1
|
Hesley DC, Spatafore D, Shingler J, McNeely JP, Thompson R, Troutman MC, Baron EKB, Sabia M, Lee CH, Ploeger K, Wagner JM. Rapid bioreactor process optimization and scale-up for production of a measles vector COVID-19 vaccine candidate. Biotechnol Prog 2025:e70004. [PMID: 39912497 DOI: 10.1002/btpr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The emergence of SARS-CoV-2 in late 2019 and subsequent worldwide spread and pandemic in 2020 spurred the rapid and agile development of a variety of vaccine candidates. With speed to patients in mind during development of measles-vectored vaccine candidate V591, process optimization efforts were made to expand options for raw material sourcing/treatment, enable flexible use of various types of processing equipment, and streamline the overall production process. To that end, both gamma irradiated and heat sterilized microcarriers were tested to expand the supply network for critical process development experiments and manufacturing at a time when worldwide supply chains were strained or disrupted. Single use bioreactors were also evaluated and implemented to reduce experimental turnaround time. Furthermore, to simplify the process and gain additional efficiencies in large scale media preparation, growth and infection media formulations were harmonized with a parallel vaccine development program. These rapid process option evaluations were conducted parallel to critical path scale up, and the combined efforts enabled the rapid demonstration of two full manufacturing scale 2000 L bioreactors less than 6 months after virus seed delivery, culminating in the first large scale measles production process capable of addressing the high dose demands of a pandemic response scenario. Despite subsequent clinical discontinuation of the V591 vaccine candidate, the findings described herein will be useful for enabling rapid and scalable production of other measles-vectored vaccine candidates, oncolytic measles strains, or cell and gene therapies.
Collapse
Affiliation(s)
- David C Hesley
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Daniel Spatafore
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Jillian Shingler
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Joshua P McNeely
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Rachel Thompson
- Analytical Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Matthew C Troutman
- Analytical Research & Development, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Elise K B Baron
- Global Quality Large Molecule Analytical Sciences (GQLMAS), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Megan Sabia
- Global Quality Large Molecule Analytical Sciences (GQLMAS), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Christopher H Lee
- Bioprocess Drug Substance Commercialization (BDSC), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kristin Ploeger
- Bioprocess Drug Substance Commercialization (BDSC), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - James M Wagner
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
2
|
Koh WC, Yusoff K, Song AAL, Saad N, Chia SL. Viral vectors: design and delivery for small RNA. J Med Microbiol 2025; 74. [PMID: 39950625 DOI: 10.1099/jmm.0.001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
RNA interference regulates gene expression by selectively silencing target genes through the introduction of small RNA molecules, such as microRNA, small interfering RNA and short hairpin RNA. These molecules offer significant therapeutic potential for diverse human ailments like cancer, viral infections and neurodegenerative disorders. Whilst non-viral vectors like nanoparticles have been extensively explored for delivering these RNAs, viral vectors, with superior specificity and delivery efficiency, remain less studied. This review examines current viral vectors for small RNA delivery, focusing on design strategies and characteristics. It compares the advantages and drawbacks of each vector, aiding readers in selecting the optimal one for small RNA delivery.
Collapse
Affiliation(s)
- Wei Chin Koh
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Adelene Ai Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suet Lin Chia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Rallabandi R, Sharp B, Majerus S, Royster A, Hoffer S, Ikeda M, Devaux P. Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2024; 32:101290. [PMID: 39070290 PMCID: PMC11283025 DOI: 10.1016/j.omtm.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus, measles virus (MeV), as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency, in this study, we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally, the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells, capable of incorporating new technologies as they are developed.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Spencer Majerus
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Austin Royster
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarrianna Hoffer
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mia Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Kishimoto T, Nishimura K, Morishita K, Fukuda A, Miyamae Y, Kumagai Y, Sumaru K, Nakanishi M, Hisatake K, Sano M. An engineered ligand-responsive Csy4 endoribonuclease controls transgene expression from Sendai virus vectors. J Biol Eng 2024; 18:9. [PMID: 38229076 DOI: 10.1186/s13036-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Viral vectors are attractive gene delivery vehicles because of their broad tropism, high transduction efficiency, and durable expression. With no risk of integration into the host genome, the vectors developed from RNA viruses such as Sendai virus (SeV) are especially promising. However, RNA-based vectors have limited applicability because they lack a convenient method to control transgene expression by an external inducer. RESULTS We engineered a Csy4 switch in Sendai virus-based vectors by combining Csy4 endoribonuclease with mutant FKBP12 (DD: destabilizing domain) that becomes stabilized when a small chemical Shield1 is supplied. In this Shield1-responsive Csy4 (SrC) switch, Shield1 increases Csy4 fused with DD (DD-Csy4), which then cleaves and downregulates the transgene mRNA containing the Csy4 recognition sequence (Csy4RS). Moreover, when Csy4RS is inserted in the viral L gene, the SrC switch suppresses replication and transcription of the SeV vector in infected cells in a Shield1-dependent manner, thus enabling complete elimination of the vector from the cells. By temporally controlling BRN4 expression, a BRN4-expressing SeV vector equipped with the SrC switch achieves efficient, stepwise differentiation of embryonic stem cells into neural stem cells, and then into astrocytes. CONCLUSION SeV-based vectors with the SrC switch should find wide applications in stem cell research, regenerative medicine, and gene therapy, especially when precise control of reprogramming factor expression is desirable.
Collapse
Grants
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
- JP19H03203, JP19K22945, JP19K07343, JP21H02678, JP19K06501 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Takumi Kishimoto
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yusaku Miyamae
- Institute of Life and Environment Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mahito Nakanishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- TOKIWA-Bio, Inc, 2-1-6 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
5
|
Rispoli P, Scandiuzzi Piovesan T, Decorti G, Stocco G, Lucafò M. iPSCs as a groundbreaking tool for the study of adverse drug reactions: A new avenue for personalized therapy. WIREs Mech Dis 2024; 16:e1630. [PMID: 37770042 DOI: 10.1002/wsbm.1630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Induced pluripotent stem cells (iPSCs), obtained by reprogramming different somatic cell types, represent a promising tool for the study of drug toxicities, especially in the context of personalized medicine. Indeed, these cells retain the same genetic heritage of the donor, allowing the development of personalized models. In addition, they represent a useful tool for the study of adverse drug reactions (ADRs) in special populations, such as pediatric patients, which are often poorly represented in clinical trials due to ethical issues. Particularly, iPSCs can be differentiated into any tissue of the human body, following several protocols which use different stimuli to induce specific differentiation processes. Differentiated cells also maintain the genetic heritage of the donor, and therefore are suitable for personalized pharmacological studies; moreover, iPSC-derived differentiated cells are a valuable tool for the investigation of the mechanisms underlying the physiological differentiation processes. iPSCs-derived organoids represent another important tool for the study of ADRs. Precisely, organoids are in vitro 3D models which better represent the native organ, both from a structural and a functional point of view. Moreover, in the same way as iPSC-derived 2D models, iPSC-derived organoids are appropriate personalized models since they retain the genetic heritage of the donor. In comparison to other in vitro models, iPSC-derived organoids present advantages in terms of versatility, patient-specificity, and ethical issues. This review aims to provide an updated report of the employment of iPSCs, and 2D and 3D models derived from these, for the study of ADRs. This article is categorized under: Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriele Stocco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
van der Meulen K, Smets G, Rüdelsheim P. Viral Replicon Systems and Their Biosafety Aspects. APPLIED BIOSAFETY 2023; 28:102-122. [PMID: 37342518 PMCID: PMC10278005 DOI: 10.1089/apb.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Introduction Viral RNA replicons are self-amplifying RNA molecules generated by deleting genetic information of one or multiple structural proteins of wild-type viruses. Remaining viral RNA is used as such (naked replicon) or packaged into a viral replicon particle (VRP), whereby missing genes or proteins are supplied via production cells. Since replicons mostly originate from pathogenic wild-type viruses, careful risk consideration is crucial. Methods A literature review was performed compiling information on potential biosafety risks of replicons originating from positive- and negative-sense single-stranded RNA viruses (except retroviruses). Results For naked replicons, risk considerations included genome integration, persistence in host cells, generation of virus-like vesicles, and off-target effects. For VRP, the main risk consideration was formation of primary replication competent virus (RCV) as a result of recombination or complementation. To limit the risks, mostly measures aiming at reducing the likelihood of RCV formation have been described. Also, modifying viral proteins in such a way that they do not exhibit hazardous characteristics in the unlikely event of RCV formation has been reported. Discussion and Conclusion Despite multiple approaches developed to reduce the likelihood of RCV formation, scientific uncertainty remains on the actual contribution of the measures and on limitations to test their effectiveness. In contrast, even though effectiveness of each individual measure is unclear, using multiple measures on different aspects of the system may create a solid barrier. Risk considerations identified in the current study can also be used to support risk group assignment of replicon constructs based on a purely synthetic design.
Collapse
|
7
|
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci 2023; 24:ijms24097736. [PMID: 37175441 PMCID: PMC10177981 DOI: 10.3390/ijms24097736] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Gene therapy is a technique involving the modification of an individual's genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Currently, the three key vector strategies are based on adeno-associated viruses, adenoviruses, and lentiviruses. However, certain challenges, such as immunotoxicity and "off-target", continue to exist. In the present review, the above three viral vectors are discussed along with their respective therapeutic applications. In addition, the major translational challenges encountered in viral vector-based gene therapies are summarized, and the possible strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yang Le
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
8
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
bin Umair M, Akusa FN, Kashif H, Seerat-e-Fatima, Butt F, Azhar M, Munir I, Ahmed M, Khalil W, Sharyar H, Rafique S, Shahid M, Afzal S. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol 2022; 167:1387-1404. [PMID: 35462594 PMCID: PMC9035288 DOI: 10.1007/s00705-022-05432-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Using viruses to our advantage has been a huge leap for humanity. Their ability to mediate horizontal gene transfer has made them useful tools for gene therapy, vaccine development, and cancer treatment. Adenoviruses, adeno-associated viruses, retroviruses, lentiviruses, alphaviruses, and herpesviruses are a few of the most common candidates for use as therapeutic agents or efficient gene delivery systems. Efforts are being made to improve and perfect viral-vector-based therapies to overcome potential or reported drawbacks. Some preclinical trials of viral vector vaccines have yielded positive results, indicating their potential as prophylactic or therapeutic vaccine candidates. Utilization of the oncolytic activity of viruses is the future of cancer therapy, as patients will then be free from the harmful effects of chemo- or radiotherapy. This review discusses in vitro and in vivo studies showing the brilliant therapeutic potential of viruses.
Collapse
Affiliation(s)
- Musab bin Umair
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Fujimura Nao Akusa
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Hadia Kashif
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Seerat-e-Fatima
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Fatima Butt
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Marium Azhar
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Iqra Munir
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Ahmed
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Wajeeha Khalil
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Hafiz Sharyar
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Shahid
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan
| |
Collapse
|
10
|
Rallabandi R, Sharp B, Cruz C, Wang Q, Locsin A, Driscoll CB, Lee E, Nelson T, Devaux P. miRNA-mediated control of exogenous OCT4 during mesenchymal-epithelial transition increases measles vector reprogramming efficiency. Mol Ther Methods Clin Dev 2022; 24:48-61. [PMID: 34977272 PMCID: PMC8683617 DOI: 10.1016/j.omtm.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
OCT4 is a key mediator of induced pluripotent stem cell (iPSC) reprogramming, but the mechanistic insights into the role of exogenous OCT4 and timelines that initiate pluripotency remain to be resolved. Here, using measles reprogramming vectors, we present microRNA (miRNA) targeting of exogenous OCT4 to shut down its expression during the mesenchymal to the epithelial transition phase of reprogramming. We showed that exogenous OCT4 is required only for the initiation of reprogramming and is dispensable for the maturation stage. However, the continuous expression of SOX2, KLF4, and c-MYC is necessary for the maturation stage of the iPSC. Additionally, we demonstrate a novel application of miRNA targeting in a viral vector to contextually control the vector/transgene, ultimately leading to an improved reprogramming efficiency. This novel approach could be applied to other systems for improving the efficiency of vector-induced processes.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Virology and Gene Therapy Graduate Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Sciences PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Conrad Cruz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi Wang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexis Locsin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher B. Driscoll
- Virology and Gene Therapy Graduate Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ella Lee
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tim Nelson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Virology and Gene Therapy Graduate Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Sciences PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Gutiérrez-Álvarez J, Honrubia JM, Sanz-Bravo A, González-Miranda E, Fernández-Delgado R, Rejas MT, Zúñiga S, Sola I, Enjuanes L. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proc Natl Acad Sci U S A 2021; 118:e2111075118. [PMID: 34686605 PMCID: PMC8639359 DOI: 10.1073/pnas.2111075118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Female
- Gene Deletion
- Genes, env
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- RNA, Viral/immunology
- Replicon
- Vaccines, DNA
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- J Gutiérrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - J M Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - A Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - E González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - R Fernández-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - M T Rejas
- Electron Microscopy Service, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - S Zúñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - I Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain;
| |
Collapse
|
12
|
Abstract
Delivery of genetic material to tissues in vivo is an important technique used in research settings and is the foundation upon which clinical gene therapy is built. The lung is a prime target for gene delivery due to a host of genetic, acquired, and infectious diseases that manifest themselves there, resulting in many pathologies. However, the in vivo delivery of genetic material to the lung remains a practical problem clinically and is considered the major obstacle needed to be overcome for gene therapy. Currently there are four main strategies for in vivo gene delivery to the lung: viral vectors, liposomes, nanoparticles, and electroporation. Viral delivery uses several different genetically modified viruses that enter the cell and express desired genes that have been inserted to the viral genome. Liposomes use combinations of charged and neutral lipids that can encapsulate genetic cargo and enter cells through endogenous mechanisms, thereby delivering their cargoes. Nanoparticles are defined by their size (typically less than 100 nm) and are made up of many different classes of building blocks, including biological and synthetic polymers, cell penetrant and other peptides, and dendrimers, that also enter cells through endogenous mechanisms. Electroporation uses mild to moderate electrical pulses to create pores in the cell membrane through which delivered genetic material can enter a cell. An emerging fifth category, exosomes and extracellular vesicles, may have advantages of both viral and non-viral approaches. These extracellular vesicles bud from cellular membranes containing receptors and ligands that may aid cell targeting and which can be loaded with genetic material for efficient transfer. Each of these vectors can be used for different gene delivery applications based on mechanisms of action, side-effects, and other factors, and their use in the lung and possible clinical considerations is the primary focus of this review.
Collapse
Affiliation(s)
- Uday K Baliga
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
13
|
Iankov ID, Kurokawa C, Viker K, Robinson SI, Ammayappan A, Panagioti E, Federspiel MJ, Galanis E. Live Attenuated Measles Virus Vaccine Expressing Helicobacter pylori Heat Shock Protein A. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:136-148. [PMID: 33145397 PMCID: PMC7585873 DOI: 10.1016/j.omto.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
Measles virus (MV) Edmonston derivative strains are attractive vector platforms in vaccine development and oncolytic virotherapy. Helicobacter pylori heat shock protein A (HspA) is a bacterial heat shock chaperone with essential function as a Ni-ion scavenging protein. We generated and characterized the immunogenicity of an attenuated MV strain encoding the HspA transgene (MV-HspA). MV-HspA showed faster replication within 48 h of infection with >10-fold higher titers and faster accumulation of the MV proteins. It also demonstrated a superior tumor-killing effect in vitro against a variety of human solid tumor cell lines, including sarcoma, ovarian and breast cancer. Two intraperitoneal (i.p.) doses of 106 50% tissue culture infectious dose (TCID50) MV-HspA significantly improved survival in an ovarian cancer xenograft model: 63.5 days versus 27 days for the control group. The HspA transgene induced a humoral immune response in measles-permissive Ifnarko-CD46Ge transgenic mice. Eight of nine animals developed a long-term anti-HspA antibody response with titers of 1:400 to 1:12,800 without any negative impact on development of protective anti-MV immune memory. MV-HspA triggered an immunogenic cytopathic effect as measured by an HMGB1 assay. The absence of significant elevation of PD-L1 expression indicated that vector-encoded HspA could act as an immunomodulator on the immune check point axis. These data demonstrate that MV-HspA is a potent oncolytic agent and vaccine candidate for clinical translation in cancer treatment and immunoprophylaxis against H. pylori.
Collapse
Affiliation(s)
- Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Cheyne Kurokawa
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly Viker
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Steven I Robinson
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Eleni Panagioti
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Rittié L, Athanasopoulos T, Calero-Garcia M, Davies ML, Dow DJ, Howe SJ, Morrison A, Ricciardelli I, Saudemont A, Jespers L, Clay TM. The Landscape of Early Clinical Gene Therapies outside of Oncology. Mol Ther 2019; 27:1706-1717. [PMID: 31526597 PMCID: PMC6822232 DOI: 10.1016/j.ymthe.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
The field of cell and gene therapy (GT) is expanding rapidly and there is undoubtedly a wave of enthusiasm and anticipation for what these treatments could achieve next. Here we assessed the worldwide landscape of GT assets currently in early clinical development (clinical trial phase 1/2 or about to enter clinical trial). We included all gene therapies, i.e., strategies that modify an individual's protein make-up by introducing exogenous nucleic acid or nucleic acid modifiers, regardless of delivery. Unmodified cell therapies, oncology therapies (reviewed elsewhere), and vaccine programs (distinct therapeutic strategy) were not included. Using a December 31, 2018 cutoff date, we identified 336 gene therapies being developed for 138 different indications covering 165 genetic targets. In all, we found that the early clinical GT landscape comprises a very disparate group of drug candidates in terms of indications, organizations, and delivery methods. We also highlight interesting trends, revealing the evolution of the field toward in vivo therapies and adeno-associated virus vector-based delivery systems. It will be interesting to witness what proportion of this current list effectively translates into new medicines.
Collapse
Affiliation(s)
- Laure Rittié
- GSK R&D Cell and Gene Therapy Discovery Research, UP1410, 1250 S. Collegeville Road, Collegeville, PA 19426, USA.
| | - Takis Athanasopoulos
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Miguel Calero-Garcia
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Marie L Davies
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - David J Dow
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Steven J Howe
- GSK R&D Cell and Gene Therapy Process Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Alastair Morrison
- GSK R&D Worldwide Business Development, 5G104, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Ida Ricciardelli
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Aurore Saudemont
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Laurent Jespers
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Timothy M Clay
- GSK R&D Cell and Gene Therapy Discovery Research, UP1410, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| |
Collapse
|
15
|
Zhou D, Zhu MY, Wang YL, Hao XQ, Zhou DM, Liu RX, Zhang CD, Qu CF, Zhao ZY. Attenuated MuV-S79 as vector stably expressing foreign gene. World J Pediatr 2019; 15:511-515. [PMID: 31377975 DOI: 10.1007/s12519-019-00287-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND To describe mumps virus (MuV) used as a vector to express enhanced green fluorescent protein (EGFP) or red fluorescent protein (RFP) genes. METHODS Molecular cloning technique was applied to establish the cDNA clones of recombinant mumps viruses (rMuVs). rMuVs were recovered based on our reverse genetic system of MuV-S79. The properties of rMuVs were determined by growth curve, plaque assay, fluorescent microscopy and determination of fluorescent intensity. RESULTS Three recombinant viruses replicated well in Vero cells and similarly as parental rMuV-S79, expressed heterologous genes in high levels, and were genetically stable in at least 15 passages. CONCLUSION rMuV-S79 is a promising platform to accommodate foreign genes like marker genes, other antigens and immunomodulators for addressing various diseases.
Collapse
Affiliation(s)
- Duo Zhou
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meng-Ying Zhu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Long Wang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xiao-Qiang Hao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Rong-Xian Liu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chu-Di Zhang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chu-Fan Qu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheng-Yan Zhao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|