1
|
Earley YF, Pan S, Verma H, Zheng H, Plata AA, Zubcevic J, Leenen FH. Central nervous system mechanisms of salt-sensitive hypertension. Physiol Rev 2025; 105:1989-2032. [PMID: 40315132 PMCID: PMC12187566 DOI: 10.1152/physrev.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/29/2024] [Accepted: 04/06/2025] [Indexed: 05/04/2025] Open
Abstract
Salt-sensitive and salt-induced hypertension (SHTN) is a multifaceted and heterogeneous condition influenced by various factors, including lifestyle, genetics, sex, age, and dietary salt intake. Despite its prevalence, affecting about 50% of hypertensive and 25% of normotensive individuals, the precise mechanisms driving salt sensitivity remain incompletely understood. The central nervous system (CNS) plays a pivotal role in SHTN, as it detects changes in plasma and cerebrospinal fluid sodium (Na+) concentrations and integrates sensory signals from peripheral organs. These inputs, in turn, regulate the autonomic nervous system, leading to an increase in sympathetic nerve activity that contributes to the onset of SHTN. This review examines the CNS mechanisms involved in SHTN, focusing on the key afferent and efferent pathways in its pathogenesis. We summarize recent findings on critical neural circuits activated by dietary salt and examine several key signaling pathways, including the brain's renin-angiotensin system, aldosterone-"ouabain," and salt-sensitive G proteins. Additionally, we discuss the clinical relevance of targeting the CNS for SHTN treatment and review current therapeutic approaches.
Collapse
Affiliation(s)
- Yumei Feng Earley
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shiyue Pan
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Himanshu Verma
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Haifeng Zheng
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jasenka Zubcevic
- Center for Microbiome Research, University of South Florida, Tampa, FL, USA
| | - Frans H.H. Leenen
- Brain and Heart Research Group (Retired), University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
2
|
Chen Y, Xiang S, Chen C, Su Q, Zhang Z, Fan Y, Cui Z, Yin L, Zuo H, Zuo M. Antithrombotic Effect of a Bivalent DNA Aptamer of Thrombin. ACS Biomater Sci Eng 2025; 11:2705-2712. [PMID: 40203196 DOI: 10.1021/acsbiomaterials.5c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Thrombin plays a critical role in both coagulation and platelet activation, and its interaction with thrombin-protease-activated receptor 1 (PAR1) on platelets and vascular smooth muscle cells (VSMCs) leads to a series of pathological processes such as thrombosis, restenosis, and atherosclerosis. This study investigated the antithrombotic properties of a bivalent DNA aptamer (bApt) with phosphorothioate backbone modification designed to inhibit thrombin, with a specific focus on its ability to regulate the thrombin-PAR1 signaling pathway. The results showed that bApt modulated the thrombin-PAR1 pathway, effectively reduced thrombus formation, platelet aggregation, and VSMC proliferation. Key findings from the study highlight that bApt successfully prolonged coagulation reaction time (R value), coagulation time (K value), maximum amplitude (MA) and reduced coagulation angle (α value), and also prolonged thrombin time (TT) and activated partial thromboplastin time (APTT), in a dose-dependent manner. Moreover, in an arterial injury model, bApt reduced thrombus formation significantly, supporting its potential as a therapeutic agent for thrombotic diseases.
Collapse
MESH Headings
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/chemistry
- Thrombin/antagonists & inhibitors
- Thrombin/metabolism
- Animals
- Platelet Aggregation/drug effects
- Fibrinolytic Agents/pharmacology
- Fibrinolytic Agents/chemistry
- Thrombosis/drug therapy
- Humans
- Blood Coagulation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Male
- Cell Proliferation/drug effects
- Receptor, PAR-1/metabolism
Collapse
Affiliation(s)
- Yanxi Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shoubo Xiang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610071, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunfa Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiuyu Su
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yangyang Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhihong Cui
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lixue Yin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610071, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mingliang Zuo
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cardiovascular Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610071, China
| |
Collapse
|
3
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Lee J, Shin S, Park J, Choi HY, Lee K. Vasorelaxant effects and its mechanisms of the rhizome of Acorus gramineus on isolated rat thoracic aorta. Sci Rep 2025; 15:4386. [PMID: 39910151 PMCID: PMC11799538 DOI: 10.1038/s41598-025-87758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
In conventional medicine, the rhizome of Acorus gramineus Solander (AGR) is used to treat cardiovascular and cerebrovascular diseases. Decoctions containing AGR exert vasorelaxant effects. Therefore, this research aimed to delve deeper into the vasorelaxant effects and underlying mechanisms of AGR and its constituents (α-asarone and β-asarone). We assessed the vasorelaxant effect of a 50% ethanol extract of AGR (AGRE) using aortic rings from Sprague-Dawley rats pre-constricted with phenylephrine (PE) and potassium chloride (KCl). The findings suggested that the mechanism of this effect was independent of endothelial cells and was associated with vascular smooth muscle cells (VSMC). Since vasodilatory mechanisms associated with VSMC are predominantly influenced by K+ and Ca2+ channels, we explored various channels, including calcium-activated K+, voltage-dependent (delayed rectifier) K+, ATP-sensitive K+, inwardly rectifying K+, receptor-operated Ca2+ (ROCC), and voltage-dependent Ca2+ channels (VDCC). Selective blockers were used to examine K+ channels, which inhibited vasorelaxant effect of AGRE. These findings suggest that AGRE-induced vasorelaxation is facilitated through K+ channels. In addition, the blockage of Ca2+ influx was observed in both groups treated with PE and KCl. Therefore, AGR appears to block Ca2+ influx through ROCC and VDCC. In conclusion, AGR demonstrates vasorelaxant effects by acting on VSMC.
Collapse
Affiliation(s)
- Jueon Lee
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
5
|
Aviram R, Zaffryar‐Eilot S, Kaganovsky A, Odeh A, Melamed S, Militsin R, Coren L, Pinnock CB, Shemesh A, Palty R, Ganesh SK, Hasson P. Coordination among cytoskeletal organization, cell contraction, and extracellular matrix development is dependent on LOX for aneurysm prevention. FEBS J 2025; 292:776-795. [PMID: 39632420 PMCID: PMC11839385 DOI: 10.1111/febs.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/04/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Distinct and seemingly independent cellular pathways affecting intracellular machinery or extracellular matrix (ECM) deposition and organization have been implicated in aneurysm formation. One of the key genes associated with this pathology in both humans and mice is lysyl oxidase (LOX), a secreted ECM-modifying enzyme, highly expressed in medial vascular smooth muscle cells. To dissect the mechanisms leading to aneurysm development, we conditionally deleted Lox in smooth muscle cells. We find that cytoskeletal organization is lost following Lox deletion. Cell culture assays and in vivo analyses demonstrate a cell-autonomous role for LOX affecting myosin light-chain phosphorylation and cytoskeletal assembly resulting in irregular smooth muscle contraction. These results not only highlight new intracellular roles for LOX, but notably, they provide a link between multiple processes leading to aneurysm formation, suggesting LOX coordinates ECM development, cytoskeletal organization, and cell contraction required for media development and function.
Collapse
Affiliation(s)
- Rohtem Aviram
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shelly Zaffryar‐Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Anna Kaganovsky
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ruslana Militsin
- Department of Biochemistry, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Lavi Coren
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Cameron B. Pinnock
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Ariel Shemesh
- Biomedical core facilities, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Raz Palty
- Department of Biochemistry, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Santhi K. Ganesh
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
6
|
McCullough M, Joshi IV, Pereira NL, Fuentes N, Krishnan R, Druey KM. Targeting cytoskeletal biomechanics to modulate airway smooth muscle contraction in asthma. J Biol Chem 2025; 301:108028. [PMID: 39615690 PMCID: PMC11721269 DOI: 10.1016/j.jbc.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
To contract, to deform, and remodel, the airway smooth muscle cell relies on dynamic changes in the structure of its mechanical force-bearing cytoskeleton. These alternate between a "fluid-like" (relaxed) state characterized by weak contractile protein-protein interactions within the cytoskeletal apparatus and a "solid-like" (contractile) state promoted by strong and highly organized molecular interactions. In this review, we discuss the roles for actin, myosin, factors promoting actin polymerization and depolymerization, adhesome complexes, and cell-cell junctions in these dynamic processes. We describe the relationship between these cytoskeletal factors, extracellular matrix components of bronchial tissue, and mechanical stretch and other changes within the airway wall in the context of the physical mechanisms of cytoskeletal fluidization-resolidification. We also highlight studies that emphasize the distinct processes of cell shortening and force transmission in airway smooth muscle and previously unrecognized roles for actin in cytoskeletal dynamics. Finally, we discuss the implications of these discoveries for understanding and treating airway obstruction in asthma.
Collapse
Affiliation(s)
- Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ilin V Joshi
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nicolas L Pereira
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, Massachusetts, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Han C, Zhu M, Liu Y, Yang Y, Cheng J, Li P. Regulation of Vascular Injury and Repair by P21-Activated Kinase 1 and P21-Activated Kinase 2: Therapeutic Potential and Challenges. Biomolecules 2024; 14:1596. [PMID: 39766303 PMCID: PMC11674331 DOI: 10.3390/biom14121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The PAK (p21-activated kinases) family is a class of intracellular signal transduction protein kinases that regulate various cellular functions, mainly through their interactions with small GTP enzymes. PAK1 and PAK2 in the PAK kinase family are key signal transduction molecules that play important roles in various biological processes, including morphological changes, migration, proliferation, and apoptosis, and are involved in the progression of many diseases. Abnormal expression or dysregulation of PAK1 and PAK2 may be associated with several diseases, including cancer, neurological diseases, etc. The current research mainly focuses on studying the role of PAK and PAK inhibitors in the regulation of cancer progression, but relatively few reports are available that explore their potential role in cardiovascular diseases. Vascular injury and repair are complex processes involved in many cardiovascular conditions, including atherosclerosis, restenosis, and hypertension. Emerging research suggests that PAK1 and PAK2 have pivotal roles in vascular endothelial cell functions, including migration, proliferation, and angiogenesis. These kinases also modulate vascular smooth muscle relaxation, vascular permeability, and structural alterations, which are critical in the development of atherosclerosis and vascular inflammation. By targeting these activities, PAK proteins are essential for both normal vascular physiology and the pathogenesis of vascular diseases, highlighting their potential as therapeutic targets for vascular health. This review focuses on recent studies that offer experimental insights into the mechanisms by which PAK1 and PAK2 regulate the biological processes of vascular injury and repair and the therapeutic potential of the current existing PAK inhibitors in vascular-related diseases. The limitations of treatment with some PAK inhibitors and the ways that future development can overcome these challenges are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; (C.H.); (M.Z.); (Y.L.); (Y.Y.); (J.C.)
| |
Collapse
|
8
|
Owen CM, Jaffe LA. Luteinizing hormone-induced changes in the structure of mammalian preovulatory follicles. Curr Top Dev Biol 2024; 162:259-282. [PMID: 40180511 DOI: 10.1016/bs.ctdb.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Ovulation of a mammalian oocyte from its follicle, which occurs in response to luteinizing hormone (LH), requires complex restructuring of the ∼20 layers of surrounding somatic cells. This chapter describes the cellular architecture of preovulatory follicles, the localization of the receptors for LH, and the LH-induced changes in follicular structure, focusing on mice and other small mammals. The multiple interrelated processes that result in ovulation include breakdown of existing extracellular matrix, generation of new extracellular matrix, thinning of the follicular apex where the oocyte will be released, invagination of the follicular surface, and responses of the vascular system to support these dynamic changes. However, much remains unknown about how these events function together to release a fertilizable egg.
Collapse
Affiliation(s)
- Corie M Owen
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States.
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, United States.
| |
Collapse
|
9
|
Matsumoto T, Nagano T, Taguchi K, Kobayashi T, Tanaka-Totoribe N. Toll-like receptor 3 involvement in vascular function. Eur J Pharmacol 2024; 979:176842. [PMID: 39033837 DOI: 10.1016/j.ejphar.2024.176842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Maintaining endothelial cell (EC) and vascular smooth muscle cell (VSMC) integrity is an important component of human health and disease because both EC and VSMC regulate various functions, including vascular tone control, cellular adhesion, homeostasis and thrombosis regulation, proliferation, and vascular inflammation. Diverse stressors affect functions in both ECs and VSMCs and abnormalities of functions in these cells play a crucial role in cardiovascular disease initiation and progression. Toll-like receptors (TLRs) are important detectors of pathogen-associated molecular patterns derived from various microbes and viruses as well as damage-associated molecular patterns derived from damaged cells and perform innate immune responses. Among TLRs, several studies reveal that TLR3 plays a key role in initiation, development and/or protection of diseases, and an emerging body of evidence indicates that TLR3 presents components of the vasculature, including ECs and VSMCs, and plays a functional role. An agonist of TLR3, polyinosinic-polycytidylic acid [poly (I:C)], affects ECs, including cell death, inflammation, chemoattractant, adhesion, permeability, and hemostasis. Poly (I:C) also affects VSMCs including inflammation, proliferation, and modulation of vascular tone. Moreover, alterations of vascular function induced by certain molecules and/or interventions are exerted through TLR3 signaling. Hence, we present the association between TLR3 and vascular function according to the latest studies.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Takayuki Nagano
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Tanaka-Totoribe
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| |
Collapse
|
10
|
Peng L, Zhang Z, Du W, Zhu J, Duan W. Proteomic and Phosphoproteomic analysis of thyroid papillary carcinoma: Identification of potential biomarkers for metastasis. J Proteomics 2024; 306:105260. [PMID: 39029786 DOI: 10.1016/j.jprot.2024.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Thyroid cancer has emerged as the most rapidly proliferating solid neoplasm. In this study, we included a cohort of patients who underwent sonographic assessment and surgical intervention at the Sir Run Run Shaw Hospital, associated with the School of Medicine at Zhejiang University, spanning from January 2019 to June 2020. Stratification of cases was based on a combination of preoperative ultrasonographic evaluations and postoperative histopathological diagnoses, resulting in three distinct groups: high-risk papillary thyroid carcinoma (PTC) labeled as C1, low-risk PTC designated as C2, and a control group (N) composed of benign thyroid tissue adjacent to the carcinoma. Proteomic and phosphoproteomic analyses were conducted on PTC specimens. The comparative assessment revealed that proteins up-regulated in the C1/N and C2/N groups were predominantly involved in functions such as amino acid binding, binding of phosphorylated compounds, and serine protease activity. Notably, proteins like NADH dehydrogenase, ATP synthase, oxidoreductases, and iron ion channels were significantly elevated in the C1 versus C2 comparative group. Through meticulous analysis of differential expression multiples, statistical significance, and involvement in metabolic pathways, this study identified eight potential biomarkers pertinent to PTC metastasis diagnostics, encompassing phosphorylated myosin 10, phosphorylated proline-directed protein kinase, leucine tRNA synthetase, 2-oxo-isovalerate dehydrogenase, succinic semialdehyde dehydrogenase, ADP/ATPtranslocase, pyruvate carboxylase, and fibrinogen. Therapeutic assays employing metformin, an AMP-activated protein kinase (AMPK) activator, alongside the phosphorylation-specific inhibitor ML-7 targeting Myosin10, demonstrated attenuated cellular proliferation, migration, and invasion capabilities in thyroid cancer cells, accompanied by a reduction in amino acid pools. Cellular colocalization and interaction studies elucidated that AMPK activation imposes an inhibitory influence on Myosin10 levels. The findings of this research corroborate the utility of proteomic and phosphoproteomic platforms in the identification of metastatic markers for PTC and suggest that modulation of AMPK activity, coupled with the inhibition of Myosin10 phosphorylation, may forge novel therapeutic avenues in the management of thyroid carcinoma. SIGNIFICANCE: The significance of our research lies in its potential to transform the current understanding and management of thyroid papillary carcinoma (PTC), particularly in its metastatic form. By integrating both proteomic and phosphoproteomic analyses, our study not only sheds light on the molecular alterations associated with PTC but also identifies eight novel biomarkers that could serve as indicators of metastatic potential.
Collapse
Affiliation(s)
- Lingyao Peng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Zhenxian Zhang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Wei Du
- Hangzhou Institute of Standardization, Hangzhou 310000, China
| | - Jiang Zhu
- Women's Hospital School of Medicine Zhejiang University, 310006 Hangzhou, China.
| | - Wenkai Duan
- Hangzhou Vocational and Technical College, Hangzhou 310018, China.
| |
Collapse
|
11
|
Ran Q, Li A, Tan Y, Zhang Y, Zhang Y, Chen H. Action and therapeutic targets of myosin light chain kinase, an important cardiovascular signaling mechanism. Pharmacol Res 2024; 206:107276. [PMID: 38944220 DOI: 10.1016/j.phrs.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The global incidence of cardiac diseases is increasing, imposing a substantial socioeconomic burden on healthcare systems. The pathogenesis of cardiovascular disease is complex and not fully understood, and the physiological function of the heart is inextricably linked to well-regulated cardiac muscle movement. Myosin light chain kinase (MLCK) is essential for myocardial contraction and diastole, cardiac electrophysiological homeostasis, vasoconstriction of vascular nerves and blood pressure regulation. In this sense, MLCK appears to be an attractive therapeutic target for cardiac diseases. MLCK participates in myocardial cell movement and migration through diverse pathways, including regulation of calcium homeostasis, activation of myosin light chain phosphorylation, and stimulation of vascular smooth muscle cell contraction or relaxation. Recently, phosphorylation of myosin light chains has been shown to be closely associated with the activation of myocardial exercise signaling, and MLCK mediates systolic and diastolic functions of the heart through the interaction of myosin thick filaments and actin thin filaments. It works by upholding the integrity of the cytoskeleton, modifying the conformation of the myosin head, and modulating innervation. MLCK governs vasoconstriction and diastolic function and is associated with the activation of adrenergic and sympathetic nervous systems, extracellular transport, endothelial permeability, and the regulation of nitric oxide and angiotensin II. Additionally, MLCK plays a crucial role in the process of cardiac aging. Multiple natural products/phytochemicals and chemical compounds, such as quercetin, cyclosporin, and ML-7 hydrochloride, have been shown to regulate cardiomyocyte MLCK. The MLCK-modifying capacity of these compounds should be considered in designing novel therapeutic agents. This review summarizes the mechanism of action of MLCK in the cardiovascular system and the therapeutic potential of reported chemical compounds in cardiac diseases by modifying MLCK processes.
Collapse
Affiliation(s)
- Qingzhi Ran
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Aoshuang Li
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100053, China
| | - Yuqing Tan
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Yue Zhang
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| | - Yongkang Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| |
Collapse
|
12
|
Yao YB, Xiao CF, Wu JW, Meng LY, Liu W, Lu JG, Wang C. Yiqi Kaimi prescription regulates protein phosphorylation to promote intestinal motility in slow transit constipation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118118. [PMID: 38614261 DOI: 10.1016/j.jep.2024.118118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The clinical efficacy of the Yiqi Kaimi prescription has been confirmed in slow transit constipation. However, the effects and biological mechanism of Yiqi Kaimi prescription are still unclear. AIMS OF THE STUDY To identify the effects of Yiqi Kaimi prescription on intestinal motility; To reveal the potential key targets and pathways of Yiqi Kaimi prescription for the treatment of slow transit constipation. MATERIALS AND METHODS The effects of Yiqi Kaimi prescription on slow transit constipation were investigated in a mouse model. The terminal ink propulsion experiment and fecal indocyanine green imaging was used to measure the intestinal transit time. Protein phosphorylation changes in colon tissues treated with Yiqi Kaimi prescription were detected using a Phospho Explorer antibody microarray. Bioinformatic analyses were performed using the Database for Annotation Visualization and Integrated Discovery (DAVID) and the Search Tool for the Retrieval of Interacting Genes (STRING). Western blot analysis and immunohistochemistry confirmed the observed changes in phosphorylation. RESULT s: Yiqi Kaimi prescription significantly increased the intestinal transit rate (P < 0.05 vs. model) and reduced the time to first discharge of feces containing fecal indocyanine green imaging in mice (P < 0.05 vs. model). The administration of Yiqi Kaimi prescription induced phosphorylation changes in 41 proteins, with 9 upregulated proteins and 32 downregulated proteins. Functional classification of the phosphorylated proteins with DAVID revealed that the critical biological processes included tyrosine protein kinases, positive regulation of calcium-mediated signaling and response to muscle stretch. The phosphorylation of the spleen tyrosine kinase (SYK) at Tyr348 increased 2.19-fold, which was the most significant change. The phosphorylation level of the transcription factor p65 (RELA) at Thr505 was decreased 0.57-fold. SYK was a hub protein in the protein-protein interaction network and SYK and RELA formed the core of the secondary subnetwork. The key protein phosphorylation after treatment with Yiqi Kaimi prescription were verified by Western blot analysis and immunohistochemistry. CONCLUSION Yiqi Kaimi prescription significantly enhanced intestinal motility. This effect was attributed to alterations in the phosphorylation levels of various target proteins. The observed changes in protein phosphorylation, including SYK and RELA, may serve as crucial factors in the treatment of slow transit constipation.
Collapse
Affiliation(s)
- Yi-Bo Yao
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Chang-Fang Xiao
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Jing-Wen Wu
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Ling-Yun Meng
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Wei Liu
- Department of Pharmacy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Gen Lu
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Wang
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| |
Collapse
|
13
|
Ye Z, Okamoto R, Ito H, Ito R, Moriwaki K, Ichikawa M, Kimena L, Ali Y, Ito M, Gomez‐Sanchez CE, Dohi K. Myosin Light Chain Phosphatase Plays an Important Role in Cardiac Fibrosis in a Model of Mineralocorticoid Receptor-Associated Hypertension. J Am Heart Assoc 2024; 13:e032828. [PMID: 38420846 PMCID: PMC10944028 DOI: 10.1161/jaha.123.032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Myosin phosphatase targeting subunit 2 (MYPT2) is an important subunit of cardiac MLC (myosin light chain) phosphatase, which plays a crucial role in regulating the phosphorylation of MLC to phospho-MLC (p-MLC). A recent study demonstrated mineralocorticoid receptor-related hypertension is associated with RhoA/Rho-associated kinase/MYPT1 signaling upregulation in smooth muscle cells. Our purpose is to investigate the effect of MYPT2 on cardiac function and fibrosis in mineralocorticoid receptor-related hypertension. METHODS AND RESULTS HL-1 murine cardiomyocytes were incubated with different concentrations or durations of aldosterone. After 24-hour stimulation, aldosterone increased CTGF (connective tissue growth factor) and MYPT2 and decreased p-MLC in a dose-dependent manner. MYPT2 knockdown decreased CTGF. Cardiac-specific MYPT2-knockout (c-MYPT2-/-) mice exhibited decreased type 1 phosphatase catalytic subunit β and increased p-MLC. A disease model of mouse was induced by subcutaneous aldosterone and 8% NaCl food for 4 weeks after uninephrectomy. Blood pressure elevation and left ventricular hypertrophy were observed in both c-MYPT2-/- and MYPT2+/+ mice, with no difference in heart weights or nuclear localization of mineralocorticoid receptor in cardiomyocytes. However, c-MYPT2-/- mice had higher ejection fraction and fractional shortening on echocardiography after aldosterone treatment. Histopathology revealed less fibrosis, reduced CTGF, and increased p-MLC in c-MYPT2-/- mice. Basal global radial strain and global longitudinal strain were higher in c-MYPT2-/- than in MYPT2+/+ mice. After aldosterone treatment, both global radial strain and global longitudinal strain remained higher in c-MYPT2-/- mice compared with MYPT2+/+ mice. CONCLUSIONS Cardiac-specific MYPT2 knockout leads to decreased myosin light chain phosphatase and increased p-MLC. MYPT2 deletion prevented cardiac fibrosis and dysfunction in a model of mineralocorticoid receptor-associated hypertension.
Collapse
Affiliation(s)
- Zhe Ye
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Ryuji Okamoto
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
- Regional Medical Support CenterMie University HospitalTsuMieJapan
- Department of Clinical Training and Career Support CenterMie University HospitalTsuMieJapan
| | - Hiromasa Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Rie Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Keishi Moriwaki
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Mizuki Ichikawa
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Lupiya Kimena
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Yusuf Ali
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Masaaki Ito
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| | - Celso E. Gomez‐Sanchez
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMS
| | - Kaoru Dohi
- Department of Cardiology and NephrologyMie University Graduate School of MedicineTsuMieJapan
| |
Collapse
|
14
|
Aviram R, Zaffryar-Eilot S, Kaganovsky A, Odeh A, Melamed S, Militsin R, Pinnock CB, Shemesh A, Palty R, Ganesh SK, Hasson P. Coordination between cytoskeletal organization, cell contraction and extracellular matrix development, is depended on LOX for aneurysm prevention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581837. [PMID: 38464309 PMCID: PMC10925230 DOI: 10.1101/2024.02.23.581837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Distinct, seemingly independent, cellular pathways affecting intracellular machineries or extracellular matrix (ECM) deposition and organization, have been implicated in aneurysm formation. One of the key genes associated with the pathology in both humans and mice is Lysyl oxidase (LOX), a secreted ECM-modifying enzyme, highly expressed in medial vascular smooth muscle cells. To dissect the mechanisms leading to aneurysm development, we conditionally deleted Lox in smooth muscle cells. We find that cytoskeletal organization is lost following Lox deletion. Cell culture assays and in vivo analyses demonstrate a cell-autonomous role for LOX affecting myosin light chain phosphorylation and cytoskeletal assembly resulting in irregular smooth muscle contraction. These results not only highlight new intracellular roles for LOX, but notably they link between multiple processes leading to aneurysm formation suggesting LOX coordinates ECM development, cytoskeletal organization and cell contraction required for media development and function.
Collapse
|
15
|
Egbert JR, Silbern I, Uliasz TF, Lowther KM, Yee SP, Urlaub H, Jaffe LA. Phosphatases modified by LH signaling in ovarian follicles: testing their role in regulating the NPR2 guanylyl cyclase†. Biol Reprod 2024; 110:102-115. [PMID: 37774352 PMCID: PMC10790345 DOI: 10.1093/biolre/ioad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023] Open
Abstract
In response to luteinizing hormone (LH), multiple proteins in rat and mouse granulosa cells are rapidly dephosphorylated, but the responsible phosphatases remain to be identified. Because the phosphorylation state of phosphatases can regulate their interaction with substrates, we searched for phosphatases that might function in LH signaling by using quantitative mass spectrometry. We identified all proteins in rat ovarian follicles whose phosphorylation state changed detectably in response to a 30-min exposure to LH, and within this list, identified protein phosphatases or phosphatase regulatory subunits that showed changes in phosphorylation. Phosphatases in the phosphoprotein phosphatase (PPP) family were of particular interest because of their requirement for dephosphorylating the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase in the granulosa cells, which triggers oocyte meiotic resumption. Among the PPP family regulatory subunits, PPP1R12A and PPP2R5D showed the largest increases in phosphorylation, with 4-10 fold increases in signal intensity on several sites. Although follicles from mice in which these phosphorylations were prevented by serine-to-alanine mutations in either Ppp1r12a or Ppp2r5d showed normal LH-induced NPR2 dephosphorylation, these regulatory subunits and others could act redundantly to dephosphorylate NPR2. Our identification of phosphatases and other proteins whose phosphorylation state is rapidly modified by LH provides clues about multiple signaling pathways in ovarian follicles.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Katie M Lowther
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
- Center for Mouse Genome Modification, University of Connecticut Health Center, Farmington CT, USA
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
- Center for Mouse Genome Modification, University of Connecticut Health Center, Farmington CT, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
16
|
Okamoto R, Ye Z, Dohi K. Letter by Okamoto et al Regarding Article, "Restoration of Cardiac Myosin Light Chain Kinase Ameliorates Systolic Dysfunction by Reducing Superrelaxed Myosin". Circulation 2023; 148:2073. [PMID: 38109342 DOI: 10.1161/circulationaha.123.066090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 12/20/2023]
Affiliation(s)
- Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan (R.O., Z.Y., K.D.)
- Regional Medical Support Center (R.O.), Mie University Hospital, Tsu, Japan
- Department of Clinical Training and Career Support Center (R.O.), Mie University Hospital, Tsu, Japan
| | - Zhe Ye
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan (R.O., Z.Y., K.D.)
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan (R.O., Z.Y., K.D.)
| |
Collapse
|
17
|
Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Palecek SP, Ralphe JC, Kamp TJ, Ge Y. Top-down proteomics of myosin light chain isoforms define chamber-specific expression in the human heart. J Mol Cell Cardiol 2023; 181:89-97. [PMID: 37327991 PMCID: PMC10528938 DOI: 10.1016/j.yjmcc.2023.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Myosin functions as the "molecular motor" of the sarcomere and generates the contractile force necessary for cardiac muscle contraction. Myosin light chains 1 and 2 (MLC-1 and -2) play important functional roles in regulating the structure of the hexameric myosin molecule. Each of these light chains has an 'atrial' and 'ventricular' isoform, so called because they are believed to exhibit chamber-restricted expression in the heart. However, recently the chamber-specific expression of MLC isoforms in the human heart has been questioned. Herein, we analyzed the expression of MLC-1 and -2 atrial and ventricular isoforms in each of the four cardiac chambers in adult non-failing donor hearts using top-down mass spectrometry (MS)-based proteomics. Strikingly, we detected an isoform thought to be ventricular, MLC-2v (gene: MYL2), in the atria and confirmed the protein sequence using tandem MS (MS/MS). For the first time, a putative deamidation post-translation modification (PTM) located on MLC-2v in atrial tissue was localized to amino acid N13. MLC-1v (MYL3) and MLC-2a (MYL7) were the only MLC isoforms exhibiting chamber-restricted expression patterns across all donor hearts. Importantly, our results unambiguously show that MLC-1v, not MLC-2v, is ventricle-specific in adult human hearts. Moreover, we found elevated MLC-2 phosphorylation in male hearts compared to female hearts across each cardiac chamber. Overall, top-down proteomics allowed an unbiased analysis of MLC isoform expression throughout the human heart, uncovering previously unexpected isoform expression patterns and PTMs.
Collapse
Affiliation(s)
- Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kalina J Rossler
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy J Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily A Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
18
|
Błaszczyk JW. Metabolites of Life: Phosphate. Metabolites 2023; 13:860. [PMID: 37512567 PMCID: PMC10385453 DOI: 10.3390/metabo13070860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The process of aging and escalating the failure of all body organs has become the center of interest in contemporary science and medicine. The leading role of phosphate-calcium tandem deficiency as a pacemaker of metabolic senescence has emerged recently. Most of the phosphates in the human body are stored in the bones, which seem to play a pivotal role in all metabolic and energetic processes. Bone metabolism combines physical activity with adaptive changes in the internal environment of the body, which is necessary for its survival. Phosphate-calcium signaling is the primary mechanism for controlling homeostasis and its recovery after exercise-induced disorders. Phosphates play an important role in the regulation of energy metabolism both by regulating postprandial glucose storage in the muscles and in the liver, as well as the distribution and adaptation of energy metabolites to the needs of the brain and skeletal muscles. The bone-driven energy metabolism is of decisive importance for maintaining all vital functions of the body organs, including their proper functioning and integrated interplay. The phosphate-calcium tandem contributes to the development and proper functioning of the organism, whereas energy dysmetabolism is the main cause of aging and the final termination of life.
Collapse
|
19
|
Korte N, James G, You H, Hirunpattarasilp C, Christie I, Sethi H, Attwell D. Noradrenaline released from locus coeruleus axons contracts cerebral capillary pericytes via α2 adrenergic receptors. J Cereb Blood Flow Metab 2023; 43:1142-1152. [PMID: 36688515 PMCID: PMC10291462 DOI: 10.1177/0271678x231152549] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
Noradrenaline (NA) release from locus coeruleus axons generates vascular contractile tone in arteriolar smooth muscle and contractile capillary pericytes. This tone allows neuronal activity to evoke vasodilation that increases local cerebral blood flow (CBF). Much of the vascular resistance within the brain is located in capillaries and locus coeruleus axons have NA release sites closer to pericytes than to arterioles. In acute brain slices, NA contracted pericytes but did not raise the pericyte cytoplasmic Ca2+ concentration, while the α1 agonist phenylephrine did not evoke contraction. Blocking α2 adrenergic receptors (α2Rs, which induce contraction by inhibiting cAMP production), greatly reduced the NA-evoked pericyte contraction, whereas stimulating α2Rs using xylazine (a sedative) or clonidine (an anti-hypertensive drug) evoked pericyte contraction. Noradrenaline-evoked pericyte contraction and capillary constriction are thus mediated via α2Rs. Consequently, α2Rs may not only modulate CBF in health and pathological conditions, but also contribute to CBF changes evoked by α2R ligands administered in research, veterinary and clinical settings.
Collapse
Affiliation(s)
- Nils Korte
- Dept of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Greg James
- Dept of Neuroscience, Physiology & Pharmacology, University College London, London, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | - Haoming You
- Dept of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Chanawee Hirunpattarasilp
- Dept of Neuroscience, Physiology & Pharmacology, University College London, London, UK
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Isabel Christie
- Dept of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Huma Sethi
- Dept of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - David Attwell
- Dept of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
20
|
Wang QW, Xu JY, Li HX, Su YD, Song JW, Song ZP, Song SS, Dong B, Wang SX, Li B. A simple and accurate method to quantify real-time contraction of vascular smooth muscle cell in vitro. Vascul Pharmacol 2023; 149:107146. [PMID: 36724828 DOI: 10.1016/j.vph.2023.107146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Vascular smooth muscle cells (VSMCs) constitute the medial layer of the blood vessel wall. Their contractile state regulates blood flow in physiological and pathological conditions. Current methods for assessing the contractility of VSMCs are not amenable to the high-throughput screening of pharmaceutical compounds. This study aimed to develop a method to address this shortcoming in the field. Real-time contraction was visualized in living VSMCs using the exogenous expression of green fluorescent protein (GFP). Image-Pro Plus software (IPPS) was used to measure various morphological cell indices. In phenylephrine-treated VSMCs, GFP fluorescence imaging was more accurate than brightfield imaging or phalloidin staining in representing VSMC morphology, as measured using IPPS. Among the multiple indices of VSMC shape, area and mean-diameter were more sensitive than length in reflecting the morphological changes in VSMC. We developed a new index, compound length, by combining the mean-diameter and length to differentiate contracted and uncontracted VSMCs. Based on the compound length, we further generated a contraction index to define a single-VSMC contractile status as single-VSMC contraction-index (SVCI). Finally, compound length and SVCI were validated to effectively assess cell contraction in VSMCs challenged with U46619 and KCl. In conclusion, GFP-based indices of compound length and SVCI can accurately quantify the real-time contraction of VSMCs. In future, the new method will be applied to high-throughput drug screening or basic cardiovascular research.
Collapse
Affiliation(s)
- Qian-Wen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia-Yao Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui-Xin Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Dong Su
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhi-Peng Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Sha-Sha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Bin Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Kopylova GV, Matyushenko AM, Kochurova AM, Bershitsky SY, Shchepkin DV. Effects of Phosphorylation of Tropomyosin with Cardiomyopathic Mutations on Calcium Regulation of Myocardial Contraction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Muhl L, Mocci G, Pietilä R, Liu J, He L, Genové G, Leptidis S, Gustafsson S, Buyandelger B, Raschperger E, Hansson EM, Björkegren JL, Vanlandewijck M, Lendahl U, Betsholtz C. A single-cell transcriptomic inventory of murine smooth muscle cells. Dev Cell 2022; 57:2426-2443.e6. [DOI: 10.1016/j.devcel.2022.09.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
|