1
|
Pinto JR, Deepika Bhat K, Bose B, Sudheer Shenoy P. Irisin: muscle's novel player in endoplasmic reticulum stress and disease. Mol Cell Biochem 2025; 480:3605-3619. [PMID: 39984795 DOI: 10.1007/s11010-025-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/02/2025] [Indexed: 02/23/2025]
Abstract
Irisin, an exercise-induced myokine, exhibits elevated levels during physical activity, yet its role in modulating the unfolded protein response (UPR) remains poorly understood. This comprehensive review pioneers an in-depth examination of irisin-mediated endoplasmic reticulum (ER) stress mitigation across various diseases. We provide a nuanced characterization of irisin's molecular profile, biological activity, and significance as a skeletal muscle-derived cytokine analogue. Our discussion elucidates the complex interplay between exercise, irisin signalling, and metabolic outcomes, highlighting key molecular interactions driving salutary effects. Moreover, we delineate the UPR's role as a critical ER stress countermeasure and underscore irisin's pivotal function in alleviating this stress, revealing potential therapeutic avenues for disease management. Exercise-induced release of irisin ameliorates ER stress through AMPK phosphorylation during various diseases (Icon image source: www.flaticon.com ).
Collapse
Affiliation(s)
- Joel Rimson Pinto
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - K Deepika Bhat
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Chen Y, Qian M, Gao F, Li G, Peng K, Sun Q, Sun Y, Liu G, Ge Y, Yang M, Wu X. Potential effect of Irisin on sarcopenia: a systematic review. BMC Musculoskelet Disord 2025; 26:520. [PMID: 40420047 DOI: 10.1186/s12891-025-08767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
OBJECTIVE Sarcopenia, a progressive musculoskeletal disorder associated with aging, is characterized by the deterioration of muscle mass, strength, and physical performance. This condition significantly increases the risk of debilitating consequences including functional impairment, diminished life quality, and increased mortality. With the progress of aging, it will affect a large number of people in the world and bring many problems. Despite its clinical significance, there are no medicine used to treatment sarcopenia by FDA approval in clinical. This systematic review synthesizes current evidence on the diagnostic and therapeutic potential of irisin-a myokine induced by exercise-in sarcopenia, aiming to address two key questions: (1) Can irisin serve as a reliable biomarker for sarcopenia diagnosis? (2) Does irisin hold promise as a therapeutic agent for sarcopenia management? METHODS A comprehensive literature search was conducted across multiple databases (Web of Science, PubMed, Cochrane Library, and Embase) to examine the relationship between irisin and sarcopenia. Eligible studies meeting our inclusion criteria underwent rigorous quality assessment. RESULT 364 studies were identified, of which only 21 met the inclusion criteria-12 involving human studies and 9 involving animal and cell experiments. In human studies, irisin may serve as a potential diagnostic marker for sarcopenia in the elderly and postmenopausal women. In addition, as a myokine of exercise induced, increased circulating levels of irisin may enhanced skeletal muscle mass. Moreover, animal and cellular experiments suggest that increased levels of irisin help improve muscle mass. CONCLUSION In conclusion, this review indicates that irisin has potential therapeutic effects for sarcopenia and may become a promising treatment for sarcopenia in the future. However, there is currently a lack of high-quality studies on the use of irisin in treating sarcopenia, and the relevant mechanisms of action are not yet clear. Therefore, more studies are needed to clarify the relationship between irisin and sarcopenia in the future.
Collapse
Affiliation(s)
- Yixiao Chen
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Min Qian
- International Medical Service Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Feng Gao
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Guoqing Li
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Kangzu Peng
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Qingnan Sun
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Yifei Sun
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Gang Liu
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Center for Orthopaedics, Beijing, China
| | - Yufeng Ge
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- National Center for Orthopaedics, Beijing, China.
| | - Minghui Yang
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- National Center for Orthopaedics, Beijing, China.
| | - Xinbao Wu
- Department of Traumatic Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- National Center for Orthopaedics, Beijing, China.
| |
Collapse
|
3
|
Kang JS, Kim JH, Kim MJ, Min B, Lee SM, Go GY, Kim JW, Kim S, Kwak JY, Chun SW, Song W, Moon HY, Chung SG, Park DH, Park JH, Kim C, Lee KP, Kwon ES, Kim N, Kwon KS, Yang YR. Exercise-induced CLCF1 attenuates age-related muscle and bone decline in mice. Nat Commun 2025; 16:4743. [PMID: 40399268 PMCID: PMC12095553 DOI: 10.1038/s41467-025-59959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 05/09/2025] [Indexed: 05/23/2025] Open
Abstract
Skeletal muscle undergoes many alterations with aging. However, the impact of aging on muscle's ability to secrete myokines and its subsequent effects on the body remain largely unexplored. Here, we identify myokines that have the potential to ameliorate age-related muscle and bone decline. Notably, circulating levels of cardiotrophin-like cytokine factor 1 (CLCF1) decrease with age, while exercise significantly upregulates CLCF1 levels in both humans and rodents. Restoring CLCF1 levels in aged male mice improves their physical performance, glucose tolerance, and mitochondrial activity. Furthermore, CLCF1 protects against age-induced bone loss by inhibiting osteoclastogenesis and promoting osteoblast differentiation in aged male mice. These improvements mirror some of the effects of exercise training. Conversely, blocking CLCF1 activity significantly abolishes these beneficial effects, confirming the crucial role of CLCF1 in mediating the positive effects of exercise on muscle and bone health in male mice. These findings collectively suggest that CLCF1 may contribute to the regulation of age-associated musculoskeletal deterioration, and warrant further investigation into its potential role as a modulator of musculoskeletal health during aging.
Collapse
Affiliation(s)
- Jae Sook Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Min Ju Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Byungkuk Min
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seung-Min Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ga-Yeon Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ji-Won Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seongwan Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ju Yeon Kwak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung-Wook Chun
- Research Institute of Physical Education & Sports Science, Pusan National University, Pusan, Republic of Korea
| | - Wook Song
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Sun Gun Chung
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Ji Hoon Park
- New Drug Development Center, Osong Medical Innovation Foundation (KBioHealth), ChungJu, Republic of Korea
| | - Chuna Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Aventi Inc., Daejeon, Republic of Korea.
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Minuti A, Raffaele I, Scuruchi M, Lui M, Muscarà C, Calabrò M. Role and Functions of Irisin: A Perspective on Recent Developments and Neurodegenerative Diseases. Antioxidants (Basel) 2025; 14:554. [PMID: 40427436 PMCID: PMC12108254 DOI: 10.3390/antiox14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Irisin is a peptide derived from fibronectin type III domain-containing protein 5 (FNDC5) and is primarily produced by muscle fibers under the regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) during exercise. Irisin has been the subject of extensive research due to its potential as a metabolic regulator and its antioxidant properties. Notably, it has been associated with protective actions within the brain. Despite growing interest, many questions remain regarding the molecular mechanisms underlying its effects. This review summarizes recent findings on irisin, highlighting its pleiotropic functions and the biological processes and molecular cascades involved in its action, with a particular focus on the central nervous system. Irisin plays a crucial role in neuron survival, differentiation, growth, and development, while also promoting mitochondrial homeostasis, regulating apoptosis, and facilitating autophagy-processes essential for normal neuronal function. Emerging evidence suggests that irisin may improve conditions associated with non-communicable neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and multiple sclerosis. Given its diverse benefits, irisin holds promise as a novel therapeutic agent for preventing and treating neurological diseases.
Collapse
Affiliation(s)
- Aurelio Minuti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Ivana Raffaele
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Maria Lui
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Claudia Muscarà
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Marco Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| |
Collapse
|
5
|
Zhang K, Du Y, Yang S, Sun G. Irisin suppressed the progression of TBI via modulating AMPK/MerTK/autophagy and SYK/ROS/inflammatory signaling. Sci Rep 2025; 15:15583. [PMID: 40320408 PMCID: PMC12050266 DOI: 10.1038/s41598-025-00066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Irisin is a hormone-like peptide secreted by muscle tissues and generated by hydrolysis of type III fibronectin domain-containing protein 5 by proteolytic hydrolases. Whether Irisin has a potential protective role in traumatic brain injury (TBI). In this study, we will investigate the relevant research progress of Irisin's protective role in traumatic brain injury (TBI) in recent years in terms of attenuating oxidative stress, inhibiting pyroptosis, suppressing inflammatory response, and improving autophagy, with the aim of providing valuable references for the diagnosis and treatment of traumatic brain injury (TBI). Utilize bioinformatics analysis to study the interactions between genes in TBI (Traumatic Brain Injury). Construct a TBI mouse model to observe the effects of Irisin on TBI. The Morris water maze test is used to assess the learning and spatial memory abilities of mice, TUNEL fluorescence is used to detect cell apoptosis, Nissl staining is employed to observe the survival of hippocampal neurons in mice, and HE staining is used to observe the extent of brain injury in mice. Western blot is used to detect protein expression in both in vivo and in vitro experiments. Q-PCR is employed to detect the levels of proteins related to autophagy/pyroptosis/inflammation. Irisin promotes MerTK overexpression by enhancing AMPK activation. Irisin can increase the expression of LC3I and Beclin-1 proteins, indicating the promotion of autophagic response. Additionally, Irisin reduces ROS levels and decreases SYK expression, thereby inhibiting the inflammatory response. Irisin improves the learning and spatial memory abilities of TBI mice and reduces cell apoptosis, as well as decreases hippocampal neuron death. HE staining shows that the brain injury in mice treated with Irisin is significantly alleviated. Irisin can enhance the expression of phosphorylated AMPK and phosphorylated MerTK proteins, promote autophagic response, and inhibit pyroptosis/inflammatory response. Correction experiments confirmed that after stimulation with an AMPK agonist, the expression of phosphorylated MerTK protein is significantly increased, autophagic response is enhanced, and pyroptosis/inflammatory response is weakened. When treated with a MerTK inhibitor during AMPK agonist stimulation, the autophagic response is weakened while pyroptosis/inflammatory response is enhanced. Irisin can inhibit the progression of traumatic brain injury by regulating AMPK/MerTK/autophagy and SYK/ROS/inflammatory signaling.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, 050000, Hebei Province, China
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang City, 050000, Hebei Province, China
| | - Yihui Du
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang City, 050000, Hebei Province, China
| | - Sihui Yang
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang City, 050000, Hebei Province, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, 050000, Hebei Province, China.
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China.
| |
Collapse
|
6
|
Shirai T, Uemichi K, Iwai R, Shinkai H, Iwata T, Tanimura R, Sugiyama S, Takemasa T. Systemic effect of combined functional overload and endurance-type swimming exercise on whole body metabolism in mice. Am J Physiol Endocrinol Metab 2025; 328:E695-E710. [PMID: 40248969 DOI: 10.1152/ajpendo.00433.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
In this study, we examined the effects of concurrent functional overload and endurance exercise on muscle hypertrophy, mitochondrial function, and systemic adaptations in male mice. The mice were assigned to three groups: Sham (Sham), overload-induced hypertrophy (OL), and overload with concurrent 60-min free swimming (5 times/wk) (OL + Swim), for 4 wk. Although OL promoted muscle hypertrophy and protein synthesis through the Akt/mammalian/mechanistic target of rapamycin (mTOR) signaling pathway, the addition of swimming (OL + Swim) attenuated these effects, resulting in less pronounced muscle growth and a smaller increase in myofiber cross-sectional area. Notably, the OL + Swim group exhibited enhanced mitochondrial activity and glycogen content compared with the OL group. Both the OL and OL + Swim groups showed elevated rates of protein synthesis, with a significant upregulation of AMP-activated kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in the OL + Swim group, suggesting enhanced mitochondrial biogenesis and adaptation. Concurrent training also resulted in systemic benefits, including reduced inguinal and epididymal white adipocyte size, improved mitochondrial enzyme activities in adipose and liver tissues, and higher levels of fibronectin type III domain containing protein 5 (FNDC5), fibroblast growth factor 21 (FGF21), and brain-derived neurotrophic factor (BDNF) in serum, which contributed to enhanced muscle protein synthesis in cultured muscle cells. These results highlight the trade-offs between muscle hypertrophy and metabolic health in mice and underscore the importance of balanced training regimens to optimize overall metabolic health and muscle function. Our results provide further insight into how concurrent strength and endurance training can be optimized for health and performance benefits.NEW & NOTEWORTHY This study provides novel insights into the mechanisms underlying the interference effect that occurs in concurrent training, highlighting the potential systemic benefits of combining resistance and endurance exercises. Despite a reduction in muscle hypertrophy, concurrent training enhances metabolic adaptations and systemic health markers and offers a comprehensive approach to improving both muscle and metabolic fitness.
Collapse
Affiliation(s)
- Takanaga Shirai
- Department of Human Sciences, Kanagawa University, Kanagawa, Japan
- Research Fellow of Japan Society for Promotion Science, Tokyo, Japan
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kazuki Uemichi
- Research Fellow of Japan Society for Promotion Science, Tokyo, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ryoto Iwai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hayato Shinkai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomohiro Iwata
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Riku Tanimura
- Research Fellow of Japan Society for Promotion Science, Tokyo, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shunsuke Sugiyama
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tohru Takemasa
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Cosio PL, Moreno-Simonet L, Fernández D, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Rodas G, Cadefau JA. Football (soccer) match-derived hamstring muscles residual fatigue can be monitored using early rate of torque development. Eur J Appl Physiol 2025; 125:1449-1461. [PMID: 39725689 DOI: 10.1007/s00421-024-05694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE The aim of this study was to determine whether a soccer match affects the rapid force-generating capacity of the hamstring muscles, given their key role in both horizontal ground reaction force production during sprint biomechanics, and in the deceleration of the shank during the late swing phase, where rapid force production is essential owing to time constraints. Therefore, the research objective was to determine soccer match-induced hamstrings residual fatigue and recovery through rate of torque development (RTD) and associated biochemical parameters. METHODS The recovery kinetics of hamstrings RTD metrics by the 90°hip:20°knee test, together with serum biomarkers (creatine kinase, mitochondrial creatine kinase, transaminases, malondialdehyde, irisin), were assessed in 19 male, regional first-division soccer players (age = 20.9 ± 2.0 years, mass = 72.6 ± 11.9 kg, height = 175.9 ± 6.9 cm [mean ± SD]), before a soccer match (MD) and post-24 h (MD+1), post-48 h (MD+2) and post-72 h (MD+3), through a repeated measures design. RESULTS Early RTD to 50 ms (p < 0.001, g = -1.24) and 100 ms (p < 0.001, g = -1.06) remained unrecovered on MD+3 in both hamstring muscles. However, maximal voluntary isometric contraction (MVIC) torque of the dominant and non-dominant hamstrings was unrecovered on MD+2 (p = 0.004, g = -0.91; and p = 0.002, g = -0.98, respectively) and recovered on MD+3 (p = 0.057 and p = 0.070, respectively). Further, neuromuscular deficits were coupled with myocyte structural (p = 0.002, g = 1.11) and mitochondrial damage (p = 0.004, g = 0.92) biomarkers. CONCLUSION Based in the findings, early RTD0-50 and RTD0-100 monitoring, through the 90°hip:20°knee IPC test, is a cost-effective method for assessing soccer match-induced hamstring muscles residual fatigue and recovery. Overall, soccer match-induced hamstring residual fatigue is not recovered within a 3-day recovery period. Practitioners can use rapid force production metrics through isometric assessments, providing a simple, non-exhaustive tool, for assessing residual fatigue status during congested competitive periods, to comprehensively balance muscle recovery with optimizing training.
Collapse
Affiliation(s)
- Pedro L Cosio
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Daniel Fernández
- Sports Performance Department, Futbol Club Barcelona, Rink Hockey, 08970, Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Josep M Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat of Barcelona (UB), 08921, Barcelona, Spain
| | - Gil Rodas
- Sports Medicine Unit, Hospital Clinic and Sant Joan de Déu, 08036, Barcelona, Spain
- Medical Department, Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation Hub, 08970, Barcelona, Spain
| | - Joan A Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain.
- Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036, Barcelona, Spain.
| |
Collapse
|
8
|
Jalil Y, Damiani LF, García-Valdés P, Basoalto R, Gallastegui J, Gutierrez-Arias R. Myokine Secretion Dynamics and Their Role in Critically Ill Patients: A Scoping Review. J Clin Med 2025; 14:2892. [PMID: 40363924 PMCID: PMC12072662 DOI: 10.3390/jcm14092892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 05/10/2025] Open
Abstract
Background/Objectives: Myokines can modulate organ function and metabolism, offering a protective profile against ICU complications beyond preventing local muscle wasting. This scoping review aims to explore and summarize the evidence regarding the secretion of myokines and their potential local or systemic effects in critically ill patients. Methods: A scoping review following Joana Briggs Institute recommendations was conducted. A systematic search of MEDLINE (Ovid), Embase (Ovid), CENTRAL, CINAHL (EBSCOhost), WoS, and Scopus was conducted from inception to February 2023. We included primary studies evaluating myokine secretion/concentration in critically ill adults undergoing physical rehabilitation interventions. Two independent reviewers performed study selection and data extraction. Results: Seventeen studies published between 2012 and 2023 were included. Most were randomized clinical trials (47%). Physical rehabilitation interventions included electrical muscle stimulation, as well as passive and active mobilization, delivered alone or combined, in single or daily sessions lasting 20-60 min. Twelve studies (70%) evaluated interleukin-6, while interleukin-10, tumour necrosis factor-α, Interleukin-8, and myostatin were also commonly studied. Thirteen studies (76%) reported changes in myokine secretion or gene expression, although no clear concentration change pattern emerged. Myokines involved in muscle protein synthesis and breakdown may protect against muscle waste and weakness. Conclusions: The study of myokine dynamics in critically ill patients highlights the systemic impact of physical rehabilitation. This emerging field has grown in interest over the past decade, offering significant research potential. However, challenges such as study design, small sample sizes, and variability in physical therapy protocols hinder a comprehensive understanding of myokine responses.
Collapse
Affiliation(s)
- Yorschua Jalil
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile
| | - L. Felipe Damiani
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile
| | - Patricio García-Valdés
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Roque Basoalto
- CardioREspirAtory Research Laboratory, Departamento Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- Department of Intensive Care Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile
| | - Julen Gallastegui
- Escuela de Ciencias de la Salud, Departamento de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 1270709, Chile; (Y.J.); (L.F.D.); (P.G.-V.); (J.G.)
| | - Ruvistay Gutierrez-Arias
- Departamento de Apoyo en Rehabilitación Cardiopulmonar Integral, Instituto Nacional del Tórax, Santiago 8320000, Chile
- INTRehab Research Group, Instituto Nacional del Tórax, Santiago 8320000, Chile
- Faculty of Rehabilitation Sciences, Exercise and Rehabilitation Sciences Institute, Universidad Andres Bello, Santiago 7591538, Chile
| |
Collapse
|
9
|
Mohammed SN, Jasim MH, Mahmood SH, Saleh EN, Hashemzadeh A. The role of irisin in exercise-induced muscle and metabolic health: a narrative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04083-1. [PMID: 40167628 DOI: 10.1007/s00210-025-04083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Irisin, a myokine released during physical exercise, has emerged as a key mediator of muscle health and metabolic regulation. This review synthesizes current evidence on how aerobic exercise stimulates irisin release and its subsequent effects, including enhanced muscle mass, strength, and recovery. Additionally, irisin promotes the browning of white adipose tissue, improving fat metabolism and glucose regulation. These adaptations position irisin as a promising therapeutic target for preventing metabolic disorders and optimizing exercise protocols. By exploring human studies and mechanistic insights, this review underscores irisin's potential to address global health challenges, such as obesity and type 2 diabetes, while advancing strategies for personalized exercise interventions.
Collapse
Affiliation(s)
- Sumaya Nadhim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq
| | | | - Eman Naji Saleh
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Franscescon F, Bianchini MC, Gheller E, Pomianowsky CE, Puhle JG, Lima LZM, Bizuti MR, Marafon F, Haag FB, de Resende E Silva DT. Resistance physical exercise modulates metabolic adipokines, decreases body weight, and improves glomerular filtration in patients with chronic kidney disease in hemodialysis. Mol Cell Biochem 2025; 480:2525-2538. [PMID: 39394393 DOI: 10.1007/s11010-024-05128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Chronic kidney disease (CKD) is a condition characterized by abnormalities in kidney structure and function that persist for more than 3 months. It is estimated that more than 800 million people in the world have a diagnosis of CKD. To remove the harmful metabolic substances from the body, people with CKD need to perform hemodialysis. Due to their beneficial effects against a wide range of clinical conditions, physical exercise is considered a non-pharmacological therapy. This study aimed to evaluate the beneficial effects of resistance exercise during hemodialysis on metabolic adipokines, myokines, body weight, and glomerular filtration rate in patients living with CKD. Briefly, the blood samples were collected in two moments: immediately before the start of the resistance exercise protocol and 1 week after the end of the protocol. Resistance exercise protocol was performed thrice a week for 12 weeks and applied during hemodialysis sessions. Here, resistance exercise increases the circulating irisin (14.56%; p = 0.0112), handgrip strength (5.70%; p = 0.0036), glomerular filtration rate (25.9%; p = 0.022) and significantly decreases adiponectin (- 55.7%; p = 0.0044), body weight (- 3.7%; p = 0.0001), glucose (- 22%; p = 0.009), and albumin levels (- 9.55%; p = 0.0001). Conversely, leptin levels (- 10.9%; p = 0.38), iron (3.05%; p = 0.705), ferritin (3.24%; p = 0.880), hemoglobin (- 0.52%; p = 0.75), total cholesterol (7.9%; p = 0.19), LDL (- 9.99%; p = 0.15) and HDL (- 4.8%; p = 0.45), did not change after resistance exercise. Interestingly, 1,25 hydroxyvitamin D levels were significantly increased (14.5%; p = 0.01) following resistance exercise. Considering the effect of sex (males vs. females), we found that irisin levels increased in females but not in males after the resistance exercise protocol. Furthermore, handgrip strength and body weight were different, indicating that males had the highest strength and weight. We demonstrated that both males and females had lower albumin levels after the resistance exercise protocol. In conclusion, we suggest that resistance exercise has beneficial effects in the CKD population by modulating adipokines and metabolic myokines and therefore can be used as a non-pharmacological adjunctive therapy in CKD patients undergoing HD.
Collapse
Affiliation(s)
- Francini Franscescon
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), SC 484 Highway, Southern Border, Chapecó, SC, 89815-899, Brazil
| | - Matheus Chimelo Bianchini
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), SC 484 Highway, Southern Border, Chapecó, SC, 89815-899, Brazil
| | - Enzo Gheller
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
- Undergraduate Course in Medicine, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
| | - Claudio Eliezer Pomianowsky
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
- Undergraduate Course in Medicine, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
| | - Josiano Guilherme Puhle
- Laboratory of Biochemistry and Exercise Physiology, University of West of Santa Catarina (Unoesc), Oiapoc Highway, 211, São Miguel do Oeste, SC, 89900-000, Brazil
| | - Lucas Zannini Medeiros Lima
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
- Undergraduate Course in Medicine, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
| | - Matheus Ribeiro Bizuti
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
- Undergraduate Course in Medicine, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
| | - Filomena Marafon
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
| | - Fabiana Brum Haag
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil
| | - Débora Tavares de Resende E Silva
- Laboratory of Genetic and Biochemistry, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Highway SC 484 - Km 02, Fronteira Sul, Chapecó, SC, CEP 89815-899, Brazil.
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), SC 484 Highway, Southern Border, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
11
|
Liu L, Zhang J, Cui R, Wang N, Zhang Y, Liu L, Zhang X, Liu Q. SIRT1 and exercise-induced bone metabolism: a regulatory nexus. Front Cell Dev Biol 2025; 13:1522821. [PMID: 40206398 PMCID: PMC11979185 DOI: 10.3389/fcell.2025.1522821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
Regular exercise positively influences bone health, enhances bone density and strength, and reduces the risk of osteoporosis. Silent information regulator of transcription 1 (SIRT1) is a deacetylase that plays a pivotal role in the regulation of various biological processes. In this review, we explore the role of SIRT1 in modulating bone metabolism in response to exercise. SIRT1 regulates crucial cellular processes, including inflammation, aging, autophagy, and oxidative stress, in bone cells such as bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, in response to exercise-induced stimuli. Notably, exercise influences bone metabolism by modulating muscle metabolism and neurotransmitters, with SIRT1 acting as a key mediator. A comprehensive understanding of SIRT1's regulatory mechanisms will facilitate a deeper exploration of the principles underlying exercise-induced improvements in bone metabolism, ultimately providing novel insights into the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Runhong Cui
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Na Wang
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Yun Zhang
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Lifei Liu
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Xinan Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
12
|
Orioli L, Thissen JP. Myokines as potential mediators of changes in glucose homeostasis and muscle mass after bariatric surgery. Front Endocrinol (Lausanne) 2025; 16:1554617. [PMID: 40171198 PMCID: PMC11958187 DOI: 10.3389/fendo.2025.1554617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Myokines are bioactive peptides released by skeletal muscle. Myokines exert auto-, para-, or endocrine effects, enabling them to regulate many aspects of metabolism in various tissues. However, the contribution of myokines to the dramatic changes in glucose homeostasis and muscle mass induced by bariatric surgery has not been established. Our review highlights that myokines such as brain-derived neurotrophic factor (BDNF), meteorin-like protein (Metrnl), secreted protein acidic and rich in cysteine (SPARC), apelin (APLN) and myostatin (MSTN) may mediate changes in glucose homeostasis and muscle mass after bariatric surgery. Our review also identifies myonectin as an interesting candidate for future studies, as this myokine may regulate lipid metabolism and muscle mass after bariatric surgery. These myokines may provide novel therapeutic targets and biomarkers for obesity, type 2 diabetes and sarcopenia.
Collapse
Affiliation(s)
- Laura Orioli
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
13
|
Cosio PL, Moreno-Simonet L, Mechó S, de Blas Foix X, Lloret M, Padulles X, Padulles JM, Farran-Codina A, Rodas G, Cadefau JA. Neuromuscular and biochemical responses of the hamstrings to a Flywheel Russian belt Deadlift in women and men. J Sports Sci 2025; 43:456-467. [PMID: 39905784 DOI: 10.1080/02640414.2025.2461939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The purpose of the study was to analyze hamstrings muscle damage and recovery after a novel Flywheel Russian belt Deadlift (FRBD) exercise using neuromuscular tests and associated biochemical markers of structural damage. Maximal voluntary isometric contraction (MVIC) torque and rate of force development (RFD) over several time-intervals by the 90ºhip:20ºknee test (standing isometric test for the hamstrings) and range of motion (ROM) Jurdan test (combination of active knee extension test and modified Thomas test), together with serum biomarkers of muscle damage and oxidative stress, were tested at baseline and +24h, +48h and +72h in healthy, untrained and physically active 15 females (age= 21.5±3.4 years) and 15 males (age= 21.4±1.9 years). FRBD-induced muscle damage was observed as a reduction in MVIC torque and RFD at all time-intervals until +72h. Also, hamstrings neuromuscular capacity reductions were associated with serum biomarkers of structural and oxidative damage. However, only males showed ROM changes. Overall, the FRBD triggered a decrease in hamstrings neuromuscular capacities, and an upregulation of biochemical markers of structural and oxidative damage until +72h. The 90ºhip:20ºknee test provides an adequate reliability to screen hamstrings recovery in both women and men after flywheel training, through MVIC torque and both early and late RFD.
Collapse
Affiliation(s)
- Pedro Luis Cosio
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Lia Moreno-Simonet
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Mechó
- Department of Radiology, Hospital of Barcelona, SCIAS, Barcelona, Spain
| | - Xavier de Blas Foix
- Faculty of Psychology, Education Sciences and Sport Blanquerna, Universitat Ramon Llull, Barcelona, Spain
| | - Mario Lloret
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Josep Maria Padulles
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, INSA-UB, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Gil Rodas
- Medical Department, Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation Hub, Barcelona, Spain
| | - Joan Aureli Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
14
|
Lin S, Wang CJ, Yang PK, Li B, Wu Y, Yu KW. Enriched environment improves memory function by promoting synaptic remodeling in vascular dementia rats. Brain Res Bull 2025; 222:111262. [PMID: 39978738 DOI: 10.1016/j.brainresbull.2025.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Vascular dementia (VaD), attributed to cerebrovascular pathology, is a leading cause of cognitive decline, characterized by memory loss, bradyphrenia, and affective lability, with memory deficits being particularly pronounced. The potential of enriched environment (EE) to ameliorate cognitive impairments by enhancing hippocampal synaptic plasticity, neurogenesis, and white matter remodeling has garnered considerable interest. In this study, we used a rat model for VaD through the procedure of bilateral common carotid artery ligation (BCCAO). We randomly assigned male Sprague-Dawley (SD) rats to three groups: the control sham-operated group (Sham group), the surgery-induced dementia group (BCCAO group), and the surgery-induced dementia group with enriched environment (EE group). The Sham and BCCAO groups were kept under standard lab conditions, whereas the EE group was housed in an enriched setting. Employing a behavioral assay battery, we observed that EE intervention significantly improved the spatial learning and memory performance in the Morris water maze. Subsequent neuromorphological assessments utilizing transmission electron microscopy disclosed an increase in synaptic density and postsynaptic density (PSD) thickness within the hippocampal CA1 region, indicative of structural synaptic modulation. Further probing into the molecular underpinnings revealed that EE upregulated the expression of PSD95, corroborating its role in enhancing cognitive faculties. Additionally, our investigation into the PGC-1α/FNDC5/BDNF pathway demonstrated that EE intervention elevated the expression of these neurotrophic factors, suggesting a mechanistic link to synaptic and cognitive restoration. In summation, our findings elucidate the neurorestorative potential of EE in a preclinical VaD model, presenting a non-pharmacological intervention that modulates synaptic architecture and activates neuroprotective pathways. The observed correlations between synaptic remodeling and cognitive enhancement underscore the therapeutic relevance of EE in VaD, warranting further investigation for clinical applications.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Jie Wang
- Department of Rehabilitation Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng-Kun Yang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Seong EJ, Kim Y, Su ZY, Kang HT, Lee JH. Combined Treatment of Metformin and Resveratrol Promotes Myogenesis Through Increased Irisin Release in C2C12 Cells. Pharm Res 2025; 42:419-428. [PMID: 40011370 DOI: 10.1007/s11095-025-03834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE This study aimed to investigate the additive effects of a combination of metformin and resveratrol on irisin expression in C2C12 cells. METHODS The study involved treating C2C12 cells with metformin and resveratrol, either alone or in combination, and analyzing their effects on myogenesis and irisin release. The activation of signaling pathways, including AMPK/SIRT1/PGC1α, as well as the relative mRNA and protein expression levels of MyoD, myogenin, and Myh were also assessed. RESULTS Combination treatment with metformin and resveratrol significantly increased MyoD, myogenin, Myh, and FNDC5 expression compared with the group treated with metformin alone. The increase in irisin production was associated with phosphorylation of AMPK and upregulation of PGC-1α and SIRT1, indicating activation of the AMPK/SIRT1/PGC-1α pathway. The mRNA and protein expression levels of MyoD, myogenin, and Myh were also significantly higher in the combination treatment group compared to the metformin alone group. CONCLUSION The combination of metformin and resveratrol effectively increased irisin release through the AMPK/Sirt1/PGC-1α pathway, suggesting that this combination treatment could enhance myogenesis.
Collapse
Affiliation(s)
- Eun Ji Seong
- Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Yejin Kim
- Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan
| | - Hee-Taik Kang
- Department of Family Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
16
|
Zhang L, Peng Y, Kong Y, Zhang X, Li Z, Jia H. Circulating irisin levels in patients with sarcopenia: a systematic review and meta-analysis. Eur Geriatr Med 2025; 16:5-13. [PMID: 39562482 DOI: 10.1007/s41999-024-01097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE During the aging process, a decrease in irisin levels is associated with numerous bone and muscle diseases. This study aims to provide evidence of circulating irisin levels in patients with sarcopenia. METHODS This systematic review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standard and the recommendations of the Cochrane Collaboration. A comprehensive search was conducted in PubMed, Embase, Web of Science databases, and other sources from their establishment until August 2023. The Review Manager software version 5.4 was used to calculate the standard mean difference (SMD). I2 statistics measured heterogeneity. RESULTS 12 studies involving 2133 participants who met the inclusion criteria were analyzed. We found that irisin levels were significantly lower in patients with sarcopenia (SMD: - 1.28; 95% CI - 1.65, - 0.90; I2 = 92% P < 0.001). Sensitivity analysis confirmed the robustness of this result. The correlation results showed that there was a positive correlation between the levels of circulating irisin and muscle mass (r value 0.62, 95% CI 0.31, 0.81; P < 0.001) and strength (r value 0.47, 95% CI 0.23, 0.66; P < 0.001), but no statistical correlation between irisin and muscle function (The P-values for gait speed and chair test time are 0.5523 and 0.1467, respectively). CONCLUSION No matter the study area, study design, blood samples, or diagnostic criteria, the concentration of circulating irisin in patients with sarcopenia was lower than that in the control group.
Collapse
Affiliation(s)
- Liangchuan Zhang
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yating Peng
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yuan Kong
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Xue Zhang
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Zetian Li
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Hong Jia
- School of Public Health, Southwest Medical University, Luzhou City, Sichuan Province, China.
- Collaborating Center of the National Institute of Health Data Sciences of China, Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
17
|
Luo X, Wang J, Ju Q, Li T, Bi X. Molecular mechanisms and potential interventions during aging-associated sarcopenia. Mech Ageing Dev 2025; 223:112020. [PMID: 39667622 DOI: 10.1016/j.mad.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Sarcopenia, a common condition observed in the elderly, presenting a significant public health challenge due to its high prevalence, insidious onset and diverse systemic effects. Despite ongoing research, the precise etiology of sarcopenia remains elusive. Aging-related processes, which included inflammation, oxidative stress, compromised mitochondrial function and apoptosis, have been implicated in its development. Notably, effective pharmacological treatments for sarcopenia are currently lacking, highlighting the necessity for a deeper understanding of its pathogenesis and causative factors to enable proactive interventions. This article is aimed to provide an extensive overview of the pathogenesis of sarcopenia, along with a summary of current treatment and prevention strategies.
Collapse
Affiliation(s)
- Xiaoqin Luo
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qingqing Ju
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianyu Li
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China; Key Laboratory for Chronic Diseases Molecular Mechanism Research and Nutritional Intervention of Shenyang, Shenyang 110036, China.
| |
Collapse
|
18
|
Fan Z, Wu F, Wang P, Wu L, Zhang J, Li W, Pang Q, Zhang A. Serum Irisin Levels Are Positively Correlated with Physical Activity Capacity in Hemodialysis Patients. Kidney Blood Press Res 2025; 50:105-114. [PMID: 39756383 PMCID: PMC11844682 DOI: 10.1159/000543214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025] Open
Abstract
INTRODUCTION Regular physical activity is beneficial for health but is often reduced in patients receiving maintenance hemodialysis treatment. Irisin is a muscle-secreted hormone that reportedly improves metabolism and slows down the progression of some chronic diseases. In this study, we aimed to investigate the relationship between physical activity capacity and serum irisin levels in hemodialysis patients. METHODS Our study included 252 patients undergoing hemodialysis at Xuanwu Hospital Capital Medical University. Enzyme-linked immunosorbent assay was used to measure blood irisin levels. Body composition was analyzed by bioelectrical impedance analysis. The International Physical Activity Questionnaire (IPAQ) was used to score physical activity ability. RESULTS Bivariate correlation analysis showed a positive correlation between IPAQ scores and ln irisin (the natural logarithm of irisin; r = 0.326, p < 0.001). Independent determinants of IPAQ scores were ln irisin, age, fasting glucose, and carbon dioxide combining power. CONCLUSION Our findings provide the first clinical evidence that serum irisin levels are positively correlated with physical activity capacity in hemodialysis patients.
Collapse
Affiliation(s)
- Zhengjia Fan
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Feng Wu
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Peixin Wang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Leiyun Wu
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wen Li
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
20
|
Li J, Zhou Z, Wu Y, Zhao J, Duan H, Peng Y, Wang X, Fan Z, Yin L, Li M, Liu F, Yang Y, Du L, Li J, Zhong H, Hou W, Zhang F, Ma H, Zhang X. Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons. Theranostics 2025; 15:1376-1398. [PMID: 39816678 PMCID: PMC11729562 DOI: 10.7150/thno.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS. Methods: Male C57BL/6 mice (6-8 weeks) and male TRPV1-Cre mice (6-8 weeks) were used in our experiments. The EHS model with or without HA training were established for this study. RNA sequencing, qPCR, immunoblot, immunofluorescent assays, calcium imaging, optogenetic/ chemical genetic intervention, virus tracing, patch clamp, and other methods were employed to investigate the molecular mechanism and neural circuit by which HA training improves the function of the medial preoptic area (mPOA) neurons. Furthermore, a novel exosome-based strategy targeting the central nervous system to deliver irisin, a protective peptide generated by HA, was established to protect against EHS. Results: HA-related neurons in the mPOA expressing transient receptor potential vanilloid-1 (TRPV1) were identified as a population whose activation reduces Tb; inversely, dysfunction of these neurons contributes to hyperthermia and EHS. mPOATRPV1 neurons facilitate vasodilation and reduce adipose tissue thermogenesis, which is associated with their inhibitory projection to the raphe pallidus nucleus (RPa) and dorsal medial hypothalamus (DMH) neurons, respectively. Furthermore, HA improves the function of preoptic heat-sensitive neurons by enhancing TRPV1 expression, and Trpv1 ablation reverses the HA-induced heat tolerance. A central nervous system-targeted exosome strategy to deliver irisin, a protective peptide generated by HA, can promote preoptic TRPV1 expression and exert similar protective effects against EHS. Conclusions: Preoptic TRPV1 neurons could be enhanced by HA, actively contributing to heat defense through the mPOA"DMH/RPa circuit during EHS, which results in the suppression of adipose tissue thermogenesis and facilitation of vasodilatation. A delivery strategy of exosomes engineered with RVG-Lamp2b-Irisin significantly improves the function of mPOATRPV1 neurons, providing a promising preventive strategy for EHS in the future.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Ziqing Zhou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China, 100071
| | - You Wu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jianshuai Zhao
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haokai Duan
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yuliang Peng
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xiaoke Wang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lu Yin
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Mengyun Li
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fuhong Liu
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Yongheng Yang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Lixia Du
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Jin Li
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Haixing Zhong
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Wugang Hou
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Hongwei Ma
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
- Department of Microbiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Xijing Zhang
- Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| |
Collapse
|
21
|
Laurindo LF, Rodrigues VD, Laurindo LF, Cherain LMA, de Lima EP, Boaro BL, da Silva Camarinha Oliveira J, Chagas EFB, Catharin VCS, Dos Santos Haber JF, Dos Santos Bueno PC, Direito R, Barbalho SM. Targeting AMPK with Irisin: Implications for metabolic disorders, cardiovascular health, and inflammatory conditions - A systematic review. Life Sci 2025; 360:123230. [PMID: 39532260 DOI: 10.1016/j.lfs.2024.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Irisin-based interventions have gained attention for their potential to modulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in various diseases. Physiologically, irisin is a myokine released during physical exercise that exerts anti-inflammatory effects and is a metabolic and cardiometabolic enhancer. On the other hand, AMPK is crucial for maintaining energy balance and metabolic homeostasis. Therefore, individuals presenting low blood levels of irisin and AMPK dysregulation are more predisposed to metabolic disorders and cardiovascular health inflammatory conditions since regulating energy balance and metabolic homeostasis are crucial for preventing or treating these disorders. In light of those mentioned above and considering that no review has addressed the intricate relationships between irisin and AMPK regulation in the realm of metabolic disorders, cardiovascular health, and inflammatory conditions, we comprehensively reviewed studies involving irisin's effects on AMPK signaling in different models and interventions. Our systematic analysis involved in vitro studies, animal models, and their relevant clinical implications of irisin targeting AMPK due to the absence of relevant clinical trials. The outcomes and limitations of the included studies were extensively highlighted. Objectively, irisin improved metabolic disorders by enhancing β-cell function and insulin secretion in diabetes, mitigating myocardial injury in cardiovascular conditions, and reducing inflammation and oxidative stress in various injury models by targeting AMPK. However, the lack of clinical trials limits the generalizability of these findings to human subjects. Future research should focus on translating these findings into clinical applications and exploring the broader implications of irisin-based interventions in human health.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil.
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, 15090-000 São Paulo, Brazil
| | - Luana Maria Amaral Cherain
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | | | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, 17500-000 São Paulo, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| |
Collapse
|
22
|
Zhang RX, Zhai YY, Ding RR, Huang JH, Shi XC, Liu H, Liu XP, Zhang JF, Lu JF, Zhang Z, Leng XK, Li DF, Xiao JY, Xia B, Wu JW. FNDC1 is a myokine that promotes myogenesis and muscle regeneration. EMBO J 2025; 44:30-53. [PMID: 39567831 PMCID: PMC11695938 DOI: 10.1038/s44318-024-00285-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Myogenesis is essential for skeletal muscle formation and regeneration after injury, yet its regulators are largely unknown. Here we identified fibronectin type III domain containing 1 (FNDC1) as a previously uncharacterized myokine. In vitro studies showed that knockdown of Fndc1 in myoblasts reduces myotube formation, while overexpression of Fndc1 promotes myogenic differentiation. We further generated recombinant truncated mouse FNDC1 (mFNDC1), which retains reliable activity in promoting myoblast differentiation in vitro. Gain- and loss-of-function studies collectively showed that FNDC1 promotes cardiotoxin (CTX)-induced muscle regeneration in adult mice. Furthermore, recombinant FNDC1 treatment ameliorated pathological muscle phenotypes in the mdx mouse model of Duchenne muscular dystrophy. Mechanistically, FNDC1 bound to the integrin α5β1 and activated the downstream FAK/PI3K/AKT/mTOR pathway to promote myogenic differentiation. Pharmacological inhibition of integrin α5β1 or of the downstream FAK/PI3K/AKT/mTOR pathway abolished the pro-myogenic effect of FNDC1. Collectively, these results suggested that myokine FNDC1 might be used as a therapeutic agent to regulate myogenic differentiation and muscle regeneration for the treatment of acute and chronic muscle disease.
Collapse
Affiliation(s)
- Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Yuan Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rong Rong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia He Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Peng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Feng Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiang Kai Leng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - De Fu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
23
|
Jia Z, Wang Z, Pan H, Zhang J, Wang Q, Zhou C, Liu J. Crosstalk between fat tissue and muscle, brain, liver, and heart in obesity: cellular and molecular perspectives. Eur J Med Res 2024; 29:637. [PMID: 39741333 DOI: 10.1186/s40001-024-02176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
A high-fat diet and physical inactivity are key contributors to obesity, predisposing individuals to various chronic diseases, such as cardiovascular disease and diabetes, which involve multiple organs and tissues. To better understand the role of multi-organ interaction mechanisms in the rising incidence of obesity and its associated chronic conditions, treatment and prevention strategies are being extensively investigated. This review examines the signaling mechanisms between different tissues and organs, with a particular focus on the crosstalk between adipose tissue and the muscle, brain, liver, and heart, and potentially offers new strategies for the treatment and management of obesity and its complications.
Collapse
Affiliation(s)
- Zixuan Jia
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Ziqi Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Huixin Pan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Jing Zhang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Caixia Zhou
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China.
| | - Jun Liu
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China.
| |
Collapse
|
24
|
Qin M, Zhu J, Xing L, Fan Y, Luo J, Sun J, Chen T, Zhang Y, Xi Q. Adipose-derived exosomes ameliorate skeletal muscle atrophy via miR-146a-5p/IGF-1R signaling. J Nanobiotechnology 2024; 22:754. [PMID: 39696303 DOI: 10.1186/s12951-024-02983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
The study of muscle disorders has gained popularity, with a particular emphasis on the relationship between adipose tissue and skeletal muscle. In our investigation, we discovered that the deletion of miR-146a-5p specifically in adipose tissue (aKO) led to a notable rise in mice's mass and adiposity. In contrast, it led to a decline in lean mass, ability to exercise, diameter of muscle fibers, and the levels of genes associated with differentiation. The co-culture experiment showed that the transfection of miR-146a-5p mimics to 3T3-L1 significantly suppressive cell growth and promotes myotube differentiation in C2C12 cells. Exosomes from white adipose tissue (WAT) of aKO mice (aKO-WAT-Exos) significantly promoted muscle atrophy and inhibited differentiation of C2C12 cells but were reversed by co-incubation with miR-146a-5p-mimics. The miR-146a-5p can specifically target IGF-1R to improve skeletal muscle wasting. In this process, the PI3K/AKT/mTOR pathway is activated or the FoxO3 pathway is inhibited to enhance the synthesis of skeletal muscle proteins. Significantly, miR-146a-5p serves a crucial function as a microRNA in the communication of the fat-muscle connection. It can be transported through the pathway of exosomes derived from adipose tissue, ultimately ameliorating skeletal muscle atrophy and modulating body mass index (BMI).
Collapse
Affiliation(s)
- Mengran Qin
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
- Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Jiahao Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Lipeng Xing
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Yaotian Fan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Junyi Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Jiajie Sun
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Yongliang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Qianyun Xi
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Gu S, Gao J, Li Z, Zhang S, Wen C, Sun C, Yan W, Hou Z, Yang N, Li J. Comparative Analysis of Myofiber Characteristics, Shear Force, and Amino Acid Contents in Slow- and Fast-Growing Broilers. Foods 2024; 13:3997. [PMID: 39766940 PMCID: PMC11675930 DOI: 10.3390/foods13243997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Skeletal muscle fiber characteristics are pivotal in assessing meat quality. However, there is currently a lack of research precisely quantifying the total number of myofibers (TNM) of skeletal muscles. This study used Arbor Acres (AA) broilers and Wenchang (WC) chickens to determine the TNM of several skeletal muscles and the meat quality of the pectoralis major muscle (PM). The results showed that the TNMs of the PM in AA males and females were 935,363.64 ± 92,529.28 and 873,983.72 ± 84,511.28, respectively, significantly higher than those in WC (511,468.97 ± 73,460.81 and 475,371.93 ± 70,187.83) at 7 days of age (p < 0.01). In terms of gastrocnemius medialis in AA males and females, we recorded values of 207,551.43 ± 31,639.97 and 177,203.23 ± 28,764.01, showing a significant difference compared to the values observed in WC (146,313.03 ± 29,633.21 and 124,238.9 ± 20,136.95) (p < 0.01). Similarly, the levels of gastrocnemius lateralis exhibited a significant difference between AA and WC (p < 0.01). Furthermore, the essential, umami, and sweet amino acids were found to be significantly higher in WC compared to AA (p < 0.01). These findings offer valuable data and insights for accurately quantifying the TNM in livestock and for the development of further genetic breeding strategies for meat quality.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jia Gao
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zehao Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shenbo Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wei Yan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (S.G.); (J.G.); (Z.L.); (S.Z.); (C.W.); (C.S.); (W.Y.); (Z.H.); (N.Y.)
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
26
|
Kostka M, Morys J, Małecki A, Nowacka-Chmielewska M. Muscle-brain crosstalk mediated by exercise-induced myokines - insights from experimental studies. Front Physiol 2024; 15:1488375. [PMID: 39687518 PMCID: PMC11647023 DOI: 10.3389/fphys.2024.1488375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Over the past couple of decades, it has become apparent that skeletal muscles might be engaged in endocrine signaling, mostly as a result of exercise or physical activity in general. The importance of this phenomenon is currently studied in terms of the impact that exercise- or physical activity -induced signaling factors have, in the interaction of the "muscle-brain crosstalk." So far, skeletal muscle-derived myokines were demonstrated to intercede in the connection between muscles and a plethora of various organs such as adipose tissue, liver, or pancreas. However, the exact mechanism of muscle-brain communication is yet to be determined. It is speculated that, in particular, brain-derived neurotrophic factor (BDNF), irisin, cathepsin B (CTSB), interleukin 6 (IL-6), and insulin-like growth factor-1 (IGF-1) partake in this crosstalk by promoting neuronal proliferation and synaptic plasticity, also resulting in improved cognition and ameliorated behavioral alterations. Researchers suggest that myokines might act directly on the brain parenchyma via crossing the blood-brain barrier (BBB). The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and central nervous system (CNS) impairments. Although the hypothesis of skeletal muscles being critical sources of myokines seems promising, it should not be forgotten that the origin of these factors might vary, depending on the cell types engaged in their synthesis. Limited amount of research providing information on alterations in myokines expression in various organs at the same time, results in taking them only as circumstantial evidence on the way to determine the actual involvement of skeletal muscles in the overall state of homeostasis. The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and CNS impairments.
Collapse
Affiliation(s)
| | | | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
27
|
Ali SR, Nkembo AT, Tipparaju SM, Ashraf M, Xuan W. Sarcopenia: recent advances for detection, progression, and metabolic alterations along with therapeutic targets. Can J Physiol Pharmacol 2024; 102:697-708. [PMID: 39186818 PMCID: PMC11663012 DOI: 10.1139/cjpp-2024-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sarcopenia, a disorder marked by muscle loss and dysfunction, is a global health concern, particularly in aging populations. Sarcopenia is intricately related to various health conditions, including obesity, dysphagia, and frailty, which underscores the complexity. Despite recent advances in metabolomics and other omics data for early detection and treatment, the precise characterization and diagnosis of sarcopenia remains challenging. In the present review we provide an overview of the complex metabolic mechanisms that underlie sarcopenia, with particular emphasis on protein, lipid, carbohydrate, and bone metabolism. The review highlights the importance of leucine and other amino acids in promoting muscle protein synthesis and clarifies the critical role played by amino acid metabolism in preserving muscular health. In addition, the review provides insights regarding lipid metabolism on sarcopenia, with an emphasis on the effects of inflammation and insulin resistance. The development of sarcopenia is largely influenced by insulin resistance, especially with regard to glucose metabolism. Overall, the review emphasizes the complex relationship between bone and muscle health by highlighting the interaction between sarcopenia and bone metabolism. Furthermore, the review outlines various therapeutic approaches and potential biomarkers for diagnosing sarcopenia. These include pharmacological strategies such as hormone replacement therapy and anabolic steroids as well as lifestyle modifications such as exercise, nutrition, and dietary changes.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, US
| |
Collapse
|
28
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Hurley-Novatny A, Chang D, Murakami K, Wang L, Li H. Poor bone health in Duchenne muscular dystrophy: a multifactorial problem beyond corticosteroids and loss of ambulation. Front Endocrinol (Lausanne) 2024; 15:1398050. [PMID: 39669499 PMCID: PMC11634624 DOI: 10.3389/fendo.2024.1398050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, fatal muscle wasting disease caused by X-linked mutations in the dystrophin gene. Alongside the characteristic muscle weakness, patients face a myriad of skeletal complications, including osteoporosis/osteopenia, high susceptibility to vertebral and long bone fractures, fat embolism post-fracture, scoliosis, and growth retardation. Those skeletal abnormalities significantly compromise quality of life and are sometimes life-threatening. These issues were traditionally attributed to loss of ambulation and chronic corticosteroid use, but recent investigations have unveiled a more intricate etiology. Factors such as vitamin D deficiency, hormonal imbalances, systemic inflammation, myokine release from dystrophic muscle, and vascular dysfunction are emerging as significant contributors as well. This expanded understanding illuminates the multifaceted pathogenesis underlying skeletal issues in DMD. Present therapeutic options are limited and lack specificity. Advancements in understanding the pathophysiology of bone complications in DMD will offer promising avenues for novel treatment modalities. In this review, we summarize the current understanding of factors contributing to bone problems in DMD and delineate contemporary and prospective multidisciplinary therapeutic approaches.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - David Chang
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Katsuhiro Murakami
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Ling Wang
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Hongshuai Li
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
Berciano MT, Gatius A, Puente-Bedia A, Rufino-Gómez A, Tarabal O, Rodríguez-Rey JC, Calderó J, Lafarga M, Tapia O. SMN Deficiency Induces an Early Non-Atrophic Myopathy with Alterations in the Contractile and Excitatory Coupling Machinery of Skeletal Myofibers in the SMN∆7 Mouse Model of Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:12415. [PMID: 39596480 PMCID: PMC11595111 DOI: 10.3390/ijms252212415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence indicates that low SMN levels not only are detrimental to the central nervous system (CNS) but also directly affect other peripheral tissues and organs, including skeletal muscle. To better understand the potential primary impact of SMN deficiency in muscle, we explored the cellular, ultrastructural, and molecular basis of SMA myopathy in the SMNΔ7 mouse model of severe SMA at an early postnatal period (P0-7) prior to muscle denervation and MN loss (preneurodegenerative [PND] stage). This period contrasts with the neurodegenerative (ND) stage (P8-14), in which MN loss and muscle atrophy occur. At the PND stage, we found that SMN∆7 mice displayed early signs of motor dysfunction with overt myofiber alterations in the absence of atrophy. We provide essential new ultrastructural data on focal and segmental lesions in the myofibrillar contractile apparatus. These lesions were observed in association with specific myonuclear domains and included abnormal accumulations of actin-thin myofilaments, sarcomere disruption, and the formation of minisarcomeres. The sarcoplasmic reticulum and triads also exhibited ultrastructural alterations, suggesting decoupling during the excitation-contraction process. Finally, changes in intermyofibrillar mitochondrial organization and dynamics, indicative of mitochondrial biogenesis overactivation, were also found. Overall, our results demonstrated that SMN deficiency induces early and MN loss-independent alterations in myofibers that essentially contribute to SMA myopathy. This strongly supports the growing body of evidence indicating the existence of intrinsic alterations in the skeletal muscle in SMA and further reinforces the relevance of this peripheral tissue as a key therapeutic target for the disease.
Collapse
Affiliation(s)
- María T. Berciano
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Alaó Gatius
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Alba Puente-Bedia
- Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain;
| | - Alexis Rufino-Gómez
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| | - Olga Tarabal
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - José C. Rodríguez-Rey
- Department of Molecular Biology, University of Cantabria, 39011 Santander, Spain; (M.T.B.); (J.C.R.-R.)
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Jordi Calderó
- Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (A.G.); (O.T.); (J.C.)
| | - Miguel Lafarga
- Health Research Institute Valdecilla (IDIVAL), 39011 Santander, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Anatomy and Cell Biology, University of Cantabria, 39011 Santander, Spain
| | - Olga Tapia
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), Universidad de La Laguna, 38200 San Cristobal de la Laguna, Spain;
| |
Collapse
|
31
|
Wang S, Pan Y, Pang Q, Zhang A. Irisin Ameliorates Muscle Atrophy by Inhibiting the Upregulation of the Ubiquitin‒Proteasome System in Chronic Kidney Disease. Calcif Tissue Int 2024; 115:712-724. [PMID: 39283327 DOI: 10.1007/s00223-024-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 11/03/2024]
Abstract
Muscle atrophy is a common complication of chronic kidney disease (CKD). Irisin, a novel muscle cytokine, protects against muscle atrophy, but its specific role in CKD-associated muscle atrophy requires further elucidation. Because the ubiquitin-proteasome system (UPS) plays an important role in CKD muscle atrophy, our study will explore whether irisin affects UPS and alleviate CKD-associated muscle atrophy. In this study, an adenine-fed mouse model of CKD and urotension II (UII)-induced C2C12 myotubes were used as in vivo and in vitro models of muscle atrophy. The results showed that renal function, mouse weight, and the cross-sectional area (CSA) of skeletal muscles were significantly improved in CKD mice treated with irisin. Moreover, irisin effectively mitigated the decreases in phosphorylated Forkhead box O 3a (p-FOXO3A) levels and increases in the levels of E3 ubiquitin ligases, such as muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx/atrogin1), in both the muscles of CKD mice and UII-induced C2C12 myotubes. In addition, irisin significantly increased the expression levels of myogenic differentiation factor D (MyoD) in the muscles of CKD mice. Our study is the first to demonstrate that irisin ameliorates skeletal muscle atrophy by inhibiting UPS upregulation and improving satellite cell differentiation in CKD.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Fibronectins/metabolism
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscular Atrophy/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/pathology
- Ubiquitin/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China
| | - Yajing Pan
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China.
| |
Collapse
|
32
|
Pan S, Ren W, Zhao Y, Cai M, Tian Z. Role of Irisin in exercise training-regulated endoplasmic reticulum stress, autophagy and myogenesis in the skeletal muscle after myocardial infarction. J Physiol Biochem 2024; 80:895-908. [PMID: 39271606 DOI: 10.1007/s13105-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Patients with heart failure (HF) are often accompanied by skeletal muscle abnormalities, which can lead to exercise intolerance and compromise daily activities. Irisin, an exercise training (ET) -induced myokine, regulates energy metabolism and skeletal muscle homeostasis. However, the precise role of Irisin in the benefits of ET on inhibiting skeletal muscle atrophy, particularly on endoplasmic reticulum (ER) stress, autophagy, and myogenesis following myocardial infarction (MI) remains unclear. In this study, we investigated the expression of Irisin protein in wild-type mice with MI, and assessed its role in the beneficial effects of ET using an Fndc5 knockout mice. Our findings revealed that MI reduced muscle fiber cross-sectional area (CSA), while downregulating the expression of Irisin, PGC-1α and SOD1. Concurrently, MI elevated the levels of ER stress and apoptosis, and inhibited autophagy in skeletal muscle. Conversely, ET mitigated ER stress and apoptosis in the skeletal muscle of infarcted mice. Notably, Fndc5 knockout worsened MI-induced ER stress and apoptosis, suppressed autophagy and myogenesis, and abrogated the beneficial effects of ET. In conclusion, our findings highlight the role of Irisin in the ET-mediated alleviation of skeletal muscle abnormalities. This study provides valuable insights into MI-induced muscle abnormalities and enhances our understanding of exercise rehabilitation mechanisms in clinical MI patients.
Collapse
Affiliation(s)
- Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Wujing Ren
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yifang Zhao
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, P. R. China.
| |
Collapse
|
33
|
Neira G, Hernández-Pardos AW, Becerril S, Ramírez B, Valentí V, Moncada R, Catalán V, Gómez-Ambrosi J, Burrell MA, Silva C, Escalada J, Frühbeck G, Rodríguez A. Differential mitochondrial adaptation and FNDC5 production in brown and white adipose tissue in response to cold and obesity. Obesity (Silver Spring) 2024; 32:2120-2134. [PMID: 39327772 DOI: 10.1002/oby.24132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Fibronectin type III domain-containing protein 5 (FNDC5) modulates adipocyte metabolism by increasing white and brown adipose tissue (WAT and BAT) browning and activity, respectively. We investigated whether FNDC5 can regulate visceral WAT and BAT adaptive thermogenesis by improving mitochondrial homeostasis in response to cold and obesity. METHODS Adipose tissue expression of FNDC5 and factors involved in mitochondrial homeostasis were determined in patients with normal weight and obesity (n = 159) and in rats with diet-induced obesity after 1 week of cold exposure (n = 61). The effect of different FNDC5 concentrations on mitochondrial biogenesis, dynamics, and mitophagy was evaluated in vitro in human adipocytes. RESULTS In human visceral adipocytes, FNDC5/irisin triggered mitochondrial biogenesis (TFAM) and fusion (MFN1, MFN2, and OPA1) while inhibiting peripheral fission (DNM1L and FIS1) and mitophagy (PINK1 and PRKN). Circulating and visceral WAT expression of FNDC5 was decreased in patients and experimental animals with obesity, whereas its receptor, integrin αV, was upregulated. Obesity increased mitochondrial fusion while decreasing mitophagy in visceral WAT from patients and rats. By contrast, in rat BAT, an upregulation of Fndc5 and genes involved in mitochondrial biogenesis and fission was observed. Cold exposure promoted mitochondrial biogenesis and healthy peripheral fission while repressing Fndc5 expression and mitophagy in BAT from rats. CONCLUSIONS Depot differences in FNDC5 production and mitochondrial adaptations in response to obesity and cold might indicate a self-regulatory mechanism to control thermogenesis in response to energy needs.
Collapse
Affiliation(s)
- Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María A Burrell
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
34
|
Bettariga F, Taaffe DR, Galvão DA, Lopez P, Bishop C, Markarian AM, Natalucci V, Kim JS, Newton RU. Exercise training mode effects on myokine expression in healthy adults: A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:764-779. [PMID: 38604409 PMCID: PMC11336361 DOI: 10.1016/j.jshs.2024.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The benefits of exercise are well known; however, many of the underlying molecular mechanisms are not fully understood. Skeletal muscle secretes myokines, which mediate muscle-organ crosstalk. Myokines regulate satellite-cell proliferation and migration, inflammatory cascade, insulin secretion, angiogenesis, fatty oxidation, and cancer suppression. To date, the effects of different exercise modes (namely, aerobic and resistance exercise) on myokine response remain to be elucidated. This is crucial considering the clinical implementation of exercise to enhance general health and wellbeing and as a medical treatment. METHODS A systematic search was undertaken in PubMed, MEDLINE, CINAHL, Embase, SPORTDiscus, and Web of Science in April 2023. Eligible studies examining the effects of a single bout of exercise on interleukin15 (IL-15), irisin, secreted protein acidic and rich in cysteine (SPARC), oncostatin M (OSM), and decorin were included. A random-effects meta-analysis was also undertaken to quantify the magnitude of change. RESULTS Sixty-two studies were included (n = 1193). Overall, exercise appeared to induce small to large increases in myokine expression, with effects observed immediately after to 60 min post-exercise, although these were mostly not statistically significant. Both aerobic and resistance exercise resulted in changes in myokine levels, without any significant difference between training modes, and with the magnitude of change differing across myokines. Myokine levels returned to baseline levels within 180 min to 24 h post-exercise. However, owing to potential sources of heterogeneity, most changes were not statistically significant, indicating that precise conclusions cannot be drawn. CONCLUSION Knowledge is limited but expanding with respect to the impact of overall and specific effects of exercise on myokine expression at different time points in the systemic circulation. Further research is required to investigate the effects of different exercise modes at multiple time points on myokine response.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Pedro Lopez
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, WA 6009, Australia; Medical School, Faculty of Health & Medical Sciences, University of Western Australia, Perth, WA 6009, Australia; Grupo de Pesquisa em Exercício para Populações Clínicas (GPCLIN), Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Anna Maria Markarian
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Valentina Natalucci
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20133, Italy
| | - Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
35
|
Guo W, Peng J, Su J, Xia J, Deng W, Li P, Chen Y, Liu G, Wang S, Huang J. The role and underlying mechanisms of irisin in exercise-mediated cardiovascular protection. PeerJ 2024; 12:e18413. [PMID: 39494293 PMCID: PMC11531754 DOI: 10.7717/peerj.18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Irisin, a product of the post-translational processing of fibronectin type III domain-containing protein 5 (FNDC5), is a novel myokine which is upregulated during exercise. This hormone not only promotes the transformation of white adipose tissue into a brown-fat-like phenotype but also enhances energy expenditure and mitigates fat accumulation. Its role is crucial in the management of certain metabolic disorders such as diabetes and heart disease. Of note, the type of exercise performed significantly affects blood irisin levels, indicating the critical role of physical activity in regulating this hormone. This article aims to summarize the current scientific understanding of the role of irisin and the mechanisms through which it mediates cardiovascular protection through exercise. Moreover, this article aims to establish irisin as a potential target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhuang Guo
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jianwei Peng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jiarui Su
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jingbo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Weiji Deng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yilin Chen
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Guoqing Liu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Shen Wang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
| |
Collapse
|
36
|
Li Q, Li C, Zhang X. Research Progress on the Effects of Different Exercise Modes on the Secretion of Exerkines After Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:62. [PMID: 39352588 PMCID: PMC11445308 DOI: 10.1007/s10571-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Exercise training is a conventional treatment strategy throughout the entire treatment process for patients with spinal cord injury (SCI). Currently, exercise modalities for SCI patients primarily include aerobic exercise, endurance training, strength training, high-intensity interval training, and mind-body exercises. These exercises play a positive role in enhancing skeletal muscle function, inducing neuroprotection and regeneration, thereby influencing neural plasticity, reducing limb spasticity, and improving motor function and daily living abilities in SCI patients. However, the mechanism by which exercise training promotes functional recovery after SCI is still unclear, and there is no consensus on a unified and standardized exercise treatment plan. Different exercise methods may bring different benefits. After SCI, patients' physical activity levels decrease significantly due to factors such as motor dysfunction, which may be a key factor affecting changes in exerkines. The changes in exerkines of SCI patients caused by exercise training are an important and highly relevant and visual evaluation index, which may provide a new research direction for revealing the intrinsic mechanism by which exercise promotes functional recovery after SCI. Therefore, this article summarizes the changes in the expression of common exerkines (neurotrophic factors, inflammatory factors, myokines, bioactive peptides) after SCI, and intends to analyze the impact and role of different exercise methods on functional recovery after SCI from the perspective of exerkines mechanism. We hope to provide theoretical basis and data support for scientific exercise treatment programs after SCI.
Collapse
Affiliation(s)
- Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
37
|
Zhao C, Wu Y, Zhu S, Liu H, Xu S. Irisin Protects Musculoskeletal Homeostasis via a Mitochondrial Quality Control Mechanism. Int J Mol Sci 2024; 25:10116. [PMID: 39337601 PMCID: PMC11431940 DOI: 10.3390/ijms251810116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Irisin, a myokine derived from fibronectin type III domain-containing 5 (FNDC5), is increasingly recognized for its protective role in musculoskeletal health through the modulation of mitochondrial quality control. This review synthesizes the current understanding of irisin's impact on mitochondrial biogenesis, dynamics, and autophagy in skeletal muscle, elucidating its capacity to bolster muscle strength, endurance, and resilience against oxidative-stress-induced muscle atrophy. The multifunctional nature of irisin extends to bone metabolism, where it promotes osteoblast proliferation and differentiation, offering a potential intervention for osteoporosis and other musculoskeletal disorders. Mitochondrial quality control is vital for cellular metabolism, particularly in energy-demanding tissues. Irisin's influence on this process is highlighted, suggesting its integral role in maintaining cellular homeostasis. The review also touches upon the regulatory mechanisms of irisin secretion, predominantly induced by exercise, and its systemic effects as an endocrine factor. While the therapeutic potential of irisin is promising, the need for standardized measurement techniques and further elucidation of its mechanisms in humans is acknowledged. The collective findings underscore the burgeoning interest in irisin as a keystone in musculoskeletal health and a candidate for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Haiying Liu
- Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing 100871, China
| | - Shuai Xu
- Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
39
|
Moqaddam MA, Nemati M, Dara MM, Hoteit M, Sadek Z, Ramezani A, Rand MK, Abbassi-Daloii A, Pashaei Z, Almaqhawi A, Razi O, Escobar KA, Supriya R, Saeidi A, Zouhal H. Exploring the Impact of Astaxanthin Supplementation in Conjunction with a 12-Week CrossFit Training Regimen on Selected Adipo-Myokines Levels in Obese Males. Nutrients 2024; 16:2857. [PMID: 39275173 PMCID: PMC11397083 DOI: 10.3390/nu16172857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE Obesity is associated with an exacerbated metabolic condition that is mediated through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of the present study was to explore the impact of astaxanthin supplementation in conjunction with a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and serum lipid levels in obese males. MATERIAL AND METHODS This study is a randomized control trial design; 60 obese males were randomly divided into four groups of 15, including the control group (CG), supplement group (SG), training group (TG), and combined training and supplement group (TSG). The participants were subjected to 12 weeks of astaxanthin (AST) supplementation [20 mg/d capsule, once/d] or CrossFit training or a combination of both interventions. The training regimen comprised 36 sessions of CrossFit, each lasting 60 min, conducted three times per week. The metabolic indices, body composition, anthropometrical, cardio-respiratory, and also some plasma adipo-myokine factors, including decorin (DCN), activin A, myostatin (MST), transforming growth factor (TGF)-β1, and follistatin (FST), were examined 12 and 72 h before the initiation of the main interventional protocols, and then 72 h after the final session of the training protocol. RESULTS There was no significant difference in the baseline data between the groups (p > 0.05). There were significant interactions between group x time for DCN (η2 = 0.82), activin A (η2 = 0.50), FST (η2 = 0.92), MST (η2 = 0.75), and TGFB-1 (η2 = 0.67) (p < 0.001 for all the variables). Significantly changes showed for DCN in TSG compared to TG and SG and also TG compared to SG (p = 0.0001); for activin A in SG compared to TG (p = 0.01) and TSG (p = 0.002); for FST in SG compared to TG and TSG (p = 0.0001), also in TSG compared to TG (p = 0.0001); for MST in SG, TG, and TSG compared to CG (p = 0.0001) and also in TSG compared to SG (p = 0.0001) and TG (p = 0.001); for TGFB-1 in SG, TG, and TSG compared to CG (p = 0.0001) and also TSG compared to SG (p = 0.0001) and TG (p = 0.001). CONCLUSIONS The 12-week CrossFit training concurrent with AST supplementation reduced anthropometric and metabolic factors and also serum lipid levels while producing positive changes in body composition and cardiovascular factors. Increased FST and DCN and reduced activin A, MST, and TGF-β1 were other affirmative responses to both interventions.
Collapse
Affiliation(s)
- Mohammad Ahmadi Moqaddam
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.A.M.); (M.M.D.)
| | - Morteza Nemati
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran 1571914911, Iran;
| | - Marjan Mansouri Dara
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.A.M.); (M.M.D.)
| | - Maha Hoteit
- Food Science Unit, National Council for Scientific Research of Lebanon (CNRS-L), Beirut 11-8281, Lebanon;
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon;
| | - Zahra Sadek
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon;
- Laboratory of Motor System, Handicap and Rehabilitation (MOHAR), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Akbar Ramezani
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Mahboubeh Khak Rand
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Asieh Abbassi-Daloii
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran; (A.R.); (M.K.R.); (A.A.-D.)
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz 5166616471, Iran;
| | - Abdullah Almaqhawi
- Department of Family Medicine and Community, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 6714414971, Iran;
| | - Kurt A. Escobar
- Department of Kinesiology, California State University, Long Beach, CA 90840, USA;
| | - Rashmi Supriya
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Academy of Wellness and Human Development, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 1517566177, Iran
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)—EA 1274, Université Rennes, 35044 Rennes, France;
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
40
|
Guo M, Shen F, Guo X, Zhang J, Ma Y, Wu X, Zuo H, Yao J, Hu Y, Wang D, Li Y, Li J, Qiu J, Yu J, Meng M, Zheng Y, Chen X, Gong M, Liu K, Jin L, Ren X, Zhang Q, Zhao Y, Gu X, Shen F, Li D, Gao L, Liu C, Zhou F, Li M, Wang J, Ding S, Ma X, Lu J, Xie C, Xiao J, Xu L. BMAL1/PGC1α4-FNDC5/irisin axis impacts distinct outcomes of time-of-day resistance exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100968. [PMID: 39187065 PMCID: PMC11863284 DOI: 10.1016/j.jshs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Zhou
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Mian Li
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
41
|
Tamaki T, Natsume T, Katoh A, Shigenari A, Shiina T, Nakajima N, Saito K, Fukuzawa T, Otake M, Enya S, Kangawa A, Imai T, Tamaki M, Uchiyama Y. Skeletal Muscle-Derived Stem Cell Transplantation Accelerates the Recovery of Peripheral Nerve Gap Injury under 50% and 100% Allogeneic Compatibility with the Swine Leucocyte Antigen. Biomolecules 2024; 14:939. [PMID: 39199327 PMCID: PMC11353188 DOI: 10.3390/biom14080939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Pig skeletal muscle-derived stem cells (SK-MSCs) were transplanted onto the common peroneal nerve with a collagen tube as a preclinical large animal experiment designed to address long nerve gaps. In terms of therapeutic usefulness, a human family case was simulated by adjusting the major histocompatibility complex to 50% and 100% correspondences. Swine leukocyte antigen (SLA) class I haplotypes were analyzed and clarified, as well as cell transplantation. Skeletal muscle-derived CD34+/45- (Sk-34) cells were injected into bridged tubes in two groups (50% and 100%) and with non-cell groups. Therapeutic effects were evaluated using sedentary/general behavior-based functional recovery score, muscle atrophy ratio, and immunohistochemistry. The results indicated that a two-Sk-34-cell-transplantation group showed clearly and significantly favorable functional recovery compared to a non-cell bridging-only group. Supporting functional recovery, the morphological reconstitution of the axons, endoneurium, and perineurium was predominantly evident in the transplanted groups. Thus, Sk-34 cell transplantation is effective for the regeneration of peripheral nerve gap injury. Additionally, 50% and 100% SLA correspondences were therapeutically similar and not problematic, and no adverse reaction was found in the 50% group. Therefore, the immunological response to Sk-MSCs is considered relatively low. The possibility of the Sk-MSC transplantation therapy may extend to the family members beyond the autologous transplantation.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Toshiharu Natsume
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Akira Katoh
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (A.S.); (T.S.)
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (A.S.); (T.S.)
| | - Nobuyuki Nakajima
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Urology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Kosuke Saito
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Otolaryngology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Tsuyoshi Fukuzawa
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Radiation Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masayoshi Otake
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa 439-0037, Shizuoka, Japan; (M.O.); (S.E.); (A.K.)
| | - Satoko Enya
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa 439-0037, Shizuoka, Japan; (M.O.); (S.E.); (A.K.)
| | - Akihisa Kangawa
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa 439-0037, Shizuoka, Japan; (M.O.); (S.E.); (A.K.)
| | - Takeshi Imai
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Miyu Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshiyasu Uchiyama
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (T.N.); (A.K.); (N.N.); (K.S.); (T.F.); (T.I.); (M.T.); (Y.U.)
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
42
|
Sharma AR, Chatterjee S, Lee YH, Lee SS. Targeting Crosstalk of Signaling Pathways among Muscles-Bone-Adipose Tissue: A Promising Therapeutic Approach for Sarcopenia. Aging Dis 2024; 15:1619-1645. [PMID: 37815907 PMCID: PMC11272187 DOI: 10.14336/ad.2023.00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/03/2023] [Indexed: 10/12/2023] Open
Abstract
The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
43
|
Damasceno SCS, Rocha EF, Nobre SAM, Caldas BV, Mendes MF, Esteves EA, de Paula AMB, Santos SHS, Andrade JMO. Diet Based on Pereskia aculeata Miller Flour Increases Muscle Volume and Modulates the Expression of Myokines in Mice Subjected to Resistance Training. J Med Food 2024; 27:749-757. [PMID: 39017636 DOI: 10.1089/jmf.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The study aimed to evaluate the effects of Pereskia aculeata Miller (ora-pro-nobis [OPN]) flour on body and biochemical parameters, thermogenic activity, and molecular expression of markers in the muscle tissue of mice subjected to resistance training (RT). Twelve mice were randomly assigned to two groups (n=6 animals/group): G1: control (Control) fed a standard diet + RT and G2: experimental (OPN) fed a diet based on OPN flour + RT. The RT consisted of a 6-week program using a vertical ladder combined with a fixed weight attached to the animal. Several parameters were measured, including assessment of body composition, biochemical markers, thermogenic activity, and molecular (mRNA expression of interleukin (IL)-6, fibronectin type III domain-containing protein 5 (FNDC5), peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). The OPN group exhibited a decrease in body weight and visceral adiposity, higher energy expenditure, and lipid oxidation rate. In addition, it was observed an increase in muscle volume and in mRNA expression levels of IL-6, FNDC5, PGC-1α, and TFAM. These findings suggest that OPN flour could be a nutritional option to enhance performance in RT.
Collapse
Affiliation(s)
| | | | | | - Bruna Viana Caldas
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
| | - Mateus Ferreira Mendes
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil
| | - Elizabethe Adriana Esteves
- Multicenter Postgraduate Program in Physiological Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Graduate Program in Food and Health, Federal University of Minas Gerais, Brazil
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Graduate Program in Food and Health, Federal University of Minas Gerais, Brazil
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Food and Health, Federal University of Minas Gerais, Brazil
- Graduate Program in Health Sciences, State University of Montes Claros, Minas Gerais, Brazil
- Departmente of Physiopathology, State University of Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
44
|
Tao L, Wang J, Wang K, Liu Q, Li H, Xu S, Gu C, Zhu Y. Exerkine FNDC5/irisin-enriched exosomes promote proliferation and inhibit ferroptosis of osteoblasts through interaction with Caveolin-1. Aging Cell 2024; 23:e14181. [PMID: 38689463 PMCID: PMC11320359 DOI: 10.1111/acel.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Postmenopausal osteoporosis is a prevalent metabolic bone disorder characterized by a decrease in bone mineral density and deterioration of bone microstructure. Despite the high prevalence of this disease, no effective treatment for osteoporosis has been developed. Exercise has long been considered a potent anabolic factor that promotes bone mass via upregulation of myokines secreted by skeletal muscle, exerting long-term osteoprotective effects and few side effects. Irisin was recently identified as a novel myokine that is significantly upregulated by exercise and could increase bone mass. However, the mechanisms underlying exercise-induced muscle-bone crosstalk remain unclear. Here, we identified that polyunsaturated fatty acids (arachidonic acid and docosahexaenoic acid) are increased in skeletal muscles following a 10-week treadmill exercise programme, which then promotes the expression and release of FNDC5/irisin. In osteoblasts, irisin binds directly to Cav1, which recruits and interacts with AMP-activated protein kinase α (AMPKα) to activate the AMPK pathway. Nrf2 is the downstream target of the AMPK pathway and increases the transcription of HMOX1 and Fpn. HMOX1 is involved in regulating the cell cycle and promotes the proliferation of osteoblasts. Moreover, upregulation of Fpn in osteoblasts enhanced iron removal, thereby suppressing ferroptosis in osteoblasts. Additionally, we confirmed that myotube-derived exosomes are involved in the transportation of irisin and enter osteoblasts through caveolae-mediated endocytosis. In conclusion, our findings highlight the crucial role of irisin, present in myotube-derived exosomes, as a crucial regulator of exercise-induced protective effects on bone, which provides novel insights into the mechanisms underlying exercise-dependent treatment of osteoporosis.
Collapse
Affiliation(s)
- Lin Tao
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Jinpeng Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Ke Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Qichang Liu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Hongyang Li
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Site Xu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Chunjian Gu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Yue Zhu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
45
|
Jin S, Kang PM. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:923. [PMID: 39199169 PMCID: PMC11351257 DOI: 10.3390/antiox13080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress plays a significant role in the pathogenesis of cardiovascular diseases, such as myocardial ischemia/reperfusion injury, atherosclerosis, heart failure, and hypertension. This systematic review aims to integrate most relevant studies on oxidative stress management in cardiovascular diseases. We searched relevant literatures in the PubMed database using specific keywords. We put emphasis on those manuscripts that were published more recently and in higher impact journals. We reviewed a total of 200 articles. We examined current oxidative stress managements in cardiovascular diseases, including supplements like resveratrol, vitamins C and E, omega-3 fatty acids, flavonoids, and coenzyme-10, which have shown antioxidative properties and potential cardiovascular benefits. In addition, we reviewed the pharmacological treatments including newly discovered antioxidants and nanoparticles that show potential effects in targeting the specific oxidative stress pathways. Lastly, we examined biomarkers, such as soluble transferrin receptor, transthyretin, and cystatin C in evaluating antioxidant status and identifying cardiovascular risk. By addressing oxidative stress management and mechanisms, this paper emphasizes the importance of maintaining the balance between oxidants and antioxidants in the progression of cardiovascular diseases. This review paper is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), registration # INPLASY202470064.
Collapse
Affiliation(s)
- Soyeon Jin
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA
| |
Collapse
|
46
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
47
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
48
|
Zhang J, Wang P, Pang Q, Wang S, Zhang A. Handgrip strength is associated with cognitive function in older patients with stage 3-5 chronic kidney disease: results from the NHANES. Sci Rep 2024; 14:10329. [PMID: 38710751 DOI: 10.1038/s41598-024-60869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
In this study, we aimed to investigate the association between handgrip strength (HGS) and cognitive performance in stage 3-5 chronic kidney disease (CKD) patients aged ≥ 60 years. This cross-sectional study analyzed data from National Health and Nutrition Examination Survey (NHANES) database 2011-2014. Three tests were used to assess the cognitive performance, including consortium to establish a registry for Alzheimer's disease (CERAD), animal fluency test (AFT), and digit symbol substitution test (DSST). The multivariate linear regression analyses adjusting for confounding factors were utilized to evaluate the association of HGS with cognitive performance. A total of 678 older stage 3-5 CKD patients were included in this study. After adjusting for multiple factors, a higher HGS was positively associated with a higher CERAD-delayed recall and DSST score. In addition, our analysis indicated that HGS probably correlated with better performance of immediate learning ability in male, while working memory, sustained attention, and processing speed in female. HGS may be an important indicator for cognitive deficits in stage 3-5 CKD patients, especially for learning ability and executive function. Further research to explore the sex-specific and domain-specific and possible mechanisms are required.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Peixin Wang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
49
|
Falsetti I, Palmini G, Donati S, Aurilia C, Iantomasi T, Brandi ML. Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia. Biomedicines 2024; 12:928. [PMID: 38672282 PMCID: PMC11048342 DOI: 10.3390/biomedicines12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Menopause, an extremely delicate phase in a woman's life, is characterized by a drop in estrogen levels. This decrease has been associated with the onset of several diseases, including postmenopausal osteoporosis and sarcopenia, which often coexist in the same person, leading to an increased risk of fractures, morbidity, and mortality. To date, there are no approved pharmacological treatments for sarcopenia, while not all of those approved for postmenopausal osteoporosis are beneficial to muscles. In recent years, research has focused on the field of myokines, cytokines, or peptides secreted by skeletal muscle fibers following exercise. Among these, irisin has attracted great interest as it possesses myogenic properties but at the same time exerts anabolic effects on bone and could therefore represent the link between muscle and bone. Therefore, irisin could represent a new therapeutic strategy for the treatment of osteoporosis and also serve as a new biomarker of sarcopenia, thus facilitating diagnosis and pharmacological intervention. The purpose of this review is to provide an updated summary of what we know about the role of irisin in postmenopausal osteoporosis and sarcopenia.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| |
Collapse
|
50
|
de Luis D, Primo D, Izaola O, Gómez JJL. Role of irisin and myostatin on sarcopenia in malnourished patients diagnosed with GLIM criteria. Nutrition 2024; 120:112348. [PMID: 38309190 DOI: 10.1016/j.nut.2023.112348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVES Sarcopenia is characterized by the loss of muscle mass. Skeletal muscle can produce and secrete different molecules called myokines. Irisin and myostatin are antagonistic myokines, and to our knowledge, no studies of both myokines have been conducted in patients with disease-related malnutrition (DRM). This study aimed to investigate the role of circulating irisin and myostatin in sarcopenia in patients with DRM. METHODS The study included 108 outpatients with DRM according to the Global Leadership Initiative on Malnutrition criteria. Participants had a mean age of 67.4 ± 3.4 y. Anthropometric data, muscle mass by ultrasound at the rectus femoris quadriceps (RFQ) level, impedancemetry (skeletal muscle mass [SMM], appendicular SMM [aSMM], and aSMM index [aSMMI]), dynamometry, biochemical parameters, dietary intake, circulating irisin and myostatin levels were determined in all patients. Confirmed sarcopenia was diagnosed as criteria of probable sarcopenia (low muscle strength) plus abnormal aSMMI. RESULTS Of the 108 patients, 44 presented sarcopenia (41%); 64 did not present with the disorder (59%). The following parameters were worse in patients with sarcopenia: Patients without sarcopenia were stronger than those with the disorder (7.9 ±1.3 kg; P = 0.01). Circulating irisin levels were higher in patients without sarcopenia than those with sarcopenia (651.3 ± 221.3 pg/mL; P =0.01). Myostatin levels were similar in both groups. Finally, logistic regression analysis reported a low risk for sarcopenia (odds ratio, 0.39; 95% confidence interval, 0.19-0.92; P = 0.03) in high irisin median levels as a dichotomic parameter after adjusting for body mass index, sex, energy intake, and age. CONCLUSION The present study reported that low levels of serum irisin were closely associated with sarcopenia in patients with DRM.
Collapse
Affiliation(s)
- Daniel de Luis
- Center of Investigation of Endocrinology and Clinical Nutrition, Medicine School, Department of Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid Spain.
| | - David Primo
- Center of Investigation of Endocrinology and Clinical Nutrition, Medicine School, Department of Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid Spain
| | - Olatz Izaola
- Center of Investigation of Endocrinology and Clinical Nutrition, Medicine School, Department of Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid Spain
| | - Juan José López Gómez
- Center of Investigation of Endocrinology and Clinical Nutrition, Medicine School, Department of Endocrinology and Nutrition Hospital Clinico Universitario, University of Valladolid, Valladolid Spain
| |
Collapse
|