1
|
Del Greco C, Kuo ME, Smith DEC, Mendes MI, Salamons GS, Nemcovic M, Kodrikova R, Sestak S, Stancheva M, Antonellis A. Loss-of-Function CARS1 Variants in a Patient With Microcephaly, Developmental Delay, and a Brittle Hair Phenotype. Mol Genet Genomic Med 2025; 13:e70078. [PMID: 39963003 PMCID: PMC11833167 DOI: 10.1002/mgg3.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Mutations in cysteinyl-tRNA synthetase (CARS1) have been implicated in a multisystem disease including microcephaly, developmental delay, and brittle hair and nail phenotypes. METHODS Here, we present a patient with hepatopathy, hypothyroidism, short stature, developmental delay, microcephaly, muscular hypotonia, brittle hair, and ataxia. The patient underwent exome sequencing to identify potentially pathogenic genetic variants. In addition, identified variants were assessed using yeast complementation assays to determine functional consequences. RESULTS Exome sequencing determined that the patient is compound heterozygous for p.Arg341His and p.Arg370Trp CARS1. Yeast complementation assays showed that the p.Arg341His variant has a hypomorphic effect and that the p.Arg370Trp variant causes a complete loss-of-function effect. CONCLUSION This study is the second report of pathogenic CARS1 variants and expands the allelic and phenotypic heterogeneity of CARS1-associated disease.
Collapse
Affiliation(s)
- Christina Del Greco
- Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Molly E. Kuo
- Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Medical Scientist Training ProgramUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Desiree E. C. Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Marisa I. Mendes
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Gajja S. Salamons
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Marek Nemcovic
- Institute of Chemistry, Department of GlycobiologySlovak Academy of SciencesBratislavaSlovakia
| | - Rebeka Kodrikova
- Institute of Chemistry, Department of GlycobiologySlovak Academy of SciencesBratislavaSlovakia
| | - Sergej Sestak
- Institute of Chemistry, Department of GlycobiologySlovak Academy of SciencesBratislavaSlovakia
| | | | - Anthony Antonellis
- Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Cellular and Molecular Biology ProgramUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of NeurologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
2
|
Peters B, Dattner T, Schlieben LD, Sun T, Staufner C, Lenz D. Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency. J Inherit Metab Dis 2025; 48:e12707. [PMID: 38279772 PMCID: PMC11726157 DOI: 10.1002/jimd.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Among genetic disorders of vesicular trafficking, there are three causing recurrent acute liver failure (RALF): NBAS, RINT1, and SCYL1-associated disease. These three disorders are characterized by liver crises triggered by febrile infections and account for a relevant proportion of RALF causes. While the frequency and severity of liver crises in NBAS and RINT1-associated disease decrease with age, patients with SCYL1 variants present with a progressive, cholestatic course. In all three diseases, there is a multisystemic, partially overlapping phenotype with variable expression, including liver, skeletal, and nervous systems, all organ systems with high secretory activity. There are no specific biomarkers for these diseases, and whole exome sequencing should be performed in patients with RALF of unknown etiology. NBAS, SCYL1, and RINT1 are involved in antegrade and retrograde vesicular trafficking. Pathomechanisms remain unclarified, but there is evidence of a decrease in concentration and stability of the protein primarily affected by the respective gene defect and its interaction partners, potentially causing impairment of vesicular transport. The impairment of protein secretion by compromised antegrade transport provides a possible explanation for different organ manifestations such as bone alteration due to lack of collagens or diabetes mellitus when insulin secretion is affected. Dysfunction of retrograde transport impairs membrane recycling and autophagy. The impairment of vesicular trafficking results in increased endoplasmic reticulum stress, which, in hepatocytes, can progress to hepatocytolysis. While there is no curative therapy, an early and consequent implementation of an emergency protocol seems crucial for optimal therapeutic management.
Collapse
Affiliation(s)
- Bianca Peters
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Tal Dattner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Lea D. Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Institute of NeurogenomicsComputational Health Centre, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Tian Sun
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Christian Staufner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Dominic Lenz
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
3
|
Mendes MI, Wolf NI, Rudinger-Thirion J, Lenz D, Frugier M, Verloo P, Mandel H, Manor J, Kassel R, Corpeleijn WE, van der Rijt S, Schroor EM, van Dooren SJM, Staufner C, Salomons GS, Smith DEC. Simultaneous determination of cytosolic aminoacyl-tRNA synthetase activities by LC-MS/MS. Nucleic Acids Res 2024; 52:e107. [PMID: 39574415 DOI: 10.1093/nar/gkae1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 12/22/2024] Open
Abstract
In recent years, pathogenic variants in ARS genes, encoding aminoacyl-tRNA synthetases (aaRSs), have been associated with human disease. Patients harbouring pathogenic variants in ARS genes have clinical signs partly unique to certain aaRSs defects, partly overlapping between the different aaRSs defects. Diagnosis relies mostly on genetics and remains challenging, often requiring functional validation of new ARS variants. In this study, we present the development and validation of a method to simultaneously determine aminoacylation activities of all cytosolic aaRSs (encoded by ARS1 genes) in one single cell lysate, improving diagnosis in suspected ARS1 disorders and facilitating functional characterization of ARS1 variants of unknown significance. As proof of concept, we show enzyme activities of five individuals with variants in different ARS1 genes, demonstrating the usability and convenience of the presented method.
Collapse
Affiliation(s)
- Marisa I Mendes
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, VU University Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, the Netherlands
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN UPR 9002, Institut de Biologie Moléculaire et Cellulaire, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Dominic Lenz
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN UPR 9002, Institut de Biologie Moléculaire et Cellulaire, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Patrick Verloo
- Department of Pediatric Neurology, Center for Inherited Metabolic Disorders and metabERN, University Hospital Ghent, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Hanna Mandel
- Department of Genetic and Metabolic Disorders, Ziv Medical Center, Derech HaRambam 1, Safed, Israel
| | - Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital Sheba Medical Center Tel-Hashomer, Derech Sheba 2, Ramat Gan, Israel
| | - Rachel Kassel
- Department of Pediatrics, University of Alabama at Birmingham School of Medicine, 1670 University Blvd, Birmingham, AL 35233, USA
| | - Willemijn E Corpeleijn
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Diabetes and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Sanne van der Rijt
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Elsbeth M Schroor
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Silvy J M van Dooren
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Christian Staufner
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Gajja S Salomons
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| | - Desirée E C Smith
- Department Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands
| |
Collapse
|
4
|
Uehara T, Seki E, Nonoda Y, Kumaki T, Tsuyusaki Y, Aida N, Enomoto Y, Ishikura K, Kurosawa K. Two siblings with acute necrotizing encephalopathy associated with variants of LARS1. Am J Med Genet A 2024; 194:e63803. [PMID: 38923116 DOI: 10.1002/ajmg.a.63803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/18/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Acute necrotizing encephalopathy (ANE) is a rapidly progressive encephalopathy of unknown etiology. The underlying mechanisms are highly heterogeneous, often including genetic backgrounds. Variants of LARS1, encoding the leucyl-tRNA synthetase 1, are responsible for infantile liver failure syndrome 1. We describe two siblings with ANE caused by compound heterozygous variants of LARS1. Patient 1 was a 17-month-old girl. She presented with generalized seizure and liver dysfunction due to influenza type A infection. Brain magnetic resonance imaging on day 4 of onset showed diffuse high-intensity signals consistent with ANE. She died on day 10. Patient 2, a younger male sibling of patient 1, had mild to moderate developmental delay and growth failure at the age of 18 months. He showed a markedly elevated level of transaminases triggered by infection with human herpesvirus 6. On day 4 of onset, he had generalized seizures. Brain computed tomography showed a diffuse symmetrical hypodensity consistent with ANE. He died on day 7. Whole exome sequencing identified the compound heterozygous variants in LARS1 (NM_020117.11) as c.83_88delinsAATGGGATA, p.(Arg28_Phe30delinsLysTryAspIle) and c.1283C>T, p.(Pro428Leu) in both siblings. The severe neurologic phenotype, found in our patients, reflects the complicated pathogenesis of LARS1-related disorder.
Collapse
Affiliation(s)
- Takeshi Uehara
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Eijun Seki
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yutaka Nonoda
- Department of Pediatrics, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Ishikura
- Department of Pediatrics, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
5
|
Hegarty R, Thompson RJ. Genetic aetiologies of acute liver failure. J Inherit Metab Dis 2024; 47:582-597. [PMID: 38499319 DOI: 10.1002/jimd.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Acute liver failure (ALF) is a rare, rapidly evolving, clinical syndrome with devastating consequences where definitive treatment is by emergency liver transplantation. Establishing a diagnosis can be challenging and, historically, the cause of ALF was unidentified in up to half of children. However, recent technological and clinical advances in genomic medicine have led to an increasing proportion being diagnosed with monogenic aetiologies of ALF. The conditions encountered include a diverse group of inherited metabolic disorders each with prognostic and treatment implications. Often these disorders are clinically indistinguishable and may even mimic disorders of immune regulation or red cell disorders. Rapid genomic sequencing for children with ALF is, therefore, a key component in the diagnostic work up today. This review focuses on the monogenic aetiologies of ALF.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| |
Collapse
|
6
|
Li SY, Feng JY, Li ZD, Liu T. Early onset and liver failure indicating poor prognosis of infant liver failure syndrome type 1. Orphanet J Rare Dis 2024; 19:225. [PMID: 38844943 PMCID: PMC11155007 DOI: 10.1186/s13023-024-03229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Infantile liver failure syndrome type 1 (ILFS1, OMIM #615,438), caused by leucyl-tRNA synthase 1 (LARS1, OMIM *151,350) deficiency, is a rare autosomal-recessive disorder. The clinical manifestations, molecular-genetic features, and prognosis of LARS1 disease remain largely elusive. METHODS Three new instances of ILFS1 with confirmed variants in LARS1, encoding LARS1, were identified. Disease characteristics were summarized together with those of 33 reported cases. Kaplan-Meier analysis was performed to assess prognostic factors in ILFS1 patients. RESULTS The 3 new ILFS1 patients harbored 6 novel variants in LARS1. Among the 36 known patients, 12 died or underwent liver transplantation. The main clinical features of ILFS1 were intrauterine growth restriction (31/32 patients in whom this finding was specifically described), failure to thrive (30/31), hypoalbuminemia (32/32), microcytic anemia (32/33), acute liver failure (24/34), neurodevelopmental delay (25/30), seizures (22/29), and muscular hypotonia (13/27). No significant correlations were observed between genotype and either presence of liver failure or clinical severity of disease. Kaplan-Meier analysis indicated that age of onset < 3mo (p = 0.0015, hazard ratio = 12.29, 95% confidence interval [CI] = 3.74-40.3), like liver failure (p = 0.0343, hazard ratio = 6.57, 95% CI = 1.96-22.0), conferred poor prognosis. CONCLUSIONS Early age of presentation, like liver failure, confers poor prognosis in ILFS1. Genotype-phenotype correlations remain to be established.
Collapse
Affiliation(s)
- Shu-Yuan Li
- Department of Hepatology, The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia-Yan Feng
- The Department of Pathology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Zhong-Die Li
- Department of Hepatology, The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Teng Liu
- Department of Hepatology, The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
7
|
Inoue M, Sebastian WA, Sonoda S, Miyahara H, Shimizu N, Shiraishi H, Maeda M, Yanagi K, Kaname T, Hanada R, Hanada T, Ihara K. Biallelic variants in LARS1 induce steatosis in developing zebrafish liver via enhanced autophagy. Orphanet J Rare Dis 2024; 19:219. [PMID: 38807157 PMCID: PMC11134648 DOI: 10.1186/s13023-024-03226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/19/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants of LARS1 cause infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute hepatic failure with steatosis in infants. LARS functions as a protein associated with mTORC1 and plays a crucial role in amino acid-triggered mTORC1 activation and regulation of autophagy. A previous study demonstrated that larsb-knockout zebrafish exhibit conditions resembling ILFS. However, a comprehensive analysis of larsb-knockout zebrafish has not yet been performed because of early mortality. METHODS We generated a long-term viable zebrafish model carrying a LARS1 variant identified in an ILFS1 patient (larsb-I451F zebrafish) and analyzed the pathogenesis of the affected liver of ILFS1. RESULTS Hepatic dysfunction is most prominent in ILFS1 patients during infancy; correspondingly, the larsb-I451F zebrafish manifested hepatic anomalies during developmental stages. The larsb-I451F zebrafish demonstrates augmented lipid accumulation within the liver during autophagy activation. Inhibition of DGAT1, which converts fatty acids to triacylglycerols, improved lipid droplets in the liver of larsb-I451F zebrafish. Notably, treatment with an autophagy inhibitor ameliorated hepatic lipid accumulation in this model. CONCLUSIONS Our findings suggested that enhanced autophagy caused by biallelic LARS1 variants contributes to ILFS1-associated hepatic dysfunction. Furthermore, the larsb-I451F zebrafish model, which has a prolonged survival rate compared with the larsb-knockout model, highlights its potential utility as a tool for investigating the pathophysiology of ILFS1-associated liver dysfunction.
Collapse
Affiliation(s)
- Masanori Inoue
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | | | - Shota Sonoda
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan
| | - Miwako Maeda
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Oita, Japan.
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Oita, Japan.
| |
Collapse
|
8
|
Lenz D, Schlieben LD, Shimura M, Bianzano A, Smirnov D, Kopajtich R, Berutti R, Adam R, Aldrian D, Baric I, Baumann U, Bozbulut NE, Brugger M, Brunet T, Bufler P, Burnytė B, Calvo PL, Crushell E, Dalgiç B, Das AM, Dezsőfi A, Distelmaier F, Fichtner A, Freisinger P, Garbade SF, Gaspar H, Goujon L, Hadzic N, Hartleif S, Hegen B, Hempel M, Henning S, Hoerning A, Houwen R, Hughes J, Iorio R, Iwanicka-Pronicka K, Jankofsky M, Junge N, Kanavaki I, Kansu A, Kaspar S, Kathemann S, Kelly D, Kirsaçlioğlu CT, Knoppke B, Kohl M, Kölbel H, Kölker S, Konstantopoulou V, Krylova T, Kuloğlu Z, Kuster A, Laass MW, Lainka E, Lurz E, Mandel H, Mayerhanser K, Mayr JA, McKiernan P, McClean P, McLin V, Mention K, Müller H, Pasquier L, Pavlov M, Pechatnikova N, Peters B, Petković Ramadža D, Piekutowska-Abramczuk D, Pilic D, Rajwal S, Rock N, Roetig A, Santer R, Schenk W, Semenova N, Sokollik C, Sturm E, Taylor RW, Tschiedel E, Urbonas V, Urreizti R, Vermehren J, Vockley J, Vogel GF, Wagner M, van der Woerd W, Wortmann SB, Zakharova E, Hoffmann GF, Meitinger T, Murayama K, Staufner C, Prokisch H. Genetic landscape of pediatric acute liver failure of indeterminate origin. Hepatology 2024; 79:1075-1087. [PMID: 37976411 PMCID: PMC11020061 DOI: 10.1097/hep.0000000000000684] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics.
Collapse
Affiliation(s)
- Dominic Lenz
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Lea D. Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Masaru Shimura
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
- Department of Metabolism, Chiba Children’s Hospital, Centre for Medical Genetics, Chiba, Japan
| | - Alyssa Bianzano
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Robert Kopajtich
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Riccardo Berutti
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Rüdiger Adam
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, University Children’s Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Denise Aldrian
- Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivo Baric
- Department of Paediatrics, University Hospital Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ulrich Baumann
- Department of Peadiatric Kidney, Liver, and Metabolic Diseases, Division for Paediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - Neslihan E. Bozbulut
- Department of Paediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Melanie Brugger
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philip Bufler
- Department of Paediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birutė Burnytė
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pier L. Calvo
- Regina Margherita Children’s Hospital, Paediatic Gastroenterology Unit, Torino, Italy
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland, Dublin, Ireland
| | - Buket Dalgiç
- Department of Paediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Anibh M. Das
- Hannover Medical School, Clinic for Paediatric Kidney, Liver, and Metabolic Diseases, Hannover, Germany
| | - Antal Dezsőfi
- First Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Felix Distelmaier
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children’s Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander Fichtner
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Peter Freisinger
- Department of Paediatrics, Hospital Reutlingen, Reutlingen, Germany
| | - Sven F. Garbade
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Harald Gaspar
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Louise Goujon
- CLAD Ouest CHU Hôpital Sud, CRMR Déficiences intellectuelles, Service de Génétique Médicale, Rennes, France
| | - Nedim Hadzic
- King’s College Hospital, Paediatric Liver, GI & Nutrition Centre, London, United Kingdom
| | - Steffen Hartleif
- Eberhard Karls University Tuebingen, Paediatric Gastroenterology and Hepatology, Tuebingen, Germany
| | - Bianca Hegen
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, Institute of Human Genetics, Hamburg
| | - Stephan Henning
- Department of Paediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andre Hoerning
- Department of Paediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Roderick Houwen
- Paediatric Gastroenterology, UMC Utrecht, Utrecht, The Netherlands
| | - Joanne Hughes
- Children’s Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Raffaele Iorio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Martin Jankofsky
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Norman Junge
- Department of Peadiatric Kidney, Liver, and Metabolic Diseases, Division for Paediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - Ino Kanavaki
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Third Department of Paediatrics, Attikon University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aydan Kansu
- Department of Paediatric Gastroenterology, Ankara University, School of Medicine, Ankara, Turkey
| | - Sonja Kaspar
- Department of Paediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Simone Kathemann
- Department of Paediatrics II, Paediatric Gastroenterology, Hepatology and Liver Transplantation, University Hospital Essen, Essen, Germany
| | - Deidre Kelly
- Birmingham Children’s Hospital NHS Trust, Liver Unit, Birmingham, UK
| | - Ceyda T. Kirsaçlioğlu
- Department of Paediatric Gastroenterology, Ankara University, School of Medicine, Ankara, Turkey
| | - Birgit Knoppke
- University Hospital Regensburg, KUNO University Children’s Hospital, Regensburg, Germany
| | - Martina Kohl
- Department of General Paediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Heike Kölbel
- Department of Paediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | | | - Tatiana Krylova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Zarife Kuloğlu
- Department of Paediatric Gastroenterology, Ankara University, School of Medicine, Ankara, Turkey
| | - Alice Kuster
- Department of Neurometabolism, University Hospital of Nantes, Nantes, France
| | - Martin W. Laass
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elke Lainka
- Department of Paediatrics II, Paediatric Gastroenterology, Hepatology and Liver Transplantation, University Hospital Essen, Essen, Germany
| | - Eberhard Lurz
- Department of Paediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Mandel
- Department of Paediatrics, Rambam Medical Centre, Meyer Children’s Hospital, Metabolic Unit, Haifa, Israel
| | - Katharina Mayerhanser
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Patrick McKiernan
- University of Pittsburgh and Children’s Hospital of Pittsburgh of UPMC, Pittsburgh Liver Research Centre, Pittsburgh, Pennsylvania, USA
| | | | - Valerie McLin
- Department of Paediatrics, Gynecology, and Obstetrics, Division of Paediatric Subspecialities, Swiss Paediatric Liver Centre, Paediatric Gastroenterology, Hepatology and Nutrition Unit, University of Geneva, Geneva, Switzerland
| | - Karine Mention
- Jeanne de Flandres Hospital, Reference Centre for Inherited Metabolic Diseases, Lille, France
| | - Hanna Müller
- Department of Paediatrics, Division of Neonatology and Paediatric Intensive Care, University Hospital Marburg, Marburg, Germany
| | - Laurent Pasquier
- CLAD Ouest CHU Hôpital Sud, CRMR Déficiences intellectuelles, Service de Génétique Médicale, Rennes, France
| | - Martin Pavlov
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| | - Natalia Pechatnikova
- Healthcare Department Morozov Children’s City Clinical Hospital, Moscow City, Moscow
| | - Bianca Peters
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Danijela Petković Ramadža
- Department of Paediatrics, University Hospital Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | | | - Denisa Pilic
- Department of Paediatrics II, Paediatric Gastroenterology, Hepatology and Liver Transplantation, University Hospital Essen, Essen, Germany
| | - Sanjay Rajwal
- Department of Paediatrics, Gynecology, and Obstetrics, Division of Paediatric Subspecialities, Swiss Paediatric Liver Centre, Paediatric Gastroenterology, Hepatology and Nutrition Unit, University of Geneva, Geneva, Switzerland
| | - Nathalie Rock
- Department of Paediatrics, Gynecology, and Obstetrics, Division of Paediatric Subspecialities, Swiss Paediatric Liver Centre, Paediatric Gastroenterology, Hepatology and Nutrition Unit, University of Geneva, Geneva, Switzerland
| | - Agnès Roetig
- Laboratory of Genetics of Mitochondrial Diseases, Imagine Institute, University Paris Cité, INSERM UMR, Paris, France
| | - René Santer
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Wilfried Schenk
- Department of Paediatrics, University Hospital Augsburg, Augsburg, Germany
| | - Natalia Semenova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Christiane Sokollik
- Department of Paediatrics, Division of Paediatric Gastroenterology, Hepatology and Nutrition, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ekkehard Sturm
- Eberhard Karls University Tuebingen, Paediatric Gastroenterology and Hepatology, Tuebingen, Germany
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eva Tschiedel
- Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vaidotas Urbonas
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Roser Urreizti
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, IRSJD, Esplugues de Llobregat, Barcelona, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)- Instituto de Salud Carlos III, Spain
| | - Jan Vermehren
- University Hospital Regensburg, KUNO University Children’s Hospital, Regensburg, Germany
| | - Jerry Vockley
- University of Pittsburgh and Children’s Hospital of Pittsburgh of UPMC, Pittsburgh Liver Research Centre, Pittsburgh, Pennsylvania, USA
| | - Georg-Friedrich Vogel
- Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matias Wagner
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Georg F. Hoffmann
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Thomas Meitinger
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Centre for Medical Genetics, Chiba, Japan
| | - Christian Staufner
- Heidelberg University, Medical Faculty, University Hospital Heidelberg, Center for Child and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Munich, Munich Germany
| |
Collapse
|
9
|
Meyer-Schuman R, Cale AR, Pierluissi JA, Jonatzke KE, Park YN, Lenk GM, Oprescu SN, Grachtchouk MA, Dlugosz AA, Beg AA, Meisler MH, Antonellis A. Predictive modeling provides insight into the clinical heterogeneity associated with TARS1 loss-of-function mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586600. [PMID: 38585737 PMCID: PMC10996635 DOI: 10.1101/2024.03.25.586600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous system, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense mutations predicted to cause a loss-of-function effect and studied these variants in yeast and worm models. This revealed two loss-of-function mutations, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R433H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.
Collapse
Affiliation(s)
| | - Allison R. Cale
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Kira E. Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Young N. Park
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Guy M. Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A. Beg
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Fabre A, Guerry P. Goldilocks principle and recessive disease. Eur J Hum Genet 2024; 32:143-145. [PMID: 37737285 PMCID: PMC10853259 DOI: 10.1038/s41431-023-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Alexandre Fabre
- APHM, Timone Enfant, Service de pédiatrie multidisciplinaire, Marseille, France.
- Aix Marseille Univ, INSERM, MMG, Marseille, France.
| | | |
Collapse
|
11
|
Engelen M, van der Knaap MS, Wolf NI. Amino-acyl tRNA synthetases associated with leukodystrophy. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:253-261. [PMID: 39322382 DOI: 10.1016/b978-0-323-99209-1.00020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Amino-acyl tRNA synthetases (ARSs) are enzymes that catalyze the amino-acylation reaction of a specific amino acid and its cognate tRNA and are divided into type 1 (cytosolic) and type 2 (mitochondrial). In this chapter leukodystrophies caused by tRNA synthetase deficiencies are reviewed.
Collapse
Affiliation(s)
- Marc Engelen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Feichtinger RG, Mayr JA, Brennenstuhl H, Schröter J, Pechlaner A, Alkuraya FS, Baker JJ, Barcia G, Baric I, Braverman N, Burnyte B, Christodoulou J, Ciara E, Coman D, Das AM, Darin N, Della Marina A, Distelmaier F, Eklund EA, Ersoy M, Fang W, Gaignard P, Ganetzky RD, Gonzales E, Howard C, Hughes J, Konstantopoulou V, Kose M, Kerr M, Khan A, Lenz D, McFarland R, Margolis MG, Morrison K, Müller T, Murayama K, Nicastro E, Pennisi A, Peters H, Piekutowska-Abramczuk D, Rötig A, Santer R, Scaglia F, Schiff M, Shagrani M, Sharrard M, Soler-Alfonso C, Staufner C, Storey I, Stormon M, Taylor RW, Thorburn DR, Teles EL, Wang JS, Weghuber D, Wortmann S. Genotypic and phenotypic spectrum of infantile liver failure due to pathogenic TRMU variants. Genet Med 2023; 25:100314. [PMID: 36305855 DOI: 10.1016/j.gim.2022.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yael Mozer-Glassberg
- Institute for Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Yuval E Landau
- Metabolism Service, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea D Schlieben
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Heiko Brennenstuhl
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Julian Schröter
- Division of Paediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Agnes Pechlaner
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Joshua J Baker
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Giulia Barcia
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Ivo Baric
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elzbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - David Coman
- Faculty of Medicine, Queensland Children's Hospital, University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Anibh M Das
- Department of Paediatrics, Paediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- und Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Weiyan Fang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pauline Gaignard
- Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Rebecca D Ganetzky
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France; Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, Paris, France
| | - Caoimhe Howard
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Joanne Hughes
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | | | - Melis Kose
- Division of Inborn Errors of Metabolism, Department of Pediatrics, İzmir Katip Çelebi University, Izmir, Turkey; Division of Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Marina Kerr
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominic Lenz
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Merav Gil Margolis
- Institute of Endocrinology and Diabetes, National Center of Childhood Diabetes Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Kevin Morrison
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Pennisi
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Agnès Rötig
- Institut Imagine, INSERM UMR 1163, Paris, France
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Manuel Schiff
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France; Reference Center of Inherited Metabolic Disorders, Necker Hospital, Université Paris Cité, Paris, France
| | - Mohmmad Shagrani
- Department of Liver & Small Bowel Health Centre King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mark Sharrard
- Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Christian Staufner
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Imogen Storey
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Michael Stormon
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa Leao Teles
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, EPE, Porto, Portugal
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Daniel Weghuber
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Saskia Wortmann
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Recessive aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182874. [PMID: 37274208 PMCID: PMC10234152 DOI: 10.3389/fnins.2023.1182874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Mann JP, Lenz D, Stamataki Z, Kelly D. Common mechanisms in pediatric acute liver failure. Trends Mol Med 2023; 29:228-240. [PMID: 36496278 DOI: 10.1016/j.molmed.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Acute liver failure (ALF) is a rare but potentially fatal disease in children. The etiology is multifactorial, including infection, autoimmune, and genetic disorders, as well as indeterminate hepatitis, which has a higher requirement for liver transplantation. Activation of the innate and adaptive immune systems leads to hepatocyte-specific injury which is mitigated by T regulatory cell activation. Recovery of the native liver depends on activation of apoptotic and regenerative pathways, including the integrated stress response (ISR; e.g., PERK), p53, and HNF4α. Loss-of-function mutations in these pathways cause recurrent ALF in response to non-hepatotropic viruses. Deeper understanding of these mechanisms will lead to improved diagnosis, management, and outcomes for pediatric ALF.
Collapse
Affiliation(s)
- Jake P Mann
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
aRgus: Multilevel visualization of non-synonymous single nucleotide variants & advanced pathogenicity score modeling for genetic vulnerability assessment. Comput Struct Biotechnol J 2023; 21:1077-1083. [PMID: 36789265 PMCID: PMC9900257 DOI: 10.1016/j.csbj.2023.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary for an exhaustive assessment of their relevance and for prioritization of further clinical and functional studies investigating their role in human disease. To collect the necessary information, a multitude of different databases has to be accessed and data extraction from the original sources commonly is not user-friendly and requires advanced bioinformatics skills. This leads to a decreased data accessibility for a relevant number of potential users such as clinicians, geneticist, and clinical researchers. Here, we present aRgus (https://argus.urz.uni-heidelberg.de/), a standalone webtool for simple extraction and intuitive visualization of multi-layered gene, protein, variant, and variant effect prediction data. aRgus provides interactive exploitation of these data within seconds for any known gene of the human genome. In contrast to existing online platforms for compilation of variant data, aRgus complements visualization of chromosomal exon-intron structure and protein domain annotation with ClinVar and gnomAD variant distributions as well as position-specific variant effect prediction score modeling. aRgus thereby enables timely assessment of protein regions vulnerable to variation with single amino acid resolution and provides numerous applications in variant and protein domain interpretation as well as in the design of in vitro experiments.
Collapse
|
16
|
Singh A, Mandal K, Verma MK, Naranje KM, Roy A. Familial Infantile Liver Failure Syndrome 1: Novel LARS1 Gene Mutation. Indian J Pediatr 2022; 89:922. [PMID: 35763216 DOI: 10.1007/s12098-022-04249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Anita Singh
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India.
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Manoj Kumar Verma
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Kirti M Naranje
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Abhijeet Roy
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| |
Collapse
|
17
|
Zellos A, Debray D, Indolfi G, Czubkowski P, Samyn M, Hadzic N, Gupte G, Fischler B, Smets F, de Cléty SC, Grenda R, Mozer Y, Mancell S, Jahnel J, Auzinger G, Worth A, Lisman T, Staufner C, Baumann U, Dhawan A, Alonso E, Squires RH, Verkade HJ. Proceedings of ESPGHAN Monothematic Conference 2020: "Acute Liver Failure in Children": Diagnosis and Initial Management. J Pediatr Gastroenterol Nutr 2022; 74:e45-e56. [PMID: 35226643 DOI: 10.1097/mpg.0000000000003341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The Hepatology Committee of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) aims to educate pediatric gastroenterologists, members of ESPGHAN and professionals from other specialties promoting an exchange of clinical expertise in the field of pediatric hepatology. Herewith we have concentrated on detailing the recent advances in acute liver failure in infants and children. METHODS The 2020 ESPGHAN monothematic three-day conference on pediatric hepatology disease, entitled "acute liver failure" (ALF), was organized in Athens, Greece. ALF is a devastating disease with high mortality and most cases remain undiagnosed. As knowledge in diagnosis and treatment of ALF in infants and children has increased in the past decades, the objective was to update physicians in the field with the latest research and developments in early recognition, curative therapies and intensive care management, imaging techniques and treatment paradigms in these age groups. RESULTS In the first session, the definition, epidemiology, various causes of ALF, in neonates and older children and recurrent ALF (RALF) were discussed. The second session was dedicated to new aspects of ALF management including hepatic encephalopathy (HE), coagulopathy, intensive care interventions, acute on chronic liver failure, and the role of imaging in treatment and prognosis. Oral presentations by experts in various fields are summarized highlighting key learning points. CONCLUSIONS The current report summarizes the major learning points from this meeting. It also identifies areas where there is gap of knowledge, thereby identifying the research agenda for the near future.
Collapse
Affiliation(s)
- Aglaia Zellos
- First Department of Pediatrics, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dominique Debray
- Pediatric Hepatology Unit, Hôpital Necker-Enfants Malades, Reference Center for Rare Pediatric Liver Diseases, ERN Rare Liver and Transplant Child, Paris, France
| | - Giuseppe Indolfi
- Department Neurofarba University of Florence, Meyer Children's University Hospital of Florence, Florence, Italy
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology and Nutritional Disorders and Pediatrics. The Children's Memorial Health Institute, Warsaw, Poland
| | - Marianne Samyn
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital
| | | | - Girish Gupte
- Birmingham Children's Hospital NHS Trust, Birmingham, UK
| | - Björn Fischler
- Department of Pediatrics, CLINTEC Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Françoise Smets
- Pediatrics, Cliniques universitaires Saint-Luc, Université Catholique de Louvain
| | - Stéphan Clément de Cléty
- Paediatric intensive care, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation & Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Yael Mozer
- Schneider Children's Medical Center, Israel
| | | | | | - Georg Auzinger
- King's College Hospital, Department Chair, Critical Care Cleveland Clinic
| | - Austen Worth
- Great Ormond Street Hospital for Children, London, UK
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Anil Dhawan
- Variety Children Hospital, Director Paediatric Liver GI and Nutrition and Mowat Labs, King's College Hospital, London, UK
| | - Estelle Alonso
- Siragusa Transplant Center, Ann and Robert H. Lurie Children' Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Henkjan J Verkade
- Department of Paediatrics, University of Groningen, Beatrix Children's Hospital, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
18
|
Ravel JM, Dreumont N, Mosca P, Smith DEC, Mendes MI, Wiedemann A, Coelho D, Schmitt E, Rivière JB, Tran Mau-Them F, Thevenon J, Kuentz P, Polivka M, Fuchs SA, Kok G, Thauvin-Robinet C, Guéant JL, Salomons GS, Faivre L, Feillet F. A bi-allelic loss-of-function SARS1 variant in children with neurodevelopmental delay, deafness, cardiomyopathy, and decompensation during fever. Hum Mutat 2021; 42:1576-1583. [PMID: 34570399 DOI: 10.1002/humu.24285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl-tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl-tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNASer . SARS1 deficiency has already been associated with moderate intellectual disability, ataxia, muscle weakness, and seizure in one family. We describe here a new clinical presentation including developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death, in a consanguineous Turkish family, with biallelic variants (c.638G>T, p.(Arg213Leu)) in SARS1. This missense variant was shown to lead to protein instability, resulting in reduced protein level and enzymatic activity. Our results describe a new clinical entity and expand the clinical and mutational spectrum of SARS1 and aaRS deficiencies.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Pauline Mosca
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - David Coelho
- NGERE, Université de Lorraine, Inserm, Nancy, France
| | | | - Jean-Baptiste Rivière
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Paul Kuentz
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Marc Polivka
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, Regenerative Medicine Utrecht, Utrecht, The Netherlands.,On behalf of "United for Metabolic Diseases,", Amsterdam, the Netherlands
| | - Gautam Kok
- Department of Pathology, Hôpital Lariboisière, Paris, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.,Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Jean-Louis Guéant
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laurence Faivre
- Centre de Génétique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre de Compétence Maladies Mitochondriales, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, France.,INSERM UMR1231, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - François Feillet
- Reference Centre of Inborn Metabolism Diseases, Université de Lorraine, CHRU-Nancy, Nancy, France.,NGERE, Université de Lorraine, Inserm, Nancy, France
| |
Collapse
|
19
|
La Fay C, Hoebeke C, Juzaud M, Spraul A, Heux P, Dubus JC, Hadchouel A, Fabre A. Deep phenotyping of MARS1 (interstitial lung and liver disease) and LARS1 (infantile liver failure syndrome 1) recessive multisystemic disease using Human Phenotype Ontology annotation: Overlap and differences. Case report and review of literature. Eur J Med Genet 2021; 64:104334. [PMID: 34496286 DOI: 10.1016/j.ejmg.2021.104334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Aminoacyl transfer RNA (tRNA) synthetases are associated with diseases when mutations occur in their encoding genes. Pulmonary alveolar proteinosis can be caused by mutation in the methionyl-tRNA synthetase (MARS) gene while mutations in the leucine-tRNA synthetase (LARS) gene lead to infantile liver failure syndrome type 1. We report the case of a patient with LARS1 pathogenics variants and two patients with MARS1 pathogenics variants. The aim of this study was to analyze the phenotypes of our three patients in detail and classify cases in the literature using Human Phenotype Ontology (HPO) terms. RESULTS The first patient has two previously undescribed heterozygous variants in LARS1 (c.1818dup and c.463A>G). The other two patients' MARS1 variants (c.1177G>A and c.1700C>T) have already been described in the literature. All three patients had anemia, hepatomegaly, feeding difficulties, failure to thrive and hypoalbuminemia. Including ours, 65 patients are described in total, for whom 117 phenotypic abnormalities have been described at least once, 41.9% of which both in patients with LARS1 and MARS1 mutations. CONCLUSION Patients with LARS1 and MARS1 mutations seem to share a common phenotype but further deep phenotyping studies are required to clarify the details of these complex pathologies.
Collapse
Affiliation(s)
- Charlotte La Fay
- Department of Pediatric Gastroenterology and Hepatology, Multidisciplinary Pediatric, Aix Marseille University, La Timone Children Hospital, AP-HM, 13005 Marseille, France.
| | - Celia Hoebeke
- Department of Neuropediatrics and Metabolism, Reference Center of Inherited Metabolic Disorders, La Timone Children Hospital, Marseille, France
| | - Marine Juzaud
- Department of Pediatric Gastroenterology and Hepatology, Multidisciplinary Pediatric, Aix Marseille University, La Timone Children Hospital, AP-HM, 13005 Marseille, France
| | - Anne Spraul
- AP-HP, Hospital Bicêtre, DMU15, Service de Biochimie, Le Kremlin Bicêtre, France
| | - Pauline Heux
- Aix Marseille University, INSERM, MMG, Marseille, France
| | - Jean-Christophe Dubus
- Service de Médecine Infantile et Pneumologie Pédiatrique, CHU Timone-Enfants, 264 Rue Saint-Pierre, 13385, Marseille Cedex 5, France; Aix-Marseille Université, IRD, AP-HM, MEPHI, IHU Méditerranée-Infection France
| | - Alice Hadchouel
- Pediatric Pulmonology, AP-HP, University Hospital Necker-Enfants Malades, Paris, France
| | - Alexandre Fabre
- Pediatric Multidisciplinary Pediatric APHM, Timone Enfant, Marseille, France; Aix-Marseille University, INSERM, GMGF, Marseille, France
| |
Collapse
|
20
|
Brennenstuhl H, Nashawi M, Schröter J, Baronio F, Beedgen L, Gleich F, Jeltsch K, von Landenberg C, Martini S, Simon A, Thiel C, Tsiakas K, Opladen T, Kölker S, Hoffmann GF, Haas D. Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis 2021; 44:1272-1287. [PMID: 34145613 DOI: 10.1002/jimd.12412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
Mevalonic aciduria (MVA) and hyperimmunoglobulinemia D syndrome (MKD/HIDS) are disorders of cholesterol biosynthesis caused by variants in the MVK gene and characterized by increased urinary excretion of mevalonic acid. So far, 30 MVA patients have been reported, suffering from recurrent febrile crises and neurologic impairment. Here, we present an in-depth analysis of the phenotypic spectrum of MVA and provide an in-silico pathogenicity model analysis of MVK missense variants. The phenotypic spectrum of 11 MVA patients (age range 0-51 years) registered in the Unified European Registry for Inherited Metabolic Disorders database was systematically analyzed using terms of the Human Phenotype Ontology. Biochemical, radiological as well as genetic characteristics were investigated. Six of eleven patients have reached adulthood and four have reached adolescence. One of the adolescent patients died at the age of 16 years and one patient died shortly after birth. Symptoms started within the first year of life, including episodic fever, developmental delay, ataxia, and ocular involvement. We also describe a case with absence of symptoms despite massive excretion of mevalonic acid. Pathogenic variants causing MVA cluster within highly conserved regions, which are involved in mevalonate and ATP binding. The phenotype of adult and adolescent MVA patients is more heterogeneous than previously assumed. Outcome varies from an asymptomatic course to early death. MVK variants cluster in functionally important and highly conserved protein domains and show high concordance regarding their expected pathogenicity.
Collapse
Affiliation(s)
- Heiko Brennenstuhl
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mohammed Nashawi
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Federico Baronio
- Paediatric Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lars Beedgen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Silvia Martini
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation (REIA), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Thiel
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Opladen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Dorothea Haas
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Helman G, Mendes MI, Nicita F, Darbelli L, Sherbini O, Moore T, Derksen A, Amy Pizzino, Carrozzo R, Torraco A, Catteruccia M, Aiello C, Goffrini P, Figuccia S, Smith DEC, Hadzsiev K, Hahn A, Biskup S, Brösse I, Kotzaeridou U, Gauck D, Grebe TA, Elmslie F, Stals K, Gupta R, Bertini E, Thiffault I, Taft RJ, Schiffmann R, Brandl U, Haack TB, Salomons GS, Simons C, Bernard G, van der Knaap MS, Vanderver A, Husain RA. Expanded phenotype of AARS1-related white matter disease. Genet Med 2021; 23:2352-2359. [PMID: 34446925 DOI: 10.1038/s41436-021-01286-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.
Collapse
Affiliation(s)
- Guy Helman
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Francesco Nicita
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lama Darbelli
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pediatrics, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Travis Moore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alexa Derksen
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Amy Pizzino
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosalba Carrozzo
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Torraco
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Aiello
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sonia Figuccia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pécs, Pécs, Hungary
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University, Giessen, Germany
| | - Saskia Biskup
- Praxis fuer Humangenetik and CeGaT GmbH, Tuebingen, Germany
| | - Ines Brösse
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Darja Gauck
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Frances Elmslie
- South West Thames Regional Genetics Service, St George's University Hospital, London, UK
| | - Karen Stals
- Molecular Genetics Department, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Rajat Gupta
- Department of Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Enrico Bertini
- Department of Neurosciences, Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabelle Thiffault
- Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | - Ulrich Brandl
- Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pediatrics, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Ralf A Husain
- Department of Neuropediatrics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
22
|
Leucyl-tRNA synthetase deficiency systemically induces excessive autophagy in zebrafish. Sci Rep 2021; 11:8392. [PMID: 33863987 PMCID: PMC8052342 DOI: 10.1038/s41598-021-87879-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
Leucyl-tRNA synthetase (LARS) is an enzyme that catalyses the ligation of leucine with leucine tRNA. LARS is also essential to sensitize the intracellular leucine concentration to the mammalian target of rapamycin complex 1 (mTORC1) activation. Biallelic mutation in the LARS gene causes infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute liver failure, anaemia, and neurological disorders, including microcephaly and seizures. However, the molecular mechanism underlying ILFS1 under LARS deficiency has been elusive. Here, we generated Lars deficient (larsb−/−) zebrafish that showed progressive liver failure and anaemia, resulting in early lethality within 12 days post fertilization. The atg5-morpholino knockdown and bafilomycin treatment partially improved the size of the liver and survival rate in larsb−/− zebrafish. These findings indicate the involvement of autophagy in the pathogenesis of larsb−/− zebrafish. Indeed, excessive autophagy activation was observed in larsb−/− zebrafish. Therefore, our data clarify a mechanistic link between LARS and autophagy in vivo. Furthermore, autophagy regulation by LARS could lead to development of new therapeutics for IFLS1.
Collapse
|
23
|
Tabolacci E, Molinario C, Marangi G, Nobile V, Arena V, Mendes MI, Smith DEC, Salomons GS, Tana M, Costa S, Vento G, Genuardi M. Infantile Liver Failure Syndrome 1 associated with a novel variant of the LARS1 gene: Clinical, genetic, and functional characterization. Clin Genet 2020; 99:601-603. [PMID: 33314043 DOI: 10.1111/cge.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabetta Tabolacci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Clelia Molinario
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Marangi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Nobile
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Arena
- Department of Woman, Child Health and Public Health, Area of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Anatomia Patologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Milena Tana
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simonetta Costa
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Vento
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, Rome, Italy
| |
Collapse
|
24
|
Hirata K, Okamoto N, Ichikawa C, Inoue S, Nozaki M, Banno K, Takenouchi T, Suzuki H, Kosaki K. Severe course with lethal hepatocellular injury and skeletal muscular dysgenesis in a neonate with infantile liver failure syndrome type 1 caused by novel LARS1 mutations. Am J Med Genet A 2020; 185:866-870. [PMID: 33300650 DOI: 10.1002/ajmg.a.62012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023]
Abstract
Infantile liver failure syndrome type 1 (ILFS1) is a recently recognized autosomal recessive disorder caused by deleterious mutations in the leucyl-tRNA synthetase 1 gene (LARS1). The LARS1 enzyme is responsible for incorporation of the amino acid leucine during protein polypeptide synthesis. Individuals with LARS1 mutations typically show liver failure from infancy to early childhood during periods of illness or other physiological stress. While 25 patients from 15 families with ILFS1 have been reported in the literature, histological reports from autopsy findings are limited. We report here a premature male neonate who presented with severe intrauterine growth retardation, microcytic anemia, and fulminant liver failure, and who was a compound heterozygote for two novel deleterious mutations in LARS1. An autopsy showed fulminant hepatitis-like hepatocellular injury and fibrogenesis in the liver and a lack of uniformity in skeletal muscle, accompanied by the disruption of striated muscle fibers. Striking dysgenesis in skeletal muscle detected in the present case indicates the effect of LARS1 functional deficiency on the musculature. Whole-exome sequencing may be useful for neonates with unexplained early liver failure if extensive genetic and metabolic testing is inconclusive.
Collapse
Affiliation(s)
- Katsuya Hirata
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Chihiro Ichikawa
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Shouta Inoue
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Masatoshi Nozaki
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Kimihiko Banno
- Department of Physiology II, Nara Medical University, Nara, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.,Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Marten LM, Brinkert F, Smith DEC, Prokisch H, Hempel M, Santer R. Recurrent acute liver failure in alanyl-tRNA synthetase-1 (AARS1) deficiency. Mol Genet Metab Rep 2020; 25:100681. [PMID: 33294374 PMCID: PMC7691605 DOI: 10.1016/j.ymgmr.2020.100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
AARS1 deficiency belongs to the group of disorders affecting aminoacyl-tRNA synthetases. To date, AARS1 deficiency has only been linked to neurologic disorders. We report a 6-year-old girl with microcephaly and developmental delay who presented with repeated episodes of acute liver failure. Whole-exome sequencing revealed compound heterozygosity for two missense variants within the AARS1 gene, p.[Leu298Gln];[Arg751Gly]), whose functional relevance was demonstrated by decreased enzymatic activity in fibroblasts. This is the first report that shows that AARS1 variants may be associated with recurrent acute liver failure.
Collapse
Affiliation(s)
- Lara M Marten
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Florian Brinkert
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Desirée E C Smith
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Eppendorf, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Lenz D, Stahl M, Seidl E, Schöndorf D, Brennenstuhl H, Gesenhues F, Heinzmann T, Longerich T, Mendes MI, Prokisch H, Salomons GS, Schön C, Smith DEC, Sommerburg O, Wagner M, Westhoff JH, Reiter K, Staufner C, Griese M. Rescue of respiratory failure in pulmonary alveolar proteinosis due to pathogenic MARS1 variants. Pediatr Pulmonol 2020; 55:3057-3066. [PMID: 32833345 DOI: 10.1002/ppul.25031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a heterogeneous condition with more than 100 different underlying disorders that need to be differentiated to target therapeutic options, which are generally limited. METHODS The clinical course of two brothers with pathogenic variants in the methionyl-tRNA synthetase (MARS)1 gene was compared to previously published patients. Functional studies in patient-derived fibroblasts were performed and therapeutic options evaluated. RESULTS The younger brother was diagnosed with PAP at the age of 1 year. Exome sequencing revealed the homozygous MARS1 variant p.(Arg598Cys), leading to interstitial lung and liver disease (ILLD). At 2 years of age, following surgery hypoglycemia was detected, the pulmonary condition deteriorated, and the patient developed multiorgan failure. Six therapeutic whole lung lavages (WLL) were necessary to improve respiratory insufficiency. Methionine supplementation was started and a high protein diet ensured, leading to complete respiratory recovery. The older brother, homozygous for the same MARS1 variant, had a long-known distinct eating preference of methionine-rich food and showed a less severe clinical phenotype. Decreased aminoacylation activity confirmed the pathogenicity of p.(Arg598Cys) in vitro. In agreement with our review of currently published ILLD patients, the presence of hepatopathy, developmental delay, muscular hypotonia, and anemia support the multisystemic character of the disease. CONCLUSIONS Catabolic events can provoke a severe deterioration of the pulmonary situation in ILLD with a need for repetitive WLL. Although the precise role of oral methionine supplementation and high protein intake are unknown, we observed an apparent treatment benefit, which needs to be evaluated systematically in controlled trials.
Collapse
Affiliation(s)
- Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Centre for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elias Seidl
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Dominik Schöndorf
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gesenhues
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Tina Heinzmann
- Department of Neonatology, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carola Schön
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olaf Sommerburg
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Centre for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany.,Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl Reiter
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|