leading to decreased IFN-β production and enhanced viral replication. Overall, our findings elucidate the complex interplay between CSFV and serine metabolism, revealing a novel aspect of viral immune evasion through the lens of immune metabolism. IMPORTANCE Classical swine fever (CSF) seriously restricts the healthy development of China's aquaculture industry, and the unclear pathogenic mechanism and pathogenesis of classical swine fever virus (CSFV) are the main obstacle to CSF prevention, control, and purification. Therefore, it is of great significance to explore the molecular mechanism of CSFV and host interplay, to search for the key signaling pathways and target molecules in the host that regulate the replication of CSFV infection, and to elucidate the mechanism of action of host immune dysfunction and immune escape due to CSFV infection for the development of novel CSFV vaccines and drugs. This study reveals the mechanism of serine metabolizing enzyme post-translational modifications and antiviral signaling proteins in the replication of CSFV and enriches the knowledge of CSFV infection and immune metabolism.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yintao He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Zhang X, Yin M, Zhang D, Cao D, Hou X, Xu Z, Wen C, Zhou J. Metabolomics Reveals Disturbed Amino Acid Metabolism During Different Stages of RA in Collagen-Induced Arthritis Mice. Inflammation 2024; 47:1853-1867. [PMID: 39212888 DOI: 10.1007/s10753-024-02123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease featured by chronic synovitis and progressive joint damage. Early treatment before the onset of clinical symptoms (also known as the pre-RA stage) may slow or stop the progression of the disease. We sought to discover the dynamic metabolic changes during the evolution of collagen-induced arthritis (CIA) to better characterize the disease stages. Untargeted metabolomics analysis using gas chromatography-mass spectrometry revealed that the metabolic profiles of CIA mice gradually differed from that of the control group with the progression of the disease. During the induction phase, the CIA group showed some metabolic alterations in galactose metabolism, arginine biosynthesis, tricarboxylic acid cycle (TCA cycle), pyruvate metabolism, and starch/sucrose metabolism. During the early inflammatory phase, no joint swelling was observed in CIA mice, and metabolites changed mainly involving amino acid metabolism (arginine biosynthesis, arginine/proline metabolism, phenylalanine/tyrosine/tryptophan biosynthesis), and glutathione metabolism. During the peak inflammatory phase, severe arthritis symptoms were observed in CIA mice, and there were more extensive metabolic alterations in valine/leucine/isoleucine biosynthesis, phenylalanine/tyrosine/tryptophan biosynthesis, TCA cycle, galactose metabolism, and arginine biosynthesis. Moreover, the reduction of specific amino acids, such as glycine, serine, and proline, during the early stages may result in an imbalance in macrophage polarization and enhance the inflammatory response in CIA mice. Our study confirmed that specific perturbations in amino acid metabolism have occurred in CIA mice prior to the onset of joint symptoms, which may be related to autoimmune disorders. The findings could provide insights into the metabolic mechanism and the diagnosis of pre-RA.
Collapse
Affiliation(s)
- Xiafeng Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengdi Yin
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dingyi Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dandan Cao
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoxiao Hou
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhenghao Xu
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Science, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jia Zhou
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Science, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
32
|
Bobrovskikh AV, Zubairova US, Naumenko LG, Doroshkov AV. Catching the Big Fish in Big Data: A Meta-Analysis of Zebrafish Kidney scRNA-Seq Datasets Highlights Conserved Molecular Profiles of Macrophages and Neutrophils in Vertebrates. BIOLOGY 2024; 13:773. [PMID: 39452082 PMCID: PMC11505477 DOI: 10.3390/biology13100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The innate immune system (IIS) is an ancient and essential defense mechanism that protects animals against a wide range of pathogens and diseases. Although extensively studied in mammals, our understanding of the IIS in other taxa remains limited. The zebrafish (Danio rerio) serves as a promising model organism for investigating IIS-related processes, yet the immunogenetics of fish are not fully elucidated. To address this gap, we conducted a meta-analysis of single-cell RNA sequencing (scRNA-seq) datasets from zebrafish kidney marrow, encompassing approximately 250,000 immune cells. Our analysis confirms the presence of key genetic pathways in zebrafish innate immune cells that are similar to those identified in mammals. Zebrafish macrophages specifically express genes encoding cathepsins, major histocompatibility complex class II proteins, integral membrane proteins, and the V-ATPase complex and demonstrate the enrichment of oxidative phosphorylation ferroptosis processes. Neutrophils are characterized by the significant expression of genes encoding actins, cytoskeleton organizing proteins, the Arp2/3 complex, and glycolysis enzymes and have demonstrated their involvement in GnRH and CLR signaling pathways, adherents, and tight junctions. Both macrophages and neutrophils highly express genes of NOD-like receptors, phagosomes, and lysosome pathways and genes involved in apoptosis. Our findings reinforce the idea about the existence of a wide spectrum of immune cell phenotypes in fish since we found only a small number of cells with clear pro- or anti-inflammatory signatures.
Collapse
Affiliation(s)
- Aleksandr V. Bobrovskikh
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Ulyana S. Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ludmila G. Naumenko
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
| | - Alexey V. Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (U.S.Z.); (A.V.D.)
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
33
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu W, Yang H, Wang H, Yang M, Chen P. Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res 2024; 12:96. [PMID: 39227970 PMCID: PMC11373140 DOI: 10.1186/s40364-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Tumor cells possess complex immune evasion mechanisms to evade immune system attacks, primarily through metabolic reprogramming, which significantly alters the tumor microenvironment (TME) to modulate immune cell functions. When a tumor is sufficiently immunogenic, it can activate cytotoxic T-cells to target and destroy it. However, tumors adapt by manipulating their metabolic pathways, particularly glucose, amino acid, and lipid metabolism, to create an immunosuppressive TME that promotes immune escape. These metabolic alterations impact the function and differentiation of non-tumor cells within the TME, such as inhibiting effector T-cell activity while expanding regulatory T-cells and myeloid-derived suppressor cells. Additionally, these changes lead to an imbalance in cytokine and chemokine secretion, further enhancing the immunosuppressive landscape. Emerging research is increasingly focusing on the regulatory roles of non-tumor cells within the TME, evaluating how their reprogrammed glucose, amino acid, and lipid metabolism influence their functional changes and ultimately aid in tumor immune evasion. Despite our incomplete understanding of the intricate metabolic interactions between tumor and non-tumor cells, the connection between these elements presents significant challenges for cancer immunotherapy. This review highlights the impact of altered glucose, amino acid, and lipid metabolism in the TME on the metabolism and function of non-tumor cells, providing new insights that could facilitate the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Haixia Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
34
|
Guan XY, Wei ZC, Wang YT, Li WL, Mu WL, Seyam A, Shi C, Hou TZ. Blocking Gremlin1 inhibits M1 macrophage polarization through Notch1/Hes1 signaling pathway in apical periodontitis. Immunopharmacol Immunotoxicol 2024:1-12. [PMID: 39134472 DOI: 10.1080/08923973.2024.2392196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Gremlin1 is a multifunctional protein whose expression is demonstrated to be involved in a series of physiology and pathological processes. The association between Gremlin1 and apcial periodontitis (AP) has been established. M1-polarized macrophages are crucial immune cells that exacerbate the progression of apical periodontal inflammatory response, but the function of Gremlin1 during macrophages activation in periapical lesions is still unclear. This study attempts to explore the regulatory effects of Gremlin1 on macrophage polarization on apical periodontitis microenviroment. METHODS Clinical specimens were used to determine the expression of Gremlin1 in periapical tissues by immunohistochemical (IHC) staining. Then, the disease models of periapical inflammation in rats were established, and adenovirus- associated virus (AAVs) was used to blockade Gremlin1 expression. Lentivirus carrying sh-Gremlin1 particles were used to transfect THP-1 induced M1-subtype macrophages. To assess the expression of associated molecules, Western blot, immunofluorescence staining were performed. RESULTS Gremlin1 was significantly up-regulated in the periapical tissues of subjects with AP as identified by IHC staining, and positively correlated with levels of M1 macrophage-associated genes. Rats AP model with inhibition of Gremlin1 in periapical lesions exhibited limited infiltration of macrophages and decreased expression of M1 macrophage-related genes in periapical lesions. Furthermore, Gremlin1 blockade substantially decreased the Notch1/Hes1 signaling pathway activation level. The in vitro experiments confirmed the above results. CONCLUSION Taken together, current study illustrated that the Gremlin1 suppression in periapical lesions inhibited M1 macrophage polarization through Notch1/Hes1 axis. Moreover, Gremlin1 may act as a potential candidate in the treatment of AP.
Collapse
Affiliation(s)
- Xiao-Yue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi-Chen Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu-Ting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Lan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Li Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Abdelrahman Seyam
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Sichuan Hospital of Stomatology, Chengdu, Sichuan, China
| | - Tie-Zhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
36
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
37
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
38
|
Zhao L, Tang S, Chen F, Ren X, Han X, Zhou X. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis. Mol Med 2024; 30:96. [PMID: 38914953 PMCID: PMC11197188 DOI: 10.1186/s10020-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Fahui Chen
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shuangta East Street No. 29, Yingze District, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
39
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
40
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
41
|
Wang C, Zhao M, Bin P, Ye Y, Chen Q, Tang Z, Ren W. Serine synthesis controls mitochondrial biogenesis in macrophages. SCIENCE ADVANCES 2024; 10:eadn2867. [PMID: 38758794 PMCID: PMC11100566 DOI: 10.1126/sciadv.adn2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Mitochondrial dysfunction is the pivotal driving factor of multiple inflammatory diseases, and targeting mitochondrial biogenesis represents an efficacious approach to ameliorate such dysfunction in inflammatory diseases. Here, we demonstrated that phosphoglycerate dehydrogenase (PHGDH) deficiency promotes mitochondrial biogenesis in inflammatory macrophages. Mechanistically, PHGDH deficiency boosts mitochondrial reactive oxygen species (mtROS) by suppressing cytoplasmic glutathione synthesis. mtROS provokes hypoxia-inducible factor-1α signaling to direct nuclear specificity protein 1 and nuclear respiratory factor 1 transcription. Moreover, myeloid Phgdh deficiency reverses diet-induced obesity. Collectively, this study reveals that a mechanism involving de novo serine synthesis orchestrates mitochondrial biogenesis via mitochondrial-to-nuclear communication, and provides a potential therapeutic target for tackling inflammatory diseases and mitochondria-mediated diseases.
Collapse
Affiliation(s)
- Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Animal Nutrition and Bio-feed, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuyi Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhiru Tang
- Animal Nutrition and Bio-feed, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
42
|
Cai Z, Li W, Hager S, Wilson JL, Afjehi-Sadat L, Heiss EH, Weichhart T, Heffeter P, Weckwerth W. Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages through α-ketoglutarate and mTORC1 signaling. Cell Mol Immunol 2024; 21:448-465. [PMID: 38409249 PMCID: PMC11061172 DOI: 10.1038/s41423-024-01134-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.
Collapse
Affiliation(s)
- Zhengnan Cai
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Wan Li
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jayne Louise Wilson
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facility, Mass Spectrometry Unit, Faculty of Life Science, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Liu J, Ma Z, Jia W, Lan P. Targeting macrophage metabolism to enhance tumor immunotherapy. Cell Mol Immunol 2024; 21:530-532. [PMID: 38632383 PMCID: PMC11061165 DOI: 10.1038/s41423-024-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Jing Liu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China
| | - Zhibo Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China
| | - Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
44
|
Cui Y, Li Z, Ni L, Yu S, Shan X, Hu P, Ji Z, Jing W, Zhou Y, Wang B, Dong H, Zhou J, Xie K, Yu Q. Induction of MTHFD2 in Macrophages Inhibits Reactive Oxygen Species-mediated NF-κB Activation and Protects against Inflammatory Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1345-1356. [PMID: 38407485 DOI: 10.4049/jimmunol.2300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
The one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is critical for cancer cell proliferation and immune cell phenotypes, but whether it can contribute to macrophage inflammatory responses remains unclear. In this study, we show that MTHFD2 was upregulated by LPS in murine macrophages upon activation of the TLR4-MyD88-IKKα/β-NF-κB signaling pathway. MTHFD2 significantly attenuated LPS-induced macrophage proinflammatory cytokine production through its enzymatic activity. Notably, ablation of myeloid MTHFD2 rendered mice more sensitive to septic shock and CCl4-induced acute hepatitis. Mechanistically, MTHFD2 restrained IKKα/β-NF-κB activation and macrophage inflammatory phenotype by scavenging reactive oxygen species through the generation of NADPH. Our study reveals MTHFD2 as a "self-control" mechanism in macrophage-mediated inflammatory responses.
Collapse
Affiliation(s)
- Yan Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zihan Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Ni
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Sujun Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Shan
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Penghui Hu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zemin Ji
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Weijia Jing
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanzhao Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baochen Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyuan Dong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiujing Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
45
|
Liu X, Xiang R, Fang X, Wang G, Zhou Y. Advances in Metabolic Regulation of Macrophage Polarization State. Immunol Invest 2024; 53:416-436. [PMID: 38206296 DOI: 10.1080/08820139.2024.2302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| |
Collapse
|
46
|
Zhou S, Cui J, Shi Y. Serine Metabolism Regulates the Replicative Senescence of Human Dental Pulp Cells through Histone Methylation. Curr Issues Mol Biol 2024; 46:2856-2870. [PMID: 38666909 PMCID: PMC11049641 DOI: 10.3390/cimb46040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Tissue regeneration therapy based on human dental pulp cells (hDPCs) faces the distinct challenge of cellular senescence during massive expansion in vitro. To further explore the regulatory mechanism of cellular senescence in hDPCs, we conduct experiments on young cells (Passage 5, P5) and replicative senescent (Passage 12, P12) hDPCs. The results confirm that hDPCs undergo replicative senescence with passaging, during which their ability to proliferate and osteogenic differentiation decreases. Notably, during replicative senescence, phosphoglycerate dehydrogenase (PHGDH), the key enzyme of the serine synthesis pathway (SSP), is significantly downregulated, as well as S-adenosylmethionine (SAM) levels, resulting in reduced H3K36me3 modification on Sirtuin 1 (SIRT1)and Runt-related transcription factor 2 (RUNX2) promoters. Inhibition of PHGDH leads to the same phenotype as replicative senescence. Serine supplementation fails to rescue the senescence phenotype caused by replicative senescence and inhibitors, in which folate metabolism-related genes, including serine hydroxymethyl transferase 2 (SHMT2), methylenetetrahydrofolate dehydrogenase 1(MTHFD1), methylenetetrahydrofolate dehydrogenase 2(MTHFD2), are notably decreased. Our research raised a possibility that PHGDH may be involved in cellular senescence by affecting folate metabolism and histone methylation in addition to serine biosynthesis, providing potential targets to prevent senescence.
Collapse
Affiliation(s)
- Shuhan Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Z.); (J.C.)
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Z.); (J.C.)
- Department of Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Z.); (J.C.)
| |
Collapse
|
47
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
48
|
Wang C, Chen Q, Chen S, Fan L, Gan Z, Zhao M, Shi L, Bin P, Yang G, Zhou X, Ren W. Serine synthesis sustains macrophage IL-1β production via NAD +-dependent protein acetylation. Mol Cell 2024; 84:744-759.e6. [PMID: 38266638 DOI: 10.1016/j.molcel.2024.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Serine metabolism is involved in the fate decisions of immune cells; however, whether and how de novo serine synthesis shapes innate immune cell function remain unknown. Here, we first demonstrated that inflammatory macrophages have high expression of phosphoglycerate dehydrogenase (PHGDH, the rate-limiting enzyme of de novo serine synthesis) via nuclear factor κB signaling. Notably, the pharmacological inhibition or genetic modulation of PHGDH limits macrophage interleukin (IL)-1β production through NAD+ accumulation and subsequent NAD+-dependent SIRT1 and SIRT3 expression and activity. Mechanistically, PHGDH not only sustains IL-1β expression through H3K9/27 acetylation-mediated transcriptional activation of Toll-like receptor 4 but also supports IL-1β maturation via NLRP3-K21/22/24/ASC-K21/22/24 acetylation-mediated activation of the NLRP3 inflammasome. Moreover, mice with myeloid-specific depletion of Phgdh show alleviated inflammatory responses in lipopolysaccharide-induced systemic inflammation. This study reveals a network by which a metabolic enzyme, involved in de novo serine synthesis, mediates post-translational modifications and epigenetic regulation to orchestrate IL-1β production, providing a potential inflammatory disease target.
Collapse
Affiliation(s)
- Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siyuan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lijuan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lexuan Shi
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
49
|
Pellegrino M, Secli V, D’Amico S, Petrilli LL, Caforio M, Folgiero V, Tumino N, Vacca P, Vinci M, Fruci D, de Billy E. Manipulating the tumor immune microenvironment to improve cancer immunotherapy: IGF1R, a promising target. Front Immunol 2024; 15:1356321. [PMID: 38420122 PMCID: PMC10899349 DOI: 10.3389/fimmu.2024.1356321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valerio Secli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Silvia D’Amico
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Matteo Caforio
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valentina Folgiero
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Doriana Fruci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
50
|
Lin Y, Wang X, He S, Duan Z, Zhang Y, Sun X, Hu Y, Zhang Y, Qian Z, Gao X, Zhang Z. Immunostimulatory gene therapy combined with checkpoint blockade reshapes tumor microenvironment and enhances ovarian cancer immunotherapy. Acta Pharm Sin B 2024; 14:854-868. [PMID: 38322330 PMCID: PMC10840399 DOI: 10.1016/j.apsb.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 02/08/2024] Open
Abstract
Immune evasion has made ovarian cancer notorious for its refractory features, making the development of immunotherapy highly appealing to ovarian cancer treatment. The immune-stimulating cytokine IL-12 exhibits excellent antitumor activities. However, IL-12 can induce IFN-γ release and subsequently upregulate PDL-1 expression on tumor cells. Therefore, the tumor-targeting folate-modified delivery system F-DPC is constructed for concurrent delivery of IL-12 encoding gene and small molecular PDL-1 inhibitor (iPDL-1) to reduce immune escape and boost anti-tumor immunity. The physicochemical characteristics, gene transfection efficiency of the F-DPC nanoparticles in ovarian cancer cells are analyzed. The immune-modulation effects of combination therapy on different immune cells are also studied. Results show that compared with non-folate-modified vector, folate-modified F-DPC can improve the targeting of ovarian cancer and enhance the transfection efficiency of pIL-12. The underlying anti-tumor mechanisms include the regulation of T cells proliferation and activation, NK activation, macrophage polarization and DC maturation. The F-DPC/pIL-12/iPDL-1 complexes have shown outstanding antitumor effects and low toxicity in peritoneal model of ovarian cancer in mice. Taken together, our work provides new insights into ovarian cancer immunotherapy. Novel F-DPC/pIL-12/iPDL-1 complexes are revealed to exert prominent anti-tumor effect by modulating tumor immune microenvironment and preventing immune escape and might be a promising treatment option for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yunzhu Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Xiang Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhongxin Duan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaodong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuzhu Hu
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|