1
|
Cui X, Liu W, Jiang H, Zhao Q, Hu Y, Tang X, Liu X, Dai H, Rui H, Liu B. IL-12 family cytokines and autoimmune diseases: A potential therapeutic target? J Transl Autoimmun 2025; 10:100263. [PMID: 39759268 PMCID: PMC11697604 DOI: 10.1016/j.jtauto.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025] Open
Abstract
In recent years, the discovery of IL-12 family cytokines, which includes IL-12, IL-23, IL-27, IL-35, and IL-39, whose biological functions directly or indirectly affect various autoimmune diseases. In autoimmune diseases, IL-12 family cytokines are aberrantly expressed to varying degrees. These cytokines utilize shared subunits to influence T-cell activation and differentiation, thereby regulating the balance of T-cell subsets, which profoundly impacts the onset and progression of autoimmune diseases. In such conditions, IL-12 family members are aberrantly expressed to varying degrees. By exploring their immunomodulatory functions, researchers have identified varying therapeutic potentials for each member. This review examines the physiological functions of the major IL-12 family members and their interactions, discusses their roles in several autoimmune diseases, and summarizes the progress of clinical studies involving monoclonal antibodies targeting IL-12 and IL-23 subunits currently available for treatment.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyue Tang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Xianli Liu
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Haoran Dai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100310, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
2
|
Wang Z, Chen G, Zhao C, Li Y, Shi J, Chen H, Chen G. B-cell depletion therapy reduces retinal inflammation in experimental autoimmune uveoretinitis. Int Immunopharmacol 2025; 153:114467. [PMID: 40117810 DOI: 10.1016/j.intimp.2025.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Non-infectious uveitis (NIU) is recognized as a group of autoimmune sight-threatening disorders with complex pathogenesis. This study aims to analyze the pathogenic role of B cells in NIU and evaluate the effectiveness of B cell depletion therapy in experimental autoimmune uveoretinitis (EAU) mice. METHODS We performed high throughput transcriptome sequence on peripheral blood samples from healthy individuals (n = 6) and NIU patients (n = 12), and reanalyzed single-cell RNA transcriptome data of aqueous humor in NIU patients (n = 5). Female C57BL/6 J mice were induced the EAU model through immunization with the IRBP651-670 peptide. B cell depletion was performed via intravitreal injection of anti-CD20 antibody on day 7 and mice were executed on day 14 following antigen administration. Clinical symptoms were assessed by fundus photography and fundus fluorescein angiography. Pathological sections were analyzed using immunohistochemistry and immunofluorescence. Serum immunoglobulins and inflammatory factors were detected by ELISA. RESULTS Transcriptome sequencing and single-cell RNA analysis revealed strong B cell immune responses in both peripheral blood and aqueous humor of NIU patients. Intravitreal injection of anti-CD20 antibody partially reduces B cell numbers, suppresses T cell proliferation in CLNs, and decreases serum IgG and inflammatory cytokines level, which collectively alleviate clinical symptoms and mitigate retinal inflammation. Significant differences in BCR sequences were observed between the NIU groups and healthy controls. CONCLUSION B-cell depletion therapy may offer a novel strategy for the treatment of NIU and identifying specific BCR sequences provides a potential target for both therapeutic intervention and disease monitoring.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Gong Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Cong Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Jingming Shi
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Li Y, Liao Y, Miao Y, Yu C, Long J, Wu J, Zuo J, Zhang Z, Dou W, Wang X, Zhang B, Yu C, Yang J, Wang S. Interleukin-35 mRNA therapy for influenza virus-induced pneumonia in mice. Eur J Pharmacol 2025; 993:177366. [PMID: 39947345 DOI: 10.1016/j.ejphar.2025.177366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Influenza virus-induced pneumonia is a common complication caused by influenza A virus infection and causes severe lung inflammation. After infection, the body induces an active immune response that can produce cytokine storm, leading to increased expression of pro-inflammatory factors and tissue damage. Interleukin-35 (IL-35) is a recently identified cytokine associated with viral infection. IL-35 may inhibit the inflammation caused by viral infection and therefore may be developed into an antiviral treatment. Compared with traditional drugs, mRNA drugs have the advantages of simple production process, short development cycle, strong target specificity, high safety, and long-lasting action. In this study,we prepared IL-35 mRNA and IL-35 mRNA/Lipid Nanoparticle (IL-35 mRNA/LNP). To investigate the role of IL-35 mRNA in the host defense against post-influenza pneumonia, a mouse model of pneumonia caused by influenza infection was established. After influenza infection, the mice produced a large number of inflammatory factors that caused lung tissue damage, while administration of IL-35 mRNA/LNP effectively reduced the inflammatory response and improved the survival rate of mice. In addition, mice injected with IL-35 mRNA/LNP (125 μg/kg) directly via tail vein did not show significant inflammatory responses or tissue damage. These data suggest that IL-35 mRNA attenuates the inflammatory response caused by influenza virus infection and shows potential for development as a new drug for the treatment of influenza virus-induced pneumonia.
Collapse
Affiliation(s)
- Yanyan Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, PR China; Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Yuqin Liao
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Yiqi Miao
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Changxiao Yu
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Jinrong Long
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Jiayu Wu
- Bioinformatics Center of AMMS, Beijing, 100850, PR China; Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Jun Zuo
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Zhen Zhang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Wei Dou
- Bioinformatics Center of AMMS, Beijing, 100850, PR China; Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xin Wang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| | - Jing Yang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, PR China.
| |
Collapse
|
4
|
Liao J, Yang Y, Li J, Liu Z, Song S, Zeng Y, Wang Y. Regulatory B cells, the key regulator to induce immune tolerance in organ transplantation. Front Immunol 2025; 16:1561171. [PMID: 40264774 PMCID: PMC12011811 DOI: 10.3389/fimmu.2025.1561171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
In solid organ transplantation, especially renal transplantation, for the induction of immune tolerance, accumulating evidence has revealed that Regulatory B cells (Breg) play a crucial role in stimulating immune tolerance, alleviating immune responses, and improving graft survival. We describe the heterogeneous nature of Bregs, focusing on their defining surface markers and regulatory functions. Meanwhile, the major cytokine secretion function and the correlation between Breg and Treg or other immune checkpoints to balance the immune responses are addressed. Furthermore, we summarized the intrinsic and extrinsic pathways or costimulatory stimuli for the differentiation from naïve B cells. More importantly, we summarized the progression of the immune tolerance induction role of Breg in solid organ (kidney, liver, heart, lung, and islet) transplantation. This is an up-to-date review from the origin of Breg to the function of Breg in solid organ transplantation and how it induces immune tolerance in both murine models and human solid organ transplantation.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yixin Yang
- Department of Clinical Medicine, The First Clinical Medical College of Norman Bethune University of Medical Sciences, Jilin, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yu Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
5
|
Zhang Y, Zhang C, Yang B, Peng C, Zhou J, Ren S, Hu Z. The effect of TIM1 + Breg cells in liver ischemia-reperfusion injury. Cell Death Dis 2025; 16:171. [PMID: 40075055 PMCID: PMC11903774 DOI: 10.1038/s41419-025-07446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
Liver transplantation is the only effective method for end-stage liver disease; however, liver ischemia reperfusion injury (IRI) seriously affects donor liver function after liver transplantation. IRI is a pathophysiological process in which organ damage is aggravated after the blood flow and oxygen supply of ischemic organ tissues are restored. It combines the two stages of hypoxic cell stress triggered by ischemia and inflammation-mediated reperfusion injury. Herein, we studied the protective effect and mechanism of the anti-T cell Ig and mucin domain (TIM1) monoclonal antibody, RMT1-10, on hepatic cell injury induced by IRI. First, a liver IRI model was established in vivo. HE, TEM, and Tunel were used to detect liver tissue injury, changes in the liver ultrastructure and liver cell apoptosis, respectively. ELISA were performed to determine the levels of ALT, AST, MDA, GSH, and related inflammatory factors. We found that RMT1-10 could significantly reduce liver injury. Flow cytometry results showed that the number of TIM1+ regulatory B cells (Bregs) in the IRI liver increased briefly, while pretreatment with RMT1-10 could increase the number of TIM1+ Bregs and interleukin-10 (IL-10) secretion in liver IRI model mice, thus playing a protective role in liver reperfusion. When Anti-CD20 was used to remove B cells, RMT1-10 had a reduced effect on liver IRI. Previous data showed that the number of T helper 1 cells (Th1:CD4+; CD8+) increased significantly after IRI. RMT1-10 inhibited Th1 cells; however, it significantly activated regulatory T cells. Sequencing analysis showed that RMT1-10 could significantly downregulate the expression of nuclear factor-kappa B (NF-κB) pathway-related genes induced by IRI. These results suggested that RMT1-10 could promote the maturation of B cells through an atypical NF-κB pathway, thereby increasing the number of TIM1+ Bregs and associated IL-10 secretion to regulate the inflammatory response, thereby protecting against liver IRI.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Beng Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China.
| |
Collapse
|
6
|
Yadav MK, Singh SP, Egwuagu CE. IL-6/IL-12 superfamily of cytokines and regulatory lymphocytes play critical roles in the etiology and suppression of CNS autoimmune diseases. Front Immunol 2025; 16:1514080. [PMID: 40114923 PMCID: PMC11922825 DOI: 10.3389/fimmu.2025.1514080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Cytokines influence cell-fate decisions of naïve lymphocytes and determine outcome of immune responses by transducing signals that regulate the initiation, intensity and duration of immune responses. However, aberrant regulation of physiological levels of cytokines contribute to the development of autoimmune and other inflammatory diseases. The Interleukin 6 (IL-6)/IL-12 superfamily of cytokines have a profound influence on all aspects of host immunity and our focus in this review is on the signaling pathways that mediate their functions, with emphasis on how this enigmatic family of cytokines promote or suppress inflammation depending on the physiological context. We also describe regulatory lymphocyte populations that suppress neuroinflammatory diseases by producing cytokines, such as IL-27 (i27-Breg) or IL-35 (i35-Breg and iTR35). We conclude with emerging immunotherapies like STAT-specific Nanobodies, Exosomes and Breg therapy that ameliorate CNS autoimmune diseases in preclinical studies.
Collapse
Affiliation(s)
| | | | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
7
|
Choi JK, Mbanefo EC, Yadav MK, Alhakeem SA, Nagarajan V, Nunes NS, Kanakry CG, Egwuagu CE. Interleukin 35-producing B cells prolong the survival of GVHD mice by secreting exosomes with membrane-bound IL-35 and upregulating PD-1/LAG-3 checkpoint proteins. Theranostics 2025; 15:3610-3626. [PMID: 40093899 PMCID: PMC11905137 DOI: 10.7150/thno.105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for aggressive hematologic malignancies. However, the risk of developing graft-versus-host disease (GVHD) is a significant barrier to allo-HSCT. GVHD is a debilitating condition with high mortality rates and current therapeutic options for GVHD are limited, with corticosteroids being the standard treatment. However, the adverse effects of steroids make prolonged use difficult, necessitating the development of safer therapies. IL-35-producing B-cells (i35-Bregs) have emerged as critical regulators of immunity during autoimmune diseases. In this study, we investigated whether i35-Bregs immunotherapy can suppress and mitigate GVHD. Methods: We administered a single dose of i35-Bregs (1.5×106) to mice undergoing allo-HSCT and monitored disease severity and survival of GVHD mice over 90 days post-transplantation. We discovered that i35-Bregs secrete exosomes containing membrane-bound IL-35 (i35-Exosomes) and investigated whether ex-vivo generated i35-exosomes can be used as stand-alone immunotherapy for GVHD. i35-Breg-induced expression of cytokines or checkpoint proteins (PD-1, LAG-3, CTLA-4) was analyzed by Flow cytometry, ELISA, and RNA-seq analysis. Characterization of membrane-bound IL-35 was by Proximity ligation assay (PLA), immunohistochemistry/Confocal microscopy and Alpha Fold-Multimer modeling. Results: A single dose of 1.5×106 i35-Breg reduced severity of GVHD and prolonged GVHD survival, with more than 70% i35-Breg-treated mice surviving beyond day-90 post-transplantation while observing 100% mortality among untreated mice by day-45. Contrary to the view that IL-35 is secreted cytokine, we show here that i35-Bregs mitigate GVHD via membrane-bound IL-35 and by secreting i35-exosomes. Furthermore, i35-Bregs or ex-vivo generated i35-exosomes induce alloreactive T-cells to upregulate checkpoint proteins associated with T-cell exhaustion and anergy, inhibiting alloreactive responses and propagating infectious-tolerance mechanisms that suppress GVHD. Importantly, i35-Bregs or i35-exosomes suppresses GVHD by increasing bystander lymphocytes coated with immunosuppressive i35-exosomes. Conclusions: This study demonstrates that i35-Bregs and i35-exosomes play a critical role in mitigating GVHD. The combination of i35-Breg and i35-exosome immunotherapy may be an effective strategy for treating GVHD and other inflammatory diseases.
Collapse
Affiliation(s)
- Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Evaristus C. Mbanefo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Manoj Kumar Yadav
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Sahar A. Alhakeem
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Vijayaraj Nagarajan
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Natalia S. Nunes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, United States of America
| | - Christopher G. Kanakry
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, United States of America
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| |
Collapse
|
8
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
9
|
Wang X, Tang J, Zhang X, Zeng H. The Protective Effect of Esculentoside A on MPL/lpr Mice by Upregulating the Expression of CD19+IL-35+Breg Cells and Interleukin-35. Int Arch Allergy Immunol 2024; 186:358-368. [PMID: 39500292 DOI: 10.1159/000541812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/27/2024] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Esculentoside A (EsA) is one of the main components of the traditional Chinese medicine Phytolacca esculenta. The possible mechanism of action of EsA in the treatment of lupus nephritis (LN) was explored by observing the effects of EsA on CD19+ IL-35+regulatory B (IL-35+Breg) cells. METHODS Twenty-four MRL/lpr mice were randomly divided into control, EsA, and EsA+IL-12p35 antibody groups. Mice were administered the respective treatments intraperitoneally once a day for 4 weeks. The urine protein/creatinine ratio (UPCR) and blood creatinine (Cr) and IL-35, IL-10, and IL-17 expression levels were measured. Body and spleen weight were measured to calculate the splenic index (SI). Flow cytometry was performed to determine the proportion of CD19+ IL-35+ Breg cells in the spleen. Hematoxylin-eosin and PASM-Masson staining of renal tissues were performed, and the "Austin" acute index (AI) system for LN was determined. RESULTS The most severe conditions were seen in mice in the control group, with the highest UPCR, Cr, and IL-17 levels and SI and AI scores; the most severe renal histopathology, and the lowest proportion of CD19+ IL-35+ Breg cells and IL-35 and IL-10 levels. This was followed by the EsA+IL-12p35 antibody group. The EsA group had the lowest UPCR, Cr, and IL-17 levels and SI and AI scores; the mildest renal lesions; and the highest proportion CD19+ IL-35+ Breg cells and IL-35 and IL-10 levels. CONCLUSION EsA delayed the progression of LN by promoting the proliferation of CD19+ IL-35+ Breg cells, upregulating the expression of IL-35, and decreasing the secretion of IL-17.
Collapse
Affiliation(s)
- Xing Wang
- Department of Nephrology and Rheumatology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China,
| | - Jieyin Tang
- Department of Nephrology and Rheumatology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Xianggui Zhang
- Department of Nephrology and Rheumatology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Huilin Zeng
- Department of Nephrology and Rheumatology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| |
Collapse
|
10
|
Yuan L, Li Y, Liu D, Zhang H, Yang J, Shen H, Xia L, Yao L, Lu J. Interleukin-35 protein inhibits osteoclastogenesis and attenuates collagen-induced arthritis in mice. J Cell Physiol 2024; 239:e31231. [PMID: 38451477 DOI: 10.1002/jcp.31231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease. Its pathological features include synovial inflammation, bone erosion, and joint structural damage. Our previous studies have shown that interleukin (IL)-35 is involved in the pathogenesis of bone loss in RA patients. In this study, we are further evaluating the efficacy of IL-35 on collagen-induced arthritis (CIA) in the mouse model. Male DBA/1J mice (n = 10) were initially immunized, 2 μg/mouse IL-35 was injected intraperitoneally every week for 3 weeks after the establishment of the CIA model. Clinical arthritis, histopathological analysis, and three-dimensional micro‑computed tomography (3D micro‑CT) were determined after the mice were anesthetized on the 42th day. In vitro, RANKL/M-CSF induced mouse preosteoclasts (RAW264.7 cells line) was subjected to antiarthritis mechanism study in the presence of IL-35. The results of clinical arthritis, histopathological analysis, and 3D micro‑CT, the expression of RANK/RANKL/OPG axis, inflammatory cytokines, and osteoclastogenesis-related makers demonstrated decreasing severity of synovitis and bone destruction in the ankle joints after IL-35 treatment. Furthermore, IL-35 attenuated inflammatory cytokine production and the expression of osteoclastogenesis-related makers in a mouse preosteoclasts cell line RAW264.7. The osteoclastogenesis-related makers were significantly reduced in IL-35 treated RAW264.7 cells line after blockage with the JAK/STAT1 signaling pathway. These results demonstrated that IL-35 protein could inhibits osteoclastogenesis and attenuates CIA in mice. We concluded that IL-35 can exhibit anti-osteoclastogenesis effects by reducing the expression of inflammatory cytokines and osteoclastogenesis-related makers, thus alleviating bone destruction in the ankle joint and could be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Health Management, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Liu
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, The Fifth People Hospital, Shenyang, China
| | - Jie Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liping Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lutian Yao
- Department of Orthopedic, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Lu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
12
|
Ahsan NF, Lourenço S, Psyllou D, Long A, Shankar S, Bashford-Rogers R. The current understanding of the phenotypic and functional properties of human regulatory B cells (Bregs). OXFORD OPEN IMMUNOLOGY 2024; 5:iqae012. [PMID: 39346706 PMCID: PMC11427547 DOI: 10.1093/oxfimm/iqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
B cells can have a wide range of pro- and anti- inflammatory functions. A subset of B cells called regulatory B cells (Bregs) can potently suppress immune responses. Bregs have been shown to maintain immune homeostasis and modulate inflammatory responses. Bregs are an exciting cellular target across a range of diseases, including Breg induction in autoimmunity, allergy and transplantation, and Breg suppression in cancers and infection. Bregs exhibit a remarkable phenotypic heterogeneity, rendering their unequivocal identification a challenging task. The lack of a universally accepted and exclusive surface marker set for Bregs across various studies contributes to inconsistencies in their categorization. This review paper presents a comprehensive overview of the current understanding of the phenotypic and functional properties of human Bregs while addressing the persisting ambiguities and discrepancies in their characterization. Finally, the paper examines the promising therapeutic opportunities presented by Bregs as their immunomodulatory capacities have gained attention in the context of autoimmune diseases, allergic conditions, and cancer. We explore the exciting potential in harnessing Bregs as potential therapeutic agents and the avenues that remain open for the development of Breg-based treatment strategies.
Collapse
Affiliation(s)
- Nawara Faiza Ahsan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Stella Lourenço
- Keizo Asami Institute, Federal University of Pernambuco, Recife 50740-520, Brazil
| | - Dimitra Psyllou
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alexander Long
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rachael Bashford-Rogers
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- Oxford Cancer Centre, University of Oxford, Oxford OX3 7LH, United Kingdom
| |
Collapse
|
13
|
Zysk W, Gleń J, Zabłotna M, Nowicki RJ, Trzeciak M. Association between single nucleotide polymorphisms of interleukin-35 genes and atopic dermatitis. Postepy Dermatol Alergol 2024; 41:415-422. [PMID: 39290904 PMCID: PMC11404101 DOI: 10.5114/ada.2024.141783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The pathogenesis of atopic dermatitis (AD) involves complex interactions between environmental factors, the skin microbiome, epidermal barrier defects, and altered immune responses that develop on a not fully understood specific genetic background. Aim We aimed to evaluate the contribution of single nucleotide polymorphisms (SNPs) in the IL-35 genes (IL-12A and EBI3) towards AD susceptibility and clinical characteristics of AD in the Polish population. Two SNPs (rs568408, rs582054) in IL-12A and one SNP (rs428253) in EBI3 were selected. Material and methods Blood samples were collected from 202 AD patients and 178 healthy individuals. SNPs in IL-35 genes were analysed by the polymerase chain reaction with sequence-specific primers (SSP-PCR) method. Results For IL-12A rs568408, the AA genotype was significantly linked to increased odds of AD (OR = 34.61; 95% CI: 2.06-579.97, p = 0.0137) and marginally associated with normal total serum IgE levels (OR = 2.82; 95% CI: 0.97-8.16; p = 0.05), while the GA genotype showed significantly reduced odds of AD (OR = 0.53; 95% CI: 0.34-0.81; p = 0.0035). In the context of IL-12A rs582054, TT genotype carriers had increased odds of AD (OR = 2.05; 95% CI: 1.08-3.85; p = 0.03). Patients with the GG genotype of EBI3 rs428253 had decreased odds of high total serum IgE levels (OR = 0.42; 95% CI: 0.20-0.86; p = 0.02) and milder pruritus severity compared to CC genotype carriers (4.12 vs. 7.50; p = 0.02). Conclusions IL-35 genetic variations appear to play a role in AD pathogenesis.
Collapse
Affiliation(s)
- Weronika Zysk
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
14
|
Wu T, Wang L, Gao C, Jian C, Liu Y, Fu Z, Shi C. Treg-Derived Extracellular Vesicles: Roles in Diseases and Theranostics. Mol Pharm 2024; 21:2659-2672. [PMID: 38695194 DOI: 10.1021/acs.molpharmaceut.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Regulatory T cells (Tregs), a subset of CD4+ T cells, are indispensable in maintaining immune self-tolerance and have been utilized in various diseases. Treg-derived extracellular vesicles (Treg-EVs) have been discovered to play an important role in the mechanism of Treg functions. As cell-derived membranous particles, EVs carry multiple bioactive substances that possess tremendous potential for theranostics. Treg-EVs are involved in numerous physiological and pathological processes, carrying proteins and miRNAs inherited from the parental cells. To comprehensively understand the function of Treg-EVs, here we reviewed the classification of Treg-EVs, the active molecules in Treg-EVs, their various applications in diseases, and the existing challenges for Treg-EVs based theranostics. This Review aims to clarify the feasibility and potential of Treg-EVs in diseases and theranostics, facilitating further research and application of Treg-EVs.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yajing Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| |
Collapse
|
15
|
Wei X, Zhang J, Cui J, Xu W, Zhao G, Guo C, Yuan W, Zhou X, Ma J. Adaptive plasticity of natural interleukin-35-induced regulatory T cells (Tr35) that are required for T-cell immune regulation. Theranostics 2024; 14:2897-2914. [PMID: 38773985 PMCID: PMC11103508 DOI: 10.7150/thno.90608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Background: IL-35 potently inhibits immune responses both in vivo and in vitro. However, the specific characteristics of IL-35-producing cells, including their developmental origin, cellular phenotype, and function, are unknown. Methods: By using a novel IL-35 reporter mouse (Ebi3-Dre-Thy1.1) and double transgenic fate-mapping reporter mice (35EbiT-Rosa26-rox-tdTomato reporter mice or Foxp3 fate-mapping system), we tracked and analyzed the differentiation and developmental trajectories of Tr35 cells in vivo. And then we investigated the therapeutic effects of OVA-specific Tr35 cells in an OVA-induced allergic airway disease model. Results: We identified a subset of cells, denoted Tr35 cells, that secrete IL-35 but do not express Foxp3. These cells have high expression of molecules associated with T-cell activation and can inhibit T-cell proliferation in vitro. Our analyses showed that Tr35 cells are a distinct subpopulation of cells that are independent of Tr1 cells. Tr35 cells exhibit a unique gene expression profile and tissue distribution. The presence of Thy1.1 (Ebi3) expression in Tr35 cells indicates their active secretion of IL-35. However, the proportion of ex-Tr35 cells (Thy1.1-) is significantly higher compared to Tr35 cells (Thy1.1+). This suggests that Tr35 cells possess the ability to regulate IL-35 expression rapidly in vivo. Tr35 cells downregulated the expression of the inflammatory cytokines IL-4, IFN-γ and IL-17A. However, once Tr35 cells lost IL-35 expression and became exTr35 cells, the expression of inflammatory cytokines was upregulated. Importantly, our findings indicate that Tr35 cells have therapeutic potential. In an OVA-induced allergic airway disease mouse model, Tr35 cell reinfusion significantly reduced airway hyperresponsiveness and histopathological airway and lung inflammation. Conclusions: We have identified a subset of Tregs, Tr35 cells, that are distinct from Tr1 cells. Tr35 cells can dynamically regulate the secretion of inflammatory cytokines by controlling IL-35 expression to regulate inflammatory immune responses.
Collapse
Affiliation(s)
- Xundong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi Nanning, P.R. China
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Jian Cui
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Wei Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Gang Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P.R. China
| | - Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Wei Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P.R. China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi Nanning, P.R. China
| |
Collapse
|
16
|
Mortezaee K. Selective targeting or reprogramming of intra-tumoral Tregs. Med Oncol 2024; 41:71. [PMID: 38341821 DOI: 10.1007/s12032-024-02300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Regulatory T cells (Tregs) are critical immunosuppressive cells that are frequently present in the tumor microenvironment of solid cancers and enable progression of tumors toward metastasis. The cells expand in response to tumor-associated antigens and are actively involved in bypassing immunotherapy with immune checkpoint inhibitors through integrating numerous environmental signals. A point here is that Tregs are clonally distinct in peripheral blood from tumor area. Currently, an effective and novel task in cancer immunotherapy is to selectively destabilize or deplete intra-tumoral Tregs in order to avoid systemic inflammatory events. Helios is a transcription factor expressed selectively by Tregs and promotes their stabilization, and Trps1 is a master regulator of intra-tumoral Tregs. Anti-CCR8 and the IL-2Rβγ agonist Bempegaldesleukin selectively target intra-tumoral Treg population, with the former approved to not elicit autoimmunity. Disarming Treg-related immunosuppression in tumors through diverting their reprogramming or promoting naïve T cell differentiation into cells with effector immune activating profile is another promising area of research in cancer immunotherapy. Blimp-1 inhibitors and glucocorticoid-induced TNFR-related protein agonists are example approaches that can be used for diverting Treg differentiation into Th1-like CD4+ T cells, thereby powering immunogenicity against cancer. Finally, selective target of intra-tumoral Tregs and their reprogramming into effector T cells is applicable using low-dose chemotherapy, and high-salt and high-tryptophan diet.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
17
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
18
|
Hourani T, Eivazitork M, Balendran T, Mc Lee K, Hamilton JA, Zhu HJ, Iaria J, Morokoff AP, Luwor RB, Achuthan AA. Signaling pathways underlying TGF-β mediated suppression of IL-12A gene expression in monocytes. Mol Immunol 2024; 166:101-109. [PMID: 38278031 DOI: 10.1016/j.molimm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-β is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-β-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-β, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kevin Mc Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Josephine Iaria
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; Federation University, Ballarat, VIC 3350, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
19
|
Huang A, Liu K, Yin Z, Liu J, Wei H, Xing S, Qu Y, Huang L, Li L, Li C, Zhang L, Li X, Zheng C, Liu Q, Jiang K. IL-35 Stabilizes Treg Phenotype to Protect Cardiac Allografts in Mice. Transplantation 2024; 108:161-174. [PMID: 37464473 PMCID: PMC10718222 DOI: 10.1097/tp.0000000000004707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Interleukin-35 (IL-35), secreted by regulatory T cells (Treg) and B cells, is immunosuppressive under both physiological and pathological conditions. However, the role of IL-35 in all responses has yet to be investigated. Here, we demonstrate that IL-35 protects allografts by stabilizing the Treg phenotype and suppressing CD8 + T-cell activation in a mouse heart transplantation model. METHODS The effect of IL-35 on immune cell infiltration in grafts and secondary lymphoid organs was examined using mass cytometry, flow cytometry, and immunofluorescence. Moreover, using quantitative real-time polymerase chain reaction, flow cytometry, and phospho-flow assays, we demonstrated that IL-35 maintains Treg phenotypes to restrain CD8 + T cells via the gp130/signal transducer and activator of transcription 1 pathway. RESULTS Mass cytometry analysis of intragraft immune cells showed that IL-35 decreased CD8 + T-cell infiltration and increased Foxp3 and IL-35 expressions in Treg. In vitro, we demonstrated that IL-35 directly promoted Treg phenotypic and functional stability and its IL-35 secretion, generating a positive feedback loop. However, Treg are required for IL-35 to exert its suppressive effect on CD8 + T cells in vitro. After depleting Treg in the recipient, IL-35 did not prolong graft survival or decrease CD8 + T-cell infiltration. Mechanistically, we found that IL-35 sustained Treg stability via the gp130/signal transducer and activator of transcription 1 signaling pathway. CONCLUSIONS Our findings highlight that IL-35 stabilizes the Treg phenotype to ameliorate CD8 + T-cell infiltration in the allograft, which has never been described in the transplanted immunological milieu.
Collapse
Affiliation(s)
- Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kewei Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Yin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Jie Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Hongyan Wei
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Shijie Xing
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liancheng Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Lei Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoshi Li
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Cunni Zheng
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Quan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Smit V, de Mol J, Schaftenaar FH, Depuydt MAC, Postel RJ, Smeets D, Verheijen FWM, Bogers L, van Duijn J, Verwilligen RAF, Grievink HW, Bernabé Kleijn MNA, van Ingen E, de Jong MJM, Goncalves L, Peeters JAHM, Smeets HJ, Wezel A, Polansky JK, de Winther MPJ, Binder CJ, Tsiantoulas D, Bot I, Kuiper J, Foks AC. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc Res 2023; 119:2508-2521. [PMID: 37390467 PMCID: PMC10676459 DOI: 10.1093/cvr/cvad099] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 07/02/2023] Open
Abstract
AIMS Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.
Collapse
Affiliation(s)
- Virginia Smit
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jill de Mol
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rimke J Postel
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diede Smeets
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Fenne W M Verheijen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laurens Bogers
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Janine van Duijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Robin A F Verwilligen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hendrika W Grievink
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva van Ingen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maaike J M de Jong
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Lauren Goncalves
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Julia K Polansky
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Menno P J de Winther
- Amsterdam University Medical Centers—location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
21
|
Liu X, Meng J, Liao X, Liu Y, Zhou Q, Xu Z, Yin S, Cao Q, Su G, He S, Li W, Wang X, Wang G, Li D, Yang P, Hou S. A de novo missense mutation in MPP2 confers an increased risk of Vogt-Koyanagi-Harada disease as shown by trio-based whole-exome sequencing. Cell Mol Immunol 2023; 20:1379-1392. [PMID: 37828081 PMCID: PMC10616125 DOI: 10.1038/s41423-023-01088-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Vogt-Koyanagi-Harada (VKH) disease is a leading cause of blindness in young and middle-aged people. However, the etiology of VKH disease remains unclear. Here, we performed the first trio-based whole-exome sequencing study, which enrolled 25 VKH patients and 50 controls, followed by a study of 2081 VKH patients from a Han Chinese population to uncover detrimental mutations. A total of 15 de novo mutations in VKH patients were identified, with one of the most important being the membrane palmitoylated protein 2 (MPP2) p.K315N (MPP2-N315) mutation. The MPP2-N315 mutation was highly deleterious according to bioinformatic predictions. Additionally, this mutation appears rare, being absent from the 1000 Genome Project and Genome Aggregation Database, and it is highly conserved in 10 species, including humans and mice. Subsequent studies showed that pathological phenotypes and retinal vascular leakage were aggravated in MPP2-N315 mutation knock-in or MPP2-N315 adeno-associated virus-treated mice with experimental autoimmune uveitis (EAU). In vitro, we used clustered regularly interspaced short palindromic repeats (CRISPR‒Cas9) gene editing technology to delete intrinsic MPP2 before overexpressing wild-type MPP2 or MPP2-N315. Levels of cytokines, such as IL-1β, IL-17E, and vascular endothelial growth factor A, were increased, and barrier function was destroyed in the MPP2-N315 mutant ARPE19 cells. Mechanistically, the MPP2-N315 mutation had a stronger ability to directly bind to ANXA2 than MPP2-K315, as shown by LC‒MS/MS and Co-IP, and resulted in activation of the ERK3/IL-17E pathway. Overall, our results demonstrated that the MPP2-K315N mutation may increase susceptibility to VKH disease.
Collapse
Affiliation(s)
- Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
22
|
Hildenbrand K, Bohnacker S, Menon PR, Kerle A, Prodjinotho UF, Hartung F, Strasser PC, Catici DA, Rührnößl F, Haslbeck M, Schumann K, Müller SI, da Costa CP, Esser-von Bieren J, Feige MJ. Human interleukin-12α and EBI3 are cytokines with anti-inflammatory functions. SCIENCE ADVANCES 2023; 9:eadg6874. [PMID: 37878703 PMCID: PMC10599630 DOI: 10.1126/sciadv.adg6874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a β subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Priyanka Rajeev Menon
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Anna Kerle
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich F. Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
| | - Patrick C. Strasser
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Dragana A. M. Catici
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Schumann
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Stephanie I. Müller
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
- Center for Global Health, Technical University of Munich, 81675 Munich, Germany
- German Center for Infection and Research (DZIF), partner site Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Zentrum München, 80802 Munich, Germany
- Department of Immunobiology, Université de Lausanne, 1066 Epalinges, Switzerland
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
23
|
Bao J, Betzler AC, Hess J, Brunner C. Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma. Front Immunol 2023; 14:1233085. [PMID: 37868967 PMCID: PMC10586314 DOI: 10.3389/fimmu.2023.1233085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
In the tumor milieu of head and neck squamous cell carcinoma (HNSCC), distinct B cell subpopulations are present, which exert either pro- or anti-tumor activities. Multiple factors, including hypoxia, cytokines, interactions with tumor cells, and other immune infiltrating lymphocytes (TILs), alter the equilibrium between the dual roles of B cells leading to cancerogenesis. Certain B cell subsets in the tumor microenvironment (TME) exhibit immunosuppressive function. These cells are known as regulatory B (Breg) cells. Breg cells suppress immune responses by secreting a series of immunosuppressive cytokines, including IL-10, IL-35, TGF-β, granzyme B, and adenosine or dampen effector TILs by intercellular contacts. Multiple Breg phenotypes have been discovered in human and mouse cancer models. However, when compartmentalized within a tertiary lymphoid structure (TLS), B cells predominantly play anti-tumor effects. A mature TLS contains a CD20+ B cell zone with several important types of B cells, including germinal-center like B cells, antibody-secreting plasma cells, and memory B cells. They kill tumor cells via antibody-dependent cytotoxicity and phagocytosis, and local complement activation effects. TLSs are also privileged sites for local T and B cell coordination and activation. Nonetheless, in some cases, TLSs may serve as a niche for hidden tumor cells and indicate a bad prognosis. Thus, TIL-B cells exhibit bidirectional immune-modulatory activity and are responsive to a variety of immunotherapies. In this review, we discuss the functional distinctions between immunosuppressive Breg cells and immunogenic effector B cells that mature within TLSs with the focus on tumors of HNSCC patients. Additionally, we review contemporary immunotherapies that aim to target TIL-B cells. For the development of innovative therapeutic approaches to complement T-cell-based immunotherapy, a full understanding of either effector B cells or Breg cells is necessary.
Collapse
Affiliation(s)
- Jiantong Bao
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
- School of Medicine, Southeast University, Nanjing, China
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| |
Collapse
|
24
|
Yang C, Lu C, Pan J, Zhao C, Chen Z, Qin F, Wen J, Wei W, Lei L. The role of iTr35 cells in the inflammatory response and fibrosis progression of systemic sclerosis. Rheumatology (Oxford) 2023; 62:3439-3447. [PMID: 36734529 DOI: 10.1093/rheumatology/kead053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To evaluate the role of induced immunosuppressive T regulatory (iTr) 35 cells in SSc-related inflammation and fibrosis. METHODS Sixty-eight SSc patients were enrolled in this study. Subsets of iTr35 and Tr1 were measured by flow cytometry. IL-35 and IL-10 levels were measured using ELISA. Expressions of iTr35, Tr1, fibrosis-related genes and proteins associated with signalling pathways were determined using immunofluorescence, western blot and immunohistochemistry assays. RESULTS In peripheral blood, the proportions of the iTr35 cells were higher and Tr1 cells were lower than the control group. Similarly, IL-35 expression was increased, while IL-10 levels were decreased. In fibroblasts from skin tissue, the expression levels of EBI3, IL-12Ap35, Foxp3 and IL-10 were decreased, but collagen I, TGF-β, alpha smooth muscle actin (α-SMA) and fibronectin levels were increased. Phosphorylated STAT3/6 were increased, but iTr35 and Tr1 cell levels were significantly decreased. When CD4+ cells were incubated with both recombinant human (rh)IL-35 and rhIL-10, the cell numbers of iTr35 and Tr1 were greater than the same type of cells treated with rhIL-35 or rhIL-10 alone. However, the viability of conventional CD4+ T cells was decreased by gradually increasing iTr35 cells. Moreover, iTr35 cells affected α-SMA expression through the STAT3/6 signalling pathway. CONCLUSION Both iTr35 and Tr1 cells are involved in SSc-related inflammation and fibrosis. IL-35 can induce iTr35 cells, showing a synergistic effect with IL-10. We also found that iTr35 cells can inhibit T cell proliferation and differentiation via the STAT3/6 signalling pathway, thereby causing fibrosis.
Collapse
Affiliation(s)
- Chenxi Yang
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Chunxiu Lu
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Jie Pan
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Cheng Zhao
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Zhanrui Chen
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Fang Qin
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Jing Wen
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Wanling Wei
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Ling Lei
- The Department of Rheumatology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| |
Collapse
|
25
|
Zogorean R, Wirtz S. The yin and yang of B cells in a constant state of battle: intestinal inflammation and inflammatory bowel disease. Front Immunol 2023; 14:1260266. [PMID: 37849749 PMCID: PMC10577428 DOI: 10.3389/fimmu.2023.1260266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, defined by a clinical relapse-remitting course. Affecting people worldwide, the origin of IBD is still undefined, arising as a consequence of the interaction between genes, environment, and microbiota. Although the root cause is difficult to identify, data clearly indicate that dysbiosis and pathogenic microbial taxa are connected with the establishment and clinical course of IBD. The composition of the microbiota is shaped by plasma cell IgA secretion and binding, while cytokines such as IL10 or IFN-γ are important fine-tuners of the immune response in the gastrointestinal environment. B cells may also influence the course of inflammation by promoting either an anti-inflammatory or a pro-inflammatory milieu. Here, we discuss IgA-producing B regulatory cells as an anti-inflammatory factor in intestinal inflammation. Moreover, we specify the context of IgA and IgG as players that can potentially participate in mucosal inflammation. Finally, we discuss the role of B cells in mouse infection models where IL10, IgA, or IgG contribute to the outcome of the infection.
Collapse
Affiliation(s)
- Roxana Zogorean
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Bavaria, Germany
| |
Collapse
|
26
|
Gao H, Li K, Ai K, Geng M, Cao Y, Wang D, Yang J, Wei X. Interleukin-12 induces IFN-γ secretion and STAT signaling implying its potential regulation of Th1 cell response in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108974. [PMID: 37482205 DOI: 10.1016/j.fsi.2023.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
As a pleiotropic cytokine consisting of IL-12p35 and IL-12p40, Interleukin-12 (IL-12) features in inflammation regulation and anti-bacterial immunity. While IL-12 homologs have been identified in non-mammalian species, the precise mechanisms by which IL-12 contributes to early adaptive immune responses in vertebrates remain incompletely understood. Herein, an evolutionary conserved Oreochromis niloticus IL-12 (defined as OnIL-12) was identified by synteny characterization, structural comparisons and phylogenetic pattern of IL-12p35b and IL-12p40a. IL-12p35b and IL-12p40a exhibited widespread expression in lymphoid-related tissues of tilapia, while their mRNA expression in head-kidney demonstrated a significant increase after Edwardsiella piscicida infection. Compared with other lymphocytes, recombinant OnIL-12 (rOnIL-12) displayed stronger affinity binding to T cells. Although stimulation of lymphocytes with the p35b or p40a subunit resulted in a significant induction of IFN-γ expression, rOnIL-12 showed stronger potential to promote IFN-γ expression than these subunits. rOnIL-12 not only elevated the mRNA expression level Th1 cell-associated transcription factor T-bet in lymphocytes, but also increased the proportion of CD4-1+IFN-γ+ lymphocytes. Moreover, the mRNA and phosphorylation levels of STAT1, STAT3, STAT4 and STAT5 were enhanced by rOnIL-12. These findings will offer previous evidence for further exploration into the regulatory mechanisms of Th1 cellular immunity in early vertebrates.
Collapse
Affiliation(s)
- Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
27
|
Feng M, Wang X, Zhou S, Li M, Liu T, Wei X, Lin W. CD83 + B cells alleviate uveitis through inhibiting DCs by sCD83. Immunology 2023; 170:134-153. [PMID: 37137669 DOI: 10.1111/imm.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Soluble CD83 (sCD83) exerts immunosuppressive functions in many autoimmune diseases, including experimental autoimmune uveitis (EAU), but the cells and mechanisms involved are unclear. This study showed that CD83+ B cells were the main sources of sCD83. They alleviated the symptoms of EAU and decreased the percentage of T cells and DCs in the eyes and lymph nodes. These CD83+ B cells decreased IL-1β, IL-18 and IFN-γ secretion by DCs through sCD83. sCD83 interacted with GTPase Ras-related protein (Rab1a) in DCs to promote Rab1a accumulation in autolysosomes and inhibit mTORC1 phosphorylation and NLRP3 expression. Hence, CD83+ B cells play a regulatory role in EAU by secreting sCD83. The lack of regulation of CD83+ B cells might be an important factor leading to hyperimmune activation in patients with autoimmune uveitis. CD83+ B cells suppress activated DCs in uveitis, indicating the potential therapeutic role of CD83+ B cells in uveitis.
Collapse
Affiliation(s)
- Meng Feng
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Shuping Zhou
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Minghao Li
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tingting Liu
- Shandong Eye Hospital, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Wei Lin
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
28
|
Molina OE, LaRue H, Simonyan D, Hovington H, Têtu B, Fradet V, Lacombe L, Toren P, Bergeron A, Fradet Y. High infiltration of CD209 + dendritic cells and CD163 + macrophages in the peritumor area of prostate cancer is predictive of late adverse outcomes. Front Immunol 2023; 14:1205266. [PMID: 37435060 PMCID: PMC10331466 DOI: 10.3389/fimmu.2023.1205266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Prostate cancer (PCa) shows considerable variation in clinical outcomes between individuals with similar diseases. The initial host-tumor interaction as assessed by detailed analysis of tumor infiltrating immune cells within the primary tumor may dictate tumor evolution and late clinical outcomes. In this study, we assessed the association between clinical outcomes and dendritic cell (DC) or macrophage (MΦ) tumor infiltration as well as with expression of genes related to their functions. Methods Infiltration and localization of immature DC, mature DC, total MΦ and M2-type MΦ was analyzed by immunohistochemistry in 99 radical prostatectomy specimens from patients with 15.5 years median clinical follow-up using antibodies against CD209, CD83, CD68 and CD163, respectively. The density of positive cells for each marker in various tumor areas was determined. In addition, expression of immune genes associated with DC and MΦ was tested in a series of 50 radical prostatectomy specimens by Taqman Low-Density Array with similarly long follow-up. Gene expression was classified as low and high after unsupervised hierarchical clustering. Numbers and ratio of positive cells and levels of gene expression were correlated with endpoints such as biochemical recurrence (BCR), need for definitive androgen deprivation therapy (ADT) or lethal PCa using Cox regression analyses and/or Kaplan-Meier curves. Results Positive immune cells were observed in tumor, tumor margin, and normal-like adjacent epithelium areas. CD209+ and CD163+ cells were more abundant at the tumor margin. Higher CD209+/CD83+ cell density ratio at the tumor margin was associated with higher risk of ADT and lethal PCa while higher density of CD163+ cells in the normal-like adjacent epithelium was associated with a higher risk of lethal PCa. A combination of 5 genes expressed at high levels correlated with a shorter survival without ADT and lethal PCa. Among these five genes, expression of IL12A and CD163 was correlated to each other and was associated with shorter survival without BCR and ADT/lethal PCa, respectively. Conclusion A higher level of infiltration of CD209+ immature DC and CD163+ M2-type MΦ in the peritumor area was associated with late adverse clinical outcomes.
Collapse
Affiliation(s)
- Oscar Eduardo Molina
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Hélène LaRue
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - David Simonyan
- Plateforme de Recherche Clinique et Évaluative, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Hélène Hovington
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Bernard Têtu
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Louis Lacombe
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Paul Toren
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Département de Chirurgie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
29
|
Liao W, Xiao H, He J, Huang L, Liao Y, Qin J, Yang Q, Ma F, Li S. B-Cell-Activating Factor Contributes to Elevation of the Content of Regulatory B Cells in Neonatal Sepsis. Bull Exp Biol Med 2023:10.1007/s10517-023-05814-1. [PMID: 37338768 DOI: 10.1007/s10517-023-05814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 06/21/2023]
Abstract
We studied the role of B cell-activating factor (BAFF) in PI3K/AKT/mTOR signaling pathway in promoting proliferation and maintaining survival of regulatory B lymphocytes (Breg) in newborns with sepsis. The peripheral blood samples were collected from preterm neonates (n=40) diagnosed with sepsis on the day of diagnosis and on days 7, 14, and 21 after diagnosis, as well as from the matched preterm neonates without sepsis (n=40; control group). The peripheral blood mononuclear cells and B cells were isolated, cultured, and stimulated with LPS and immunostimulant CpG-oligodeoxynucleotide (CpG-ODN). Proliferation and differentiation of B-cells into CD19+CD24hiCD38hi Breg cells and the role of the PI3K/AKT/mTOR signaling pathway in these processes were studied by flow cytometry, real-time quantitative reverse transcription PCR (qRT-PCR), and Western blotting. BAFF levels in the peripheral blood of neonates with sepsis were significantly increased at one week after diagnosis in parallel with increasing trend of expression of BAFF receptor. When applied with LPS and CpG-ODN, BAFF promoted differentiation of B cells into CD19+CD24hiCD38hi Breg cells. Phosphorylation of 4E-BP1 factor and 70S6K kinase located downstream in PI3K/AKT/mTOR signaling pathway was significantly up-regulated when stimulated with BAFF in combination with LPS and CpG-ODN. Thus, increased level of BAFF activates PI3K/AKT/mTOR signaling pathway and induces in vitro differentiation of peripheral blood B cells into CD19+CD24hiCD38hi Breg cells.
Collapse
Affiliation(s)
- W Liao
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, China
| | - H Xiao
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, China
| | - J He
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, China
| | - L Huang
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, China
| | - Y Liao
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, China
| | - J Qin
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, China
| | - Q Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - F Ma
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - S Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Kang M, Yadav MK, Mbanefo EC, Yu CR, Egwuagu CE. IL-27-containing exosomes secreted by innate B-1a cells suppress and ameliorate uveitis. Front Immunol 2023; 14:1071162. [PMID: 37334383 PMCID: PMC10272713 DOI: 10.3389/fimmu.2023.1071162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction IL-27 is a heterodimeric cytokine composed of Ebi3 and IL-27p28 and can exert proinflammatory or immune suppressive effects depending on the physiological context. Ebi3 does not contain membrane-anchoring motifs, suggesting that it is a secreted protein while IL-27p28 is poorly secreted. How IL-27p28 and Ebi3 dimerize in-vivo to form biologically active IL-27 is unknown. Major impediment to clinical use of IL-27 derives from difficulty of determining exact amount of bioavailable heterodimeric IL-27 needed for therapy. Methods To understand how IL-27 mediates immune suppression, we characterized an innate IL-27-producing B-1a regulatory B cell population (i27-Breg) and mechanisms i27-Bregs utilize to suppress neuroinflammation in mouse model of uveitis. We also investigated biosynthesis of IL-27 and i27-Breg immunobiology by FACS, immunohistochemical and confocal microscopy. Results Contrary to prevailing view that IL-27 is a soluble cytokine, we show that i27-Bregs express membrane-bound IL-27. Immunohistochemical and confocal analyses co-localized expression of IL-27p28 at the plasma membrane in association with CD81 tetraspanin, a BCR-coreceptor protein and revealed that IL-27p28 is a transmembrane protein in B cells. Most surprising, we found that i27-Bregs secrete IL-27-containing exosomes (i27-exosomes) and adoptive transfer of i27-exosomes suppressed uveitis by antagonizing Th1/Th17 cells, up-regulating inhibitory-receptors associated with T-cell exhaustion while inducing Treg expansion. Discussion Use of i27-exosomes thus obviates the IL-27 dosing problem, making it possible to determine bioavailable heterodimeric IL-27 needed for therapy. Moreover, as exosomes readily cross the blood-retina-barrier and no adverse effects were observed in mice treated with i27-exosome, results of this study suggest that i27-exosomes might be a promising therapeutic approach for CNS autoimmune diseases.
Collapse
|
31
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
32
|
Interleukin-35 -producing B cells rescues inflammatory bowel disease in a mouse model via STAT3 phosphorylation and intestinal microbiota modification. Cell Death Discov 2023; 9:67. [PMID: 36797242 PMCID: PMC9935866 DOI: 10.1038/s41420-023-01366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Interleukin-35 (IL-35)-producing B cells (IL-35+B cells) play an important role in diseases, and the expansion of IL-35+ immune cells have been observed in inflammatory bowel disease (IBD). However, how IL-35+B cells function and the manner in which they perform their roles remain unclear. In this study, human samples and animal models were used to confirm the expansion of IL-35+B cells during IBD. In addition, by using il12a-/- and ebi3-/- mice, we demonstrated that the regulatory role of B cells in IBD depends on IL-35. Mechanically, IL-35+B cells can promote its own expansion through endocrine actions and depend on the transcription factor signal transducer and activator of transcription 3. Interestingly, we found that the diversity of intestinal microbes and expression of microbial metabolites decreased during IBD. IL-35+B cells promote the high expression of indoleacetic acid (IAA), and exogenous metabolite supplementation with IAA can further promote the expansion of IL-35+B cells and rescues the disease. This study provides a new concept for the regulatory model of B cells and a new approach for the treatment of IBD.
Collapse
|
33
|
Bhattarai U, He X, Xu R, Liu X, Pan L, Sun Y, Chen JX, Chen Y. IL-12α deficiency attenuates pressure overload-induced cardiac inflammation, hypertrophy, dysfunction, and heart failure progression. Front Immunol 2023; 14:1105664. [PMID: 36860846 PMCID: PMC9969090 DOI: 10.3389/fimmu.2023.1105664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
IL-12α plays an important role in modulating inflammatory response, fibroblast proliferation and angiogenesis through modulating macrophage polarization or T cell function, but its effect on cardiorespiratory fitness is not clear. Here, we studied the effect of IL-12α on cardiac inflammation, hypertrophy, dysfunction, and lung remodeling in IL-12α gene knockout (KO) mice in response to chronic systolic pressure overload produced by transverse aortic constriction (TAC). Our results showed that IL-12α KO significantly ameliorated TAC-induced left ventricular (LV) failure, as evidenced by a smaller decrease of LV ejection fraction. IL-12α KO also exhibited significantly attenuated TAC-induced increase of LV weight, left atrial weight, lung weight, right ventricular weight, and the ratios of them in comparison to body weight or tibial length. In addition, IL-12α KO showed significantly attenuated TAC-induced LV leukocyte infiltration, fibrosis, cardiomyocyte hypertrophy, and lung inflammation and remodeling (such as lung fibrosis and vessel muscularization). Moreover, IL-12α KO displayed significantly attenuated TAC-induced activation of CD4+ T cells and CD8+ T cells in the lung. Furthermore, IL-12α KO showed significantly suppressed accumulation and activation of pulmonary macrophages and dendritic cells. Taken together, these findings indicate that inhibition of IL-12α is effective in attenuating systolic overload-induced cardiac inflammation, heart failure development, promoting transition from LV failure to lung remodeling and right ventricular hypertrophy.
Collapse
Affiliation(s)
- Umesh Bhattarai
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xiaochen He
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Rui Xu
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xiaoguang Liu
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- College of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Lihong Pan
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yingjie Chen
- Department of Physiology and Biophysics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
34
|
Poschel DB, Kehinde-Ige M, Klement JD, Yang D, Merting AD, Savage NM, Shi H, Liu K. IRF8 Regulates Intrinsic Ferroptosis through Repressing p53 Expression to Maintain Tumor Cell Sensitivity to Cytotoxic T Lymphocytes. Cells 2023; 12:310. [PMID: 36672246 PMCID: PMC9856547 DOI: 10.3390/cells12020310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis has emerged as a cytotoxic T lymphocyte (CTL)-induced tumor cell death pathway. The regulation of tumor cell sensitivity to ferroptosis is incompletely understood. Here, we report that interferon regulatory factor 8 (IRF8) functions as a regulator of tumor cell intrinsic ferroptosis. Genome-wide gene expression profiling identified the ferroptosis pathway as an IRF8-regulated pathway in tumor cells. IRF8.KO tumor cells acquire resistance to intrinsic ferroptosis induction and IRF8-deficient tumor cells also exhibit decreased ferroptosis in response to tumor-specific CTLs. Irf8 deletion increased p53 expression in tumor cells and knocking out p53 in IRF8.KO tumor cells restored tumor cell sensitivity to intrinsic ferroptosis induction. Furthermore, IRF8.KO tumor cells grew significantly faster than WT tumor cells in immune-competent mice. To restore IRF8 expression in tumor cells, we designed and synthesized codon usage-optimized IRF8-encoding DNA to generate IRF8-encoding plasmid NTC9385R-mIRF8. Restoring IRF8 expression via a lipid nanoparticle-encapsulated NTC9385R-mIRF8 plasmid therapy suppressed established tumor growth in vivo. In human cancer patients, nivolumab responders have a significantly higher IRF8 expression level in their tumor cells as compared to the non-responders. Our data determine that IRF8 represses p53 expression to maintain tumor cell sensitivity to intrinsic ferroptosis.
Collapse
Affiliation(s)
- Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mercy Kehinde-Ige
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
35
|
Dong S, Li W, Li X, Wang Z, Chen Z, Shi H, He R, Chen C, Zhou W. Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Front Immunol 2022; 13:1038650. [PMID: 36578477 PMCID: PMC9792100 DOI: 10.3389/fimmu.2022.1038650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Early and accurate diagnosis and treatment of pancreatic cancer (PC) remain challenging endeavors globally. Late diagnosis lag, high invasiveness, chemical resistance, and poor prognosis are unresolved issues of PC. The concept of metabolic reprogramming is a hallmark of cancer cells. Increasing evidence shows that PC cells alter metabolic processes such as glucose, amino acids, and lipids metabolism and require continuous nutrition for survival, proliferation, and invasion. Glucose metabolism, in particular, regulates the tumour microenvironment (TME). Furthermore, the link between glucose metabolism and TME also plays an important role in the targeted therapy, chemoresistance, radiotherapy ineffectiveness, and immunosuppression of PC. Altered metabolism with the TME has emerged as a key mechanism regulating PC progression. This review shed light on the relationship between TME, glucose metabolism, and various aspects of PC. The findings of this study provide a new direction in the development of PC therapy targeting the metabolism of cancer cells.
Collapse
Affiliation(s)
- Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ru He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
36
|
Xiong H, Tang Z, Xu Y, Shi Z, Guo Z, Liu X, Tan G, Ai X, Guo Q. CD19 +CD24 highCD27 + B cell and interleukin 35 as potential biomarkers of disease activity in systemic lupus erythematosus patients. Adv Rheumatol 2022; 62:48. [PMID: 36494762 DOI: 10.1186/s42358-022-00279-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that associates with aberrant activation of B lymphocytes and excessive autoantibodies. Interleukin 10 (IL-10)/interleukin 35 (IL-35) and IL-10/IL-35-producing regulatory B cells have been demonstrated to possess immunosuppressive functions during systemic lupus erythematosus. Here, we detected the proportion of CD19+CD24highCD27+ B cells as well as IL-10 and IL-35 levels in peripheral blood of SLE patients and healthy individuals, and investigated their relations with clinical features of SLE. METHODS 41 SLE patients and 25 healthy controls were recruited. The patients were divided into groups based on SLEDAI score, anti-dsDNA antibody, rash, nephritis and hematological disorder. Flow cytometry was used to detect the proportion of CD24hiCD27+ B cells. ELISA was used to detect serum levels of IL-10 and IL-35. RESULTS Our results showed that the CD19+CD24highCD27+ B population was decreased in active SLE patients, and anti-correlated with the disease activity. Of note, we found significant increase of IL-10 and decrease of IL-35 in SLE patients with disease activity score > 4, lupus nephritis or hematological disorders compared to those without related clinical features. CONCLUSIONS Reduced CD19+CD24highCD27+ B cells expression may be involved in the pathogenesis of SLE. Moreover, we supposed that IL-35 instead of IL-10 played a crucial role in immune regulation during SLE disease.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zengqi Tang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Ying Xu
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhenrui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhixuan Guo
- Department of Dermatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518040, Guangdong, China
| | - Xiuting Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xuechen Ai
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, Guangdong, China.
| | - Qing Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
37
|
Mideksa YG, Aschenbrenner I, Fux A, Kaylani D, Weiß CA, Nguyen TA, Bach NC, Lang K, Sieber SA, Feige MJ. A comprehensive set of ER protein disulfide isomerase family members supports the biogenesis of proinflammatory interleukin 12 family cytokines. J Biol Chem 2022; 298:102677. [PMID: 36336075 PMCID: PMC9731863 DOI: 10.1016/j.jbc.2022.102677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokines of the interleukin 12 (IL-12) family are assembled combinatorially from shared α and β subunits. A common theme is that human IL-12 family α subunits remain incompletely structured in isolation until they pair with a designate β subunit. Accordingly, chaperones need to support and control specific assembly processes. It remains incompletely understood, which chaperones are involved in IL-12 family biogenesis. Here, we site-specifically introduce photocrosslinking amino acids into the IL-12 and IL-23 α subunits (IL-12α and IL-23α) for stabilization of transient chaperone-client complexes for mass spectrometry. Our analysis reveals that a large set of endoplasmic reticulum chaperones interacts with IL-12α and IL-23α. Among these chaperones, we focus on protein disulfide isomerase (PDI) family members and reveal IL-12 family subunits to be clients of several incompletely characterized PDIs. We find that different PDIs show selectivity for different cysteines in IL-12α and IL-23α. Despite this, PDI binding generally stabilizes unassembled IL-12α and IL-23α against degradation. In contrast, α:β assembly appears robust, and only multiple simultaneous PDI depletions reduce IL-12 secretion. Our comprehensive analysis of the IL-12/IL-23 chaperone machinery reveals a hitherto uncharacterized role for several PDIs in this process. This extends our understanding of how cells accomplish the task of specific protein assembly reactions for signaling processes. Furthermore, our findings show that cytokine secretion can be modulated by targeting specific endoplasmic reticulum chaperones.
Collapse
Affiliation(s)
- Yonatan G. Mideksa
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Isabel Aschenbrenner
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Anja Fux
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Dinah Kaylani
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Caroline A.M. Weiß
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Tuan-Anh Nguyen
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Nina C. Bach
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Kathrin Lang
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,Laboratory of Organic Chemistry, ETH Zürich, Zurich, Switzerland
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany,For correspondence: Matthias J. Feige
| |
Collapse
|
38
|
Thurau S, Deuter CME, Heiligenhaus A, Pleyer U, Van Calster J, Barisani-Asenbauer T, Obermayr F, Sperl S, Seda-Zehetner R, Wildner G. A new small molecule DHODH-inhibitor [KIO-100 (PP-001)] targeting activated T cells for intraocular treatment of uveitis — A phase I clinical trial. Front Med (Lausanne) 2022; 9:1023224. [PMID: 36325389 PMCID: PMC9621317 DOI: 10.3389/fmed.2022.1023224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Uveitis is a T cell-mediated, intraocular inflammatory disease and one of the main causes of blindness in industrialized countries. There is a high unmet need for new immunomodulatory, steroid-sparing therapies, since only ciclosporin A and a single TNF-α-blocker are approved for non-infectious uveitis. A new small molecule inhibitor of dihydroorotate dehydrogenase (DHODH), an enzyme pivotal for de novo synthesis of pyrimidines, has a high potency for suppressing T and B cells and has already proven highly effective for treating uveitis in experimental rat models. Systemic and intraocular application of KIO-100 (PP-001) (previously called PP-001, now KIO-100) could efficiently suppress rat uveitis in a preventive as well as therapeutic mode. Here we describe the outcome of the first clinical phase 1 trial comparing three different doses of a single intraocular injection of KIO-100 (PP-001) in patients with non-infectious posterior segment uveitis. No toxic side effects on intraocular tissues or other adverse events were observed, while intraocular inflammation decreased, and visual acuity significantly improved. Macular edema, a sight-threatening complication in uveitis, showed regression 2 weeks after intraocular KIO-100 (PP-001) injection in some patients, indicating that this novel small molecule has a high potential as a new intraocular therapy for uveitis.
Collapse
Affiliation(s)
- Stephan Thurau
- Department of Ophthalmology, University Hospital, LMU München, München, Germany
| | | | - Arnd Heiligenhaus
- Department of Ophthalmology, St.-Franziskus-Hospital, Münster, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité — Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Franz Obermayr
- Panoptes Pharma GmbH, Vienna, now Kiora Pharmaceuticals Inc., Vienna, Austria
- Epics Therapeutics, Gosselies, Belgium
| | - Stefan Sperl
- Panoptes Pharma GmbH, Vienna, now Kiora Pharmaceuticals Inc., Vienna, Austria
| | | | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU München, München, Germany
- *Correspondence: Gerhild Wildner,
| |
Collapse
|
39
|
Tan D, Yin W, Guan F, Zeng W, Lee P, Candotti F, James LK, Saraiva Camara NO, Haeryfar SM, Chen Y, Benlagha K, Shi LZ, Lei J, Gong Q, Liu Z, Liu C. B cell-T cell interplay in immune regulation: A focus on follicular regulatory T and regulatory B cell functions. Front Cell Dev Biol 2022; 10:991840. [PMID: 36211467 PMCID: PMC9537379 DOI: 10.3389/fcell.2022.991840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
B cells are the core components of humoral immunity. A mature B cell can serve in multiple capacities, including antibody production, antigen presentation, and regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells (Tregs) are key players in sustaining immune tolerance and keeping inflammation in check. Mounting evidence suggests complex communications between B cells and Tregs. In this review, we summarize the yin-yang regulatory relationships between B cells and Tregs mainly from the perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs). We discuss the regulatory effects of Tfr cells on B cell proliferation and the germinal center response. Additionally, we review the indispensable role of B cells in ensuring homeostatic Treg survival and describe the function of Bregs in promoting Treg responses. Finally, we introduce a new subset of Tregs, termed Treg-of-B cells, which are induced by B cells, lake the expression of FoxP3 but still own immunomodulatory effects. In this article, we also enumerate a sequence of research from clinical patients and experimental models to clarify the role of Tfr cells in germinal centers and the role of convention B cells and Bregs to Tregs in the context of different diseases. This review offers an updated overview of immunoregulatory networks and unveils potential targets for therapeutic interventions against cancer, autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Louisa K James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Lewis Zhichang Shi
- Department of Radiation Oncology University of Alabama at Birmingham School of Medicine (UAB-SOM) UAB Comprehensive Cancer Center, Jinzhou, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Quan Gong
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jinzhou, China
- Department of Immunology, School of Medicine, Yangtze University, Jinzhou, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- *Correspondence: Zheng Liu, ; Chaohong Liu,
| |
Collapse
|
40
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
41
|
Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity. Cell Rep Med 2022; 3:100744. [PMID: 36099917 PMCID: PMC9512696 DOI: 10.1016/j.xcrm.2022.100744] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Plasma cell responses are associated with anti-tumor immunity and favorable response to immunotherapy. B cells can amplify anti-tumor immune responses through antibody production; yet B cells in patients and tumor-bearing mice often fail to support this effector function. We identify dysregulated transcriptional program in B cells that disrupts differentiation of naive B cells into anti-tumor plasma cells. The signaling network contributing to this dysfunction is driven by interleukin (IL) 35 stimulation of a STAT3-PAX5 complex that upregulates the transcriptional regulator BCL6 in naive B cells. Transient inhibition of BCL6 in tumor-educated naive B cells is sufficient to reverse the dysfunction in B cell differentiation, stimulating the intra-tumoral accumulation of plasma cells and effector T cells and rendering pancreatic tumors sensitive to anti-programmed cell death protein 1 (PD-1) blockade. Our findings argue that B cell effector dysfunction in cancer can be due to an active systemic suppression program that can be targeted to synergize with T cell-directed immunotherapy. Balance between regulatory B cells and plasma cells shapes pancreatic tumor growth Cancer primes naive B cells toward regulatory B cell differentiation IL-35 drives B cell reprogramming via formation of a pSTAT3-Pax5 complex IL-35/BCL6 blockade in naive B cells enhances αPD1 efficacy
Collapse
|
42
|
Tan R, Nie M, Long W. The role of B cells in cancer development. Front Oncol 2022; 12:958756. [PMID: 36033455 PMCID: PMC9403891 DOI: 10.3389/fonc.2022.958756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
B cells play a critical role in adaptive immune responses mainly due to antigen presentation and antibody production. Studies about the tumor-infiltrating immune cells so far demonstrated that the function of B cells in tumor immunity is quite different among various tumor types. The antigen presentation of B cells is mainly anti-tumoral, while the role of antibody production is controversial. Moreover, the immunosuppressive regulatory B cells are detrimental to anti-tumor immunity via the secretion of various anti-inflammatory cytokines. This review briefly summarizes the different roles of B cells classified by the primary function of B cells, antigen presentation, antibody production, and immunity regulation. Further, it discusses the potential therapeutic target of B cells in tumor immunity.
Collapse
Affiliation(s)
- Rongying Tan
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manhua Nie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Wang Long, ; Manhua Nie,
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo, Japan
- *Correspondence: Wang Long, ; Manhua Nie,
| |
Collapse
|
43
|
Su X, Gao Y, Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells 2022; 11:2296. [PMID: 35892593 PMCID: PMC9330295 DOI: 10.3390/cells11152296] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/16/2022] Open
Abstract
Tryptophan is an essential amino acid from dietary proteins. It can be metabolized into different metabolites in both the gut microbiota and tissue cells. Tryptophan metabolites such as indole-3-lactate (ILA), indole-3-acrylate (IAC), indole-3-propionate (IPA), indole-3-aldehyde (IAID), indoleacetic acid (IAA), indole-3-acetaldehyde and Kyn can be produced by intestinal microorganisms through direct Trp transformation and also, partly, the kynurenine (Kyn) pathway. These metabolites play a critical role in maintaining the homeostasis of the gut and systematic immunity and also potentially affect the occurrence and development of diseases such as inflammatory bowel diseases, tumors, obesity and metabolic syndrome, diseases in the nervous system, infectious diseases, vascular inflammation and cardiovascular diseases and hepatic fibrosis. They can not only promote the differentiation and function of anti-inflammatory macrophages, Treg cells, CD4+CD8αα+ regulatory cells, IL-10+ and/or IL-35+B regulatory cells but also IL-22-producing innate lymphoid cells 3 (ILC3), which are involved in maintaining the gut mucosal homeostasis. These findings have important consequences in the immunotherapy against tumor and other immune-associated diseases. We will summarize here the recent advances in understanding the generation and regulation of tryptophan metabolites in the gut microbiota, the role of gut microbiota-derived tryptophan metabolites in different immune cells, the occurrence and development of diseases and immunotherapy against immune-associated diseases.
Collapse
Affiliation(s)
- Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China; (X.S.); (Y.G.)
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Photoreceptor Cells Constitutively Express IL-35 and Promote Ocular Immune Privilege. Int J Mol Sci 2022; 23:ijms23158156. [PMID: 35897732 PMCID: PMC9351654 DOI: 10.3390/ijms23158156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Interleukin-27 is constitutively secreted by microglia in the retina or brain, and upregulation of IL-27 during neuroinflammation suppresses encephalomyelitis and autoimmune uveitis. However, while IL-35 is structurally and functionally similar to IL-27, the intrinsic roles of IL-35 in CNS tissues are unknown. Thus, we generated IL-35/YFP-knock-in reporter mice (p35-KI) and demonstrated that photoreceptor neurons constitutively secrete IL-35, which might protect the retina from persistent low-grade inflammation that can impair photoreceptor functions. Furthermore, the p35-KI mouse, which is hemizygous at the il12a locus, develops more severe uveitis because of reduced IL-35 expression. Interestingly, onset and exacerbation of uveitis in p35-KI mice caused by extravasation of proinflammatory Th1/Th17 lymphocytes into the retina were preceded by a dramatic decrease of IL-35, attributable to massive death of photoreceptor cells. Thus, while inflammation-induced death of photoreceptors and loss of protective effects of IL-35 exacerbated uveitis, our data also suggest that constitutive production of IL-35 in the retina might have housekeeping functions that promote sterilization immunity in the neuroretina and maintain ocular immune privilege.
Collapse
|
45
|
Feng J, Wu Y. Interleukin-35 ameliorates cardiovascular disease by suppressing inflammatory responses and regulating immune homeostasis. Int Immunopharmacol 2022; 110:108938. [PMID: 35759811 DOI: 10.1016/j.intimp.2022.108938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
The immune response is of great significance in the initiation and progression of a diversity of cardiovascular diseases involving pro-and anti-inflammatory cytokines. Interleukin-35 (IL-35), a cytokine of the interleukin-12 family, is a novel anti-inflammation and immunosuppressive cytokine, maintaining inflammatory suppression and regulating immune homeostasis. The role of IL-35 in cardiovascular diseases (CVDs) has aroused enthusiastic attention, a diversity of experimental or clinical evidence has indicated that IL-35 potentially has a pivot role in protecting against cardiovascular diseases, especially atherosclerosis and myocarditis. In this review, we initiate an overview of the relationship between Interleukin-35 and cardiovascular diseases, including atherosclerosis, acute coronary syndrome, pulmonary hypertension, abdominal aortic aneurysm, heart failure, myocardial ischemia-reperfusion, aortic dissection and myocarditis. Although the specific molecular mechanisms entailing the protective effects of IL-35 remain an unsolved issue, targeted therapies with IL-35 might provide a promising and effective solution to prevent and cure cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
46
|
Hao Y, Dong H, Li W, Lv X, Shi B, Gao P. The Molecular Role of IL-35 in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:874823. [PMID: 35719927 PMCID: PMC9204334 DOI: 10.3389/fonc.2022.874823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a common cause of cancer-related death. Better understanding of the molecular mechanisms, pathogenesis, and treatment of NSCLC can help improve patient outcomes. Significant progress has been made in the treatment of NSCLC, and immunotherapy can prolong patient survival. However, the overall cure and survival rates are low, especially in patients with advanced metastases. Interleukin-35 (IL-35), an immunosuppressive factor, is associated with the onset and prognosis of various cancers. Studies have shown that IL-35 expression is elevated in NSCLC, and it is closely related to the progression and prognosis of NSCLC. However, there are few studies on the mechanism of IL-35 in NSCLC. This study discusses the role of IL-35 and its downstream signaling pathways in the pathogenesis of NSCLC and provides new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Yuqiu Hao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Hongna Dong
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Bingqing Shi
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Role of Regulatory T Cells in Skeletal Muscle Regeneration: A Systematic Review. Biomolecules 2022; 12:biom12060817. [PMID: 35740942 PMCID: PMC9220893 DOI: 10.3390/biom12060817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Muscle injuries are frequent in individuals with genetic myopathies and in athletes. Skeletal muscle regeneration depends on the activation and differentiation of satellite cells present in the basal lamina of muscle fibers. The skeletal muscle environment is critical for repair, metabolic and homeostatic function. Regulatory T cells (Treg) residing within skeletal muscle comprise a distinct and special cell population that modifies the inflammatory environment by secreting cytokines and amphiregulin, an epidermal growth factor receptor (EGFR) ligand that acts directly upon satellite cells, promoting tissue regeneration. This systematic review summarizes the current knowledge regarding the role of Treg in muscle repair and discusses their therapeutic potential in skeletal muscle injuries. A bibliographic search was carried out using the terms Treg and muscle regeneration and repair, covering all articles up to April 2021 indexed in the PubMed and EMBASE databases. The search included only published original research in human and experimental animal models, with further data analysis based on the PICO methodology, following PRISMA definitions and Cochrane guidelines.
Collapse
|
48
|
Glass MC, Glass DR, Oliveria JP, Mbiribindi B, Esquivel CO, Krams SM, Bendall SC, Martinez OM. Human IL-10-producing B cells have diverse states that are induced from multiple B cell subsets. Cell Rep 2022; 39:110728. [PMID: 35443184 PMCID: PMC9107325 DOI: 10.1016/j.celrep.2022.110728] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/13/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Regulatory B cells (Bregs) suppress immune responses through the secretion of interleukin-10 (IL-10). This immunomodulatory capacity holds therapeutic potential, yet a definitional immunophenotype for enumeration and prospective isolation of B cells capable of IL-10 production remains elusive. Here, we simultaneously quantify cytokine production and immunophenotype in human peripheral B cells across a range of stimulatory conditions and time points using mass cytometry. Our analysis shows that multiple functional B cell subsets produce IL-10 and that no phenotype uniquely identifies IL-10+ B cells. Further, a significant portion of IL-10+ B cells co-express the pro-inflammatory cytokines IL-6 and tumor necrosis factor alpha (TNFα). Despite this heterogeneity, operationally tolerant liver transplant recipients have a unique enrichment of IL-10+, but not TNFα+ or IL-6+, B cells compared with transplant recipients receiving immunosuppression. Thus, human IL-10-producing B cells constitute an induced, transient state arising from a diversity of B cell subsets that may contribute to maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Marla C Glass
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David R Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Immunology Graduate Program, Stanford University, Stanford, CA, USA
| | - John-Paul Oliveria
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Berenice Mbiribindi
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O Esquivel
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M Krams
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA; Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Zhang Y, Wei S, Wu Q, Shen X, Dai W, Zhang Z, Chen M, Huang H, Ma L. Interleukin-35 promotes Breg expansion and interleukin-10 production in CD19 + B cells in patients with ankylosing spondylitis. Clin Rheumatol 2022; 41:2403-2416. [PMID: 35420296 PMCID: PMC9287221 DOI: 10.1007/s10067-022-06137-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE IL-35 is a potent immunosuppressive and anti-inflammatory cytokine, consisting of a p35 subunit and an Epstein-Barr virus-induced gene 3 (EBI3) subunit, which suppresses CD4+ effector T cell proliferation and promotes regulatory T cell (Treg) expansion. However, the effects of IL-35 on regulatory B cells (Bregs) in ankylosing spondylitis (AS) have not been explored. The present study aimed (i) to measure serum IL-35 levels and the percentages of Bregs in the peripheral blood of patients with AS and (ii) to explore their relationships in the pathogenesis of AS. METHODS A total of 77 patients with AS (AS group), including 47 inactive AS and 30 active AS cases, and 59 healthy controls (HCs) were enrolled into this study. The serum levels of IL-35 and IL-10 were detected by ELISA, and the mRNA levels of p35 and EBI3 were measured by RT-qPCR. The percentages of CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs and IL-35 receptor (IL-12Rβ2, IL-27Rα and gp130), IL-10, p-STAT1, p-STAT3, and p-STAT4 in CD19+ B cells were detected by flow cytometry. The correlations between IL-35 levels and percentages of Bregs were analyzed by determining Pearson's correlation coefficient. The effect of IL-35 on Bregs was determined by mix-culture of recombinant (r) IL-35 with peripheral blood mononuclear cells (PBMCs). RESULTS The serum IL-35 and IL-10 levels, p35 and EBI3 mRNA levels, and the percentages of CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs were significantly lower in AS patients than those in HCs. In addition, the percentages of CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs in active AS patients were significantly lower than those in inactive AS patients. The serum IL-35 levels were positively correlated with the percentages of CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs in AS patients. IL-12Rβ2 and IL-27Rα, but not gp130 subunit, were expressed in CD19+ B cells in AS patients. RIL-35 could effectively promote CD19+CD24hiCD38hi Breg expansion and IL-10 production. Meanwhile, rIL-35 also promoted the expression of IL-12Rβ2 and IL-27Rα and the phosphorylation of STAT1 and STAT3 in CD19+ B cells. CONCLUSION These results demonstrated that reduced IL-35 production may be associated with Bregs defects in AS patients. RIL-35 induced the proliferation of CD19+CD24hiCD38hi Bregs and IL-10 production, suggesting that IL-35 may serve as a reference for further investigation to develop novel treatments for AS. Key Points • Our study investigated the effects of IL-35 on Bregs in AS patients. • We found the serum IL-35, IL-10 levels, and the percentages of CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs were significantly lower in AS patients. • The serum IL-35 levels were positively correlated with the percentages of CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs in AS patients. • Recombinant IL-35 could effectively promote CD19+CD24hiCD38hi Breg expansion and IL-10 production.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004, Guizhou, China.,Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Sixi Wei
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004, Guizhou, China.,Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Qingqing Wu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Xue Shen
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004, Guizhou, China
| | - Wanrong Dai
- Department of Microbiology and Immunology, School of Clinical Laboratory Science, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Zhiqi Zhang
- Department of Microbiology and Immunology, School of Clinical Laboratory Science, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Man Chen
- Hebei Yanda Ludaopei Hospital, Sanhe, 065200, Hebei, China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004, Guizhou, China.,Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Li Ma
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, 550004, Guizhou, China. .,Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
50
|
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19:441-457. [PMID: 35365796 DOI: 10.1038/s41571-022-00619-z] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Florent Petitprez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Antoine Italiano
- Faculty of Medicine, University of Bordeaux, Bordeaux, France.,Department of Medicine, Institute Bergonié, Bordeaux, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|