1
|
Xue Y, Zeng D, Meng Y, Du B, Xie H, Ma L, Wang Y, Gao Q. Isolated asymmetric CoN 4 sites on nitrogen-doped hollow carbons as electrocatalysts for hydrogen evolution reactions in dual pH electrolytes. J Colloid Interface Sci 2025; 694:137708. [PMID: 40311318 DOI: 10.1016/j.jcis.2025.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Atomic transition metal-nitrogen (M-Nx) active sites dispersed on carbon matrix have emerged as highly promising electrocatalysts for energy conversion systems, owing to their maximized metal center utilization and excellent conductivity of the carbon substrate. However, conventional symmetric M-N4 configurations often exhibit limited hydrogen evolution reaction (HER) activity in alkaline due to the inferior water dissociation capacity. In this work, isolated Co single atoms anchored on N-doped hollow carbon substrates (CoSA/NHCs) are successfully fabricated by the pyrolysis of Co2+-containing polypyrrole (Co-PPY) precursor, and the subsequent removal of embedded Co particles. Thanks to the high density of atomically distributed asymmetric Co-N4 moieties, which facilitate efficient water activation andoptimal adsorption of the active hydrogen (H*), the synthesized CoSA/NHCs electrocatalysts show remarkable HER activity and stability in alkaline electrolyte. Besides, they can effectively electrolyze HER in acidic medium, undergoing the Volmer-Heyrovsky pathway. Remarkably, CoSA/NHC-800, pyrolyzed at 800 °C, requires small overpotentials of 230 and 228 mV to achieve the current density of -10 mA cm-2 in 1.0 M KOH and 0.5 M H2SO4 solutions, respectively. Moreover, it displays small Tafel slopes, high Faradic efficiencies (∼100 %) and superior long-term stability. This study paves a strategic approach for designing high-performance single-atom electrocatalysts through asymmetric structural engineering.
Collapse
Affiliation(s)
- Yihang Xue
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Dahai Zeng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Bing Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haifang Xie
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Lei Ma
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yufeng Wang
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Ali SA, Sadiq I, Ahmad T. Operando characterization technique innovations in single-atom catalyst-derived electrochemical CO 2 conversion. Chem Commun (Camb) 2025; 61:8157-8169. [PMID: 40375651 DOI: 10.1039/d5cc01287b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Single-atom catalysts (SACs) are the perfect epitome of cutting-edge innovation in catalysis, offering distinct active sites in the form of isolated, individual atoms. SACs amalgamate the advantages of homogeneous and heterogeneous catalysis, in turn enhancing the activity, selectivity, and stability during catalytic processes. The latest progressions in in situ/operando characterization techniques have simplified the understanding of the catalyst heterogeneity and structure sensitivity of SACs by enabling the real-time observation of SACs under a coexistent working environment to provide insights into their structure and catalytic efficiency. Operando techniques are the backbone for investigating the stability and activity of SACs during energy conversions. Techniques such as operando X-ray absorption spectroscopy (XAS), polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS), and near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) have been employed to study SACs under different reaction conditions. Furthermore, in situ visualization microscopy techniques have made notable progress in the imaging of ongoing catalytic reactions on SACs and revealed enigmatic effects such as facet-resolved catalytic ignition and anisotropic surface oxidation. Therefore, in this review, we have compiled the developments in the significant operando characterization techniques for SAC-derived electrochemical carbon dioxide reduction reaction (eCO2RR).
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Carrer de Martí iFranquès, 1-11, 08028 Barcelona, Spain
| | - Iqra Sadiq
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
3
|
Liu S, Meyer Q, Xu D, Cheng Y, Osmieri L, Li XH, Zhao C. Breaking the Activity and Stability Trade-Off of Platinum-Free Catalysts for the Oxygen Reduction Reaction in Hydrogen Fuel Cells. ACS NANO 2025. [PMID: 40388711 DOI: 10.1021/acsnano.5c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Hydrogen fuel cells, which use hydrogen as fuel to generate electricity, hold great promises as future energy conversion devices for heavy-duty transport, due to their zero CO2 emissions, high energy conversion efficiency, and high power density. However, the adoption of hydrogen fuel cells has been slow due to their reliance on large amounts of costly and scarce platinum (Pt) for the oxygen reduction reaction. The replacement of Pt with Earth-abundant transition metals such as Fe, Co, Mn, and Sn with oxygen reduction reaction affinity has thus been a holy grail of electrocatalysis research. Pt-free catalysts must combine both high power density and high stability in hydrogen fuel cells to be considered viable alternatives to Pt. Despite promising progress on both fronts, a trade-off has emerged: Pt-free catalysts either achieve high power densities (≥1.5 W cm-2) but suffer from low stabilities (≥70% loss after 25 h) or more recently demonstrate improved stability (≤25% loss after 150 h), while delivering considerably lower power densities (<1 W cm-2) in hydrogen fuel cells. Herein, we summarize the recent progress in the synthesis of high power density M-N-C catalysts for hydrogen fuel cells and highlight the critical importance of uncovering the underlying mechanisms using operando methods. We then discuss the primary causes of catalyst degradation in hydrogen fuel cells and the most promising strategies to enhance the stability of the M-N-C catalysts. Finally, a roadmap is proposed to overcome the activity stability trade-off for Pt-free catalysts in hydrogen fuel cells.
Collapse
Affiliation(s)
- Shiyang Liu
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quentin Meyer
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Cheng
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China
| | - Luigi Osmieri
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chuan Zhao
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Zhang G, Fan K, Zong L, Lu F, Wang Z, Wang L. Harnessing geometric distortion to stimulate oxygen reduction activity of atomically dispersed Fe catalysts in quasi-solid-state zinc-air batteries. J Colloid Interface Sci 2025; 686:1157-1167. [PMID: 39938283 DOI: 10.1016/j.jcis.2025.01.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
To achieve precise optimization of the geometric structure and control over spatial distribution of single atom active sites, we introduce an in situ polymer layer modification strategy. Through co-deposition of tannic acid (TA) and polyethyleneimine (PEI) on carbon nanotubes (CNTs), the polymer improves the dispersion and prevents the agglomeration of Fe atoms. Consequently, after controlled calcination, the geometrically distorted Fe-N4 single atom active sites are constructed on the surface of the curved carbon support. The optimized distortion reduces the reaction energy barrier, optimizes the adsorption energy of oxygen intermediates, and leading to a remarkable improvement of oxygen reduction reaction (ORR) activity. As the result, the obtained single atom catalyst (SAC) Fe-NC@CNTs exhibits exceptional performance with a large onset potential (Eonset) of 1.03 V and a half-wave potential (E1/2) of 0.91 V in 0.1 M KOH solution, surpassing the previously reported ORR electrocatalysts. Benefitting from these features, Fe-NC@CNTs-based rechargeable aqueous Zn-air battery (A-ZAB) delivers a higher power density of 209.5 mW cm-2 and can sustain stable changing/discharging for over 2000 h and experiences negligible charge-discharge potential gap fluctuation, being the most booming competitor among the reported electrocatalysts. Furthermore, quasi-solid-state Zn-air battery (QSS-ZAB) with Fe-NC@CNTs air cathode exhibits an impressive peak power density of 130.8 mW cm-2, large round-trip efficiency of 82 %, and long cycling life of over 100 h. Our work reveals the relationship of strain-induced geometrical distortion and the structure activity relationship, offering a new way for the rational design of other highly efficient catalytic systems.
Collapse
Affiliation(s)
- Guitao Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China
| | - Kaicai Fan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China
| | - Lingbo Zong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China.
| | - Fenghong Lu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China
| | - Zumin Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 PR China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 PR China.
| |
Collapse
|
5
|
Favero S, Chen R, Cheung J, Higgins L, Luo H, Wang M, Barrio J, Titirici MM, Bagger A, Stephens IEL. Same FeN4 Active Site, Different Activity: How Redox Peaks Control Oxygen Reduction on Fe Macrocycles. ACS ELECTROCHEMISTRY 2025; 1:617-632. [PMID: 40331011 PMCID: PMC12051206 DOI: 10.1021/acselectrochem.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 05/08/2025]
Abstract
Macrocycles show high activity for the electrochemical reduction of oxygen in alkaline media. However, even macrocycles with the same metal centers and MN4 active site can vary significantly in activity and selectivity, and to this date, a quantitative insight into the cause of these staggering differences has not been unambiguously reached. These macrocycles form a fundamental platform, similarly to platinum alloys for metal ORR catalyst, to unravel fundamental properties of FeNx catalysts. In this manuscript, we present a systematic study of several macrocycles, with varying active site motif and ligands, using electrochemical techniques, operando spectroscopy, and density functional theory (DFT) simulations. Our study demonstrates the existence of two families of Fe macrocycles for oxygen reduction in alkaline electrolytes: (i) weak *OH binding macrocycles with one peak in the voltammogram and high peroxide selectivity and (ii) macrocycles with close to optimal *OH binding, which exhibit two voltametric peaks and almost no peroxide production. Here, we also propose three mechanisms that would explain our experimental findings. Understanding what differentiates these two families could shed light on how to optimize the activity of pyrolyzed FeNx catalysts.
Collapse
Affiliation(s)
- Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Ruixuan Chen
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Joyce Cheung
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Luke Higgins
- Diamond
Light Source, Didcot OX11 0DE, United
Kingdom
| | - Hui Luo
- Institute
for Sustainability, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Mengnan Wang
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Jesus Barrio
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Maria Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Alexander Bagger
- Department
of Physics, Danish Technical University, 2800 Kongens Lyngby, Denmark
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| |
Collapse
|
6
|
Choi H, Shin SJ, Bae G, Cho J, Han MH, Sougrati MT, Jaouen F, Lee KS, Oh HS, Kim H, Choi CH. Space Charge, Modulating the Catalytic Activity of Single-Atom Metal Catalysts. J Am Chem Soc 2025; 147:13220-13228. [PMID: 40228163 DOI: 10.1021/jacs.4c17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Potential-induced electrode charging is a prerequisite to initiate electrochemical reactions at the electrode-electrolyte interface. The 'interface space charge' could dramatically alter the reaction environment and the charge density of the active site, both of which potentially affect the electrochemical activity. However, our understanding of the electrocatalytic role of space charge has been limited. Here, we separately modulate the amount of space charge (characterized by the areal density, σ) with maintaining the electrochemical potential for the oxygen reduction reaction (ORR) at the same level, by exploiting the unique structural feature of MeNC. We reveal that changes in σ control the ORR activity, which is computationally explained by the inductive polarization of the charge density at the active sites, affecting their turnover rates. To guide catalyst design including the space charge effect, we develop a new descriptor, explaining the activity trend in various metal centers and pH conditions using a single volcano. These findings offer fresh insights into the role of space charge in electrocatalysis, providing a new framework for optimizing catalyst design and performance.
Collapse
Affiliation(s)
- Hansol Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung-Jae Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Geunsu Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsic Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Man Ho Han
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | | | - Frédéric Jaouen
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Kug-Seung Lee
- Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Huang CY, Chen HA, Lin WX, Chen KH, Lin YC, Wu TS, Chang CC, Pao CW, Chuang WT, Jan JC, Shao YC, Hiraoka N, Chiou JW, Kuo PC, Shiue J, Vishnu S. K D, Sankar R, Cyue ZW, Pong WF, Chen CW. In Situ Identification of Spin Magnetic Effect on Oxygen Evolution Reaction Unveiled by X-ray Emission Spectroscopy. J Am Chem Soc 2025; 147:13286-13295. [PMID: 40219990 PMCID: PMC12022985 DOI: 10.1021/jacs.4c18149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Manipulating the spin ordering of the oxygen evolution reaction (OER) catalysts through magnetization has recently emerged as a promising strategy to enhance performance. Despite numerous experiments elaborating on the spin magnetic effect for improved OER, the origin of this phenomenon remains largely unexplored, primarily due to the difficulty in directly distinguishing the spin states of electrocatalysts during chemical reactions at the atomic level. X-ray emission spectroscopy (XES), which provides information sensitive to the spin states of specific elements in a complex, may serve as a promising technique to differentiate the onset of OER catalytic activities from the influence of spin states. In this work, we employ the in situ XES technique, along with X-ray absorption spectroscopy (XAS), to investigate the interplay between atomic/electronic structures, spin states, and OER catalytic activities of the CoFe2O4 (CFO) catalyst under an external magnetic field. This enhancement is due to the spin magnetic effect that facilitates spin-selective electron transfer from adsorbed OH- reactants, which strongly depends on the spin configurations of the tetrahedral-(Td) and octahedral-(Oh) sites of both Fe and Co ions. Our result contributes to a comprehensive understanding of magnetic field-assisted electrocatalysis at the atomic level and paves the way for designing highly efficient OER catalysts.
Collapse
Affiliation(s)
- Chih-Ying Huang
- International
Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 106319, Taiwan
- Molecular
Science and Technology Program Taiwan International Graduate Program
(TIGP), Academia Sinica, Taipei 115201, Taiwan
| | - Hsin-An Chen
- Institute
of Materials Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Wei-Xuan Lin
- Department
of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Kuan-Hung Chen
- Department
of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Yu-Chang Lin
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Tai-Sing Wu
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Chia-Che Chang
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Wei-Tsung Chuang
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Jyh-Chyuan Jan
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Yu-Cheng Shao
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Nozomu Hiraoka
- National
Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Jau-Wern Chiou
- Department
of Applied Physics, National University
of Kaohsiung, Kaohsiung 811, Taiwan
| | - Pai-Chia Kuo
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 106319, Taiwan
| | - Jessie Shiue
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 106319, Taiwan
| | - Deepak Vishnu S. K
- Molecular
Science and Technology Program Taiwan International Graduate Program
(TIGP), Academia Sinica, Taipei 115201, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Raman Sankar
- Institute
of Physics, Academia Sinica, Taipei 115201, Taiwan
| | - Zih-Wei Cyue
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 106319, Taiwan
| | - Way-Faung Pong
- Department
of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Chun-Wei Chen
- International
Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 106319, Taiwan
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 106319, Taiwan
- Center for Condensed Matter Sciences and Center of Atomic
Initiative
for New Materials (AI-MAT), National Taiwan
University (NTU), Taipei 106319, Taiwan
| |
Collapse
|
8
|
Liu J, Yang J, Dou Y, Liu X, Chen S, Wang D. Deactivation Mechanism and Mitigation Strategies of Single-Atom Site Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420383. [PMID: 40223412 DOI: 10.1002/adma.202420383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/14/2025] [Indexed: 04/15/2025]
Abstract
Single-atom site electrocatalysts (SACs), with maximum atom efficiency, fine-tuned coordination structure, and exceptional reactivity toward catalysis, energy, and environmental purification, have become the emerging frontier in recent decade. Along with significant breakthroughs in activity and selectivity, the limited stability and durability of SACs are often underemphasized, posing a grand challenge in meeting the practical requirements. One pivotal obstacle to the construction of highly stable SACs is the heavy reliance on empirical rather than rational design methods. A comprehensive review is urgently needed to offer a concise overview of the recent progress in SACs stability/durability, encompassing both deactivation mechanism and mitigation strategies. Herein, this review first critically summarizes the SACs degradation mechanism and induction factors at the atomic-, meso- and nanoscale, mainly based on but not limited to oxygen reduction reaction. Subsequently, potential stability/durability improvement strategies by tuning catalyst composition, structure, morphology and surface are delineated, including construction of robust substrate and metal-support interaction, optimization of active site stability, fabrication of porosity and surface modification. Finally, the challenges and prospects for robust SACs are discussed. This review facilitates the fundamental understanding of catalyst degradation mechanism and provides efficient design principles aimed at overcoming deactivation difficulties for SACs and beyond.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Shenghua Chen
- School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
10
|
Vestergaard AK, Gammelgaard JJ, Sun Z, Zhao S, Li Z, Lock N, Daasbjerg K, Lauritsen JV. X-ray spectroscopy characterization of cobalt stabilization within a monolayer carbon nitride in the oxygen evolution reaction. Phys Chem Chem Phys 2025. [PMID: 39992675 DOI: 10.1039/d4cp04148h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Carbon nitride-based catalysts containing earth-abundant metals such as Co have gained attention for the oxygen evolution and reduction reactions (OER and ORR). The catalytic activity of such materials is known to be sensitive to metal dispersion and coordination, which again may depend on reaction conditions, but exact information on the active state and the possible coordination state changes of Co in these materials induced by electrocatalytic conditions are in general lacking. Here, we study the redistribution of Co during the OER in a composite planar model system consisting of a well-defined single-atom Co-doped carbon nitride monolayer and Co nanoparticles on Au(111). Through a combination of electrocatalytic activity measurements and analysis of the catalyst surface pre- and post-electrochemical operation using X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy, we investigate the induced changes in Co species and the carbon nitride network. Our findings indicate significant mobility during the OER of Co atoms originating from the Co nanoparticles, with the presence of the carbon nitride stabilizing Co in a dispersed form. The dispersion of Co leads to a steady increase in OER activity over time, which is only observed when both Co nanoparticles and Co-doped carbon nitride co-exist. We attribute this phenomenon to the carbon nitride's role in dispersing and stabilizing highly mobile cobalt species on the surface, thereby enhancing electrochemical stability.
Collapse
Affiliation(s)
- Anders K Vestergaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens Jakob Gammelgaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
| | - Zhaozong Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
| | - Siqi Zhao
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Zheshen Li
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Nina Lock
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
- Department of Biological and Chemical Engineering, Aarhus University, 8200 Aarhus N, Denmark
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
- Novo Nordisk Foundation (NNF) CO2 Research Center, Aarhus University, 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
11
|
Sun K, Su T, Lu GP, Franke R, Neumann H, Beller M. A Highly Dispersed Heterogeneous Cobalt Catalyst for Efficient Domino Hydroformylation Reductive Amination of Olefins. Angew Chem Int Ed Engl 2025; 64:e202419370. [PMID: 39887518 DOI: 10.1002/anie.202419370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 02/01/2025]
Abstract
The hydroaminomethylation of alkenes using CO and H2 proceeds efficiently in the presence of a heterogeneous Co-N/C catalyst with highly dispersed metal centers. Various secondary and tertiary amines can be effectively synthesized from cyclic and linear aliphatic alkenes using this specific material. The active sites of the optimal catalyst result from the synergistic effect of atomically dispersed Co sites with their surrounding N atoms, and the high surface area as well as structural defects of the NC support. The broad applicability (>54 examples), including pharmaceutically relevant molecules, together with the high activity and reusability, underline the general applicability of this catalytic system.
Collapse
Affiliation(s)
- Kangkang Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China)
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Tianyue Su
- School of Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, P. R. China)
| | - Guo-Ping Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, P. R. China)
| | - Robert Franke
- Evonik Industries AG, Paul-Baumann-Straße 1, 45772, Marl, Germany)
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Helfried Neumann
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
12
|
Do VH, Lee JM. Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417516. [PMID: 39871686 DOI: 10.1002/adma.202417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability. The immense promise and rapid evolution of this design strategy, however, do not overshadow the substantial challenges and ambiguities that persist, impeding the realization of significant breakthroughs in electrocatalyst development. This review explores the latest insights into the principles guiding the design of catalytic surfaces that enable favorable adsorbate dynamics within the contexts of hydrogen and oxygen electrochemistry. Innovative approaches for tailoring adsorbate-surface interactions are discussed, delving into underlying principles that govern these dynamics. Additionally, perspectives on the prevailing challenges are presented and future research directions are proposed. By evaluating the core principles and identifying critical research gaps, this review seeks to inspire rational electrocatalyst design, the discovery of novel reaction mechanisms and concepts, and ultimately, advance the large-scale implementation of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
13
|
Han Z, Shi Y, Zhang B, Kong L. Dynamic evolution of metal-nitrogen-codoped carbon catalysts in electrocatalytic reactions. Chem Commun (Camb) 2025; 61:1485-1495. [PMID: 39691082 DOI: 10.1039/d4cc04664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Atomic metal-nitrogen-codoped carbon (M-N-C) catalysts are highly efficient for various electrocatalytic reactions because of their high atomic utilization efficiency. However, the high surface energy of M-N-C catalysts often results in stability issues in electrochemical reactions. Therefore, understanding the stability and dynamic evolution of M-N-C catalysts is crucial for elucidating the active centers and the composition/structure-activity relationship. This review summarizes the factors affecting the durability of atomic catalysts in electrochemical reactions and discusses possible changes in catalysts during these electrochemical processes. Finally, advanced characterization techniques are described, with a focus on tracking the dynamic evolution of M-N-C catalysts during electrocatalysis. This review offers insights into the rational optimization of M-N-C electrocatalysts and provides a framework for linking their composition and structure with their catalytic activity in future research.
Collapse
Affiliation(s)
- Zixuan Han
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanmei Shi
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Lingjun Kong
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Yin H, Deng Y, He Z, Xu W, Hou Z, He B, Çaha İ, Cunha J, Karimi M, Yu Z. Strain engineering of Co SANC catalyst toward enhancing the oxygen reduction reaction activity. J Colloid Interface Sci 2025; 678:447-457. [PMID: 39213997 DOI: 10.1016/j.jcis.2024.08.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Developing efficient and cost-effective platinum-group metal-free (PGMF) catalysts for the oxygen reduction reaction (ORR) is crucial for energy conversion and storage devices. Among these catalysts, metal-nitrogen-carbon (MNC) materials, particularly cobalt single-atom catalysts (CoSANC), show promise as ORR electrocatalysts. However, their ORR activity is often hindered by strong hydroxyl (OH) adsorption on the Co sites. While the impact of strain engineering on MNC electrocatalysts has been minimally explored, recent studies suggest its potential to enhance catalytic performance and optimize intrinsic activity in traditional bulk catalysts. In this context, we investigate the effect of surface strain on CoSANC for ORR activity and correlate substrate-strain-induced geometric distortions with catalytic activity using experimental and theoretical methods. The findings suggest that the d-band center gap of spin states (Δεd) may be a preferred descriptor for predicting strain-dependent ORR performance in MNC catalysts. Leveraging CoSANC moiety placed on a substrate with an average size of 1.0 μm, we achieve performance comparable to that of commercial Pt/C catalysts when used as a cathode catalyst in zinc-air batteries. This investigation unveils the structure-function relationship of MNC electrocatalysts regarding strain engineering and provides valuable insights for future ORR activity design and enhancement.
Collapse
Affiliation(s)
- Hong Yin
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China; International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal.
| | - Yiqiong Deng
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhe He
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wenyuan Xu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhaohui Hou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Binhong He
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - İhsan Çaha
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Joao Cunha
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Maryam Karimi
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Zhipeng Yu
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal.
| |
Collapse
|
15
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Zhan X, Zhang L, Choi J, Tan X, Hong S, Wu T, Xiong P, Soo Y, Hao L, Li MM, Xu L, Robertson AW, Jung Y, Sun X, Sun Z. A Universal Synthesis of Single-Atom Catalysts via Operando Bond Formation Driven by Electricity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401814. [PMID: 39269738 PMCID: PMC11835128 DOI: 10.1002/advs.202401814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Indexed: 09/15/2024]
Abstract
Single-atom catalysts (SACs), featuring highly uniform active sites, tunable coordination environments, and synergistic effects with support, have emerged as one of the most efficient catalysts for various reactions, particularly for electrochemical CO2 reduction (ECR). However, the scalability of SACs is restricted due to the limited choice of available support and problems that emerge when preparing SACs by thermal deposition. Here, an in situ reconstruction method for preparing SACs is developed with a variety of atomic sites, including nickel, cadmium, cobalt, and magnesium. Driven by electricity, different oxygen-containing metal precursors, such as MOF-74 and metal oxides, are directly atomized onto nitrogen-doped carbon (NC) supports, yielding SACs with variable metal active sites and coordination structures. The electrochemical force facilitates the in situ generation of bonds between the metal and the supports without the need for additional complex steps. A series of MNxOy (M denotes metal) SACs on NC have been synthesized and utilized for ECR. Among these, NiNxOy SACs using Ni-MOF-74 as a metal precursor exhibit excellent ECR performance. This universal and general SAC synthesis strategy at room temperature is simpler than most reported synthesis methods to date, providing practical guidance for the design of the next generation of high-performance SACs.
Collapse
Affiliation(s)
- Xinyu Zhan
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Libing Zhang
- Institute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Junyoung Choi
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesInstitute of Engineering ResearchSeoul National UniversitySeoul08826Republic of Korea
| | - Xinyi Tan
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing Key Laboratory of Environmental Science and EngineeringBeijing100081China
| | - Song Hong
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Tai‐Sing Wu
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Pei Xiong
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Yun‐Liang Soo
- Department of PhysicsNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Leiduan Hao
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Molly Meng‐Jung Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Liang Xu
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | | | - Yousung Jung
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesInstitute of Engineering ResearchSeoul National UniversitySeoul08826Republic of Korea
| | - Xiaofu Sun
- Institute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Zhenyu Sun
- State Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
17
|
Suh J, Choi H, Kong Y, Oh J. Tandem Electroreduction of Nitrate to Ammonia Using a Cobalt-Copper Mixed Single-Atom/Cluster Catalyst with Synergistic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407250. [PMID: 39297330 PMCID: PMC11558078 DOI: 10.1002/advs.202407250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Indexed: 11/14/2024]
Abstract
Electrochemical conversion of waste nitrate (NO3 -) to ammonia (NH3) for environmental applications, such as carbon-neutral energy sources and hydrogen carriers, is a promising alternative to the energy-intensive Haber-Bosch process. However, increasing the energy efficiency is limited by the high overpotential and selectivity. Herein, a Co─Cu mixed single-atom/cluster catalyst (Co─Cu SCC) is demonstrated-with well-dispersed Co and Cu active sites anchored on a carbon support-that delivers high NH3 Faradaic efficiency of 91.2% at low potential (-0.3 V vs. RHE) due to synergism between the heterogenous active sites. Electrochemical analyses reveal that Cu in Co─Cu SCC preferentially catalyzes the NO3 --to-NO2 - pathway, whereupon Co catalyzes the NO2 --to-NH3 pathway. This tandem electroreduction bypasses the rate-determining steps (RDSs) for Co and Cu to lower the reaction energy barrier and surpass scaling relationship limitations. The electrocatalytic performance is amplified by the subnanoscale catalyst to increase the partial current density of NH3 by 2.3 and 5.4 times compared to those of individual Co, Cu single-atom/cluster catalysts (Co SCC, Cu SCC), respectively. This Co─Cu SCC is operated stably for 32 h in a long-term bipolar membrane (BPM)-based membrane electrode assembly (MEA) system for high-concentration NH3 synthesis to produce over 1 m NH3 for conversion into high-purity NH4Cl at 2.1 g day-1.
Collapse
Affiliation(s)
- Jungwon Suh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyeonuk Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yujin Kong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jihun Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
18
|
Xu Y, Ma Y, Chen X, Wu K, Wang K, Shen Y, Liu S, Gao XJ, Zhang Y. Regulating Reactive Oxygen Intermediates of Fe-N-C SAzyme via Second-Shell Coordination for Selective Aerobic Oxidation Reactions. Angew Chem Int Ed Engl 2024; 63:e202408935. [PMID: 38895986 DOI: 10.1002/anie.202408935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) regulation for single-atom nanozymes (SAzymes), e.g., Fe-N-C, is a key scientific issue that determines the activity, selectivity, and stability of aerobic reaction. However, the poor understanding of ROS formation mechanism on SAzymes greatly hampers their wider deployment. Herein, inspired by cytochromes P450 affording bound ROS intermediates in O2 activation, we report Fe-N-C containing the same FeN4 but with tunable second-shell coordination can effectively regulate ROS production pathways. Remarkably, compared to the control Fe-N-C sample, the second-shell sulfur functionalized Fe-N-C delivered a 2.4-fold increase of oxidase-like activity via the bound Fe=O intermediate. Conversely, free ROS (⋅O2 -) release was significantly reduced after functionalization, down to only 17 % of that observed for Fe-N-C. The detailed characterizations and theoretical calculations revealed that the second-shell sulfur functionalization significantly altered the electronic structure of FeN4 sites, leading to an increase of electron density at Fermi level. It enhanced the electron transfer from active sites to the key intermediate *OOH, thereby ultimately determining the type of ROS in aerobic oxidation process. The proposed Fe-N-Cs with different second-shell anion were further applied to three aerobic oxidation reactions with enhanced activity, selectivity, and stability.
Collapse
Affiliation(s)
- Yuan Xu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yuanjie Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinghua Chen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiqing Wu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Kaiyuan Wang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio Medical Research, Southeast University, Nanjing, 211189, China
| |
Collapse
|
19
|
Tan SF, Roslie H, Salim T, Han Z, Wu D, Liang C, Teo LF, Lam YM. Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactions. ACS NANO 2024; 18:19220-19231. [PMID: 38976597 DOI: 10.1021/acsnano.4c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Supported nonprecious metal catalysts such as copper (Cu) are promising replacements for Pt-based catalysts for a wide range of energy-related electrochemical reactions. Direct electrochemical deposition is one of the most straightforward and versatile methods to synthesize supported nonprecious metal catalysts. However, further advancement in the design of supported nonprecious metal catalysts requires a detailed mechanistic understanding of the interplay between kinetics and thermodynamics of the deposition phenomena under realistic reaction conditions. Here, we study the electrodeposition of Cu on carbon nanotubes and graphene derivatives under electrochemical conditions using in situ liquid cell transmission electron microscopy (TEM). By combining real-time imaging, electrochemical measurements, X-ray photoelectron spectroscopy (XPS), and finite-element analysis (FEA), we show that low-dimensional support materials, especially carbon nanotubes, are excellent for generating uniform and finely dispersed platinum group metal-(PGM)-free catalysts under mild electrochemical conditions. The electrodeposited Cu on graphene and carbon nanotubes is also observed to show good electrochemical activity toward nitrate reduction reactions (NO3RRs), further supported by density functional theory (DFT) calculations. Nitrogen doping plays an important role in guiding nonprecious metal deposition, but its low electrical conductivity may give rise to lower NO3RR activity compared to its nondoped analogue. The development of supported nonprecious metals through interfacial and surface engineering for the design of supported catalysts will substantially reduce the demand for precious metals and generate robust catalysts with better durability, thereby presenting opportunities for solving the critical problems in energy storage and electrocatalysis.
Collapse
Affiliation(s)
- Shu Fen Tan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| | - Hany Roslie
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Teddy Salim
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| | - Zengyu Han
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Caihong Liang
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Lim Fong Teo
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| |
Collapse
|
20
|
Timoshenko J, Rettenmaier C, Hursán D, Rüscher M, Ortega E, Herzog A, Wagner T, Bergmann A, Hejral U, Yoon A, Martini A, Liberra E, Monteiro MCDO, Cuenya BR. Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy. Nat Commun 2024; 15:6111. [PMID: 39030207 PMCID: PMC11271611 DOI: 10.1038/s41467-024-50379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Copper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO2 reduction (CO2RR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CO2RR products, a lack of which has thus far hindered the wide-spread practical adoption of CO2RR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites. By tuning the pulse durations, and by tracking the catalyst's evolution using operando quick X-ray absorption spectroscopy, the speciation of the catalyst can be steered toward single atom sites, ultrasmall metal clusters or large metal nanoparticles, each exhibiting unique CO2RR functionalities.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Dorottya Hursán
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Timon Wagner
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Eric Liberra
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | | | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| |
Collapse
|
21
|
Martini A, Timoshenko J, Rüscher M, Hursán D, Monteiro MCO, Liberra E, Roldan Cuenya B. Revealing the structure of the active sites for the electrocatalytic CO 2 reduction to CO over Co single atom catalysts using operando XANES and machine learning. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:741-750. [PMID: 38917021 PMCID: PMC11226159 DOI: 10.1107/s1600577524004739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co-N-C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co-N-C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co-N-C catalysts, and further optimization of this class of electrocatalytic systems.
Collapse
Affiliation(s)
- Andrea Martini
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Janis Timoshenko
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Martina Rüscher
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Dorottya Hursán
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Mariana C. O. Monteiro
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Eric Liberra
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Beatriz Roldan Cuenya
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| |
Collapse
|
22
|
Alam M, Ping K, Danilson M, Mikli V, Käärik M, Leis J, Aruväli J, Paiste P, Rähn M, Sammelselg V, Tammeveski K, Haller S, Kramm UI, Starkov P, Kongi N. Iron Triad-Based Bimetallic M-N-C Nanomaterials as Highly Active Bifunctional Oxygen Electrocatalysts. ACS APPLIED ENERGY MATERIALS 2024; 7:4076-4087. [PMID: 38756864 PMCID: PMC11095250 DOI: 10.1021/acsaem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The use of precious metal electrocatalysts in clean electrochemical energy conversion and storage applications is widespread, but the sustainability of these materials, in terms of their availability and cost, is constrained. In this research, iron triad-based bimetallic nitrogen-doped carbon (M-N-C) materials were investigated as potential bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The synthesis of bimetallic FeCo-N-C, CoNi-N-C, and FeNi-N-C catalysts involved a precisely optimized carbonization process of their respective metal-organic precursors. Comprehensive structural analysis was undertaken to elucidate the morphology of the prepared M-N-C materials, while their electrocatalytic performance was assessed through cyclic voltammetry and rotating disk electrode measurements in a 0.1 M KOH solution. All bimetallic catalyst materials demonstrated impressive bifunctional electrocatalytic performance in both the ORR and the OER. However, the FeNi-N-C catalyst proved notably more stable, particularly in the OER conditions. Employed as a bifunctional catalyst for ORR/OER within a customized zinc-air battery, FeNi-N-C exhibited a remarkable discharge-charge voltage gap of only 0.86 V, alongside a peak power density of 60 mW cm-2. The outstanding stability of FeNi-N-C, operational for about 55 h at 2 mA cm-2, highlights its robustness for prolonged application.
Collapse
Affiliation(s)
- Mahboob Alam
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Kefeng Ping
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
| | - Mati Danilson
- Department
of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Valdek Mikli
- Department
of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Maike Käärik
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Jaan Leis
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Jaan Aruväli
- Institute
of Ecology and Earth Sciences, University
of Tartu, Tartu 50411, Estonia
| | - Päärn Paiste
- Institute
of Ecology and Earth Sciences, University
of Tartu, Tartu 50411, Estonia
| | - Mihkel Rähn
- Institute
of Physics, University of Tartu, Tartu 50411, Estonia
| | | | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Steffen Haller
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Ulrike I. Kramm
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Pavel Starkov
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
| | - Nadezda Kongi
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
23
|
Huang H, Sun M, Li S, Zhang S, Lee Y, Li Z, Fang J, Chen C, Zhang YX, Wu Y, Che Y, Qian S, Zhu W, Tang C, Zhuang Z, Zhang L, Niu Z. Enhancing H 2O 2 Electrosynthesis at Industrial-Relevant Current in Acidic Media on Diatomic Cobalt Sites. J Am Chem Soc 2024; 146:9434-9443. [PMID: 38507716 DOI: 10.1021/jacs.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electrocatalytic synthesis of hydrogen peroxide (H2O2) in acidic media is an efficient and eco-friendly approach to produce inherently stable H2O2, but limited by the lack of selective and stable catalysts under industrial-relevant current densities. Herein, we report a diatomic cobalt catalyst for two-electron oxygen reduction to efficiently produce H2O2 at 50-400 mA cm-2 in acid. Electrode kinetics study shows a >95% selectivity for two-electron oxygen reduction on the diatomic cobalt sites. In a flow cell device, a record-high production rate of 11.72 mol gcat-1 h-1 and exceptional long-term stability (100 h) are realized under high current densities. In situ spectroscopic studies and theoretical calculations reveal that introducing a second metal into the coordination sphere of the cobalt site can optimize the binding strength of key H2O2 intermediates due to the downshifted d-band center of cobalt. We also demonstrate the feasibility of processing municipal plastic wastes through decentralized H2O2 production.
Collapse
Affiliation(s)
- Helai Huang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| | - Mingze Sun
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| | - Shuwei Li
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Shengbo Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yiyang Lee
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhengwen Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinjie Fang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengjin Chen
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Xiao Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanfen Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| | - Yizhen Che
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| | - Shuairen Qian
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wei Zhu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cheng Tang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| |
Collapse
|
24
|
Wang M, Ma W, Tan C, Qiu Z, Hu L, Lv X, Li Q, Dang J. Designing Efficient Non-Precious Metal Electrocatalysts for High-Performance Hydrogen Production: A Comprehensive Evaluation Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306631. [PMID: 37988645 DOI: 10.1002/smll.202306631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Developing abundant Earth-element and high-efficient electrocatalysts for hydrogen production is crucial in effectively reducing the cost of green hydrogen production. Herein, a strategy by comprehensively considering the computational chemical indicators for H* adsorption/desorption and dehydrogenation kinetics to evaluate the hydrogen evolution performance of electrocatalysts is proposed. Guided by the proposed strategy, a series of catalysts are constructed through a dual transition metal doping strategy. Density Functional Theory (DFT) calculations and experimental chemistry demonstrate that cobalt-vanadium co-doped Ni3N is an exceptionally ideal catalyst for hydrogen production from electrolyzed alkaline water. Specifically, Co,V-Ni3N requires only 10 and 41 mV in alkaline electrolytes and alkaline seawater, respectively, to achieve a hydrogen evolution current density of 10 mA cm-2. Moreover, it can operate steadily at a large industrial current density of 500 mA cm-2 for extended periods. Importantly, this evaluation strategy is extended to single-metal-doped Ni3N and found that it still exhibits significant universality. This study not only presents an efficient non-precious metal-based electrocatalyst for water/seawater electrolysis but also provides a significant strategy for the design of high-performance catalysts of electrolyzed water.
Collapse
Affiliation(s)
- Meng Wang
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Wansen Ma
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Chaowen Tan
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Zeming Qiu
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Liwen Hu
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Xuewei Lv
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| | - Qian Li
- National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China
- State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jie Dang
- College of Materials Science and Engineering, Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
25
|
Gallenkamp C, Kramm UI, Krewald V. FeN 4 Environments upon Reduction: A Computational Analysis of Spin States, Spectroscopic Properties, and Active Species. JACS AU 2024; 4:940-950. [PMID: 38559729 PMCID: PMC10976608 DOI: 10.1021/jacsau.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
FeN4 motifs, found, for instance, in bioinorganic chemistry as heme-type cofactors, play a crucial role in man-made FeNC catalysts for the oxygen reduction reaction. Such single-atom catalysts are a potential alternative to platinum-based catalysts in fuel cells. Since FeNC catalysts are prepared via pyrolysis, the resulting materials are amorphous and contain side phases and impurities. Therefore, the geometric and electronic nature of the catalytically active FeN4 site remains to be clarified. To further understand the behavior of FeN4 centers in electrochemistry and their expected spectroscopic behavior upon reduction, we investigate two FeN4 environments (pyrrolic and pyridinic). These are represented by the model complexes [Fe(TPP)Cl] and [Fe(phen2N2)Cl], where TPP = tetraphenylporphyrin and phen = 1,10-phenanthroline. We predict their Mössbauer, UV-vis, and NRV spectral data using density functional theory as windows into their electronic structure differences. By varying the axial ligand, we further show how well small chemical changes in both complexes can be discerned. We find that the differences in ligand field strength in pyrrolic and pyridinic coordination result in different spin ground states, which in turn leads to distinct Mössbauer spectroscopic properties. As a result, pyrrolic nitrogen donors with a weaker ligand field are predicted to show more pronounced spectroscopic differences under in situ and operando conditions, while pyridinic nitrogen donors are expected to show less pronounced spectroscopic changes upon reduction and/or ligand loss. We therefore suggest that a weaker ligand field leads to better detectability of catalytic intermediates in in situ and operando experiments.
Collapse
Affiliation(s)
- Charlotte Gallenkamp
- Theoretische
Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Ulrike I. Kramm
- Anorganische
Chemie, Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Vera Krewald
- Theoretische
Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| |
Collapse
|
26
|
Xu W, Zeng R, Rebarchik M, Posada-Borbón A, Li H, Pollock CJ, Mavrikakis M, Abruña HD. Atomically Dispersed Zn/Co-N-C as ORR Electrocatalysts for Alkaline Fuel Cells. J Am Chem Soc 2024; 146:2593-2603. [PMID: 38235653 DOI: 10.1021/jacs.3c11355] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrogen fuel cells have drawn increasing attention as one of the most promising next-generation power sources for future automotive transportation. Developing efficient, durable, and low-cost electrocatalysts, to accelerate the sluggish oxygen reduction reaction (ORR) kinetics, is urgently needed to advance fuel cell technologies. Herein, we report on metal-organic frameworks-derived nonprecious dual metal single-atom catalysts (SACs) (Zn/Co-N-C), consisting of Co-N4 and Zn-N4 local structures. These catalysts exhibited superior ORR activity with a half-wave potential (E1/2) of 0.938 V versus RHE (reversible hydrogen electrode) and robust stability (ΔE1/2 = -8.5 mV) after 50k electrochemical cycles. Moreover, this remarkable performance was validated under realistic fuel cell working conditions, achieving a record-high peak power density of ∼1 W cm-2 among the reported SACs for alkaline fuel cells. Operando X-ray absorption spectroscopy was conducted to identify the active sites and reveal catalytic mechanistic insights. The results indicated that the Co atom in the Co-N4 structure was the main catalytically active center, where one axial oxygenated species binds to form an Oads-Co-N4 moiety during the ORR. In addition, theoretical studies, based on a potential-dependent microkinetic model and core-level shift calculations, showed good agreement with the experimental results and provided insights into the bonding of oxygen species on Co-N4 centers during the ORR. This work provides a comprehensive mechanistic understanding of the active sites in the Zn/Co-N-C catalysts and will pave the way for the future design and advancement of high-performance single-site electrocatalysts for fuel cells and other energy applications.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael Rebarchik
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alvaro Posada-Borbón
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher J Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Paparoni F, Alizon G, Zitolo A, Rezvani SJ, Di Cicco A, Magnan H, Fonda E. A novel electrochemical flow-cell for operando XAS investigations in X-ray opaque supports. Phys Chem Chem Phys 2024; 26:3897-3906. [PMID: 38230576 DOI: 10.1039/d3cp04701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Improvement of electrochemical technologies is one of the most popular topics in the field of renewable energy. However, this process requires a deep understanding of the electrode-electrolyte interface behavior under operando conditions. X-ray absorption spectroscopy (XAS) is widely employed to characterize electrode materials, providing element-selective oxidation state and local structure. Several existing cells allow studies as close as possible to realistic operating conditions, but most of them rely on the deposition of the electrodes on conductive and X-ray transparent materials, from where the radiation impinges the sample. In this work, we present a new electrochemical flow-cell for operando XAS that can be used with X-ray opaque substrates, since the signal is effectively detected from the electrode surface, as the radiation passes through a thin layer of electrolyte (∼17 μm). The electrolyte can flow over the electrode, reducing bubble formation and avoiding strong reactant concentration gradients. We show that high-quality data can be obtained under operando conditions, thanks to the high efficiency of the cell from the hard X-ray regime down to ∼4 keV. We report as a case study the operando XAS investigation at the Fe and Ni K-edges on Ni-doped γ-Fe2O3 films, epitaxially grown on Pt substrates. The effect of the Ni content on the catalytic performances for the oxygen evolution reaction is discussed.
Collapse
Affiliation(s)
- Francesco Paparoni
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Guillaume Alizon
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| | - Andrea Zitolo
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| | - Seyed Javad Rezvani
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
- CNR-IOM, SS14 - km 163.5 in Area Science Park, 34149, Trieste, Italy
| | - Andrea Di Cicco
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Hélène Magnan
- Université Paris-Saclay, CEA, CNRS, Service de Physique de l'Etat Condensé, F-91191 Gif-sur-Yvette, France
| | - Emiliano Fonda
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| |
Collapse
|
28
|
Oguz IC, Jaouen F, Mineva T. Exploring Spin Distribution and Electronic Properties in FeN 4-Graphene Catalysts with Edge Terminations. Molecules 2024; 29:479. [PMID: 38257393 PMCID: PMC11154451 DOI: 10.3390/molecules29020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding the spin distribution in FeN4-doped graphene nanoribbons with zigzag and armchair terminations is crucial for tuning the electronic properties of graphene-supported non-platinum catalysts. Since the spin-polarized carbon and iron electronic states may act together to change the electronic properties of the doped graphene, we provide in this work a systematic evaluation using a periodic density-functional theory-based method of the variation of spin-moment distribution and electronic properties with the position and orientation of the FeN4 defects, and the edge terminations of the graphene nanoribbons. Antiferromagnetic and ferromagnetic spin ordering of the zigzag edges were considered. We reveal that the electronic structures in both zigzag and armchair geometries are very sensitive to the location of FeN4 defects, changing from semi-conducting (in-plane defect location) to half-metallic (at-edge defect location). The introduction of FeN4 defects at edge positions cancels the known dependence of the magnetic and electronic proper-ties of undoped graphene nanoribbons on their edge geometries. The implications of the reported results for catalysis are also discussed in view of the presented electronic and magnetic properties.
Collapse
Affiliation(s)
| | | | - Tzonka Mineva
- ICGM, Univ. Montpellier, 34293 Montpellier, France; (I.C.O.); (F.J.)
| |
Collapse
|
29
|
Tang Q, Bai L, Zhang C, Meng R, Wang L, Geng C, Guo Y, Wang F, Liu Y, Song G, Ling G, Sun H, Weng Z, Yang QH. Molecular catalysts with electronic axial stretching for high-performance lean-oxygen seawater batteries. Sci Bull (Beijing) 2023; 68:3172-3180. [PMID: 37839915 DOI: 10.1016/j.scib.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
A dissolved-oxygen seawater battery (SWB) can generate electricity by reducing dissolved oxygen and sacrificing the metal anode at different depths and temperatures in the ocean, acting as the basic unit of spatially underwater energy networks for future maritime exploration. However, most traditional oxygen reduction reaction (ORR) catalysts are out of work at such ultralow dissolved oxygen concentration. Here, we proposed that the electronic axial stretching of the catalyst is essentially responsible for enhancing the catalyst's sensitivity to dissolved oxygen. By modulating the lattice of iron phthalocyanine (FePc) as a model catalyst, the unique electronic axial stretching in the z-direction of planar FePc molecules was realized to achieve a boosted adsorption and electron transfer and result in a much improved ORR activity in lean-oxygen seawater environment. The peak power density of a homemade SWB using a practical carbon brush electrode decorated by the FePc is estimated to be as high as 3 W L-1. These results provide inspiring insights into the interaction between the catalyst and complicated seawater environment, and propose the electronic axial stretching as an effective indicator for the rational design of catalysts to be used in extremely lean-oxygen environment.
Collapse
Affiliation(s)
- Quanjun Tang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Liang Bai
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Chen Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Rongwei Meng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Li Wang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Chuannan Geng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yong Guo
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Feifei Wang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yingxin Liu
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Guisheng Song
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guowei Ling
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zhe Weng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
30
|
Al Murisi M, Al-Asheh S, Abdelkareem MA, Aidan A, Elsaid K, Olabi AG. In situ Growth of Zeolite Imidazole Frameworks (ZIF-67) on Carbon Cloth for the Application of Oxygen Reduction Reactions and Microbial Fuel Cells. ACS OMEGA 2023; 8:44514-44522. [PMID: 38046312 PMCID: PMC10688201 DOI: 10.1021/acsomega.3c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/05/2023] [Indexed: 12/05/2023]
Abstract
Developing high surface area catalysts is an effective strategy to enhance the oxygen reduction reaction (ORR) in the application of microbial fuel cells (MFCs). This can be achieved by developing a catalyst based on metal-organic frameworks (MOFs) because they offer a porous active site for ORR. In this work, a novel in situ growth of 2D shell nanowires of ZIF-67 as a template for N-doped carbon (Co/NC) via a carbonization route was developed to enhance the ORR performance. The effects of different reaction times and different annealing temperatures were studied for a better ORR activity. The growth of the MOF template on the carbon cloth was confirmed using scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared. The Co/NC-800 exhibited an enhancement in the ORR activity as evidenced by an onset potential and half-wave potential of 0.0 vs V Ag/AgCl and -0.1 vs V Ag/AgCl, respectively, with a limited current density exceeding the commercial Pt/C. Operating Co/NC-800 on MFC revealed a maximum power density of 30 ± 2.5 mW/m2, a maximum current density of 180 ± 2.5 mA/m2.
Collapse
Affiliation(s)
- Mohammed Al Murisi
- Department
of Chemical Engineering, American University
of Sharjah, P.O. Box 2666, Sharjah 26666,United Arab Emirates
| | - Sameer Al-Asheh
- Department
of Chemical Engineering, American University
of Sharjah, P.O. Box 2666, Sharjah 26666,United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Department
of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah27272,United Arab Emirates
| | - Ahmad Aidan
- Department
of Chemical Engineering, American University
of Sharjah, P.O. Box 2666, Sharjah 26666,United Arab Emirates
| | - Khaled Elsaid
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874, Doha23874,Qatar
| | - Abdul Ghani Olabi
- Department
of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah27272,United Arab Emirates
| |
Collapse
|
31
|
Stracensky T, Jiao L, Sun Q, Liu E, Yang F, Zhong S, Cullen DA, Myers DJ, Kropf AJ, Jia Q, Mukerjee S, Xu H. Bypassing Formation of Oxide Intermediate via Chemical Vapor Deposition for the Synthesis of an Mn-N-C Catalyst with Improved ORR Activity. ACS Catal 2023; 13:14782-14791. [PMID: 38026812 PMCID: PMC10660335 DOI: 10.1021/acscatal.3c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
A significant barrier to the commercialization of proton exchange membrane fuel cells (PEMFCs) is the high cost of the platinum-based oxygen reduction reaction (ORR) cathode electrocatalysts. One viable solution is to replace platinum with a platinum-group metal (PGM) free catalyst with comparable activity and durability. However, PGM-free catalyst development is burdened by a lack of understanding of the active site formation mechanism during the requisite high-temperature synthesis step, thus making rational catalyst design challenging. Herein we demonstrate in-temperature X-ray absorption spectroscopy (XAS) to unravel the mechanism of site evolution during pyrolysis for a manganese-based catalyst. We show the transformation from an initial state of manganese oxides (MnOx) at room temperature, to the emergence of manganese-nitrogen (MnN4) site beginning at 750 °C, with its continued evolution up to the maximum temperature of 1000 °C. The competition between the MnOx and MnN4 is identified as the primary factor governing the formation of MnN4 sites during pyrolysis. This knowledge led us to use a chemical vapor deposition (CVD) method to produce MnN4 sites to bypass the evolution route involving the MnOx intermediates. The Mn-N-C catalyst synthesized via CVD shows improved ORR activity over the Mn-N-C synthesized via traditional synthesis by the pyrolysis of a mixture of Mn, N, and C precursors.
Collapse
Affiliation(s)
- Thomas Stracensky
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Li Jiao
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Qiang Sun
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Ershuai Liu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Fan Yang
- Giner,
Inc, Newton, Massachusetts 02466, United States
| | - Sichen Zhong
- Giner,
Inc, Newton, Massachusetts 02466, United States
| | - David A. Cullen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Deborah J. Myers
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - A. Jeremy Kropf
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Qingying Jia
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Sanjeev Mukerjee
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hui Xu
- Giner,
Inc, Newton, Massachusetts 02466, United States
| |
Collapse
|
32
|
Rajapaksha R, Samanta P, Quadrelli EA, Canivet J. Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal-organic frameworks. Chem Soc Rev 2023; 52:8059-8076. [PMID: 37902965 DOI: 10.1039/d3cs00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The last decade has seen a tremendous expansion of the field of heterogenized molecular catalysis, especially with the growing interest in metal-organic frameworks and related porous hybrid solids. With successful achievements in the transfer from molecular homogeneous catalysis to heterogenized processes come the necessary discussions on methodologies used and a critical assessment on the advantages of heterogenizing molecular catalysis. Here we use the example of nickel-catalyzed ethylene oligomerization, a reaction of both fundamental and applied interest, to review heterogenization methodologies of well-defined molecular catalysts within porous solids while addressing the biases in the comparison between original molecular systems and heterogenized counterparts.
Collapse
Affiliation(s)
- Rémy Rajapaksha
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Partha Samanta
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Elsje Alessandra Quadrelli
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
33
|
Zhang Y, Chen X, Gan S, Hu Y, Tian Y, Wang S, Chen L, Xiao J, Wang N. Construction of highly active FeN 4@Fe x(OH) y cluster composite sites for the oxygen reduction reaction and the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:29173-29181. [PMID: 37870382 DOI: 10.1039/d3cp02758a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Seeking cost-effective and earth-abundant electrocatalysts with excellent activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in zinc-air batteries (ZABs) is critically important. In this work, the ORR and OER performance of the Fex cluster supported on FeN4 composite sites (FeN4@Fex) is investigated based on density functional theory. Based on the charge density difference between the Fex cluster and the FeN4 substrate, the conclusion that the decreased charge density of the chemical bond between the metal and the adsorbate can weaken the adsorption of the adsorbate can be drawn. The results of the d-band center also confirm this. Furthermore, the ORR and OER free energy change profiles show that FeN4@Fe8 exhibits the best ORR and OER activity. This is because the electronic environment regulated by the Fex cluster can improve the adsorption of intermediates, which is conducive to enhancing catalytic activity. Further considering the solution environment, the activity of FeN4@Fex with preadsorbed OH (FeN4@Fex(OH)y) was studied. It is found that FeN4@Fe8(OH)6 is still the best catalyst. This work introduces new highly active composite sites for catalyzing the ORR in an acid medium.
Collapse
Affiliation(s)
- Yulin Zhang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Xihao Chen
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Siyu Gan
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, Sichuan, China.
| | - Yu Hu
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong, Sichuan 643000, China
| | - Yi Tian
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Shiyu Wang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Long Chen
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Junping Xiao
- College of Physics and Electronic Information, Baicheng Normal University, Baicheng, Jilin 137000, China.
| | - Ning Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, Sichuan, China.
| |
Collapse
|
34
|
Wu M, Yang X, Cui X, Chen N, Du L, Cherif M, Chiang FK, Wen Y, Hassanpour A, Vidal F, Omanovic S, Yang Y, Sun S, Zhang G. Engineering Fe-N 4 Electronic Structure with Adjacent Co-N 2C 2 and Co Nanoclusters on Carbon Nanotubes for Efficient Oxygen Electrocatalysis. NANO-MICRO LETTERS 2023; 15:232. [PMID: 37861885 PMCID: PMC10589168 DOI: 10.1007/s40820-023-01195-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023]
Abstract
Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N4 electronic structure with adjacent Co-N2C2 and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N4 active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M-N-C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M-N-C catalysts.
Collapse
Affiliation(s)
- Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Xiaohua Yang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada
| | - Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Ning Chen
- Canadian Light Source (CLS), 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - Mohamed Cherif
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - Fu-Kuo Chiang
- National Institute of Low-Carbon-and-Clean-Energy, Beijing, 102211, People's Republic of China
| | - Yuren Wen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Amir Hassanpour
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - François Vidal
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Gaixia Zhang
- Department of Electrical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC, H3C 1K3, Canada.
| |
Collapse
|
35
|
An Z, Yang P, Duan D, Li J, Wan T, Kong Y, Caratzoulas S, Xiang S, Liu J, Huang L, Frenkel AI, Jiang YY, Long R, Li Z, Vlachos DG. Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation. Nat Commun 2023; 14:6666. [PMID: 37863924 PMCID: PMC10589291 DOI: 10.1038/s41467-023-42337-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
Highly effective and selective noble metal-free catalysts attract significant attention. Here, a single-atom iron catalyst is fabricated by saturated adsorption of trace iron onto zeolitic imidazolate framework-8 (ZIF-8) followed by pyrolysis. Its performance toward catalytic transfer hydrogenation of furfural is comparable to state-of-the-art catalysts and up to four orders higher than other Fe catalysts. Isotopic labeling experiments demonstrate an intermolecular hydride transfer mechanism. First principles simulations, spectroscopic calculations and experiments, and kinetic correlations reveal that the synthesis creates pyrrolic Fe(II)-plN3 as the active center whose flexibility manifested by being pulled out of the plane, enabled by defects, is crucial for collocating the reagents and allowing the chemistry to proceed. The catalyst catalyzes chemoselectively several substrates and possesses a unique trait whereby the chemistry is hindered for more acidic substrates than the hydrogen donors. This work paves the way toward noble-metal free single-atom catalysts for important chemical reactions.
Collapse
Affiliation(s)
- Zhidong An
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Delong Duan
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiang Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Tong Wan
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Yue Kong
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Stavros Caratzoulas
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Shuting Xiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jiaxing Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Lei Huang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Ran Long
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Zhenxing Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA.
| |
Collapse
|
36
|
Xue W, Zhou Q, Cui X, Zhang J, Zuo S, Mo F, Jiang J, Zhu X, Lin Z. Atomically Dispersed FeN 2 P 2 Motif with High Activity and Stability for Oxygen Reduction Reaction Over the Entire pH Range. Angew Chem Int Ed Engl 2023; 62:e202307504. [PMID: 37345265 DOI: 10.1002/anie.202307504] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The past decade has witnessed the great potential of Fe-based single-atom electrocatalysis in catalyzing oxygen reduction reaction (ORR). However, it remains a grand challenge to substantially improve their intrinsic activity and long-term stability in acidic electrolytes. Herein, we report a facile chemical vapor deposition strategy, by which high-density Fe atoms (3.97 wt%) are coordinated with square-planar para-positioned nitrogen and phosphorus atoms in a hierarchical carbon framework. The as-crafted atomically dispersed Fe catalyst (denoted Fe-SA/PNC) manifests an outstanding activity towards ORR over the entire pH range. Specifically, the half-wave potential of 0.92 V, 0.83 V, and 0.86 V vs. reversible hydrogen electrode (RHE) are attained in alkaline, neutral, and acidic electrolytes, respectively, representing the high performance among reported catalysts to date. Furthermore, after 30,000 durability cycles, the Fe-SA/PNC remains to be stable with no visible performance decay when tested in 0.1 M KOH and 0.5 M H2 SO4 , and only a minor negative shift of 40 mV detected in 0.1 M HClO4 , significantly outperforming commercial Pt/C counterpart. The coordination motif of Fe-SA/PNC is validated by density functional theory (DFT) calculations. This work provides atomic-level insight into improving the activity and stability of non-noble metal ORR catalysts, opening up an avenue to craft the desired single-atom electrocatalysts.
Collapse
Affiliation(s)
- Wendan Xue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Xun Cui
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiawei Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sijin Zuo
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Xuya Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
37
|
Zhang Q, Chen Y, Pan J, Daiyan R, Lovell EC, Yun J, Amal R, Lu X. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302338. [PMID: 37267930 DOI: 10.1002/smll.202302338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.
Collapse
Affiliation(s)
- Qingran Zhang
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jian Pan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jimmy Yun
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
- Qingdao International Academician Park Research Institute, Qingdao, Shandong, 266000, China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
38
|
Martini A, Hursán D, Timoshenko J, Rüscher M, Haase F, Rettenmaier C, Ortega E, Etxebarria A, Roldan Cuenya B. Tracking the Evolution of Single-Atom Catalysts for the CO 2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning. J Am Chem Soc 2023; 145:17351-17366. [PMID: 37524049 PMCID: PMC10416299 DOI: 10.1021/jacs.3c04826] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/02/2023]
Abstract
Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.
Collapse
Affiliation(s)
- Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | | | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Felix Haase
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Ane Etxebarria
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
39
|
Parida SK, Barik T, Chalke BA, Amirthapandian S, Jena H. Highly Porous Polypyrrole (PPy) Hydrogel Support for the Design of a Co-N-C Electrocatalyst for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37571-37579. [PMID: 37498826 DOI: 10.1021/acsami.3c08022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have emerged as one of the most promising platinum-group metal (PGM)-free cathode catalysts for oxygen reduction reaction (ORR). Among the various approaches to enhance the ORR performance of the catalysts, increasing the density of accessible active sites is of paramount importance. Thus, nitrogen-rich support with abundant porosity can be very propitious. Herein, we report a highly porous polypyrrole (PPy) hydrogel as a versatile support for the facile design of a Co-N-C electrocatalyst for ORR. The resulting Co-N-C catalyst with abundant micro- and mesoporous combinations demonstrates a half-wave potential (E1/2) of 0.825 V vs reversible hydrogen electrode (RHE) in O2-saturated 0.1M KOH with just 2.1 wt % Co content. The ORR performance reduces only 11 mV (E1/2) after 5000 cycles of accelerated durability test (ADT), portraying its excellent stability. The catalyst retains ≈83% of its original current during a short-term durability test at 0.8 V vs RHE for 25 h. Furthermore, the catalyst shows electron transfer approaching ≈4 with low H2O2 yield in the potential range 0.5-0.9 V vs RHE. This work provides a simple design strategy to synthesize M-N-C catalysts with increased accessible active site density and enhanced mass transport for ORR and other electrocatalytic applications.
Collapse
Affiliation(s)
- Sanjit Kumar Parida
- Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, IGCAR, A CI of Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Tulasi Barik
- Department of Chemistry, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh 517325, India
| | - Bhagyashree A Chalke
- Department of Condensed Matter Physics and Materials Science, TIFR, Mumbai 400005, India
| | | | - Hrudananda Jena
- Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, IGCAR, A CI of Homi Bhabha National Institute, Kalpakkam 603102, India
| |
Collapse
|
40
|
Kumar K, Dubau L, Jaouen F, Maillard F. Review on the Degradation Mechanisms of Metal-N-C Catalysts for the Oxygen Reduction Reaction in Acid Electrolyte: Current Understanding and Mitigation Approaches. Chem Rev 2023; 123:9265-9326. [PMID: 37432676 DOI: 10.1021/acs.chemrev.2c00685] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
One bottleneck hampering the widespread use of fuel cell vehicles, in particular of proton exchange membrane fuel cells (PEMFCs), is the high cost of the cathode where the oxygen reduction reaction (ORR) occurs, due to the current need of precious metals to catalyze this reaction. Electrochemists tackle this issue in the short/medium term by developing catalysts with improved utilization or efficiency of platinum, and in the longer term, by developing catalysts based on Earth-abundant elements. Considerable progress has been achieved in the initial performance of Metal-nitrogen-carbon (Metal-N-C) catalysts for the ORR, especially with Fe-N-C materials. However, until now, this high performance cannot be maintained for a sufficiently long time in an operating PEMFC. The identification and mitigation of the degradation mechanisms of Metal-N-C electrocatalysts in the acidic environment of PEMFCs has therefore become an important research topic. Here, we review recent advances in the understanding of the degradation mechanisms of Metal-N-C electrocatalysts, including the recently identified importance of combined oxygen and electrochemical potential. Results obtained in a liquid electrolyte and a PEMFC device are discussed, as well as insights gained from in situ and operando techniques. We also review the mitigation approaches that the scientific community has hitherto investigated to overcome the durability issues of Metal-N-C electrocatalysts.
Collapse
Affiliation(s)
- Kavita Kumar
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, F-38000 Grenoble, France
| |
Collapse
|
41
|
Dimov N, Staykov A, Kusdhany MIM, Lyth SM. Tailoring the work function of graphene via defects, nitrogen-doping and hydrogenation: A first principles study. NANOTECHNOLOGY 2023; 34:415001. [PMID: 37490587 DOI: 10.1088/1361-6528/ac7ecf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 07/27/2023]
Abstract
The effect of defects, nitrogen doping, and hydrogen saturation on the work function of graphene is investigated via first principle calculations. Whilst Stone-Wales defects have little effect, single and double vacancy defects increase the work function by decreasing charge density in theπ-electron system. Substitutional nitrogen doping in defect-free graphene significantly decreases the work function, because the nitrogen atoms donate electrons to theπ-electron system. In the presence of defects, these competing effects mean that higher nitrogen content is required to achieve similar reduction in work function as for crystalline graphene. Doping with pyridinic nitrogen atoms at vacancies slightly increases the work function, since pyridinic nitrogen does not contribute electrons to theπ-electron system. Meanwhile, hydrogen saturation of the pyridinic nitrogen atoms significantly reduces the work function, due to a shift from pyridinic to graphitic-type behavior. These findings clearly explain some of the experimental work functions obtained for carbon and nitrogen-doped carbon materials in the literature, and has implications in applications such as photocatalysis, photovoltaics, electrochemistry, and electron field emission.
Collapse
Affiliation(s)
- Nikolay Dimov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Aleksandar Staykov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | | | - Stephen M Lyth
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Department of Automotive Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Next-Generation Fuel Cell Research Center, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XL, United Kingdom
- Department of Mechanical and Mining Engineering, University of Queensland, St Lucia QLD 4072, Australia
- Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
42
|
Luo F, Roy A, Sougrati MT, Khan A, Cullen DA, Wang X, Primbs M, Zitolo A, Jaouen F, Strasser P. Structural and Reactivity Effects of Secondary Metal Doping into Iron-Nitrogen-Carbon Catalysts for Oxygen Electroreduction. J Am Chem Soc 2023. [PMID: 37379566 DOI: 10.1021/jacs.3c03033] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
While improved activity was recently reported for bimetallic iron-metal-nitrogen-carbon (FeMNC) catalysts for the oxygen reduction reaction (ORR) in acid medium, the nature of active sites and interactions between the two metals are poorly understood. Here, FeSnNC and FeCoNC catalysts were structurally and catalytically compared to their parent FeNC and SnNC catalysts. While CO cryo-chemisorption revealed a twice lower site density of M-Nx sites for FeSnNC and FeCoNC relative to FeNC and SnNC, the mass activity of both bimetallic catalysts is 50-100% higher than that of FeNC due to a larger turnover frequency in the bimetallic catalysts. Electron microscopy and X-ray absorption spectroscopy identified the coexistence of Fe-Nx and Sn-Nx or Co-Nx sites, while no evidence was found for binuclear Fe-M-Nx sites. 57Fe Mössbauer spectroscopy revealed that the bimetallic catalysts feature a higher D1/D2 ratio of the spectral signatures assigned to two distinct Fe-Nx sites, relative to the FeNC parent catalyst. Thus, the addition of the secondary metal favored the formation of D1 sites, associated with the higher turnover frequency.
Collapse
Affiliation(s)
- Fang Luo
- Department of Chemistry, The Electrochemical Catalysis, Catalysis and Materials Science Laboratory, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Aaron Roy
- CNRS, ENSCM, ICGM, Univ. Montpellier, 34293 Montpellier, France
| | | | - Anastassiya Khan
- L'Orme des Merisiers, Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xingli Wang
- Department of Chemistry, The Electrochemical Catalysis, Catalysis and Materials Science Laboratory, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Mathias Primbs
- Department of Chemistry, The Electrochemical Catalysis, Catalysis and Materials Science Laboratory, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Andrea Zitolo
- L'Orme des Merisiers, Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France
| | - Frédéric Jaouen
- CNRS, ENSCM, ICGM, Univ. Montpellier, 34293 Montpellier, France
| | - Peter Strasser
- Department of Chemistry, The Electrochemical Catalysis, Catalysis and Materials Science Laboratory, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
43
|
Gong M, Mehmood A, Ali B, Nam KW, Kucernak A. Oxygen Reduction Reaction Activity in Non-Precious Single-Atom (M-N/C) Catalysts-Contribution of Metal and Carbon/Nitrogen Framework-Based Sites. ACS Catal 2023; 13:6661-6674. [PMID: 37229434 PMCID: PMC10204730 DOI: 10.1021/acscatal.3c00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/13/2023] [Indexed: 05/27/2023]
Abstract
We examine the performance of a number of single-atom M-N/C electrocatalysts with a common structure in order to deconvolute the activity of the framework N/C support from the metal M-N4 sites in M-N/Cs. The formation of the N/C framework with coordinating nitrogen sites is performed using zinc as a templating agent. After the formation of the electrically conducting carbon-nitrogen metal-coordinating network, we (trans)metalate with different metals producing a range of different catalysts (Fe-N/C, Co-N/C, Ni-N/C, Sn-N/C, Sb-N/C, and Bi-N/C) without the formation of any metal particles. In these materials, the structure of the carbon/nitrogen framework remains unchanged-only the coordinated metal is substituted. We assess the performance of the subsequent catalysts in acid, near-neutral, and alkaline environments toward the oxygen reduction reaction (ORR) and ascribe and quantify the performance to a combination of metal site activity and activity of the carbon/nitrogen framework. The ORR activity of the carbon/nitrogen framework is about 1000-fold higher in alkaline than it is in acid, suggesting a change in mechanism. At 0.80 VRHE, only Fe and Co contribute ORR activity significantly beyond that provided by the carbon/nitrogen framework at all pH values studied. In acid and near-neutral pH values (pH 0.3 and 5.2, respectively), Fe shows a 30-fold improvement and Co shows a 5-fold improvement, whereas in alkaline pH (pH 13), both Fe and Co show a 7-fold improvement beyond the baseline framework activity. The site density of the single metal atom sites is estimated using the nitrite adsorption and stripping method. This method allows us to deconvolute the framework sites and metal-based active sites. The framework site density of catalysts is estimated as 7.8 × 1018 sites g-1. The metal M-N4 site densities in Fe-N/C and Co-N/C are 9.4 × 1018 sites-1 and 4.8 × 1018 sites g-1, respectively.
Collapse
Affiliation(s)
- Mengjun Gong
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Asad Mehmood
- Division
3.6—Electrochemical Energy Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), 12203 Berlin, Germany
| | - Basit Ali
- Department
of Energy and Materials Engineering, Dongguk
University, Seoul 04620, Republic
of Korea
| | - Kyung-Wan Nam
- Department
of Energy and Materials Engineering, Dongguk
University, Seoul 04620, Republic
of Korea
| | - Anthony Kucernak
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| |
Collapse
|
44
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
45
|
Wan K, Chu T, Li B, Ming P, Zhang C. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203391. [PMID: 36717282 PMCID: PMC10104677 DOI: 10.1002/advs.202203391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Future renewable energy supply and a cleaner Earth greatly depend on various crucial catalytic reactions for the society. Atomically dispersed metal site electrocatalysts (ADMSEs) have attracted tremendous research interest and are considered as the next-generation promising oxygen reduction reaction (ORR) electrocatalysts due to the maximum atom utilization efficiency, tailorable catalytic sites, and tunable electronic structures. Despite great efforts have been devoted to the development of ADMSEs, the systematic summary for design principles of high-efficiency ADMSEs is not sufficiently highlighted for ORR. In this review, the authors first summarize the fundamental ORR mechanisms for ADMSEs, and further discuss the intrinsic catalytic mechanism from the perspective of theoretical calculation. Then, the advanced characterization techniques to identify the active sites and effective synthesis methods to prepare catalysts for ADMSEs are also showcased. Subsequently, a special emphasis is placed on effective strategies for the rational design of the advanced ADMSEs. Finally, the present challenges to be addressed in practical application and future research directions are also proposed to overcome the relevant obstacles for developing high-efficiency ORR electrocatalysts. This review aims to provide a deeper understanding for catalytic mechanisms and valuable design principles to obtain the advanced ADMSEs for sustainable energy conversion and storage techniques.
Collapse
Affiliation(s)
- Kechuang Wan
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Tiankuo Chu
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Bing Li
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| |
Collapse
|
46
|
Dai Y, Liu B, Zhang Z, Guo P, Liu C, Zhang Y, Zhao L, Wang Z. Tailoring the d-Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210757. [PMID: 36773335 DOI: 10.1002/adma.202210757] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Regulating the electronic states of single atomic sites around the Fermi level remains a major concern for boosting the electrocatalytic oxygen reduction reaction (ORR). Herein, a Fe d-orbital splitting manner modulation strategy by constructing axial coordination on FeN4 sites is presented. Experimental investigations and theoretical calculations reveal that the axial tractions induce the distortion of square-planar field (FeN4 SP), up to the quasi-octahedral coordination (FeN4 O1 OCquasi ), thus leading to the electron rearrangement with a diluted spin polarization. The declined population of unpaired electrons in dz 2 , dx z and dyz states engenders a moderate adsorption of ORR intermediates, thereby reinforcing the intrinsic reaction activity. In situ infrared spectroscopy further demonstrates that the reordering of d-orbital splitting and occupation facilitates the desorption of *OH. The FeN4 O1 OCquasi exhibits a dramatic improvement of kinetic current density and turnover frequency, which are fivefold and tenfold higher than those of FeN4 SP. This work presents a novel understanding on improving the electrocatalytic performance through the orbital-scale manipulation.
Collapse
Affiliation(s)
- Yunkun Dai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Bo Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ziyu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Pan Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chang Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, P. R. China
| | - Yunlong Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhenbo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, P. R. China
| |
Collapse
|
47
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
48
|
Carbon-Conjugated Co Complexes as Model Electrocatalysts for Oxygen Reduction Reaction. Catalysts 2023. [DOI: 10.3390/catal13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Single-atom catalysts are a family of heterogeneous electrocatalysts widely used in energy storage and conversion. The determination of the local structure of the active metal sites is challenging, which limits the establishment of the reliable structure-property relationship of single-atom catalysts. A carbon black-conjugated complex can be used as the model catalyst to probe the intrinsic activity of metal sites with certain local structures. In this work, we prepared carbon black-conjugated [Co(phenanthroline)Cl2], [Co(o-phenylenediamine)Cl2] and [Co(salophen)]. In these catalysts, the Co complexes with well-defined structures are anchored on the edge of carbon black by pyrazine moieties. The number of electrochemical accessible Co sites can be measured from the area of the redox peaks of pyrazine linkers in the cyclic voltammetry curve. Then, the intrinsic electrocatalytic activity of one Co site can be obtained. The catalytic performances of the three catalysts towards oxygen reduction reaction in alkaline conditions were measured. Carbon black-conjugated [Co(salophen)] showed the highest intrinsic activity with the turnover frequency of 0.72 s−1 at 0.75 V vs. the reversible hydrogen electrode. The strategy developed in this work can be used to explore and verify the possible local structure of active sites proposed for single-atom catalysts.
Collapse
|
49
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
50
|
Kreider ME, Burke Stevens M. Material Changes in Electrocatalysis: An In Situ/Operando Focus on the Dynamics of Cobalt‐Based Oxygen Reduction and Evolution Catalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering Stanford University 443 Via Ortega, Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| |
Collapse
|