1
|
Wu B, Luo D, Yue Y, Yan H, He M, Ma X, Zhao B, Xu B, Zhu J, Wang J, Jia J, Sun M, Xie Z, Wang X, Huang L. New insights into the cold tolerance of upland switchgrass by integrating a haplotype-resolved genome and multi-omics analysis. Genome Biol 2025; 26:128. [PMID: 40369670 PMCID: PMC12076936 DOI: 10.1186/s13059-025-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a bioenergy and forage crop. Upland switchgrass exhibits superior cold tolerance compared to the lowland ecotype, but the underlying molecular mechanisms remain unclear. RESULTS Here, we present a high-quality haplotype-resolved genome of the upland ecotype "Jingji31." We then conduct multi-omics analysis to explore the mechanism underlying its cold tolerance. By comparative transcriptome analysis of the upland and lowland ecotypes, we identify many genes with ecotype-specific differential expression, particularly members of the cold-responsive (COR) gene family, under cold stress. Notably, AFB1, ATL80, HOS10, and STRS2 gene families show opposite expression changes between the two ecotypes. Based on the haplotype-resolved genome of "Jingji31," we detect more cold-induced allele-specific expression genes in the upland ecotype than in the lowland ecotype, and these genes are significantly enriched in the COR gene family. By genome-wide association study, we detect an association signal related to the overwintering rate, which overlaps with a selective sweep region containing a cytochrome P450 gene highly expressed under cold stress. Heterologous overexpression of this gene in rice alleviates leaf chlorosis and wilting under cold stress. We also verify that expression of this gene is suppressed by a structural variation in the promoter region. CONCLUSIONS Based on the high-quality haplotype-resolved genome and multi-omics analysis of upland switchgrass, we characterize candidate genes responsible for cold tolerance. This study advances our understanding of plant cold tolerance, which provides crop breeding for improved cold tolerance.
Collapse
Affiliation(s)
- Bingchao Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuesen Yue
- Institute of Grassland, Flower and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haidong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xixi Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bingyu Zhao
- College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bin Xu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610061, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Chen D, Wang C, Liu Y, Shen W, Cuimu Q, Zhang D, Zhu B, Chen L, Tan C. Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops. BMC PLANT BIOLOGY 2025; 25:290. [PMID: 40045187 PMCID: PMC11883967 DOI: 10.1186/s12870-025-06296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
The Brassicaceae family includes Arabidopsis thaliana, various vegetables and oil crops. The R2R3-MYB genes of the S6 subfamily are crucial for regulating anthocyanin biosynthesis, however, their systematic identification in Brassicaceae plants is still incomplete. Here, we systematically identified homologous genes of R2R3-MYB transcription factors from the S6 subfamily across 31 Brassicaceae species. A total of 92 homologous genes were identified, with species representation ranging from 0 to 10 genes per species. Phylogenetic analysis classified these homologous genes into six distinct groups. Notably, approximately 70% of the homologous genes were found within the G6 group, indicating a high degree of evolutionary conservation. Furthermore, a phylogenetic analysis was conducted on 35 homologous genes obtained from six species within the U's triangle Brassica plants. The findings provided evidence of significant conservation among orthologous genes across species and demonstrated strong collinearity on subgenomic chromosomes, with notable tandem duplications observed on chromosomes A7 and C6. Subsequently, we predicted the cis-acting elements of these 35 homologous genes, and analyzed their structures, conserved motifs, and characteristic conserved domains, confirming the significant similarities between orthologous genes. Additionally, we employed white and purple flower rapeseed specimens to conduct qRT-PCR validation of the key genes and transcriptional regulators associated with the anthocyanin synthesis pathway. The results revealed significant differential expression of BnaPAP2.A7.b in purple flowers, alongside the differential expression of BnaPAP2.C6.d. Ultimately, based on previous research and the findings of this study, we propose a transcriptional regulatory framework to govern anthocyanin accumulation in distinct tissues or organs of B. napus. Our findings offer a novel perspective on the functional diversification of R2R3-MYB transcription factors within the S6 subfamily homologous genes, while also shedding light on the regulatory network governing anthocyanin biosynthesis in Brassicaceae species.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Qiushi Cuimu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Guo L, Li X, Chen S, Li Y, Wang W, Luo S, Jiang L, Liu H, Pan X, Zong Y, Feng L, Liu F, Zhang L, Bi G, Yang G. Mechanisms underlining Kelp (Saccharina japonica) adaptation to relative high seawater temperature. BMC Genomics 2025; 26:186. [PMID: 39994530 PMCID: PMC11849318 DOI: 10.1186/s12864-025-11382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
Saccharina japonica has been cultivated in China for almost a century. From Dalian to Fujian, the lowest and the highest seawater temperatures in the period of cultivation increased by 14℃ and 8℃, respectively. Its adaptation to elevated seawater temperature is an example of securing the natural habitats of a species. To decipher the mechanisms underlining S. japonica adaptation to relative high seawater temperature, we assembled ~ 516.3 Mb female gametophyte genome and ~ 540.3 Mb of the male, respectively. The gametophytes isolated from southern China kelp cultivars acclimated to the relative high seawater temperature by transforming amino acids, glycosylating protein, maintaining osmotic pressure, intensifying the innate immune system, and exhausting energy and reduction power through the PEP-pyruvate-oxaloacetate node and the iodine cycle. They adapted to the relative high seawater temperature by transforming amino acids, changing sugar metabolism and intensifying innate immune system. The sex of S. japonica was determined by HMG-sex, and around this male gametophyte determiner the stress tolerant genes become linked to or associated with.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaojie Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shuxiu Chen
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Yan Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Weiwei Wang
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shiju Luo
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Liming Jiang
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
- Yantai Marine Economic Research Institute, Yantai, 264006, Shandong, P. R. China
| | - Hang Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaohui Pan
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Yanan Zong
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Leili Feng
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Fuli Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agriculture University, Qingdao, 266109, P. R. China
| | - Guiqi Bi
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, P. R. China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China.
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China.
- Provincial Key Laboratory of Marine Seed Industry of Shandong, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.
- Institutes of Evolution and Marine Bioaffiliationersity, OUC, Qingdao, 266003, P. R. China.
| |
Collapse
|
4
|
Wang S, Li J, Yu P, Guo L, Zhou J, Yang J, Wu W. Convergent evolution in angiosperms adapted to cold climates. PLANT COMMUNICATIONS 2025; 6:101258. [PMID: 39849842 PMCID: PMC11897497 DOI: 10.1016/j.xplc.2025.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms at sub-zero temperatures. We begin by introducing the history of research on convergent and parallel evolution, defining all independent similarities as convergent evolution. Our analysis reveals that frost zones (periodic or constant), which cover 49.1% of Earth's land surface, host 137 angiosperm families, with over 90% of their species thriving in these regions. In this context, we revisit the global biogeography and evolutionary trajectories of plant traits, such as herbaceous form and deciduous leaves, that are thought to be evasion strategies for frost adaptation. At the physiological and molecular levels, many angiosperms have independently evolved cold acclimation mechanisms through multiple pathways in addition to the well-characterized C-repeat binding factor/dehydration-responsive element binding protein 1 (CBF/DREB1) regulatory pathway. These convergent adaptations have occurred across various molecular levels, including amino acid substitutions and changes in gene duplication and expression within the same or similar functional pathways; however, identical amino acid changes are rare. Our results also highlight the prevalence of polyploidy in frost zones and the occurrence of paleopolyploidization events during global cooling. These patterns suggest repeated evolution in cold climates. Finally, we discuss plant domestication and predict climate zone shifts due to global warming and their effects on plant migration and in situ adaptation. Overall, the integration of ecological and molecular perspectives is essential for understanding and forecasting plant responses to climate change.
Collapse
Affiliation(s)
- Shuo Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Li
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Ping Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Liangyu Guo
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China.
| | - Wenwu Wu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Assour HR, Ashman TL, Turcotte MM. Neopolyploidy-induced changes in giant duckweed (Spirodela polyrhiza) alter herbivore preference and performance and plant population performance. AMERICAN JOURNAL OF BOTANY 2024; 111:e16301. [PMID: 38468124 DOI: 10.1002/ajb2.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
PREMISE Polyploidy is a widespread mutational process in angiosperms that may alter population performance of not only plants but also their interacting species. Yet, knowledge of whether polyploidy affects plant-herbivore dynamics is scarce. Here, we tested whether aphid herbivores exhibit preference for diploid or neopolyploid plants, whether polyploidy impacts plant and herbivore performance, and whether these interactions depend on the plant genetic background. METHODS Using independently synthesized neotetraploid strains paired with their diploid progenitors of greater duckweed (Spirodela polyrhiza), we evaluated the effect of neopolyploidy on duckweed's interaction with the water-lily aphid (Rhopalosiphum nymphaeae). Using paired-choice experiments, we evaluated feeding preference of the herbivore. We then evaluated the consequences of polyploidy on aphid and plant performance by measuring population growth over multiple generations. RESULTS Aphids preferred neopolyploids when plants were provided at equal abundances but not at equal surface areas, suggesting the role of plant population surface area in driving this preference. Additionally, neopolyploidy increased aphid population performance, but this result was dependent on the plant's genetic lineage. Lastly, the impact of herbivory on neopolyploid vs. diploid duckweed varied greatly with genetic lineage, where neopolyploids appeared to be variably tolerant compared to diploids, sometimes mirroring the effect on herbivore performance. CONCLUSIONS By experimentally testing the impacts of polyploidy on trophic species interactions, we showed that polyploidization can impact the preference and performance of herbivores on their plant hosts. These results have significant implications for the establishment and persistence of plants and herbivores in the face of plant polyploidy.
Collapse
Affiliation(s)
- Hannah R Assour
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, 15260, PA, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, 15260, PA, USA
| | - Martin M Turcotte
- Department of Biological Sciences, University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, 15260, PA, USA
| |
Collapse
|
6
|
Fu L, Zhang J, Li M, Wang C, Chen Y, Fan X, Sun H. ldi-miR396-LdPMaT1 enhances reactive oxygen species scavenging capacity and promotes drought tolerance in Lilium distichum Nakai autotetraploids. PLANT, CELL & ENVIRONMENT 2024; 47:2733-2748. [PMID: 38073433 DOI: 10.1111/pce.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 07/12/2024]
Abstract
Drought is a key environmental stress that inhibits plant growth, development, yield and quality. Whole-genome replication is an effective method for breeding drought resistant cultivars. Here, we evaluated the tolerance of Lilium distichum Nakai diploids (2n = 2× = 24) and artificially induced autotetraploids (2n = 4× = 48) to drought simulated by polyethylene glycol (PEG) stress. Autotetraploids showed stronger drought tolerance than diploids, and high-throughput sequencing during PEG stress identified five differentially expressed miRNAs. Transcriptome analysis revealed significantly different reactive oxygen species (ROS)-scavenger expression levels between diploids and autotetraploids, which increased the drought tolerance of autotetraploids. Specifically, we identified ldi-miR396b and its only target gene (LdPMaT1) for further study based on its expression level and ROS-scavenging ability in response to drought stress (DS). Autotetraploids showed higher expression of LdPMaT1 and significantly downregulated expression of ldi-miR396b under DS compared with diploids. Through a short tandem target mimic (STTM) in transgenic lilies, functional studies revealed that miR396b silencing promotes LdPMaT1 expression and the DS response. Under PEG stress, STTM393 transgenic lines showed improved drought resistance mediated by lowered MDA content but exhibited high antioxidant enzyme activity, consistent with the autotetraploid results. Collectively, these findings suggest that ldi-miR396b-LdPMaT1 potentially enhances ROS-scavenging ability, which contributes to improved stress adaptation in autotetraploid lilies.
Collapse
Affiliation(s)
- Linlan Fu
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
- College of Public utility, Jiangsu Urban and Rural Construction Vocational College, Changzhou, China
| | - Jing Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Min Li
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Chunxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Yang Chen
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang Agricultural University, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| |
Collapse
|
7
|
Wang P, Meng F, Yang Y, Ding T, Liu H, Wang F, Li A, Zhang Q, Li K, Fan S, Li B, Ma Z, Zhang T, Zhou Y, Zhao H, Wang X. De novo assembling a high-quality genome sequence of Amur grape ( Vitis amurensis Rupr .) gives insight into Vitis divergence and sex determination. HORTICULTURE RESEARCH 2024; 11:uhae117. [PMID: 38919553 PMCID: PMC11197301 DOI: 10.1093/hr/uhae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/09/2024] [Indexed: 06/27/2024]
Abstract
To date, there has been no high-quality sequence for genomes of the East Asian grape species, hindering biological and breeding efforts to improve grape cultivars. This study presents ~522 Mb of the Vitis amurensis (Va) genome sequence containing 27 635 coding genes. Phylogenetic analysis indicated that Vitis riparia (Vr) may have first split from the other two species, Va and Vitis vinifera (Vv). Divergent numbers of duplicated genes reserved among grapes suggests that the core eudicot-common hexaploidy (ECH) and the subsequent genome instability still play a non-negligible role in species divergence and biological innovation. Prominent accumulation of sequence variants might have improved cold resistance in Va, resulting in a more robust network of regulatory cold resistance genes, explaining why it is extremely cold-tolerant compared with Vv and Vr. In contrast, Va has preserved many fewer nucleotide binding site (NBS) disease resistance genes than the other grapes. Notably, multi-omics analysis identified one trans-cinnamate 4-monooxygenase gene positively correlated to the resveratrol accumulated during Va berry development. A selective sweep analysis revealed a hypothetical Va sex-determination region (SDR). Besides, a PPR-containing protein-coding gene in the hypothetical SDR may be related to sex determination in Va. The content and arrangement order of genes in the putative SDR of female Va were similar to those of female Vv. However, the putative SDR of female Va has lost one flavin-containing monooxygenase (FMO) gene and contains one extra protein-coding gene uncharacterized so far. These findings will improve the understanding of Vitis biology and contribute to the improvement of grape breeding.
Collapse
Affiliation(s)
| | - Fanbo Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiming Yang
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130000, China
| | | | - Huiping Liu
- Shandong Academy of Grape, Jinan 250100, China
| | | | - Ao Li
- Shandong Academy of Grape, Jinan 250100, China
| | | | - Ke Li
- Shandong Academy of Grape, Jinan 250100, China
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130000, China
| | - Bo Li
- Shandong Academy of Grape, Jinan 250100, China
| | - Zhiyao Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Tianhao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | | | - Xiyin Wang
- North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
8
|
Zhu W, Li R, Guo X, Li J, Muhammad N, Qi C, Gao M, Wang C, Liu M, Tang G, Sadeghnezhad E, Liu Z, Wang L. Integrated anatomical structure, physiological, and transcriptomic analyses to identify differential cold tolerance responses of Ziziphus jujuba mill. 'Yueguang' and its autotetraploid 'Hongguang'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108679. [PMID: 38714127 DOI: 10.1016/j.plaphy.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cold stress is a limiting stress factor that limits plant distribution and development; however, polyploid plants have specific characteristics such as higher resistance to abiotic stress, especially cold stress, that allow them to overcome this challenge. The cultivated cultivar Ziziphus jujuba Mill. 'Yueguang' (YG) and its autotetraploid counterpart 'Hongguang' (HG) exhibit differential cold tolerance. However, the underlying molecular mechanism and methods to enhance their cold tolerance remain unknown. Anatomical structure and physiological analysis indicated YG had a higher wood bark ratio, and xylem ratio under cold treatment compared to HG. However, the half-lethal temperature (LT50), cortex ratio, and malondialdehyde (MDA) content were significantly decreased in YG than HG, which indicated YG was cold tolerant than HG. Transcriptome analysis showed that 2084, 1725, 2888, and 2934 differentially expressed genes (DEGs) were identified in HC vs YC, H20 vs Y20, Y20 vs YC, and H20 vs HC treatment, respectively. Meanwhile, KEGG enrichment analysis of DEGs showed that several metabolic pathways, primarily plant hormone signal transduction and the MAPK signaling pathway, were involved in the differential regulation of cold tolerance between YG and HG. Furthermore, exogenous abscisic acid (ABA) and brassinolide (BR) treatments could improve their cold tolerance through increased SOD and POD activities, decreased relative electrical conductivity, and MDA content. All of these findings suggested that plant hormone signal transduction, particularly ABA and BR, might have an important role in the regulation of differential cold tolerance between YG and HG, laying the foundation for further improving cold tolerance in jujube and examining the molecular mechanisms underlying differences in cold tolerance among different ploidy cultivars.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ruimei Li
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xiaoxue Guo
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Noor Muhammad
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chaofeng Qi
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengjiao Gao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chenyu Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Gangliang Tang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Teheran, Iran
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
9
|
Guo L, Wang S, Jiao X, Ye X, Deng D, Liu H, Li Y, Van de Peer Y, Wu W. Convergent and/or parallel evolution of RNA-binding proteins in angiosperms after polyploidization. THE NEW PHYTOLOGIST 2024; 242:1377-1393. [PMID: 38436132 DOI: 10.1111/nph.19656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Increasing studies suggest that the biased retention of stress-related transcription factors (TFs) after whole-genome duplications (WGDs) could rewire gene transcriptional networks, facilitating plant adaptation to challenging environments. However, the role of posttranscriptional factors (e.g. RNA-binding proteins, RBPs) following WGDs has been largely ignored. Uncovering thousands of RBPs in 21 representative angiosperm species, we integrate genomic, transcriptomic, regulatomic, and paleotemperature datasets to unravel their evolutionary trajectories and roles in adapting to challenging environments. We reveal functional enrichments of RBP genes in stress responses and identify their convergent retention across diverse angiosperms from independent WGDs, coinciding with global cooling periods. Numerous RBP duplicates derived from WGDs are then identified as cold-induced. A significant overlap of 29 orthogroups between WGD-derived and cold-induced RBP genes across diverse angiosperms highlights a correlation between WGD and cold stress. Notably, we unveil an orthogroup (Glycine-rich RNA-binding Proteins 7/8, GRP7/8) and relevant TF duplicates (CCA1/LHY, RVE4/8, CBF2/4, etc.), co-retained in different angiosperms post-WGDs. Finally, we illustrate their roles in rewiring circadian and cold-regulatory networks at both transcriptional and posttranscriptional levels during global cooling. Altogether, we underline the adaptive evolution of RBPs in angiosperms after WGDs during global cooling, improving our understanding of plants surviving periods of environmental turmoil.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xi Jiao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB - UGent Center for Plant Systems Biology, Ghent University, B-9052, Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| |
Collapse
|
10
|
Zhang J, Dong KL, Ren MZ, Wang ZW, Li JH, Sun WJ, Zhao X, Fu XX, Ye JF, Liu B, Zhang DM, Wang MZ, Zeng G, Niu YT, Lu LM, Su JX, Liu ZJ, Soltis PS, Soltis DE, Chen ZD. Coping with alpine habitats: genomic insights into the adaptation strategies of Triplostegia glandulifera (Caprifoliaceae). HORTICULTURE RESEARCH 2024; 11:uhae077. [PMID: 38779140 PMCID: PMC11109519 DOI: 10.1093/hr/uhae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
How plants find a way to thrive in alpine habitats remains largely unknown. Here we present a chromosome-level genome assembly for an alpine medicinal herb, Triplostegia glandulifera (Caprifoliaceae), and 13 transcriptomes from other species of Dipsacales. We detected a whole-genome duplication event in T. glandulifera that occurred prior to the diversification of Dipsacales. Preferential gene retention after whole-genome duplication was found to contribute to increasing cold-related genes in T. glandulifera. A series of genes putatively associated with alpine adaptation (e.g. CBFs, ERF-VIIs, and RAD51C) exhibited higher expression levels in T. glandulifera than in its low-elevation relative, Lonicera japonica. Comparative genomic analysis among five pairs of high- vs low-elevation species, including a comparison of T. glandulifera and L. japonica, indicated that the gene families related to disease resistance experienced a significantly convergent contraction in alpine plants compared with their lowland relatives. The reduction in gene repertory size was largely concentrated in clades of genes for pathogen recognition (e.g. CNLs, prRLPs, and XII RLKs), while the clades for signal transduction and development remained nearly unchanged. This finding reflects an energy-saving strategy for survival in hostile alpine areas, where there is a tradeoff with less challenge from pathogens and limited resources for growth. We also identified candidate genes for alpine adaptation (e.g. RAD1, DMC1, and MSH3) that were under convergent positive selection or that exhibited a convergent acceleration in evolutionary rate in the investigated alpine plants. Overall, our study provides novel insights into the high-elevation adaptation strategies of this and other alpine plants.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Kai-Lin Dong
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao-Zhen Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Wen Wang
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Jian-Hua Li
- Biology Department, Hope College, Holland, MI 49423, USA
| | - Wen-Jing Sun
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zhao
- PubBio-Tech Services Corporation, Wuhan 430070, China
| | - Xin-Xing Fu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jian-Fei Ye
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Da-Ming Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Mo-Zhu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Gang Zeng
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| | - Yan-Ting Niu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Li-Min Lu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Jun-Xia Su
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, University of Florida, Gainesville, FL 32611-7800, USA
| | - Zhi-Duan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
11
|
Liu Y, Zhou Y, Cheng F, Zhou R, Yang Y, Wang Y, Zhang X, Soltis DE, Xiao N, Quan Z, Li J. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:73-89. [PMID: 38112590 DOI: 10.1111/tpj.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Actinidia ('Mihoutao' in Chinese) includes species with complex ploidy, among which diploid Actinidia chinensis and hexaploid Actinidia deliciosa are economically and nutritionally important fruit crops. Actinidia deliciosa has been proposed to be an autohexaploid (2n = 174) with diploid A. chinensis (2n = 58) as the putative parent. A CCS-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for hexaploid A. deliciosa yielded a 3.91-Gb assembly of 174 pseudochromosomes comprising 29 homologous groups with 6 members each, which contain 39 854 genes with an average of 4.57 alleles per gene. Here we provide evidence that much of the hexaploid genome matches diploid A. chinensis; 95.5% of homologous gene pairs exhibited >90% similarity. However, intragenome and intergenome comparisons of synteny indicate chromosomal changes. Our data, therefore, indicate that if A. deliciosa is an autoploid, chromosomal rearrangement occurred following autohexaploidy. A highly diversified pattern of gene expression and a history of rapid population expansion after polyploidisation likely facilitated the adaptation and niche differentiation of A. deliciosa in nature. The allele-defined hexaploid genome of A. deliciosa provides new genomic resources to accelerate crop improvement and to understand polyploid genome evolution.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Yi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yinqing Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, 10008, China
| | - Yanchang Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Nengwen Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Zhanjun Quan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing, 100012, China
| |
Collapse
|
12
|
Qin G, Liu Y, Liu J, Bian G, Zhang S, Liu Y, Zuo L, Cheng C. Physio-Biochemical Insights into the Cold Resistance Variations among Nectarine ( Prunus persica (L.) Batsch var. nectarina) Cultivars. BIOLOGY 2024; 13:222. [PMID: 38666834 PMCID: PMC11048233 DOI: 10.3390/biology13040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Cold stress occurs in late winter and early spring threatens greatly the nectarine industry. In this study, the semi-lethal low temperature (LT50) and thirteen cold resistance related parameters of five nectarine cultivars, including 'Nonglehong little princess' (LP), 'Luyou No. 5' (LY), 'Nonglehong No. 6' (NL), 'Zhongyou No. 20' (ZY) and 'Qiuhongzhu' (QH), were determined. Based on these parameters, they were categorized into high-(HR, including NL and LP), moderate-(MR, including QH) and low-cold resistant (LR, including ZY and LY) groups. The relative water (RW), proline (PRO), soluble sucrose (SS) and soluble protein (SP) contents, and superoxide dismutase (SOD) and peroxidase (POD) activities of HR cultivars were higher while their relative electronic conductivity (RE), malondialdehyde (MDA) and gibberellin acid (GA3) contents and catalase (CAT) activity were lower than other cultivars during natural overwintering. Redundancy analysis revealed that the lowest temperature in a day (LT) and LT50 significantly explains 69.8% and 10.9% of these physiological variables, respectively. Moreover, GA3 and indoleacetic acid (IAA) contents and CAT activity were positively correlated, while PRO, SS, ABA and RW contents were negatively correlated with both LT and LT50. Our study will be helpful in understanding the cold resistance variations of nectarine germplasm resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.L.); (J.L.); (G.B.); (S.Z.); (Y.L.); (L.Z.)
| |
Collapse
|
13
|
Liu Z, Shen S, Wang Y, Sun S, Yu T, Fu Y, Zhou R, Li C, Cao R, Zhang Y, Li N, Sun L, Song X. The genome of Stephania japonica provides insights into the biosynthesis of cepharanthine. Cell Rep 2024; 43:113832. [PMID: 38381605 DOI: 10.1016/j.celrep.2024.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Stephania japonica is an early-diverging eudicotyledon plant with high levels of cepharanthine, proven to be effective in curing coronavirus infections. Here, we report a high-quality S. japonica genome. The genome size is 688.52 Mb, and 97.37% sequences anchor to 11 chromosomes. The genome comprises 67.46% repetitive sequences and 21,036 genes. It is closely related to two Ranunculaceae species, which diverged from their common ancestor 55.90-71.02 million years ago (Mya) with a whole-genome duplication 85.59-96.75 Mya. We further reconstruct ancestral karyotype of Ranunculales. Several cepharanthine biosynthesis genes are identified and verified by western blot. Two genes (Sja03G0243 and Sja03G0241) exhibit catalytic activity as shown by liquid chromatography-mass spectrometry. Then, cepharanthine biosynthesis genes, transcription factors, and CYP450 family genes are used to construct a comprehensive network. Finally, we construct an early-diverging eudicotyledonous genome resources (EEGR) database. As the first genome of the Menispermaceae family to be released, this study provides rich resources for genomic studies.
Collapse
Affiliation(s)
- Zhuo Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yujie Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuqi Sun
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Tong Yu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rui Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanshu Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Nan Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Liangdan Sun
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Health Science Center, North China University of Science and Technology, Tangshan 063210, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
14
|
Liu M, Yu J, Yang M, Cao L, Chen C. Adaptive evolution of chloroplast division mechanisms during plant terrestrialization. Cell Rep 2024; 43:113950. [PMID: 38489264 DOI: 10.1016/j.celrep.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Despite extensive research, the origin and evolution of the chloroplast division machinery remain unclear. Here, we employ recently sequenced genomes and transcriptomes of Archaeplastida clades to identify the core components of chloroplast division and reconstruct their evolutionary histories, respectively. Our findings show that complete division ring structures emerged in Charophytes. We find that Glaucophytes experienced strong selection pressure, generating diverse variants adapted to the changing terrestrial environments. By integrating the functions of chloroplast division genes (CDGs) annotated in a workflow developed using large-scale multi-omics data, we further show that dispersed duplications acquire more species-specific functions under stronger selection pressures. Notably, PARC6, a dispersed duplicate CDG, regulates leaf color and plant growth in Solanum lycopersicum, demonstrating neofunctionalization. Our findings provide an integrated perspective on the functional evolution of chloroplast division machinery and highlight the potential of dispersed duplicate genes as the primary source of adaptive evolution of chloroplast division.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyan Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Kang H, Yang Y, Meng Y. Functional Differentiation of the Duplicated Gene BrrCIPK9 in Turnip ( Brassica rapa var. rapa). Genes (Basel) 2024; 15:405. [PMID: 38674340 PMCID: PMC11049275 DOI: 10.3390/genes15040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication is a key biological process in the evolutionary history of plants and an important driving force for the diversification of genomic and genetic systems. Interactions between the calcium sensor calcineurin B-like protein (CBL) and its target, CBL-interacting protein kinase (CIPK), play important roles in the plant's response to various environmental stresses. As a food crop with important economic and research value, turnip (Brassica rapa var. rapa) has been well adapted to the environment of the Tibetan Plateau and become a traditional crop in the region. The BrrCIPK9 gene in turnip has not been characterized. In this study, two duplicated genes, BrrCIPK9.1 and BrrCIPK9.2, were screened from the turnip genome. Based on the phylogenetic analysis, BrrCIPK9.1 and BrrCIPK9.2 were found located in different sub-branches on the phylogenetic tree. Real-time fluorescence quantitative PCR analyses revealed their differential expression levels between the leaves and roots and in response to various stress treatments. The differences in their interactions with BrrCBLs were also revealed by yeast two-hybrid analyses. The results indicate that BrrCIPK9.1 and BrrCIPK9.2 have undergone Asparagine-alanine-phenylalanine (NAF) site divergence during turnip evolution, which has resulted in functional differences between them. Furthermore, BrrCIPK9.1 responded to high-pH (pH 8.5) stress, while BrrCIPK9.2 retained its ancestral function (low K+), thus providing further evidence of their functional divergence. These functional divergence genes facilitate turnip's good adaptation to the extreme environment of the Tibetan Plateau. In summary, the results of this study reveal the characteristics of the duplicated BrrCIPK9 genes and provide a basis for further functional studies of BrrCBLs-BrrCIPKs in turnip.
Collapse
Affiliation(s)
- Haotong Kang
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Meng
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| |
Collapse
|
16
|
Feng S, Liu Z, Chen H, Li N, Yu T, Zhou R, Nie F, Guo D, Ma X, Song X. PHGD: An integrative and user-friendly database for plant hormone-related genes. IMETA 2024; 3:e164. [PMID: 38868516 PMCID: PMC10989150 DOI: 10.1002/imt2.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 12/17/2023] [Indexed: 06/14/2024]
Abstract
Plant Hormone Gene Database (PHGD) database platform construction pipeline. First, we collected all reported hormone-related genes in the model plant Arabidopsis thaliana, and combined with the existing experimental background, mapped the hormone-gene interaction network to provide a blueprint. Next, we collected 469 high-quality plant genomes. Then, bioinformatics was used to identify hormone-related genes in these plants. Finally, these genetic data were programmed to be stored in a database and a platform website PHGD was built. PHGD was divided into eight modules, namely Home, Browse, Search, Resources, Download, Tools, Help, and Contact. We provided data resources and platform services to facilitate the study of plant hormones.
Collapse
Affiliation(s)
- Shuyan Feng
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhuo Liu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Huilong Chen
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Nan Li
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Tong Yu
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Rong Zhou
- Department of Food ScienceAarhus UniversityAarhusDenmark
| | - Fulei Nie
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Di Guo
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| | - Xiao Ma
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
- College of Horticultural Science & Technology, Hebei NormalUniversity of Science & TechnologyQinhuangdaoHebeiChina
| | - Xiaoming Song
- School of Life Sciences/LibraryNorth China University of Science and TechnologyTangshanHebeiChina
| |
Collapse
|
17
|
Wu T, Yang Q, Zhou R, Yu T, Shen S, Cao R, Ma X, Song X. Large-scale analysis of trihelix transcription factors reveals their expansion and evolutionary footprint in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14039. [PMID: 37882297 DOI: 10.1111/ppl.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The trihelix transcription factor (TTF) gene family is an important class of transcription factors that play key roles in regulating developmental processes and responding to various stresses. To date, no comprehensive analysis of the TTF gene family in large-scale species has been performed. A cross-genome exploration of its origin, copy number variation, and expression pattern in plants is also unavailable. Here, we identified and characterized the TTF gene family in 110 species representing typical plant phylogenetic taxa. Interestingly, we found that the number of TTF genes was significantly expanded in Chara braunii compared to other species. Based on the available plant genomic datasets, our comparative analysis suggested that the TTF gene family likely originated from the GT-1-1 group and then expanded to form other groups through duplication or deletion of some domains. We found evidence that whole-genome duplication/triplication contributed most to the expansion of the TTF gene family in dicots, monocots and basal angiosperms. In contrast, dispersed and proximal duplications contributed to the expansion of the TTF gene family in algae and bryophyta. The expression patterns of TTF genes and their upstream and downstream genes in different treatments showed a functional divergence of TTF-related genes. Furthermore, we constructed the interaction network between TTF genes and the corresponding upstream and downstream genes, providing a blueprint for their regulatory pathways. This study provided a cross-genome comparative analysis of TTF genes in 110 species, which contributed to understanding their copy number expansion and evolutionary footprint in plants.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shaoqin Shen
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
- College of Horticultural Science & Technology, Hebei Normal University Of Science & Technology, Qinhuangdao, Hebei, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
18
|
Chen H, Zhang Y, Feng S. Whole-genome and dispersed duplication, including transposed duplication, jointly advance the evolution of TLP genes in seven representative Poaceae lineages. BMC Genomics 2023; 24:290. [PMID: 37254040 DOI: 10.1186/s12864-023-09389-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND In the evolutionary study of gene families, exploring the duplication mechanisms of gene families helps researchers understand their evolutionary history. The tubby-like protein (TLP) family is essential for growth and development in plants and animals. Much research has been done on its function; however, limited information is available with regard to the evolution of the TLP gene family. Herein, we systematically investigated the evolution of TLP genes in seven representative Poaceae lineages. RESULTS Our research showed that the evolution of TLP genes was influenced not only by whole-genome duplication (WGD) and dispersed duplication (DSD) but also by transposed duplication (TRD), which has been neglected in previous research. For TLP family size, we found an evolutionary pattern of progressive shrinking in the grass family. Furthermore, the evolution of the TLP gene family was at least affected by evolutionary driving forces such as duplication, purifying selection, and base mutations. CONCLUSIONS This study presents the first comprehensive evolutionary analysis of the TLP gene family in grasses. We demonstrated that the TLP gene family is also influenced by a transposed duplication mechanism. Several new insights into the evolution of the TLP gene family are presented. This work provides a good reference for studying gene evolution and the origin of duplication.
Collapse
Affiliation(s)
- Huilong Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingchao Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Shuyan Feng
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| |
Collapse
|
19
|
Wang Y, Zuo L, Wei T, Zhang Y, Zhang Y, Ming R, Bachar D, Xiao W, Madiha K, Chen C, Fan Q, Li C, Liu JH. CHH methylation of genes associated with fatty acid and jasmonate biosynthesis contributes to cold tolerance in autotetraploids of Poncirus trifoliata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2327-2343. [PMID: 36218272 DOI: 10.1111/jipb.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lanlan Zuo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dahro Bachar
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Khan Madiha
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Qijun Fan
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Guo L, Wang S, Nie Y, Shen Y, Ye X, Wu W. Convergent evolution of AP2/ERF III and IX subfamilies through recurrent polyploidization and tandem duplication during eudicot adaptation to paleoenvironmental changes. PLANT COMMUNICATIONS 2022; 3:100420. [PMID: 35949168 PMCID: PMC9700204 DOI: 10.1016/j.xplc.2022.100420] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 05/10/2023]
Abstract
Whole-genome duplication (WGD or polyploidization) has been suggested as a genetic contributor to angiosperm adaptation to environmental changes. However, many eudicot lineages did not undergo recent WGD (R-WGD) around and/or after the Cretaceous-Paleogene (K-Pg) boundary, times of severe environmental changes; how those plants survived has been largely ignored. Here, we collected 22 plants from major branches of the eudicot phylogeny and classified them into two groups according to the occurrence or absence of R-WGD: 12 R-WGD-containing plants (R-WGD-Y) and 10 R-WGD-lacking plants (R-WGD-N). Subsequently, we identified 496 gene-rich families in R-WGD-Y and revealed that members of the AP2/ERF transcription factor family were convergently over-retained after R-WGDs and showed exceptional cold stimulation. The evolutionary trajectories of the AP2/ERF family were then compared between R-WGD-Y and R-WGD-N to reveal convergent expansions of the AP2/ERF III and IX subfamilies through recurrent independent WGDs and tandem duplications (TDs) after the radiation of the plants. The expansions showed coincident enrichments in- times around and/or after the K-Pg boundary, when global cooling was a major environmental stressor. Consequently, convergent expansions and co-retentions of AP2/ERF III C-repeat binding factor (CBF) duplicates and their regulons in different eudicot lineages contributed to the rewiring of cold-specific regulatory networks. Moreover, promoter analysis of cold-responsive AP2/ERF genes revealed an underlying cis-regulatory code (G-box: CACGTG). We propose a seesaw model of WGDs and TDs in the convergent expansion of AP2/ERF III and IX genes that has contributed to eudicot adaptation during paleoenvironmental changes, and we suggest that TD may be a reciprocal/alternative mechanism for genetic innovation in plants that lack WGD.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
21
|
Yoshida MA, Hirota K, Imoto J, Okuno M, Tanaka H, Kajitani R, Toyoda A, Itoh T, Ikeo K, Sasaki T, Setiamarga DHE. Gene Recruitments and Dismissals in the Argonaut Genome Provide Insights into Pelagic Lifestyle Adaptation and Shell-like Eggcase Reacquisition. Genome Biol Evol 2022; 14:evac140. [PMID: 36283693 PMCID: PMC9635652 DOI: 10.1093/gbe/evac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 10/01/2023] Open
Abstract
The paper nautilus or greater argonaut, Argonauta argo, is a species of octopods which is characterized by its pelagic lifestyle and by the presence of a protective spiral-shaped shell-like eggcase in females. To reveal the genomic background of how the species adapted to the pelagic lifestyle and acquired its shell-like eggcase, we sequenced the draft genome of the species. The genome size was 1.1 Gb, which is the smallest among the cephalopods known to date, with the top 215 scaffolds (average length 5,064,479 bp) covering 81% (1.09 Gb) of the total assembly. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified nearly intact HOX, Parahox, Wnt clusters, and some gene clusters that could probably be related to the pelagic lifestyle, such as reflectin, tyrosinase, and opsin. The gene models also revealed several homologous genes related to calcified shell formation in Conchiferan mollusks, such as Pif-like, SOD, and TRX. Interestingly, comparative genomics analysis revealed that the homologous genes for such genes were also found in the genome of the shell-less octopus, as well as Nautilus, which has a true outer shell. Therefore, the draft genome sequence of Arg. argo presented here has helped us to gain further insights into the genetic background of the dynamic recruitment and dismissal of genes to form an important, converging extended phenotypic structure such as the shell and the shell-like eggcase. Additionally, it allows us to explore the evolution of from benthic to pelagic lifestyles in cephalopods and octopods.
Collapse
Affiliation(s)
- Masa-aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Shimane 685-0024, Japan
| | - Kazuki Hirota
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo, Wakayama 644-0012, Japan
| | - Junichi Imoto
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hiroyuki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuho Ikeo
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takenori Sasaki
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Davin H E Setiamarga
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo, Wakayama 644-0012, Japan
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Zhang Y, Zhang L, Xiao Q, Wu C, Zhang J, Xu Q, Yu Z, Bao S, Wang J, Li Y, Wang L, Wang J. Two independent allohexaploidizations and genomic fractionation in Solanales. FRONTIERS IN PLANT SCIENCE 2022; 13:1001402. [PMID: 36212355 PMCID: PMC9538396 DOI: 10.3389/fpls.2022.1001402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Solanales, an order of flowering plants, contains the most economically important vegetables among all plant orders. To date, many Solanales genomes have been sequenced. However, the evolutionary processes of polyploidization events in Solanales and the impact of polyploidy on species diversity remain poorly understood. We compared two representative Solanales genomes (Solanum lycopersicum L. and Ipomoea triloba L.) and the Vitis vinifera L. genome and confirmed two independent polyploidization events. Solanaceae common hexaploidization (SCH) and Convolvulaceae common hexaploidization (CCH) occurred ∼43-49 and ∼40-46 million years ago (Mya), respectively. Moreover, we identified homologous genes related to polyploidization and speciation and constructed multiple genomic alignments with V. vinifera genome, providing a genomic homology framework for future Solanales research. Notably, the three polyploidization-produced subgenomes in both S. lycopersicum and I. triloba showed significant genomic fractionation bias, suggesting the allohexaploid nature of the SCH and CCH events. However, we found that the higher genomic fractionation bias of polyploidization-produced subgenomes in Solanaceae was likely responsible for their more abundant species diversity than that in Convolvulaceae. Furthermore, through genomic fractionation and chromosomal structural variation comparisons, we revealed the allohexaploid natures of SCH and CCH, both of which were formed by two-step duplications. In addition, we found that the second step of two paleohexaploidization events promoted the expansion and diversity of β-amylase (BMY) genes in Solanales. These current efforts provide a solid foundation for future genomic and functional exploration of Solanales.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chunyang Wu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jiaqi Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qiang Xu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zijian Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yu Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Plewiński P, Rychel-Bielska S, Kozak B, Maureira-Butler IJ, Iqbal MM, Nelson MN, Książkiewicz M. FLOWERING LOCUS T indel variants confer vernalization-independent and photoperiod-insensitive flowering of yellow lupin ( Lupinus luteus L.). HORTICULTURE RESEARCH 2022; 9:uhac180. [PMID: 36338848 PMCID: PMC9627521 DOI: 10.1093/hr/uhac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Ongoing climate change has considerably reduced the seasonal window for crop vernalization, concurrently expanding cultivation area into northern latitudes with long-day photoperiod. To address these changes, cool season legume breeders need to understand molecular control of vernalization and photoperiod. A key floral transition gene integrating signals from these pathways is the Flowering locus T (FT). Here, a recently domesticated grain legume, yellow lupin (Lupinus luteus L.), was explored for potential involvement of FT homologues in abolition of vernalization and photoperiod requirements. Two FTa (LlutFTa1a and LlutFTa1b) and FTc (LlutFTc1 and LlutFTc2) homologues were identified and sequenced for two contrasting parents of a reference recombinant inbred line (RIL) population, an early-flowering cultivar Wodjil and a late-flowering wild-type P28213. Large deletions were detected in the 5' promoter regions of three FT homologues. Quantitative trait loci were identified for flowering time and vernalization response in the RIL population and in a diverse panel of wild and domesticated accessions. A 2227 bp deletion found in the LlutFTc1 promoter was linked with early phenology and vernalization independence, whereas LlutFTa1a and LlutFTc2 indels with photoperiod responsiveness. Comparative mapping highlighted convergence of FTc1 indel evolution in two Old World lupin species, addressing both artificial selection during domestication and natural adaptation to short season environmental conditions. We concluded that rapid flowering in yellow lupin is associated with the de-repression of the LlutFTc1 homologue from the juvenile phase, putatively due to the elimination of all binding sites in the promoter region for the AGAMOUS-like 15 transcription factor.
Collapse
Affiliation(s)
- Piotr Plewiński
- Department of Gene Structure and Function, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Iván J Maureira-Butler
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Muhammad Munir Iqbal
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, 6009, WA, Australia
- Genomics WA, Joint initiative of Telethon Kids Institute, Harry Perkins Institute of Medical Research and The University of Western Australia, QEII campus, Nedlands, 6009, Western Australia, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
24
|
Song X, Li N, Zhang Y, Liang Y, Zhou R, Yu T, Shen S, Feng S, Zhang Y, Li X, Lin H, Wang X. Transcriptomics and Genomics Analysis Uncover the Differentially Expressed Chlorophyll and Carotenoid-Related Genes in Celery. Int J Mol Sci 2022; 23:ijms23168986. [PMID: 36012264 PMCID: PMC9409461 DOI: 10.3390/ijms23168986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Celery (Apium graveolens L.), a plant from Apiaceae, is one of the most important vegetables and is grown worldwide. Carotenoids can capture light energy and transfer it to chlorophyll, which plays a central role in photosynthesis. Here, by performing transcriptomics and genomics analysis, we identified and conducted a comprehensive analysis of chlorophyll and carotenoid-related genes in celery and six representative species. Significantly, different contents and gene expression patterns were found among three celery varieties. In total, 237 and 290 chlorophyll and carotenoid-related genes were identified in seven species. No notable gene expansion of chlorophyll biosynthesis was detected in examined species. However, the gene encoding ζ-carotene desaturase (ZDS) enzyme in carotenoid was expanded in celery. Comparative genomics and RNA-seq analyses revealed 16 and 5 key genes, respectively, regulating chlorophyll and carotenoid. An intriguing finding is that chlorophyll and carotenoid-related genes were coordinately regulated by transcriptional factors, which could be distinctively classified into positive- and negative-regulation groups. Six CONSTANS (CO)-like transcription factors co-regulated chlorophyll and carotenoid-related genes were identified in celery. In conclusion, this study provides new insights into the regulation of chlorophyll and carotenoid by transcription factors.
Collapse
Affiliation(s)
- Xiaoming Song
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Nan Li
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yingchao Zhang
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yi Liang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Tong Yu
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shaoqin Shen
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuyan Feng
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yu Zhang
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiuqing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (H.L.); (X.W.)
| | - Xiyin Wang
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
- Correspondence: (H.L.); (X.W.)
| |
Collapse
|
25
|
Wang QH, Zhang J, Liu Y, Jia Y, Jiao YN, Xu B, Chen ZD. Diversity, phylogeny, and adaptation of bryophytes: insights from genomic and transcriptomic data. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4306-4322. [PMID: 35437589 DOI: 10.1093/jxb/erac127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.
Collapse
Affiliation(s)
- Qing-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Nian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Qiao X, Zhang S, Paterson AH. Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Comput Struct Biotechnol J 2022; 20:3248-3256. [PMID: 35782740 PMCID: PMC9237934 DOI: 10.1016/j.csbj.2022.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 01/09/2023] Open
Abstract
Whole-genome duplication (WGD) has occurred repeatedly during plant evolution and diversification, providing genetic layers for evolving new functions and phenotypes. Advances in long-read sequencing technologies have enabled sequencing and assembly of over 1000 plant genomes spanning nearly 800 species, in which a large set of ancient WGDs has been uncovered. Here, we review the recently reported WGDs that occurred in major plant lineages and key evolutionary positions, and highlight their contributions to morphological innovation and adaptive evolution. Current gaps and challenges in integrating enormous volumes of sequenced plant genomes, accurately inferring WGDs, and developing web-based analysis tools are emphasized. Looking to the future, ambitious genome sequencing projects and global efforts may substantially recapitulate the plant tree of life based on broader sampling of phylogenetic diversity, reveal much of the timetable of ancient WGDs, and address the biological significance of WGDs in plant adaptation and radiation.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
27
|
Zhang Y, Chai M, Zhang X, Yang G, Yao X, Song H. The fate of drought-related genes after polyploidization in Arachis hypogaea cv. Tifrunner. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1249-1259. [PMID: 35910439 PMCID: PMC9334475 DOI: 10.1007/s12298-022-01198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 06/03/2023]
Abstract
Drought stress affects plant growth and development. Cultivated peanut (Arachis hypogaea) was formed by a cross between A. duranensis and A. ipaensis. The drought tolerance of A. duranensis and A. ipaensis is reportedly stronger than that of cultivated peanut. However, there has been little study of drought tolerance genes in Arachis. In this study, we compared drought tolerance genes between A. hypogaea cv. Tifrunner and its diploid donors. We have observed that polyploidization does not generate more drought tolerance genes in A. hypogaea cv. Tifrunner but promotes the loss of many ancient drought tolerance genes. Although putative drought tolerance genes occurred on gene duplication events in A. hypogaea cv. Tifrunner, most copies lacked drought tolerance. These findings suggest that the loss of drought tolerance genes in A. hypogaea cv. Tifrunner could possibly result in weaker drought tolerance. In addition, we have observed that the three Arachis species stochastically lost putative drought tolerance genes. The evolution of drought tolerance genes could possibly have correlated with environmental changes. Our results enhance the current understanding of drought tolerance and polyploidy evolution in Arachis species. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01198-0.
Collapse
Affiliation(s)
- Yongli Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Xiang Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
28
|
Song X, Liu H, Shen S, Huang Z, Yu T, Liu Z, Yang Q, Wu T, Feng S, Zhang Y, Wang Z, Duan W. Chromosome-level pepino genome provides insights into genome evolution and anthocyanin biosynthesis in Solanaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1128-1143. [PMID: 35293644 DOI: 10.1111/tpj.15728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Pepino (Solanum muricatum, 2n = 2x = 24), a member of the Solanaceae family, is an important globally grown fruit. Herein, we report high-quality, chromosome-level pepino genomes. The 91.67% genome sequence is anchored to 12 chromosomes, with a total length of 1.20 Gb and scaffold N50 of 87.03 Mb. More than half the genome comprises repetitive sequences. In addition to the shared ancient whole-genome triplication (WGT) event in eudicots, an additional new WGT event was present in the pepino. Our findings suggest that pepinos experienced chromosome rearrangements, fusions, and gene loss after a WGT event. The large number of gene removals indicated the instability of Solanaceae genomes, providing opportunities for species divergence and natural selection. The paucity of disease-resistance genes (NBS) in pepino and eggplant has been explained by extensive loss and limited generation of genes after WGT events in Solanaceae. The outbreak of NBS genes was not synchronized in Solanaceae species, which occurred before the Solanaceae WGT event in pepino, tomato, and tobacco, whereas it was almost synchronized with WGT events in the other four Solanaceae species. Transcriptome and comparative genomic analyses revealed several key genes involved in anthocyanin biosynthesis. Although an extra WGT event occurred in Solanaceae, CHS genes related to anthocyanin biosynthesis in grapes were still significantly expanded compared with those in Solanaceae species. Proximal and tandem duplications contributed to the expansion of CHS genes. In conclusion, the pepino genome and annotation facilitate further research into important gene functions and comparative genomic analysis in Solanaceae.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Haibin Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shaoqin Shen
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhinan Huang
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Tong Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhuo Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Qihang Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Tong Wu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuyan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yu Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhiyuan Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Weike Duan
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
29
|
Yu T, Bai Y, Liu Z, Wang Z, Yang Q, Wu T, Feng S, Zhang Y, Shen S, Li Q, Gu L, Song X. Large-scale analyses of heat shock transcription factors and database construction based on whole-genome genes in horticultural and representative plants. HORTICULTURE RESEARCH 2022; 9:uhac035. [PMID: 35184193 PMCID: PMC9123238 DOI: 10.1093/hr/uhac035] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Heat shock transcription factor (Hsf) plays a critical role in regulating heat resistance. Here, 2950 Hsf family genes were identified from 111 horticultural and representative plants. More Hsf genes were detected in higher plants than lower plants. Based on all Hsf genes, we constructed a phylogenetic tree, which indicated that Hsf genes of each branch evolved independently after species differentiation. Furthermore, we uncovered the evolutionary trajectories of Hsf genes by motif analysis. There were only 6 motifs (M1 to M6) in lower plants, and then 4 novel motifs (M7-M10) appeared in higher plants. However, the motifs of some Hsf genes were lost in higher plant, indicating that Hsf genes have undergone sequence variation during the evolution. The number of Hsf gene loss was more than duplication after whole-genome duplication in higher plants. The heat response network was constructed using 24 Hsf genes, 2421 downstream, and 222 upstream genes of Arabidopsis. Further enrichment analysis revealed that Hsf genes and other transcription factors interacted with each other to response heat resistance. The global expression maps were illustrated for Hsf genes under various abiotic, biotic stresses, and several developmental stages in Arabidopsis. The syntenic and phylogenetic analyses were conducted using Hsf genes of Arabidopsis and Pan-genome of 18 Brassica rapa accessions. We also performed the expression pattern analysis of Hsf and six Hsp family genes using expression values from different tissues and heat treatments in B. rapa. The interaction network between Hsf and Hsp gene families was constructed in B. rapa, and several core genes were detected in the network. Finally, we constructed a Hsf database (http://hsfdb.bio2db.com) for researchers to retrieve Hsf gene family information. Therefore, our study will provide rich resources for the evolution and functional study of Hsf genes.
Collapse
Affiliation(s)
- Tong Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yun Bai
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Zhuo Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Zhiyuan Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qihang Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Tong Wu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Shuyan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yu Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Shaoqin Shen
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qiang Li
- Faculty of Life Science, Tangshan Normal University, Tangshan 063000, Hebei, China
| | - Liqiang Gu
- Faculty of Life Science, Tangshan Normal University, Tangshan 063000, Hebei, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
30
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
31
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
32
|
Moore VM, Schlautman B, Fei SZ, Roberts LM, Wolfe M, Ryan MR, Wells S, Lorenz AJ. Plant Breeding for Intercropping in Temperate Field Crop Systems: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:843065. [PMID: 35432391 PMCID: PMC9009171 DOI: 10.3389/fpls.2022.843065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 05/14/2023]
Abstract
Monoculture cropping systems currently dominate temperate agroecosystems. However, intercropping can provide valuable benefits, including greater yield stability, increased total productivity, and resilience in the face of pest and disease outbreaks. Plant breeding efforts in temperate field crops are largely focused on monoculture production, but as intercropping becomes more widespread, there is a need for cultivars adapted to these cropping systems. Cultivar development for intercropping systems requires a systems approach, from the decision to breed for intercropping systems through the final stages of variety testing and release. Design of a breeding scheme should include information about species variation for performance in intercropping, presence of genotype × management interaction, observation of key traits conferring success in intercropping systems, and the specificity of intercropping performance. Together this information can help to identify an optimal selection scheme. Agronomic and ecological knowledge are critical in the design of selection schemes in cropping systems with greater complexity, and interaction with other researchers and key stakeholders inform breeding decisions throughout the process. This review explores the above considerations through three case studies: (1) forage mixtures, (2) perennial groundcover systems (PGC), and (3) soybean-pennycress intercropping. We provide an overview of each cropping system, identify relevant considerations for plant breeding efforts, describe previous breeding focused on the cropping system, examine the extent to which proposed theoretical approaches have been implemented in breeding programs, and identify areas for future development.
Collapse
Affiliation(s)
- Virginia M. Moore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Virginia M. Moore,
| | | | - Shui-zhang Fei
- Department of Horticulture, Iowa State University, Ames, IA, United States
| | - Lucas M. Roberts
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Marnin Wolfe
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Department of Crop, Soil and Environmental Sciences, College of Agriculture, Auburn University, Auburn, AL, United States
| | - Matthew R. Ryan
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Samantha Wells
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Aaron J. Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
33
|
Xu H, Wang C, Shao G, Wu S, Liu P, Cao P, Jiang P, Wang S, Zhu H, Lin X, Tauqeer A, Lin Y, Chen W, Huang W, Wen Q, Chang J, Zhong F, Wu S. The reference genome and full-length transcriptome of pakchoi provide insights into cuticle formation and heat adaption. HORTICULTURE RESEARCH 2022; 9:uhac123. [PMID: 35949690 PMCID: PMC9358696 DOI: 10.1093/hr/uhac123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Brassica rapa includes various vegetables with high economic value. Among them, green petiole type pakchoi (B. rapa ssp. chinensis) is one of the major vegetables grown in southern China. Compared with other B. rapa varieties, green petiole type pakchoi shows a higher level of heat resistance, which is partially derived from the rich epicuticular wax. Here we sequence a high-quality genome of green petiole type pakchoi, which has been widely used as the parent in breeding. Our results reveal that long terminal repeat retrotransposon insertion plays critical roles in promoting the genome expansion and transcriptional diversity of pakchoi genes through preferential insertions, particularly in cuticle biosynthetic genes. After whole-genome triplication, over-retained pakchoi genes escape stringent selection pressure, and among them a set of cuticle-related genes are retained. Using bulked-segregant analysis of a heat-resistant pakchoi cultivar, we identify a frame-shift deletion across the third exon and the subsequent intron of BrcCER1 in candidate regions. Using Nanopore long-read sequencing, we analyze the full-length transcriptome of two pakchoi cultivars with opposite sensitivity to high temperature. We find that the heat-resistant pakchoi cultivar can mitigate heat-caused leaf damage by activating an unfolded protein response, as well as by inhibiting chloroplast development and energy metabolism, which are presumably mediated by both transcriptional regulation and splicing factors. Our study provides valuable resources for Brassica functional genomics and breeding research, and deepens our understanding of plant stress resistance.
Collapse
Affiliation(s)
| | | | | | - Shasha Wu
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Liu
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Cao
- Fujian Jinpin Agricultural Technology Co., Ltd, Fuzhou 350000, China
| | - Peng Jiang
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shubin Wang
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Zhu
- Fujian Seed Chief Station, Fuzhou 350003, China
| | - Xiao Lin
- Fujian Jinpin Agricultural Technology Co., Ltd, Fuzhou 350000, China
| | - Arfa Tauqeer
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yizhang Lin
- Fujian Jinpin Agricultural Technology Co., Ltd, Fuzhou 350000, China
| | - Wei Chen
- Fujian Seed Chief Station, Fuzhou 350003, China
| | | | - Qingfang Wen
- Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jiang Chang
- College of Life Sciences & College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | |
Collapse
|
34
|
Zhang X, Liu T, Wang J, Wang P, Qiu Y, Zhao W, Pang S, Li X, Wang H, Song J, Zhang W, Yang W, Sun Y, Li X. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes. MOLECULAR PLANT 2021; 14:2032-2055. [PMID: 34384905 DOI: 10.1016/j.molp.2021.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 08/05/2021] [Indexed: 05/22/2023]
Abstract
Post-polyploid diploidization associated with descending dysploidy and interspecific introgression drives plant genome evolution by unclear mechanisms. Raphanus is an economically and ecologically important Brassiceae genus and model system for studying post-polyploidization genome evolution and introgression. Here, we report the de novo sequence assemblies for 11 genomes covering most of the typical sub-species and varieties of domesticated, wild and weedy radishes from East Asia, South Asia, Europe, and America. Divergence among the species, sub-species, and South/East Asian types coincided with Quaternary glaciations. A genus-level pan-genome was constructed with family-based, locus-based, and graph-based methods, and whole-genome comparisons revealed genetic variations ranging from single-nucleotide polymorphisms (SNPs) to inversions and translocations of whole ancestral karyotype (AK) blocks. Extensive gene flow occurred between wild, weedy, and domesticated radishes. High frequencies of genome reshuffling, biased retention, and large-fragment translocation have shaped the genomic diversity. Most variety-specific gene-rich blocks showed large structural variations. Extensive translocation and tandem duplication of dispensable genes were revealed in two large rearrangement-rich islands. Disease resistance genes mostly resided on specific and dispensable loci. Variations causing the loss of function of enzymes modulating gibberellin deactivation were identified and could play an important role in phenotype divergence and adaptive evolution. This study provides new insights into the genomic evolution underlying post-polyploid diploidization and lays the foundation for genetic improvement of radish crops, biological control of weeds, and protection of wild species' germplasms.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Horticulture, Jinling Institute of Technology, Nanjing 210038, China
| | - Jinglei Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Pang
- Berry Genomics Corporation, Beijing 100015, China
| | - Xiaoman Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiping Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenlin Zhang
- Berry Genomics Corporation, Beijing 100015, China
| | - Wenlong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuyan Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
35
|
Guo X, Fang D, Sahu SK, Yang S, Guang X, Folk R, Smith SA, Chanderbali AS, Chen S, Liu M, Yang T, Zhang S, Liu X, Xu X, Soltis PS, Soltis DE, Liu H. Chloranthus genome provides insights into the early diversification of angiosperms. Nat Commun 2021; 12:6930. [PMID: 34836973 PMCID: PMC8626473 DOI: 10.1038/s41467-021-26922-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Chloranthales remain the last major mesangiosperm lineage without a nuclear genome assembly. We therefore assemble a high-quality chromosome-level genome of Chloranthus spicatus to resolve enigmatic evolutionary relationships, as well as explore patterns of genome evolution among the major lineages of mesangiosperms (eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales). We find that synteny is highly conserved between genomic regions of Amborella, Vitis, and Chloranthus. We identify an ancient single whole-genome duplication (WGD) (κ) prior to the divergence of extant Chloranthales. Phylogenetic inference shows Chloranthales as sister to magnoliids. Furthermore, our analyses indicate that ancient hybridization may account for the incongruent phylogenetic placement of Chloranthales + magnoliids relative to monocots and eudicots in nuclear and chloroplast trees. Long genes and long introns are found to be prevalent in both Chloranthales and magnoliids compared to other angiosperms. Overall, our findings provide an improved context for understanding mesangiosperm relationships and evolution and contribute a valuable genomic resource for future investigations.
Collapse
Affiliation(s)
- Xing Guo
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Dongming Fang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Sunil Kumar Sahu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Shuai Yang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Xuanmin Guang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Ryan Folk
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 United States of America
| | - Stephen A. Smith
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 United States of America
| | - Andre S. Chanderbali
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America
| | - Sisi Chen
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.9227.e0000000119573309South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650 China
| | - Min Liu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Ting Yang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Shouzhou Zhang
- grid.9227.e0000000119573309Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen, Chinese Academy of Sciences, Shenzhen, 518004 China
| | - Xin Liu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.21155.320000 0001 2034 1839BGI-Fuyang, BGI-Shenzhen, Fuyang, 236009 China
| | - Xun Xu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.21155.320000 0001 2034 1839Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083 China
| | - Pamela S. Soltis
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America
| | - Douglas E. Soltis
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America ,grid.15276.370000 0004 1936 8091Department of Biology, University of Florida, Gainesville, FL 32611 United States of America
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
36
|
Yin Y, Peng F, Zhou L, Yin X, Chen J, Zhong H, Hou F, Xie X, Wang L, Shi X, Ren B, Pei J, Peng C, Gao J. The chromosome-scale genome of Magnolia officinalis provides insight into the evolutionary position of magnoliids. iScience 2021; 24:102997. [PMID: 34505009 PMCID: PMC8417397 DOI: 10.1016/j.isci.2021.102997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Magnolia officinalis, a representative tall aromatic tree of the Magnoliaceae family, is a medicinal plant that is widely used in diverse industries from medicine to cosmetics. We report a chromosome-scale draft genome of M. officinalis, in which ∼99.66% of the sequences were anchored onto 19 chromosomes with the scaffold N50 of 76.62 Mb. We found that a high proportion of repetitive sequences was a common feature of three Magnoliaceae with known genomic data. Magnoliids were a sister clade to eudicots-monocots, which provided more support for understanding the phylogenetic position among angiosperms. An ancient duplication event occurred in the genome of M. officinalis and was shared with Lauraceae. Based on RNA-seq analysis, we identified several key enzyme-coding gene families associated with the biosynthesis of lignans in the genome. The construction of the M. officinalis genome sequence will serve as a reference for further studies of Magnolia, as well as other Magnoliaceae.
Collapse
Affiliation(s)
- Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianmei Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongjin Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feixia Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Wang
- Sichuan Academy of Forestry Sciences, Chengdu 610081, China
| | | | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
37
|
Hong S, Lim YP, Kwon SY, Shin AY, Kim YM. Genome-Wide Comparative Analysis of Flowering-Time Genes; Insights on the Gene Family Expansion and Evolutionary Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:702243. [PMID: 34290729 PMCID: PMC8288248 DOI: 10.3389/fpls.2021.702243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 05/03/2023]
Abstract
In polyploids, whole genome duplication (WGD) played a significant role in genome expansion, evolution and diversification. Many gene families are expanded following polyploidization, with the duplicated genes functionally diversified by neofunctionalization or subfunctionalization. These mechanisms may support adaptation and have likely contributed plant survival during evolution. Flowering time is an important trait in plants, which affects critical features, such as crop yields. The flowering-time gene family is one of the largest expanded gene families in plants, with its members playing various roles in plant development. Here, we performed genome-wide identification and comparative analysis of flowering-time genes in three palnt families i.e., Malvaceae, Brassicaceae, and Solanaceae, which indicate these genes were expanded following the event/s of polyploidization. Duplicated genes have been retained during evolution, although genome reorganization occurred in their flanking regions. Further investigation of sequence conservation and similarity network analyses provide evidence for functional diversification of duplicated genes during evolution. These functionally diversified genes play important roles in plant development and provide advantages to plants for adaptation and survival in response to environmental changes encountered during evolution. Collectively, we show that flowering-time genes were expanded following polyploidization and retained as large gene family by providing advantages from functional diversification during evolution.
Collapse
Affiliation(s)
- Seongmin Hong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yong-Min Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
38
|
Zhang X, Tong H, Han Z, Huang L, Tian J, Fu Z, Wu Y, Wang T, Yuan D. Cytological and morphology characteristics of natural microsporogenesis within Camellia oleifera. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:959-968. [PMID: 34092947 PMCID: PMC8140029 DOI: 10.1007/s12298-021-01002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 06/06/2023]
Abstract
UNLABELLED Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length-width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01002-5.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Hailang Tong
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Zhiqiang Han
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Long Huang
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Jing Tian
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Zhixing Fu
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Yunyi Wu
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Ting Wang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Hunan, 410004 China
| | - Deyi Yuan
- The College of Forestry, Central South University of Forestry and Technology, Hunan, 410004 China
| |
Collapse
|
39
|
Song X, Li N, Guo Y, Bai Y, Wu T, Yu T, Feng S, Zhang Y, Wang Z, Liu Z, Lin H. Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. FORESTRY RESEARCH 2021; 1:7. [PMID: 39524510 PMCID: PMC11524223 DOI: 10.48130/fr-2021-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2024]
Abstract
Simple sequence repeats (SSRs) are popular and important molecular markers that exist widely in plants. Here, we conducted a comprehensive identification and comparative analysis of SSRs in 14 tree species. A total of 16, 298 SSRs were identified from 429, 449 genes, and primers were successfully designed for 99.44% of the identified SSRs. Our analysis indicated that tri-nucleotide SSRs were the most abundant, with an average of ~834 per species. Functional enrichment analysis by combining SSR-containing genes in all species, revealed 50 significantly enriched terms, with most belonging to transcription factor families associated with plant development and abiotic stresses such as Myeloblastosis_DNA-bind_4 (Myb_DNA-bind_4), APETALA2 (AP2), and Fantastic Four meristem regulator (FAF). Further functional enrichment analysis showed that 48 terms related to abiotic stress regulation and floral development were significantly enriched in ten species, whereas no significantly enriched terms were found in four species. Interestingly, the largest number of enriched terms was detected in Citrus sinensis (L.) Osbeck, accounting for 54.17% of all significantly enriched functional terms. Finally, we analyzed AP2 and trihelix gene families (Myb_DNA-bind_4) due to their significant enrichment in SSR-containing genes. The results indicated that whole-genome duplication (WGD) and whole genome triplication (WGT) might have played major roles in the expansion of the AP2 gene family but only slightly affected the expansion of the trihelix gene family during evolution. In conclusion, the identification and comprehensive characterization of SSR markers will greatly facilitate future comparative genomics and functional genomics studies.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nan Li
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuanyuan Guo
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yun Bai
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Wu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shuyan Feng
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yu Zhang
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhiyuan Wang
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhuo Liu
- School of Life Sciences/School of Economics, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
40
|
Li M, He Q, Huang Y, Luo Y, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, Liu Z, Wang XR, Tang H. Sucrose synthase gene family in Brassica juncea: genomic organization, evolutionary comparisons, and expression regulation. PeerJ 2021; 9:e10878. [PMID: 33854830 PMCID: PMC7953879 DOI: 10.7717/peerj.10878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sucrose synthase (SUS) plays an important role in sucrose metabolism and plant development. The SUS gene family has been identified in many plants, however, there is no definitive study of SUS gene in Brassica juncea. In this study, 14 SUS family genes were identified and comprehensively analyzed using bioinformatics tools. The analyzed parameters included their family member characteristics, chromosomal locations, gene structures and phylogenetic as well as transcript expression profiles. Phylogenetic analysis revealed that the 14 members could be allocated into three groups: SUS I, SUS II and SUS III. Comparisons of the exon/intron structure of the mustard SUS gene indicated that its structure is highly conserved. The conserved structure is attributed to purification selection during evolution. Expansion of the SUS gene family is associated with fragment and tandem duplications of the mustard SUS gene family. Collinearity analysis among species revealed that the SUS gene family could be lost or mutated to varying degrees after the genome was doubled, or when Brassica rapa and Brassica nigra hybridized to form Brassica juncea. The expression patterns of BjuSUSs vary among different stages of mustard stem swelling. Transcriptomics revealed that the BjuSUS01-04 expression levels were the most elevated. It has been hypothesized that they play an important role in sucrose metabolism during stem development. The expression levels of some BjuSUSs were significantly up-regulated when they were treated with plant hormones. However, when subjected to abiotic stress factors, their expression levels were suppressed. This study establishes SUS gene functions during mustard stem development and stress.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qi He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ying Huang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zejing Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Rong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
Sun W, Yu H, Ma Z, Yuan Y, Wang S, Yan J, Xu X, Chen H. Molecular Evolution and Local Root Heterogeneous Expression of the Chenopodium quinoa ARF Genes Provide Insights into the Adaptive Domestication of Crops in Complex Environments. J Mol Evol 2021; 89:287-301. [PMID: 33755734 DOI: 10.1007/s00239-021-10005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/10/2021] [Indexed: 01/15/2023]
Abstract
Auxin response factors (ARFs) influence plant growth and development via the coupling of basic biological processes. However, the evolution, expansion, and regulatory mechanisms of ARFs in the domesticated crop quinoa after artificial selection remain elusive. In this study, we systematically identified 30 Chenopodium quinoa ARFs (CqARFs). In this typical domesticated crop, ARFs divided into three subfamilies are subjected to strong purification selection and have a highly conserved evolutionary pattern. Polyploidy is the primary reason for the expansion of the ARF family after quinoa domestication. The expression patterns of CqARFs in different tissues have been differentiated, and CqARF2, 5, 9 and 10 from class A have the characteristics of local heterogeneous expression in different regions of roots, which may be the key factors for crops to respond in complex environments. Overall, we examined the evolution and expansion of ARFs in representative domesticated crops using the genome, transcriptome, and molecular biology and discovered a class A ARF-centered heterogeneous expression network that played an important role in auxin signaling and environmental responses. We provide new insights into how ARFs promote domesticated crop adaptation to artificial selection by polyploid expansion.
Collapse
Affiliation(s)
- Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Haomiao Yu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Sijiao Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Xinran Xu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
42
|
Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, Trigiano RN, Jiao Y, Chen F. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. PLANT, CELL & ENVIRONMENT 2020; 43:2847-2856. [PMID: 33001478 DOI: 10.1111/pce.13898] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 05/24/2023]
Abstract
Flowering plants, or angiosperms, consist of more than 300,000 species, far more than any other land plant lineages. The accumulated evidence indicates that multiple ancient polyploidy events occurred around 100 to 120 million years ago during the Cretaceous and drove the early diversification of four major clades of angiosperms: gamma whole-genome triplication in the common ancestor of core eudicots, tau whole-genome duplication during the early diversification of monocots, lambda whole-genome duplication during the early diversification of magnoliids, and pi whole-genome duplication in the Nymphaeales lineage. These four polyploidy events have played essential roles in the adaptive evolution and diversification of major clades of flowering plants. Here, we specifically review the current understanding of this wave of ancient whole-genome duplications and their evolutionary significance. Notably, although these ancient whole-genome duplications occurred independently, they have contributed to the expansion of many stress-related genes (e.g., heat shock transcription factors and Arabidopsis response regulators),and these genes could have been selected for by global environmental changes in the Cretaceous. Therefore, this ancient wave of paleopolyploidy events could have significantly contributed to the adaptation of angiosperms to environmental changes, and potentially promoted the wide diversification of flowering plants.
Collapse
Affiliation(s)
- Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Xiaojun Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Wang T, Hu J, Ma X, Li C, Yang Q, Feng S, Li M, Li N, Song X. Identification, evolution and expression analyses of whole genome-wide TLP gene family in Brassica napus. BMC Genomics 2020; 21:264. [PMID: 32228446 PMCID: PMC7106719 DOI: 10.1186/s12864-020-6678-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Brassica is a very important genus of Brassicaceae, including many important oils, vegetables, forage crops, and ornamental horticultural plants. TLP family genes play important regulatory roles in the growth and development of plants. Therefore, this study used a bioinformatics approach to conduct the systematic comparative genomics analysis of TLP gene family in B. napus and other three important Brassicaceae crops. RESULTS Here, we identified a total of 29 TLP genes from B. napus genome, and they distributed on 16 chromosomes of B. napus. The evolutionary relationship showed that these genes could be divided into six groups from Group A to F. We found that the gene corresponding to Arabidopsis thaliana AT1G43640 was completely lost in B. rapa, B. oleracea and B. napus after whole genome triplication. The gene corresponding to AT1G25280 was retained in all the three species we analysed, belonging to 1:3:6 ratios. Our analyses suggested that there was a selective loss of some genes that might be redundant after genome duplication. This study proposed that the TLP genes in B. napus did not directly expansion compared with its diploid parents B. rapa, and B. oleracea. Instead, an indirect expansion of TLP gene family occurred in its two diploid parents. In addition, the study further utilized RNA-seq to detect the expression pattern of TLP genes between different tissues and two subgenomes. CONCLUSIONS This study systematically conducted the comparative analyses of TLP gene family in B. napus, discussed the loss and expansion of genes after genome duplication. It provided rich gene resources for exploring the molecular mechanism of TLP gene family. Meanwhile, it provided guidance and reference for the research of other gene families in B. napus.
Collapse
Affiliation(s)
- Tong Wang
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Jingjing Hu
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Xiao Ma
- Library, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Qihang Yang
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Shuyan Feng
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Miaomiao Li
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
| | - Nan Li
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China.
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China.
| |
Collapse
|