1
|
Niu G, Jiang J, Zeng X, Liu X, Wang X, Zhang Y, Che L, Sui L, Wu G, Yuan K, Yang X. Broad-Temperature Optical Thermometry via Dual Sensitivity of Self-Trapped Excitons Lifetime and Higher-Order Phonon Anharmonicity in Lead-Free Perovskites. Angew Chem Int Ed Engl 2025; 64:e202422424. [PMID: 39844778 DOI: 10.1002/anie.202422424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing. In contrast, the Eg phonon mode undergoes significant linewidth broadening due to five-phonon scattering processes, with a distinct nonlinear temperature dependence up to 500 K. This fifth-order anharmonic effect enhances Raman-based temperature sensitivity, yielding a specific sensitivity (Sr) of 0.577 % K-1 at 330 K and remaining above 0.5 % K-1 at elevated temperatures. This study presents the first evidence of fifth-order anharmonic effects enhancing Raman-based temperature sensitivity, establishing Cs2TeCl6 as a versatile candidate for broad-temperature optical thermometry and opening new avenues for precise non-contact temperature sensing in advanced technological applications.
Collapse
Affiliation(s)
- Guangming Niu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jutao Jiang
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xin Liu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Yutong Zhang
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian, 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Shen Y, Yan L, Wang Y, Li X, Zhao Y, Si J, Hou X. Influence of defect-state on the carrier dynamics in MAPbI3 polycrystalline films. J Chem Phys 2025; 162:124708. [PMID: 40125682 DOI: 10.1063/5.0256941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
In this paper, a transient absorption microscope with submicron resolution is used to detect the internal and grain boundary regions of the prepared polycrystalline thin film grains, and the obtained transient absorption spectra are subjected to singular value decomposition and global fitting. The contributions of hot carriers, cooled carriers, and defect-trapped carriers to the transient absorption signals and the dynamic evolution of the carriers among themselves are elucidated. By comparing the carrier dynamics taking place at the boundary and internal regions, we find that the benign shallow defect state in the grain boundary region has a positive effect on accelerating the cooling of hot carriers, while the deep energy level defects induce excited state absorption signals. This study provides a basis for further understanding the effect of grain boundary defects on the performance of polycrystal perovskite devices.
Collapse
Affiliation(s)
- Ya'nan Shen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
- Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui Normal University, Tianshui 741000, China
| | - Yifan Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Xiangbing Li
- Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui Normal University, Tianshui 741000, China
| | - Yuxiang Zhao
- Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui Normal University, Tianshui 741000, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
3
|
Ghasemi M, Lu J, Jia B, Wen X. Steady state and transient absorption spectroscopy in metal halide perovskites. Chem Soc Rev 2025; 54:1644-1683. [PMID: 39801268 DOI: 10.1039/d4cs00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Metal halide perovskites (MHPs) have emerged as the most promising materials due to superior optoelectronic properties and great applications spanning from photovoltaics to photonics. Absorption spectroscopy provides a broad and deep insight into the carrier dynamics of MHPs, and is a critical complement to fluorescence and scattering spectroscopy. However, absorption spectroscopy is often misunderstood or underestimated, being seen as UV-vis spectroscopy only, which can lead to various misinterpretations. In fact, absorption spectroscopy is one of the most important branches of spectroscopic techniques (others including fluorescence and scattering), which plays a critical role in understanding the electronic structure and optoelectrical dynamics of MHPs. In this tutorial, the basic principles of various types of absorption spectroscopy as well as their recent developments and applications in MHP materials and devices are summarized, covering comprehensive advances in steady state and transient absorption spectroscopy. Given the significance of absorption spectroscopy in directing the design of different optoelectronic applications of MHPs, this tutorial will comprehensively discuss absorption spectroscopy, covering wavelengths from optical to terahertz (THz) and microwave, and timescales from femtoseconds to hours, and it specifically focuses on time-dependent steady-state and transient absorption spectroscopy under light illumination bias to study MHP materials and devices, allowing researchers to select suitable characterization techniques.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Junlin Lu
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, 3000, Australia.
| |
Collapse
|
4
|
Ghosh S, Medda A, Kalauni D, Patra A. Power-dependent and ultrafast spectroscopic studies of Ag ion-doped colloidal CdSe nanoplatelets. Phys Chem Chem Phys 2025; 27:971-978. [PMID: 39665816 DOI: 10.1039/d4cp04098h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Atomically precise two-dimensional (2D) semiconductor nanoplatelets (NPLs) are found to be promising materials for next-generation optoelectronic devices due to their excellent optical properties. However, energy loss through phonon emission significantly causes problems in achieving efficient performance. Power-dependent steady-state spectroscopy and ultrafast spectroscopic studies have been performed to understand the influence of Ag ions on ultrafast carrier dynamics and thermalization processes in colloidal CdSe NPLs. An ultrafast transient absorption spectroscopic study shows that the rise time is faster from 410 fs to ∼160 fs after 11% Ag doping in CdSe NPLs. The dopant states act as a trap for the charge carriers that facilitate faster relaxation of electrons in these dopant states. The bleach decay time constant (τ1r) changes from 5 ps to 800 fs, changing the dopant concentration from 0 to 11% Ag, indicating the charge carrier separation through an intra-band dopant-mediated state. Power-dependent steady-state photoluminescence spectroscopic study reveals that the thermalization rate reduces from 159.9 ± 9 mW K-1 cm-2 to 27.35 ± 2 mW K-1 cm-2 after Ag doping into CdSe NPLs due to the phonon bottleneck effect (PBE). Reducing the thermalization rate and charge carrier separation due to incorporating Ag dopant is beneficial for efficient optoelectronic devices.
Collapse
Affiliation(s)
- Soubhik Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Anusri Medda
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Deepesh Kalauni
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
5
|
Kim J, Suh J, Lee SH, Watanabe K, Taniguchi T, Ahmed F, Sun Z, Jo MH, Min H, Choi H. Ultrafast Control over Stiffening and Softening of Coherent Interlayer Coupling in WSe 2/WS 2 Heterobilayers. NANO LETTERS 2024; 24:16391-16399. [PMID: 39663813 DOI: 10.1021/acs.nanolett.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Twisted van der Waals heterostructures have led to emerging layer-dependent correlated physics in moiré potentials. While optoelectronic controls over interlayer electronic coupling have been reported, the concomitant interlayer vibration has not yet been controlled. Here, we report experimental evidence of ultrafast optical control over the amplitude and oscillation period of interlayer breathing phonons in WSe2/WS2 heterobilayers. Femtosecond optical excitation above the Mott density in gate-tuned devices shows as large as 10% changes of stiffening and softening amplitude of coherent phonons. A theoretical model, incorporating both Buckingham and Hartree energies, is presented to elucidate the impact of charge-separated carriers generated by photoexcitation on phonon dynamics. This work, therefore, provides insights for extending optoelectronic engineering into the coherent phonons in moiré systems.
Collapse
Affiliation(s)
- Jinjae Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jeonghyeon Suh
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Suk-Ho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Faisal Ahmed
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Hongki Min
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| | - Hyunyong Choi
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Feng M, Sum TC. The Photophysics of Perovskite Emitters: from Ensemble to Single Particle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413836. [PMID: 39600041 DOI: 10.1002/adma.202413836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Halide perovskite emitters are a groundbreaking class of optoelectronic materials possessing remarkable photophysical properties for diverse applications. In perovskite light emitting devices, they have achieved external quantum efficiencies exceeding 28%, showcasing their potential for next-generation solid-state lighting and ultra high definition displays. Furthermore, the demonstration of room temperature continuous-wave perovskite lasing underscores their potential for integrated optoelectronics. Of late, perovskite emitters are also found to exhibit desirable single-photon emission characteristics as well as superfluorescence or superradiance phenomena for quantum optics. With progressive advances in synthesis, surface engineering, and encapsulation, halide perovskite emitters are poised to become key components in quantum optical technologies. Understanding the underpinning photophysical mechanisms is crucial for engineering these novel emergent quantum materials. This review aims to provide a condensed overview of the current state of halide perovskite emitter research covering both established and fledging applications, distill the underlying mechanisms, and offer insights into future directions for this rapidly evolving field.
Collapse
Affiliation(s)
- Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Huang-Fu ZC, Qian Y, Zhang T, Brown JB, Rao Y. Development of phase-cycling interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy. J Chem Phys 2024; 161:114201. [PMID: 39291691 DOI: 10.1063/5.0227560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic-vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump-probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
8
|
Cheng Y, Wan H, Sargent EH, Ma D. Reduced-Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410633. [PMID: 39295466 DOI: 10.1002/adma.202410633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Reduced-dimensional perovskites (RDPs), a large category of metal halide perovskites, have attracted considerable attention and shown high potential in the fields of solid-state displays and lighting. RDPs feature a quantum-well-based structure and energy funneling effects. The multiple quantum well (QW) structure endows RDPs with superior energy transfer and high luminescence efficiency. The effect of QW confinement directly depends on the number of inorganic octahedral layers (QW thickness, i.e., n value), so the distribution of n values determines the optoelectronic properties of RDPs. Here, it is focused on the QW thickness distribution of RDPs, detailing its effect on the structural characteristics, carrier recombination dynamics, optoelectronic properties, and applications in light-emitting diodes. The reported distribution control strategies is also summarized and discuss the current challenges and future trends of RDPs. This review aims to provide deep insight into RDPs, with the hope of advancing their further development and applications.
Collapse
Affiliation(s)
- Yuanzhuang Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoyue Wan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Ye J, Mondal N, Carwithen BP, Zhang Y, Dai L, Fan XB, Mao J, Cui Z, Ghosh P, Otero-Martínez C, van Turnhout L, Huang YT, Yu Z, Chen Z, Greenham NC, Stranks SD, Polavarapu L, Bakulin A, Rao A, Hoye RLZ. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Nat Commun 2024; 15:8120. [PMID: 39285179 PMCID: PMC11405528 DOI: 10.1038/s41467-024-52377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Defect tolerance is a critical enabling factor for efficient lead-halide perovskite materials, but the current understanding is primarily on band-edge (cold) carriers, with significant debate over whether hot carriers can also exhibit defect tolerance. Here, this important gap in the field is addressed by investigating how intentionally-introduced traps affect hot carrier relaxation in CsPbX3 nanocrystals (X = Br, I, or mixture). Using femtosecond interband and intraband spectroscopy, along with energy-dependent photoluminescence measurements and kinetic modelling, it is found that hot carriers are not universally defect tolerant in CsPbX3, but are strongly correlated to the defect tolerance of cold carriers, requiring shallow traps to be present (as in CsPbI3). It is found that hot carriers are directly captured by traps, instead of going through an intermediate cold carrier, and deeper traps cause faster hot carrier cooling, reducing the effects of the hot phonon bottleneck and Auger reheating. This work provides important insights into how defects influence hot carriers, which will be important for designing materials for hot carrier solar cells, multiexciton generation, and optical gain media.
Collapse
Affiliation(s)
- Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Navendu Mondal
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK.
| | - Ben P Carwithen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Yunwei Zhang
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xiang-Bing Fan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, UK
| | - Jian Mao
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China
| | - Zhiqiang Cui
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Pratyush Ghosh
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario As Lagoas, Marcosende, Vigo, Spain
| | | | - Yi-Teng Huang
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ziming Chen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario As Lagoas, Marcosende, Vigo, Spain
| | - Artem Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK.
- Department of Materials, Imperial College London, London, UK.
| |
Collapse
|
10
|
Tran TX, Jang YJ, Vu VT, Jung CW, Do VD, Jin Y, Lee J, Kim H, Kim JH. Augmented Extraction Efficiency of a Hot D Exciton in MoS 2 via Intervalley Scattering. NANO LETTERS 2024; 24:11163-11169. [PMID: 39225119 DOI: 10.1021/acs.nanolett.4c01837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Prolonging hot carrier cooling, a crucial factor in optoelectronic applications, including hot carrier photovoltaics, presents a significant challenge. High-energy band-nesting excitons within parallel bands offer a promising and underexplored avenue for addressing this issue. Here, we exploit an exceptional D exciton cooling prolongation of 2 to 3 orders of magnitude compared to sub-picosecond in typical transition metal dichalcogenides (TMDs) owing to the complex Coulomb environment and the sequential and mismatch-valley relaxation. Simultaneously, the intervalley scattering upconversion of band-edge excitons with the slow D exciton formation in the metastable Γ valley/hill also reduces the cooling rate. We successfully extract D and C excitons as hot carriers through integrating with various thicknesses of TiOx, achieving the highest efficiency of 98% and 85% at a Ti thickness of 2 nm. Our findings highlight the potential of band-nesting excitons for extending hot carrier cooling time, paving the way for advancements in hot carrier-based optoelectronic devices.
Collapse
Affiliation(s)
- Thanh-Xuan Tran
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Ultrafast Phase Transformation, Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Yu Jin Jang
- Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), Singapore 117574
| | - Van-Tu Vu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan-Woo Jung
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Dam Do
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeongrok Jin
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunjung Kim
- Center for Ultrafast Phase Transformation, Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Ji-Hee Kim
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Chen X, Kamat PV, Janáky C, Samu GF. Charge Transfer Kinetics in Halide Perovskites: On the Constraints of Time-Resolved Spectroscopy Measurements. ACS ENERGY LETTERS 2024; 9:3187-3203. [PMID: 38911533 PMCID: PMC11190987 DOI: 10.1021/acsenergylett.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Understanding photophysical processes in lead halide perovskites is an important aspect of optimizing the performance of optoelectronic devices. The determination of exact charge carrier extraction rate constants remains elusive, as there is a large and persistent discrepancy in the reported absolute values. In this review, we concentrate on experimental procedures adopted in the literature to obtain kinetic estimates of charge transfer processes and limitations imposed by the spectroscopy technique employed. Time-resolved techniques (e.g., transient absorption-reflection and time-resolved photoluminescence spectroscopy) are commonly employed to probe charge transfer at perovskite/transport layer interfaces. The variation in sample preparation and measurement conditions can produce a wide dispersion of the measured kinetic parameters. The selected time window and the kinetic fitting model employed introduce additional uncertainty. We discuss here evaluation strategies that rely on multiexponential fitting protocols (regular or stretched) and show how the dispersion in the reported values for carrier transfer rate constants can be resolved.
Collapse
Affiliation(s)
- Xiangtian Chen
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Prashant V. Kamat
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Csaba Janáky
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- ELI-ALPS,
ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
| | - Gergely Ferenc Samu
- ELI-ALPS,
ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3., Szeged H-6728, Hungary
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
Square 7-8. Szeged H-6721, Hungary
| |
Collapse
|
12
|
Yan W, Li C, Peng C, Tan S, Zhang J, Jiang H, Xin F, Yue F, Zhou Z. Hot-Carrier Cooling Regulation for Mixed Sn-Pb Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312170. [PMID: 38245819 DOI: 10.1002/adma.202312170] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/11/2024] [Indexed: 01/22/2024]
Abstract
The rapid relaxation of hot carriers leads to energy loss in the form of heat and consequently restricts the theoretical efficiency of single-junction solar cells; However, this issue has not received much attention in tin-lead perovskites solar cells. Herein, tin(II) oxalate (SnC2O4) is introduced into tin-lead perovskite precursor solution to regulate hot-carrier cooling dynamics. The addition of SnC2O4 increases the length of carrier diffusion, extends the lifetime of carriers, and simultaneously slows down the cooling rate of carriers. Furthermore, SnC2O4 can bond with uncoordinated Sn2+ and Pb2+ ions to regulate the crystallization of perovskite and enable large grains. The strongly reducing properties of the C2O4 2- can inhibit the oxidation of Sn2+ to Sn4+ and minimize the formation of Sn vacancies in the resulting perovskite films. Additionally, as a substitute for tin(II) fluoride, the introduction of SnC2O4 avoids the carrier transport issues caused by the aggregation of F- ions at the interface. As a result, the SnC2O4-treated Sn-Pb cells show a champion efficiency of 23.36%, as well as 27.56% for the all-perovskite tandem solar cells. Moreover, the SnC2O4-treated devices show excellent long-term stability. This finding is expected to pave the way toward stable and highly efficient all-perovskite tandem solar cells.
Collapse
Affiliation(s)
- Wenjian Yan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chongwen Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Cheng Peng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuchen Tan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jiakang Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haokun Jiang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Feifei Xin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fang Yue
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongmin Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
13
|
Lv H, Chu L, Lu P, Lu N, Cai X, Du H, Chen F. Photothermionic Effect-Assisted Ultrafast Charge Transfer in NbS 2/MoS 2 Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16669-16677. [PMID: 38514924 DOI: 10.1021/acsami.3c19128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Two-dimensional (2D) van der Waals heterostructures (vdW HSs) composed of transition metal dichalcogenides (TMDCs) have emerged as frontrunners in the optoelectronics field, owing to their exceptional optical and electrical properties. Recent research on the intrinsic interlayer charge transfer mechanism has been primarily focused on the Type II HSs, while metal-semiconductor (MS) vertical HSs, promising for advancing photodetector technology, have received comparatively less attention. Here, we reveal the first experimental observation of photothermionic effect-assisted ultrafast interlayer charge transfer in the NbS2/MoS2 heterostructure using femtosecond transient absorption technology and first-principles calculations, effectively ignoring the Schottky barrier height. We demonstrate that within 500 fs, charge transfer occurs from NbS2 to MoS2 in the heterostructure, resulting in supplementary carrier generation in the visible spectrum when excited with infrared light below the MoS2 bandgap, at wavelengths of 1030 and 1500 nm. Such promising characteristics of 2D NbS2-semiconductor heterostructures offer a potential platform for synergistically combining low contact resistance with broadband photocarrier generation, marking a significant advancement in optoelectronics and light harvesting.
Collapse
Affiliation(s)
- Hengyue Lv
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lingrui Chu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Lu
- School of Physics, Shandong University, Jinan 250100, China
| | - Ning Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaofan Cai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haoyang Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Palmer LD, Lee W, Dong CL, Liu RS, Wu N, Cushing SK. Determining Quasi-Equilibrium Electron and Hole Distributions of Plasmonic Photocatalysts Using Photomodulated X-ray Absorption Spectroscopy. ACS NANO 2024; 18:9344-9353. [PMID: 38498940 PMCID: PMC10993415 DOI: 10.1021/acsnano.3c08181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Most photocatalytic and photovoltaic devices operate under broadband, constant illumination. Electron and hole dynamics in these devices, however, are usually measured by using ultrafast pulsed lasers in a narrow wavelength range. In this work, we use excited-state X-ray theory originally developed for transient X-ray experiments to study steady-state photomodulated X-ray spectra. We use this method to attempt to extract electron and hole distributions from spectra collected at a nontime-resolved synchrotron beamline. A set of plasmonic metal core-shell nanoparticles is designed as the control experiment because they can systematically isolate photothermal, hot electron, and thermalized electron-hole pairs in a TiO2 shell. Steady-state changes in the Ti L2,3 edge are measured with and without continuous-wave illumination of the nanoparticle's localized surface plasmon resonance. The results suggest that within error the quasi-equilibrium carrier distribution can be determined even from relatively noisy data with mixed excited-state phenomena. Just as importantly, the theoretical analysis of noisy data is used to provide guidelines for the beamline development of photomodulated steady-state spectroscopy.
Collapse
Affiliation(s)
- Levi Daniel Palmer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| | - Wonseok Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| | - Chung-Li Dong
- Department
of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Ru-Shi Liu
- Department
of Chemistry, National Taiwan University
and Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| | - Nianqiang Wu
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst 01003−9303, Massachusetts, United States
| | - Scott Kevin Cushing
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena 91125, California, United States
| |
Collapse
|
15
|
Zerhoch J, Bodnar S, Lerpinière JE, Liu S, Neumann T, Sergl B, Heindl MW, Shcherbakov A, Elghandour A, Klingeler R, Walker AB, Deschler F. Motional Narrowing Effects in the Excited State Spin Populations of Mn-Doped Hybrid Perovskites. J Phys Chem Lett 2024; 15:2851-2858. [PMID: 38442903 PMCID: PMC10945573 DOI: 10.1021/acs.jpclett.3c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Spin-orbit coupling in the electronic states of solution-processed hybrid metal halide perovskites forms complex spin-textures in the band structures and allows for optical manipulation of the excited state spin-polarizations. Here, we report that motional narrowing acts on the photoexcited spin-polarization in CH3NH3PbBr3 thin films, which are doped at percentage-level with Mn2+ ions. Using ultrafast circularly polarized broadband transient absorption spectroscopy at cryogenic temperatures, we investigate the spin population dynamics in these doped hybrid perovskites and find that spin relaxation lifetimes are increased by a factor of 3 compared to those of undoped materials. Using quantitative analysis of the photoexcitation cooling processes, we reveal increased carrier scattering rates in the doped perovskites as the fundamental mechanism driving spin-polarization-maintaining motional narrowing. Our work reports transition-metal doping as a concept to extend spin lifetimes of hybrid perovskites.
Collapse
Affiliation(s)
- Jonathan Zerhoch
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Stanislav Bodnar
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | | | - Shangpu Liu
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Timo Neumann
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, U.K.
| | - Barbara Sergl
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Markus W. Heindl
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Andrii Shcherbakov
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- Walter
Schottky Institut, Technische Universität
München, Am Coulombwall 4, 85748 Garching, Germany
- Physics
Department, TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Ahmed Elghandour
- Kirchhoff
Institut für Physik, Universität
Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Rüdiger Klingeler
- Kirchhoff
Institut für Physik, Universität
Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | | | - Felix Deschler
- Physikalisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Shcherbakov-Wu W, Saris S, Sheehan TJ, Wong NN, Powers ER, Krieg F, Kovalenko MV, Willard AP, Tisdale WA. Persistent enhancement of exciton diffusivity in CsPbBr 3 nanocrystal solids. SCIENCE ADVANCES 2024; 10:eadj2630. [PMID: 38381813 PMCID: PMC10881049 DOI: 10.1126/sciadv.adj2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
In semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr3 perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occupied by a previous exciton. Using transient photoluminescence microscopy, we observe a striking dependence of the apparent exciton diffusivity on excitation laser power that does not arise from nonlinear exciton-exciton interactions or thermal heating. We interpret our observations with a model in which excitons cause NCs to transition to a long-lived metastable configuration that markedly increases exciton transport. The exciton diffusivity observed here (>0.15 square centimeters per second) is considerably higher than that observed in other NC systems, revealing unusually strong excitonic coupling between NCs. The finding of a persistent enhancement in excitonic coupling may help explain other photophysical behaviors observed in CsPbBr3 NCs, such as superfluorescence, and inform the design of optoelectronic devices.
Collapse
Affiliation(s)
- Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seryio Saris
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Thomas John Sheehan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Narumi Nagaya Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric R. Powers
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Franziska Krieg
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Bioscience, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Laboratory for Transport at Nanoscale Interfaces, Empa – Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Bujalance C, Caliò L, Dirin DN, Tiede DO, Galisteo-López JF, Feist J, García-Vidal FJ, Kovalenko MV, Míguez H. Strong Light-Matter Coupling in Lead Halide Perovskite Quantum Dot Solids. ACS NANO 2024; 18:4922-4931. [PMID: 38301147 PMCID: PMC10867889 DOI: 10.1021/acsnano.3c10358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Strong coupling between lead halide perovskite materials and optical resonators enables both polaritonic control of the photophysical properties of these emerging semiconductors and the observation of fundamental physical phenomena. However, the difficulty in achieving optical-quality perovskite quantum dot (PQD) films showing well-defined excitonic transitions has prevented the study of strong light-matter coupling in these materials, central to the field of optoelectronics. Herein we demonstrate the formation at room temperature of multiple cavity exciton-polaritons in metallic resonators embedding highly transparent Cesium Lead Bromide quantum dot (CsPbBr3-QD) solids, revealed by a significant reconfiguration of the absorption and emission properties of the system. Our results indicate that the effects of biexciton interaction or large polaron formation, frequently invoked to explain the properties of PQDs, are seemingly absent or compensated by other more conspicuous effects in the CsPbBr3-QD optical cavity. We observe that strong coupling enables a significant reduction of the photoemission line width, as well as the ultrafast modulation of the optical absorption, controllable by means of the excitation fluence. We find that the interplay of the polariton states with the large dark state reservoir plays a decisive role in determining the dynamics of the emission and transient absorption properties of the hybridized light-quantum dot solid system. Our results should serve as the basis for future investigations of PQD solids as polaritonic materials.
Collapse
Affiliation(s)
- Clara Bujalance
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Laura Caliò
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Dmitry N. Dirin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA
− Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - David O. Tiede
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Juan F. Galisteo-López
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Francisco J. García-Vidal
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA
− Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Hernán Míguez
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
18
|
Thomas AS, Bhat VN, Tiwari V. Rapid scan white light two-dimensional electronic spectroscopy with 100 kHz shot-to-shot detection. J Chem Phys 2023; 159:244202. [PMID: 38156635 DOI: 10.1063/5.0179474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
We demonstrate an approach to two-dimensional electronic spectroscopy (2DES) that combines the benefits of shot-to-shot detection at high-repetition rates with the simplicity of a broadband white light continuum input and conventional optical elements to generate phase-locked pump pulse pairs. We demonstrate this through mutual synchronization between the laser repetition rate, the acousto-optical deflector, the pump delay stage, and the CCD line camera, which allows for rapid scanning of pump optical delay synchronously with the laser repetition rate, while the delay stage is moved at a constant velocity. The resulting shot-to-shot detection scheme is repetition rate scalable and only limited by the CCD line rate and the maximum stage velocity. Using this approach, we demonstrate the measurement of an averaged 2DES absorptive spectrum in as much as 1.2 s of continuous sample exposure per 2D spectrum. We achieve a signal-to-noise ratio of 6.8 for optical densities down to 0.05 with 11.6 s of averaging at 100 kHz laser repetition rate. Combining rapid scanning of mechanical delay lines with shot-to-shot detection as demonstrated here provides a viable alternative to acousto-optic pulse shaping approaches that is repetition-rate scalable, has comparable throughput and sensitivity, and minimizes sample exposure per 2D spectrum with promising micro-spectroscopy applications.
Collapse
Affiliation(s)
- Asha S Thomas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek N Bhat
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
19
|
Kempf MA, Moser P, Tomoscheit M, Schröer J, Blancon JC, Schwartz R, Deb S, Mohite A, Stier AV, Finley JJ, Korn T. Rapid Spin Depolarization in the Layered 2D Ruddlesden-Popper Perovskite (BA)(MA)PbI. ACS NANO 2023; 17:25459-25467. [PMID: 38095325 DOI: 10.1021/acsnano.3c09001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We report temperature-dependent spectroscopy on the layered (n = 4) two-dimensional (2D) Ruddlesden-Popper perovskite (BA)(MA)PbI. Helicity-resolved steady-state photoluminescence (PL) reveals no optical degree of polarization. Time-resolved PL shows a photocarrier lifetime on the order of nanoseconds. From simultaneously recorded time-resolved differential reflectivity (TRΔR) and time-resolved Kerr ellipticity (TRKE), a photocarrier lifetime of a few nanoseconds and a spin relaxation time on the order of picoseconds was found. This stark contrast in lifetimes clearly explains the lack of spin polarization in steady-state PL. While we observe clear temperature-dependent effects on the PL dynamics that can be related to structural dynamics, spin relaxation is nearly T-independent. Our results highlight that spin relaxation in 2D (BA)(MA)PbI occurs at time scales faster than the exciton recombination time, which poses a bottleneck for applications aiming to utilize this degree of freedom.
Collapse
Affiliation(s)
| | - Philipp Moser
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | | | - Julian Schröer
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| | - Jean-Christophe Blancon
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005-1827, United States
| | - Rico Schwartz
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| | - Swarup Deb
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| | - Aditya Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005-1827, United States
| | - Andreas V Stier
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Jonathan J Finley
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Tobias Korn
- Institute of Physics, Rostock University, 18059 Rostock, Germany
| |
Collapse
|
20
|
Shi H, Zhang X, Li R, Zhang X. A Strategy for Tuning Electron-Phonon Coupling and Carrier Cooling in Lead Halide Perovskite Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3134. [PMID: 38133031 PMCID: PMC10745929 DOI: 10.3390/nano13243134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Perovskites have been recognized as a class of promising materials for optoelectronic devices. We intentionally include excessive Cs+ cations in precursors in the synthesis of perovskite CsPbBr3 nanocrystals and investigate how the Cs+ cations influence the lattice strain in these perovskite nanocrystals. Upon light illumination, the lattice strain due to the addition of alkali metal Cs+ cations can be compensated by light-induced lattice expansion. When the Cs+ cation in precursors is about 10% excessive, the electron-phonon coupling strength can be reduced by about 70%, and the carrier cooling can be slowed down about 3.5 times in lead halide perovskite CsPbBr3 nanocrystals. This work reveals a new understanding of the role of Cs+ cations, which take the A-site in ABX3 perovskite and provide a new way to improve the performance of perovskites and their practical devices further.
Collapse
Affiliation(s)
- Huafeng Shi
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Center of Attosecond Science, Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Physics and Opto–Electronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruxue Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinhai Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Kim J, Xu Y, Bain D, Li M, Cotlet M, Yu Q, Musser AJ. Small to Large Polaron Behavior Induced by Controlled Interactions in Perovskite Quantum Dot Solids. ACS NANO 2023; 17:23079-23093. [PMID: 37934023 DOI: 10.1021/acsnano.3c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The polaron is an essential photoexcitation that governs the unique optoelectronic properties of organic-inorganic hybrid halide perovskites, and it has been subject to extensive spectroscopic and theoretical investigation over the past decade. A crucial but underexplored question is how the nature of the photogenerated polarons is impacted by the microscopic perovskite structure and what functional properties this affects. To tackle this question, we chemically tuned the interactions between perovskite quantum dots (QDs) to rationally manipulate the polaron properties. Through a suite of time-resolved spectroscopies, we find that inter-QD interactions open an excited-state channel to form large polaron species, which exhibit enhanced spatial diffusion, slower hot polaron cooling, and a longer intrinsic lifetime. At the same time, polaronic excitons are formed in competition via localized band-edge states, exhibiting strong photoluminescence but are limited by shorter intrinsic lifetimes. This control of polaron type and function through tunable inter-QD interactions not only provides design principles for QD-based materials but also experimentally disentangles polaronic species in hybrid perovskite materials.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuanze Xu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Bain
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Ravali V, Ghosh T. Charge carrier dynamics and transient spectral evolutions in lead halide perovskites. Chem Commun (Camb) 2023; 59:13939-13950. [PMID: 37934456 DOI: 10.1039/d3cc04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Lead halide perovskites (LHPs) have emerged as promising materials for solar cell applications due to their unique photophysical properties. Most of the crucial properties related to solar cell performance such as carrier mobility, diffusion length, recombination rates, etc. have been estimated using ultrafast spectroscopic methods. While various methods have been developed to prepare and fabricate high-quality perovskite films for photovoltaic applications, understanding the charge carrier dynamics is also crucial at each stage of the charge generation, cooling, and recombination processes. Using femtosecond (fs) transient absorption (TA) spectroscopy, various stages of charge carrier dynamics in perovskite materials could be monitored. In this article, we focus on some of the recent experimental developments related to charge carrier dynamics in perovskites and discuss the current understanding of (1) exciton dissociation, (2) charge carrier thermalization, (3) hot carrier cooling, and (4) electron-phonon coupling along with some of the crucial spectral emergence in the pump-probe experiments of LHP materials.
Collapse
Affiliation(s)
- Vanga Ravali
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| | - Tufan Ghosh
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
| |
Collapse
|
23
|
Crawford ML, Sadighian JC, Hassan Y, Sadhanala A, Nawab L, Wong CY. Formation of Iodide-Rich Domains During Halide Segregation in Lead-Halide Perovskite Nanocrystals. J Phys Chem Lett 2023; 14:8962-8969. [PMID: 37772502 DOI: 10.1021/acs.jpclett.3c02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Mixed iodide-bromide methylammonium lead perovskite (MAPbIxBr3-x) nanocrystals (NCs) hold promise for use in light-emitting applications owing to the size- and composition-tunability of their bandgap. However, the segregation of halides during light exposure causes their band gaps to become unstable and narrow. Here, we use transient absorption spectroscopy to track excited-state dynamics during photoinduced halide segregation. The Auger recombination dynamics are observed to accelerate as the bandgap narrows, suggesting enhanced electron-hole overlap. We simulate the motion of iodide within the NC and estimate the evolving bandgap and electron-hole overlap during two possible mechanisms of halide segregation. Our results support a segregation mechanism in which iodide anions form a domain within the NC, rather than a mechanism in which iodide anions independently segregate toward the NC surface. Such mechanistic insight will contribute to future NC bandgap stabilization strategies.
Collapse
Affiliation(s)
- Michael L Crawford
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - James C Sadighian
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Yasser Hassan
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, PO Box: 2713, Doha, Qatar
| | - Aditya Sadhanala
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Laila Nawab
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Cathy Y Wong
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
- Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97405, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
24
|
Huang Z, Tan W, Ma P, Yan L, Si J, Hou X. Visualization of Hot Carrier Dynamics in a Single CsPbBr 3 Perovskite Microplate Using Femtosecond Kerr-Gated Wide-Field Fluorescence Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2701. [PMID: 37836342 PMCID: PMC10574326 DOI: 10.3390/nano13192701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Lead halide perovskites (LHPs) have excellent semiconductor properties. They have been used in many applications such as solar cells. Recently, the hot carrier dynamics in this type of material have received much attention as they are useful for enhancing the performance of optoelectrical devices fabricated from it. Here, we study the ultrafast hot carrier dynamics of a single CsPbBr3 microplate using femtosecond Kerr-gated wide-field fluorescence spectroscopy. The transient photoluminescence spectra have been measured under a variety of excitation fluences. The temporal evolution of bandgap renormalization and the competition between hot carrier cooling and the recovery of the renormalized bandgap are clearly revealed.
Collapse
Affiliation(s)
| | - Wenjiang Tan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shannxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, 28 Xianning Road, Xi’an 710049, China
| | | | | | | | | |
Collapse
|
25
|
Feng M, Ye S, Lim JWM, Guo Y, Cai R, Zhang Q, He H, Sum TC. Insights to Carrier-Phonon Interactions in Lead Halide Perovskites via Multi-Pulse Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301831. [PMID: 37279774 DOI: 10.1002/smll.202301831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Indexed: 06/08/2023]
Abstract
A fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein-Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics. However, limited information from PPP on the initial excitation density and carrier temperature curtails its full potential. Herein, this work bridges this gap in PPP with a unified model that retrieves these essential hot carrier metrics like initial carrier density and carrier temperature under the push conditions, thus permitting direct comparison with traditional PP spectroscopy. These results are well-fitted by the phonon bottleneck model, from which the longitudinal optical phonon scattering time τLO , for MAPbBr3 and MAPbI3 halide perovskite thin film samples are determined to be 240 ± 10 and 370 ± 10 fs, respectively.
Collapse
Affiliation(s)
- Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, S2-B3a-01, Singapore, 639798, Singapore
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Huajun He
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
26
|
Duan M, Wang Y, Zhang P, Du L. Effect of Cs + Doping on the Carrier Dynamics of MAPbI 3 Perovskite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6064. [PMID: 37687759 PMCID: PMC10488383 DOI: 10.3390/ma16176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Organic inorganic perovskite materials have received increasing attention in the optoelectronic field because of their unique properties. The ultrafast dynamics of photogenerated carriers determine photoelectric conversion efficiency, thus, it is feasible to influence the dynamics behavior of photogenerated carriers by regulating A-site cations. This paper mainly used transient absorption spectra (TAS) technology to study the photogenerated carriers relaxation processes of organic-inorganic perovskite CsxMA1-xPbI3 materials at different x values. Three sets of time constants were obtained by global fitting at different values of x. The experimental results showed that the crystal structure of perovskite could be affected by adjusting the Cs+ doping amount, thereby regulating the carrier dynamics. The appropriate amount of A-cation doping not only maintained the organic-inorganic perovskite crystal phase, but also prolonged the photogenerated carrier's lifetime. The 10% Cs+ doping CsxMA1-xPbI3 perovskite has potential for solar cell applications. We hope that our research can provide dynamics support for the development of organic-inorganic perovskite in solar cells.
Collapse
Affiliation(s)
- Menghan Duan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yunpeng Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Pingli Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Luchao Du
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
27
|
Deckert T, Vanderhaegen A, Brida D. Sub-8-fs pulses in the visible to near-infrared by a degenerate optical parametric amplifier. OPTICS LETTERS 2023; 48:4496-4499. [PMID: 37656537 DOI: 10.1364/ol.498291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
This work presents a single-stage optical parametric amplifier (OPA) operating at degeneracy (DOPA) and pumped by the third harmonic of a Yb:KGW laser system. This DOPA exploits the broad amplification bandwidth that occurs with type-I phase-matching in β-barium borate (BBO) when signal and idler overlap in the spectrum. The output pulses span from 590 to 780 nm (1.59-2.10 eV) with 7.75-fs duration after compression. Ultrashort pulses with similar bandwidths in this spectral window complement the existing array of optical parametric amplifiers that cover either the visible or the near-IR spectral regions with sub-10-fs pulses. This source of ultrashort optical pulses will enable the application of sophisticated spectroscopy techniques to the study of electronic coherences and energy migration pathways in biological, chemical, and condensed matter systems.
Collapse
|
28
|
Marjit K, Ghosh G, Ghosh S, Ghosh D, Medda A, Patra A. Electron Transfer Dynamics from CsPbBr 3 Nanocrystals to Au 144 Clusters. ACS PHYSICAL CHEMISTRY AU 2023; 3:348-357. [PMID: 37520319 PMCID: PMC10375896 DOI: 10.1021/acsphyschemau.2c00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 08/01/2023]
Abstract
Lead halide perovskite nanocrystals have received significant attention as an absorber material for designing efficient optoelectronic devices. The fundamental understanding of the hot carrier (HC) dynamics as well as its extraction in hybrid systems is essential to further boost the performance of solar cells. Herein, we have explored the electron transfer dynamics in the CsPbBr3-Au144 cluster hybrid using ultrafast transient absorption spectroscopy. Our analysis reveals faster HC cooling time (from 515 to 334 fs) and a significant drop in HC temperature from 1055 to 860 K in hybrid, suggesting the hot electron transfer from CsPbBr3 nanocrystals to the Au nanoclusters (NCs). Eventually, we observe a much faster hot electron transfer compared to the band-edge electron transfer, and 45% hot-electron transfer efficiency was achieved at 0.64 eV, above band-edge photoexcitation. Furthermore, the significant enhancement of the photocurrent to the dark current ratio in this hybrid system confirms the charge separation via the electron transfer from CsPbBr3 nanocrystals to Au144 NCs. These findings on HC dynamics could be beneficial for optoelectronic devices.
Collapse
Affiliation(s)
- Kritiman Marjit
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Goutam Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Srijon Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debarati Ghosh
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anusri Medda
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amitava Patra
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute
of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
29
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
30
|
Carwithen BP, Hopper TR, Ge Z, Mondal N, Wang T, Mazlumian R, Zheng X, Krieg F, Montanarella F, Nedelcu G, Kroll M, Siguan MA, Frost JM, Leo K, Vaynzof Y, Bodnarchuk MI, Kovalenko MV, Bakulin AA. Confinement and Exciton Binding Energy Effects on Hot Carrier Cooling in Lead Halide Perovskite Nanomaterials. ACS NANO 2023; 17:6638-6648. [PMID: 36939330 PMCID: PMC10100565 DOI: 10.1021/acsnano.2c12373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.
Collapse
Affiliation(s)
- Ben P. Carwithen
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ziyuan Ge
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Rozana Mazlumian
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Franziska Krieg
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Georgian Nedelcu
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Martin Kroll
- Center
for
Advancing Electronics Dresden, Technische
Universität Dresden, 01069 Dresden, Germany
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Miguel Albaladejo Siguan
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jarvist M. Frost
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Karl Leo
- Integrated
Center for Applied Photophysics and Photonic Materials, Technische Universität Dresden, 01187 Dresden, Germany
| | - Yana Vaynzof
- Chair
for Emerging Electronic Technologies, Technische
Universität Dresden, 01187 Dresden, Germany
- Leibniz
Institute for Solid State and Materials Research Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Maryna I. Bodnarchuk
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
31
|
Wang T, Hopper TR, Mondal N, Liu S, Yao C, Zheng X, Torrisi F, Bakulin AA. Hot Carrier Cooling and Trapping in Atomically Thin WS 2 Probed by Three-Pulse Femtosecond Spectroscopy. ACS NANO 2023; 17:6330-6340. [PMID: 36939760 PMCID: PMC10100566 DOI: 10.1021/acsnano.2c10479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Transition metal dichalcogenides (TMDs) have shown outstanding semiconducting properties which make them promising materials for next-generation optoelectronic and electronic devices. These properties are imparted by fundamental carrier-carrier and carrier-phonon interactions that are foundational to hot carrier cooling. Recent transient absorption studies have reported ultrafast time scales for carrier cooling in TMDs that can be slowed at high excitation densities via a hot-phonon bottleneck (HPB) and discussed these findings in the light of optoelectronic applications. However, quantitative descriptions of the HPB in TMDs, including details of the electron-lattice coupling and how cooling is affected by the redistribution of energy between carriers, are still lacking. Here, we use femtosecond pump-push-probe spectroscopy as a single approach to systematically characterize the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2. By controlling the interband pump and intraband push excitations, we observe, in real-time (i) an extremely rapid "intrinsic" cooling rate of ∼18 ± 2.7 eV/ps, which can be slowed with increasing hot carrier density, (ii) the deprecation of this HPB at elevated cold carrier densities, exposing a previously undisclosed role of the carrier-carrier interactions in mediating cooling, and (iii) the interception of high energy hot carriers on the subpicosecond time scale by lattice defects, which may account for the lower photoluminescence yield of TMDs when excited above band gap.
Collapse
Affiliation(s)
- Tong Wang
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Thomas R. Hopper
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Navendu Mondal
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Sihui Liu
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Chengning Yao
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Xijia Zheng
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Felice Torrisi
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
- Dipartimento
di Fisica e Astronomia, Universita’
di Catania & CNR-IMM (Catania Universita’), Via S. Sofia 64, 95123 Catania, Italy
| | - Artem A. Bakulin
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
32
|
Stingel AM, Leemans J, Hens Z, Geiregat P, Petersen PB. Narrow homogeneous linewidths and slow cooling dynamics across infrared intra-band transitions in n-doped HgSe colloidal quantum dots. J Chem Phys 2023; 158:114202. [PMID: 36948807 DOI: 10.1063/5.0139795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm-1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175-250 cm-1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin-orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jari Leemans
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures Group, Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Gent, Belgium
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
33
|
Brosseau P, Seiler H, Palato S, Sonnichsen C, Baker H, Socie E, Strandell D, Kambhampati P. Perturbed free induction decay obscures early time dynamics in two-dimensional electronic spectroscopy: The case of semiconductor nanocrystals. J Chem Phys 2023; 158:084201. [PMID: 36859087 DOI: 10.1063/5.0138252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap. These coherent artifacts have also been described in 2DES but remain less well-understood due to the complexity of 2DES and the relative novelty of the method. Here, we present 2DES results in two model nanocrystal samples, CdSe and CsPbI3. We demonstrate non-resonant signals due to solvent response during the pulse overlap and resonant signals, which we assign to perturbed free induction decay (PFID), both before and during the pulse overlap. The simulations of the 2DES response functions at early and negative time delays reinforce the assignment of the negative time delay signals to PFID. Modeling reveals that the PFID signals will severely distort the initial picture of the resonant population dynamics. By including these effects in models of 2DES spectra, one is able to push forward the extraction of early time dynamics in 2DES.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Hélène Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Etienne Socie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
34
|
Wu TH, Cheng HY, Lai WC, Sankar R, Chang CS, Lin KH. Ultrafast carrier dynamics and layer-dependent carrier recombination rate in InSe. NANOSCALE 2023; 15:3169-3176. [PMID: 36651904 DOI: 10.1039/d2nr05498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
InSe layered semiconductors with high mobility have advantages over transition-metal dichalcogenides in certain device applications. Understanding the dynamics of carriers, especially around the major bandgaps, is not only of fundamental interest but also important for improving the performance of devices. We investigated ultrafast carrier dynamics in exfoliated InSe near the bandgap and found that the presence of photocarriers led to shrinkage in the optical bandgap. In addition, we observed that the carrier recombination rate increased when the thickness of the InSe nanoflakes was reduced and the process was dominated by surface recombination. For the same flakes, the recombination rate became lower after the freshly exfoliated InSe was exposed to air and oxidized. Using a free carrier diffusion model, layer-dependent surface recombination velocities were obtained. Our investigation reveals that the surface condition and the thickness of few-layer InSe play important roles in carrier lifetimes.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Department of Physics, National Taiwan University, Taipei 106319, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Hao-Yu Cheng
- Department of Physics, National Taiwan University, Taipei 106319, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115201, Taiwan
| | - Wei-Chiao Lai
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Raman Sankar
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Chia-Seng Chang
- Department of Physics, National Taiwan University, Taipei 106319, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Kung-Hsuan Lin
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| |
Collapse
|
35
|
Ghosh A, Strandell DP, Kambhampati P. A spectroscopic overview of the differences between the absorbing states and the emitting states in semiconductor perovskite nanocrystals. NANOSCALE 2023; 15:2470-2487. [PMID: 36691921 DOI: 10.1039/d2nr05698d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Semiconductor perovskites have been under intense investigation for their promise in optoelectronic applications and their novel and unique physical properties. There have been a variety of material implementations of perovskites from thin films to single crystals to nanocrystals. The nanocrystal form, in particular, is attractive as it enables solution processing and also spectroscopically probes both absorptive and emissive transitions. Broadly, the literature is comprised of experiments of either form, but the experiments are rarely performed in concert and are not discussed in a unified picture. For example, absorptive experiments are typically transient absorption measurements, which aim to measure carrier kinetics and dynamics. In contrast, the emissive experiments largely focus on excitonic fine structures and coupling to phonons. The time resolved emission experiments report on excited state lifetimes and their dependence on temperature. There are broad differences in the spectroscopy techniques and the questions asked in both classes of experiments. Yet there is one measure in common that suggests there are mysteries in our understanding of how the absorbing and emitting states are connected. The linewidth of emission spectra is always larger than the linewidth of absorption spectra. The question of the physics underlying linewidths is complex and is one of the central issues in perovskite nanocrystals. So why are the absorptive and emissive linewidths different? At present even this simple question has no clear answer. The more complex questions of the structure and dynamics of absorptive and emissive states are even more ambiguous. Hence there is a need to connect these experiments and the relevant states. Here, we provide an overview of the salient absorptive and emissive spectroscopy techniques in an effort to begin connecting these two disparate areas of inquiry.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | - Dallas P Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
| | | |
Collapse
|
36
|
Keat TJ, Coxon DJL, Staniforth M, Dale MW, Stavros VG, Newton ME, Lloyd-Hughes J. Dephasing Dynamics across Different Local Vibrational Modes and Crystalline Environments. PHYSICAL REVIEW LETTERS 2022; 129:237401. [PMID: 36563209 DOI: 10.1103/physrevlett.129.237401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
The perturbed free induction decay (PFID) observed in ultrafast infrared spectroscopy was used to unveil the rates at which different vibrational modes of the same atomic-scale defect can interact with their environment. The N_{3}VH^{0} defect in diamond provided a model system, allowing a comparison of stretch and bend vibrational modes within different crystal lattice environments. The observed bend mode (first overtone) exhibited dephasing times T_{2}=2.8(1) ps, while the fundamental stretch mode had surprisingly faster dynamics T_{2}<1.7 ps driven by its more direct perturbation of the crystal lattice, with increased phonon coupling. Further, at high defect concentrations the stretch mode's dephasing rate was enhanced. The ability to reliably measure T_{2} via PFID provides vital insights into how vibrational systems interact with their local environment.
Collapse
Affiliation(s)
- T J Keat
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - D J L Coxon
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- EPSRC Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M Staniforth
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M W Dale
- De Beers Group, Belmont Road, Maidenhead SL6 6JW, United Kingdom
| | - V G Stavros
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M E Newton
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom
- EPSRC Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - J Lloyd-Hughes
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
37
|
Yao L, Lou X, Sui N, Zhang W, Xiao H, Chi X, Zhang HZ, Wang Y. Activity enhancement of a photo-generated carrier in CsPbBr 3 nanocrystals improved by Cd element. OPTICS EXPRESS 2022; 30:39840-39848. [PMID: 36298926 DOI: 10.1364/oe.471687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Doping Cd element into perovskite materials is an effective strategy to improve the photoelectric property. However, the further discussion for carrier dynamic behavior in perovskites affected by Cd element remains not sufficient. In this research letter, based on steady and transient spectroscopy, it is found that adding Cd element into CsPbBr3 nanocrystals can enhance the activity of photo-generated carriers and accompany with the optimization of crystal structure. The former improves the carrier heating effect, which makes carrier keep high temperature for a long time and accelerate the bimolecular and the Auger recombination simultaneously. The latter can restrict the monomolecular recombination through passivating the defect states. Finally, they together improve the photoluminescence characteristics of the Cd doped CsPbBr3 nanocrystals and make them exhibit a huge potential in the fields of optoelectronics or photo-catalysis.
Collapse
|
38
|
Kaur G, Shukla A, Babu KJ, Ghosh HN. Chemically Engineered Avenues: Opportunities for Attaining Desired Carrier Cooling in Perovskites. CHEM REC 2022; 22:e202200106. [PMID: 35882519 DOI: 10.1002/tcr.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Hot carrier extraction-based devices are presently being persuaded as the most revolutionary means of surpassing the theoretical thermodynamic conversion efficiency limit (∼67 % for a model hot carrier solar cell). However, for practical realisation, there stand various hurdles that need to be surmounted, a major among all being the rapid hot carrier cooling rate. Though, the perovskite family has already demonstrated itself to exhibit slower cooling in contrast to the prototypical semiconductors. Decelerating this entire process of cooling further can prove to be a crucial stride in this regard. Quite contrarily, for the optoelectronic applications the situation is entirely conflicting where quick rate of cooling is a chief prerequisite. In the recent times, there have been various key developments that have targeted altering this cooling rate by various chemically engineered strategies. This review highlights such blueprints that can be utilized towards the advantageous alteration of the carrier cooling in accordance with the device requirements.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Ayushi Shukla
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India.,RPC Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India
| |
Collapse
|
39
|
Lim J, Kober-Czerny M, Lin YH, Ball JM, Sakai N, Duijnstee EA, Hong MJ, Labram JG, Wenger B, Snaith HJ. Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nat Commun 2022; 13:4201. [PMID: 35859149 PMCID: PMC9300620 DOI: 10.1038/s41467-022-31569-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Charge carrier mobility is a fundamental property of semiconductor materials that governs many electronic device characteristics. For metal halide perovskites, a wide range of charge carrier mobilities have been reported using different techniques. Mobilities are often estimated via transient methods assuming an initial charge carrier population after pulsed photoexcitation and measurement of photoconductivity via non-contact or contact techniques. For nanosecond to millisecond transient methods, early-time recombination and exciton-to-free-carrier ratio hinder accurate determination of free-carrier population after photoexcitation. By considering both effects, we estimate long-range charge carrier mobilities over a wide range of photoexcitation densities via transient photoconductivity measurements. We determine long-range mobilities for FA0.83Cs0.17Pb(I0.9Br0.1)3, (FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3 and CH3NH3PbI3-xClx polycrystalline films in the range of 0.3 to 6.7 cm2 V−1 s−1. We demonstrate how our data-processing technique can also reveal more precise mobility estimates from non-contact time-resolved microwave conductivity measurements. Importantly, our results indicate that the processing of polycrystalline films significantly affects their long-range mobility. Charge carrier mobility is a fundamental property of semiconductors. The authors of this study demonstrate a novel way to estimate long-range mobilities of perovskite thin-films and single crystals by taking early-time carrier dynamics into account.
Collapse
Affiliation(s)
- Jongchul Lim
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK. .,Graduate school of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Daejeon, 34134, Republic of Korea.
| | - Manuel Kober-Czerny
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Yen-Hung Lin
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - James M Ball
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Nobuya Sakai
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Elisabeth A Duijnstee
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Min Ji Hong
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - John G Labram
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bernard Wenger
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.
| |
Collapse
|
40
|
Liu XB, Hu SQ, Chen D, Guan M, Chen Q, Meng S. Calibrating Out-of-Equilibrium Electron-Phonon Couplings in Photoexcited MoS 2. NANO LETTERS 2022; 22:4800-4806. [PMID: 35648107 DOI: 10.1021/acs.nanolett.2c01105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonequilibrium electron-phonon coupling (EPC) serves as a dominant interaction in a multitude of transient processes, including photoinduced phase transitions, coherent phonon generation, and possible light-induced superconductivity. Here we use monolayer MoS2 as a prototype to investigate the variation in electron-phonon couplings under laser excitation, on the basis of real-time time-dependent density functional theory simulations. Phonon softening, anisotropic modification of the deformation potential, and enhancement of EPC are observed, which are attributed to the reduced electronic screening and modulated potential energy surfaces by photoexcitation. Furthermore, by tracking the transient deformation potential and nonthermal electronic population, we can monitor the ultrafast time evolution of the energy exchange rate between electrons and phonons upon laser excitation. This work provides an effective strategy to investigate the nonequilibrium EPC and constructs a scaffold for understanding nonequilibrium states beyond the multitemperature models.
Collapse
Affiliation(s)
- Xin-Bao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shi-Qi Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Mengxue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
41
|
Linear and Non-Linear Population Retrieval with Femtosecond Optical Pumping of Molecular Crystals for the Generalised Uniaxial and Biaxial Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Femtosecond optical measurements of photoexcitable molecular crystals carry ultrafast dynamics information with structural sensitivity. The creation and detection of transient dynamics depend on the optical parameters, as well as the explicit molecular structure, crystal symmetry, crystal orientation, polarisation of the photoexciting beam, and interaction geometry. In order to retrieve the linear and non-linear population transfer in photoexcited crystals, excitation theory is combined here with the calculation of birefringence decomposition and is shown for both the generalised uniaxial and biaxial systems. A computational tool was constructed based on this treatment to allow modelling of electric field decomposition, dipole projections, and non-linear excitation population levels. This is available open source and with a GUI for ease of use. Such work has applications in two areas of ultrafast science: multidimensional optical crystallography and femtosecond time-resolved X-ray crystallography.
Collapse
|
42
|
Otero-Martínez C, Ye J, Sung J, Pastoriza-Santos I, Pérez-Juste J, Xia Z, Rao A, Hoye RLZ, Polavarapu L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107105. [PMID: 34775643 DOI: 10.1002/adma.202107105] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jooyoung Sung
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
| |
Collapse
|
43
|
Ross AM, Osella S, Policht VR, Zheng M, Maggini M, Marangi F, Cerullo G, Gatti T, Scotognella F. Deciphering Photoinduced Charge Transfer Dynamics in a Cross-Linked Graphene-Dye Nanohybrid. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3569-3581. [PMID: 35242271 PMCID: PMC8883522 DOI: 10.1021/acs.jpcc.1c10570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites.
Collapse
Affiliation(s)
- Aaron M. Ross
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Silvio Osella
- Chemical
and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Veronica R. Policht
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Meng Zheng
- Chemical
Sciences Department, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Michele Maggini
- Chemical
Sciences Department, Università degli
Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabio Marangi
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Pascolo, 70/3 Milano 20133, Italy
| | - Giulio Cerullo
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Teresa Gatti
- Center
for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Francesco Scotognella
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Pascolo, 70/3 Milano 20133, Italy
| |
Collapse
|
44
|
Yu S, Geng Y, Liang D, Li H, Liu X. Double-quantum-zero-quantum 2D coherent spectroscopy reveals quantum coherence between collective states in an atomic vapor. OPTICS LETTERS 2022; 47:997-1000. [PMID: 35167578 DOI: 10.1364/ol.449365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
We report a novel, to the best of our knowledge, double-quantum-zero-quantum two-dimensional coherent spectroscopy (2DCS) that allows direct detection of the quantum coherence between multiparticle collective states. Through correlating the double-quantum coherence and the zero-quantum coherence, signatures for coherence between collective states can be well isolated as side peaks and readily identified in the 2D spectrum. The experiment is implemented in a vapor of rubidium atoms in a collinear 2DCS setup. Good agreement with a theoretical simulation using density matrix confirms the essential role of the interatomic correlation effect in generating the side peak signals. This 2D spectrum technique paves a new avenue for studying the coherent coupling of highly excited states and many-body properties.
Collapse
|
45
|
Mishra K, Acharjee D, Das A, Ghosh S. Subpicosecond Hot Hole Transfer in a Graphene Quantum Dot Composite with High Efficiency. J Phys Chem Lett 2022; 13:606-613. [PMID: 35019662 DOI: 10.1021/acs.jpclett.1c03530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extraction of hot carriers is of prime importance because of its potential to overcome the energy loss that limits the efficiency of an optoelectronic device. Employing a femtosecond upconversion setup, herein we report a few picoseconds carrier cooling time of colloidal graphene quantum dots (GQDs) is at least an order of magnitude slower compared to that in its bulk form. A slower carrier cooling time of GQDs compared to that of the other semiconductor quantum dots and their bulk materials is indeed a coveted property of GQDs that would allow one easy harvesting of high energy species employing a suitable molecular system as shown in this study. A subpicosecond hot hole transfer time scale has been achieved in a GQD-molecular system composite with high transfer efficiency. Our finding suggests a dramatic enhancement of the efficiency of GQD based optoelectronic devices can possibly be a reality.
Collapse
Affiliation(s)
- Krishna Mishra
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|
46
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
47
|
Iwai S, Kawakami Y, Itoh H, Yonemitsu K. Petahertz charge dynamics in a correlated organic superconductor. Faraday Discuss 2022; 237:353-367. [DOI: 10.1039/d2fd00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an observation of stimulated emission induced by a nearly single-cycle 6 fs near infrared electric field of 10 MV/cm in an organic superconductor (κ-(h-ET)2Cu[N(CN)2]Br). The stimulated emission is...
Collapse
|
48
|
Zhang H, Debroye E, Zheng W, Fu S, Virgilio LD, Kumar P, Bonn M, Wang HI. Highly mobile hot holes in Cs 2AgBiBr 6 double perovskite. SCIENCE ADVANCES 2021; 7:eabj9066. [PMID: 34936431 PMCID: PMC8694595 DOI: 10.1126/sciadv.abj9066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/04/2021] [Indexed: 05/24/2023]
Abstract
Highly mobile hot charge carriers are a prerequisite for efficient hot carrier optoelectronics requiring long-range hot carrier transport. However, hot carriers are typically much less mobile than cold ones because of carrier-phonon scattering. Here, we report enhanced hot carrier mobility in Cs2AgBiBr6 double perovskite. Following photoexcitation, hot carriers generated with excess energy exhibit boosted mobility, reaching an up to fourfold enhancement compared to cold carriers and a long-range hot carrier transport length beyond 200 nm. By optical pump–infrared push-terahertz probe spectroscopy and frequency-resolved photoconductivity measurements, we provide evidence that the conductivity enhancement originates primarily from hot holes with reduced momentum scattering. We rationalize our observation by considering (quasi-)ballistic transport of thermalized hot holes with energies above an energetic threshold in Cs2AgBiBr6. Our findings render Cs2AgBiBr6 as a fascinating platform for studying the fundamentals of hot carrier transport and its exploitation toward hot carrier–based optoelectronic devices.
Collapse
Affiliation(s)
- Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucia D. Virgilio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Pushpendra Kumar
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hai I. Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
49
|
Verkamp M, Leveillee J, Sharma A, Lin MF, Schleife A, Vura-Weis J. Carrier-Specific Hot Phonon Bottleneck in CH 3NH 3PbI 3 Revealed by Femtosecond XUV Absorption. J Am Chem Soc 2021; 143:20176-20182. [PMID: 34813692 DOI: 10.1021/jacs.1c07817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Femtosecond carrier cooling in the organohalide perovskite semiconductor CH3NH3PbI3 is measured using extreme ultraviolet (XUV) and optical transient absorption spectroscopy. XUV absorption between 44 and 58 eV measures transitions from the I 4d core to the valence and conduction bands and gives distinct signals for hole and electron dynamics. The core-to-valence-band signal directly maps the photoexcited hole distribution and provides a quantitative measurement of the hole temperature. The combination of XUV and optical probes reveals that upon excitation at 400 nm, the initial hole distribution is 3.5 times hotter than the electron distribution. At an initial carrier density of 1.4 × 1020 cm-3 both carriers are subject to a hot phonon bottleneck, but at 4.2 × 1019 cm-3 the holes cool to less than 1000 K within 400 fs. This result places significant constraints on the use of organohalide perovskites in hot-carrier photovoltaics.
Collapse
Affiliation(s)
- Max Verkamp
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joshua Leveillee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aastha Sharma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - André Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Armstrong ZT, Kunz MB, Zanni MT. Ultrafast Fluctuations in PM6 Domains of Binary and Ternary Organic Photovoltaic Thin Films Probed with Two-Dimensional White-Light Spectroscopy. J Phys Chem Lett 2021; 12:8972-8979. [PMID: 34506148 DOI: 10.1021/acs.jpclett.1c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present two-dimensional white-light spectroscopy (2DWL) measurements of binary and ternary bulk heterojunctions of the polymer donor PM6 mixed with state-of-the-art nonfullerene acceptors Y6 or IT4F. The ternary film has a shorter lifetime and faster spectral diffusion than either of the binary films. 2D line shape analysis of the PM6 ground state bleach with a Kubo model determines that all three films have similar amplitudes of fluctuations (Δ = 0.29 fs-1) in their transition frequencies, but different relaxation times (ranging from 102 to 24 fs). The ternary film exhibits faster dynamics than either of the binary films. The short lifetime of the ternary blend is consistent with increased photoexcitation transfer and the fast frequency fluctuations are consistent with structural dynamics of aliphatic side chains. These results suggest that the femtosecond fluctuations of PM6 are impacted by the choice of the acceptor molecules. We hypothesize that those dynamics are either indicative, or perhaps the initial source, of structural dynamics that ultimately contribute to solar cell operation.
Collapse
Affiliation(s)
- Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|