1
|
Zhang Y, Hong S, Zhang F, Yao K, Jin S, Gao S, Liu Y, Li Y, Zhang C. Immunoproteasome subunit PSMB8 promotes skeletal muscle regeneration by regulating macrophage phenotyping switch in mice. Am J Physiol Cell Physiol 2025; 328:C1716-C1729. [PMID: 40241316 DOI: 10.1152/ajpcell.00965.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Immunoproteasomes regulate the degradation of ubiquitin-coupled proteins and cell differentiation. However, its precise role in skeletal muscle regeneration remains unclear. In this study, we found that expression of the immunoproteasome subunit, PSMB8, increased significantly in young muscles after cardiotoxin-induced injury, whereas its expression was downregulated in injured aged mice. Genetic knockout or pharmacological inhibition of the immunoproteasome subunit, PSMB8, resulted in impaired muscle regeneration and increased interstitial fibrosis. PSMB8 inhibition by short interfering RNA (siRNA) or inhibitor decreased the differentiation ability of myoblasts. There was increased infiltration of inflammatory cells, especially Ly6Chi proinflammatory macrophages, in Psmb8 deficient muscles. In vitro, Psmb8-deficient macrophages expressed higher levels of proinflammatory cytokines and lower levels of anti-inflammatory cytokines after phagocytosis of myoblast debris, which was associated with increased activation of the NF-κB signaling pathway. Inhibition of the NF-κB pathway improves the regeneration ability and attenuates interstitial fibrosis in Psmb8-deficient muscles after injury. The overexpression of Psmb8 by adenovirus could also improve the regenerative ability of aged muscles.NEW & NOTEWORTHY The immunoproteasome subunit, PSMB8, is essential for efficient muscle regeneration and may be a new therapeutic target for age-related muscle atrophy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Kexin Yao
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shuhui Jin
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingPeople's Republic of China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
2
|
Ren F, Zheng S, Luo H, Yu X, Li X, Song S, Bu W, Sun H. Fibroblast derived C3 promotes the progression of experimental periodontitis through macrophage M1 polarization and osteoclast differentiation. Int J Oral Sci 2025; 17:30. [PMID: 40240339 PMCID: PMC12003657 DOI: 10.1038/s41368-025-00361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 04/18/2025] Open
Abstract
Complement C3 plays a critical role in periodontitis. However, its source, role and underlying mechanisms remain unclear. In our study, by analyzing single-cell sequencing data from mouse model of periodontitis, we identified that C3 is primarily derived from periodontal fibroblasts. Subsequently, we demonstrated that C3a has a detrimental effect in ligature-induced periodontitis. C3ar-/- mice exhibited significantly less destruction of periodontal support tissues compared to wild-type mice, characterized by mild gingival tissue damage and reduced alveolar bone loss. This reduction was associated with decreased production of pro-inflammatory mediators and reduced osteoclast infiltration in the periodontal tissues. Mechanistic studies suggested that C3a could promote macrophage polarization and osteoclast differentiation. Finally, by analyzing single-cell sequencing data from the periodontal tissues of patients with periodontitis, we found that the results observed in mice were consistent with human data. Therefore, our findings clearly demonstrate the destructive role of fibroblast-derived C3 in ligature-induced periodontitis, driven by macrophage M1 polarization and osteoclast differentiation. These data strongly support the feasibility of C3a-targeted interventions for the treatment of human periodontitis.
Collapse
Affiliation(s)
- Feilong Ren
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shize Zheng
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Huanyu Luo
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyi Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, China
| | - Xianjing Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoyi Song
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenhuan Bu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Yang H, Zhang L, Tian X, Li W, Liu Q, Peng Q, Jiang W, Wang G, Lu X. Distinct phenotype and prognosis of immune-mediated necrotizing myopathy based on clinical-serological-pathological classification. Rheumatology (Oxford) 2025; 64:2252-2264. [PMID: 39029922 DOI: 10.1093/rheumatology/keae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2024] [Accepted: 06/15/2024] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE The aim of the study was to investigate the characteristics and prognosis of patients with immune-mediated necrotizing myopathy (IMNM) based on clinical, serological and pathological classification. METHODS A total of 138 patients with IMNM who met the 2018 European Neuromuscular Center criteria for IMNM including 62 anti-SRP, 32 anti-HMGCR-positive and 44 myositis-specific antibody-negative were involved in the study. All patients were followed up and evaluated remission and relapse. Clustering analysis based on clinical, serological and pathological parameters was used to define subgroups. RESULTS Clustering analysis classified IMNM into three clusters. Cluster 1 patients (n = 35) had the highest creatine kinase (CK) levels, the shortest disease course, severe muscle weakness and more inflammation infiltration in muscle biopsy. Cluster 2 patients (n = 79) had the lowest CK level and moderate inflammation infiltrate. Cluster 3 patients (n = 24) had the youngest age of onset, the longest disease course and the least frequency of inflammatory infiltration. Patients in cluster 3 had the longest time-to-remission [median survival time: 61 (18.3, 103.7) vs 20.5 (16.2, 24.9) and 27 (19.6, 34.3) months] and shorter relapse-free time than those in cluster 1 and 2 [median remission time 95% CI 34 (19.9, 48.0) vs 73 (49.0, 68.7) and 73 (48.4, 97.6) months]. Patients with age of onset >55 years, more regeneration of muscle fibres, more CD4+ T infiltration and membrane attack complex deposition had more favourable outcomes regarding time to achieving remission. CONCLUSIONS Stratification combining clinical, serological and pathological features could distinguish phenotypes and prognosis of IMNM. The pathological characteristics may impact the long-term prognosis of patients with IMNM.
Collapse
Affiliation(s)
- Hongxia Yang
- Department of Rheumatology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Lining Zhang
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaolan Tian
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Wenli Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Qingyan Liu
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Qinglin Peng
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Jiang
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Guochun Wang
- Department of Rheumatology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Lu
- Department of Rheumatology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Zhang X, Zhang Y, Chen Y, Ji Y, Lyu Y, Miao Z, Duan X, Liu X. Unraveling the immune system's role in peripheral nerve regeneration: a pathway to enhanced healing. Front Immunol 2025; 16:1540199. [PMID: 40061948 PMCID: PMC11885135 DOI: 10.3389/fimmu.2025.1540199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
Peripheral nerve injury (PNI) represents a common challenge in clinical practice. In contrast to the central nervous system (CNS), the peripheral nervous system (PNS) in mature mammals possesses a limited regenerative capacity. Upon the occurrence of PNI, peripheral nerve regeneration (PNR) is initiated, facilitated by the activation of the immune microenvironment and the intrinsic growth potential of neurons. This regenerative process encompasses several key stages, including distal axon degeneration, myelin breakdown, clearance of myelin debris, inflammatory responses from non-neuronal cells, and subsequent axonal regeneration. The immune response, recognized for its role in clearing myelin debris and modulating the local inflammatory milieu, is crucial for initiating axonal regeneration at the proximal stump of nerves. Nevertheless, the precise mechanisms by which the immune response influences PNI and the strategies to harness this process to augment regeneration remain elusive. This article provides a comprehensive overview of the diverse roles and mechanisms of the immune system in PNR and presents insights into potential therapeutic strategies. Furthermore, the article examines immune-associated signaling pathways and their impact on PNR, underscoring the significance of immune modulation in enhancing patient outcomes with PNI. Ultimately, it encapsulates and forecasts the theoretical and practical directions of this field.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
- Clinical Medical Research Center, Department of Neurosurgery, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 Peolpe’s Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Yanxian Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Yuqing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Yuxiang Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Zengli Miao
- Clinical Medical Research Center, Department of Neurosurgery, Affiliated Wuxi Clinical College of Nantong University, Wuxi No.2 Peolpe’s Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Department of Pharmacy, Affiliated Hospital of Nantong University; School of Life Science, Nantong Laboratory of Development and Diseases; Medical School, Nantong University, Nantong, China
| |
Collapse
|
5
|
Zhou R, Chen J, Tang Y, Wei C, Yu P, Ding X, Zhu L, Yao J, Ouyang Z, Qiao J, Xiong S, Dong L, Yin T, Li H, Feng Y, Cheng L. Multi-omics uncovers immune-modulatory molecules in plasma contributing to resistance exercise-ameliorated locomotor disability after incomplete spinal cord injury. Genome Med 2025; 17:10. [PMID: 39910614 PMCID: PMC11796186 DOI: 10.1186/s13073-025-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Exercise rehabilitation therapy has garnered widespread recognition for its beneficial effects on the restoration of locomotor function in individuals with spinal cord injury (SCI). Notably, resistance exercise has demonstrated significant improvements in muscle strength, coordination, and overall functional recovery. However, to optimize clinical management and mimic exercise-like effects, it is imperative to obtain a comprehensive understanding of the molecular alterations that underlie these positive effects. METHODS We conducted a randomized controlled clinical trial investigating the effects of resistance exercise therapy for incomplete SCI. We integrated the analysis of plasma proteomics and peripheral blood mononuclear cells (PBMC) transcriptomics to explore the molecular and cellular changes induced by resistance exercise. Subsequently, we established a weight-loaded ladder-climbing mouse model to mimic the physiological effects of resistance exercise, and we analyzed the plasma proteome and metabolome, as well as the transcriptomes of PBMC and muscle tissue. Lastly, to confirm the transmissibility of the neuroprotective effects induced by resistance exercise, we intravenously injected plasma obtained from exercised male mice into SCI female mice during the non-acute phase. RESULTS Plasma proteomic and PBMC transcriptomic profiling underscored the notable involvement of the complement pathways and humoral immune response in the process of restoring locomotor function following SCI in the human trial. Moreover, it was emphasized that resistance exercise interventions could effectively modulate these pathways. Through employing plasma proteomic profiling and transcriptomic profiling of PBMC and muscle tissues in mice, our study revealed immunomodulatory responses that parallel those observed in human trials. In addition, our analysis of plasma metabolomics revealed an enhancement in lipid metabolism following resistance exercise. We observed that resistance exercise plasma exhibited significant effects in ameliorating locomotor disability after SCI via reducing demyelination and inhibiting neuronal apoptosis. CONCLUSIONS Our investigation elucidates the molecular alterations associated with resistance exercise therapy promoting recovery of locomotor function following incomplete SCI. Moreover, we demonstrate the direct neuroprotective effects delivered via exercise plasma injection, which facilitates spinal cord repair. Mechanistically, the comprehensive multi-omics analysis involving both human and mice reveals that the principal constituents responsible for the observed neuroprotective effects within the plasma are predominantly immunoregulatory factors, warranting further experimental validation. TRIAL REGISTRATION The study was retrospectively registered on 17 July, 2024, in Chinese Clinical Trial Registry (No.: ChiCTR2400087038) at https://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Ren Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jibao Chen
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Yunhan Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuijin Wei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinmei Ding
- Department of General Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li'ao Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jiajia Yao
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Zengqiang Ouyang
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Jing Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shumin Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liaoliao Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Ye Feng
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Collier-Bain HD, Brown FF, Causer AJ, Ross L, Rothschild-Rodriguez D, Browne N, Eddy R, Cleary KL, Gray JC, Cragg MS, Moore S, Murray J, Turner JE, Campbell JP. Downhill running does not alter blood C1q availability or complement-dependent cytotoxicity of therapeutic monoclonal antibodies against haematological cancer cell lines in vitro. Sci Rep 2024; 14:28239. [PMID: 39548231 PMCID: PMC11568217 DOI: 10.1038/s41598-024-79690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Complement-dependent cytotoxicity (CDC) is a primary mechanism-of-action of monoclonal antibody (mAb) immunotherapies used to treat haematological cancers, including rituximab and daratumumab. However, mAb efficacy may be limited by reduced bioavailability of complement C1q - which activates the complement classical pathway following interactions with mAb-opsonised target cells. C1q is secreted by phagocytes upon recruitment to sites of muscle damage to facilitate muscular repair, hence we hypothesised that muscle damaging exercise may increase C1q 'spill-over' into blood. Additionally, other complement proteins (e.g., C1s) have been reported to increase following ultra-endurance and resistance exercise. Taken together, we hypothesised that muscle damaging exercise could be harnessed to enhance mAb-mediated CDC. In this study, n = 8 healthy males (28 ± 5-years) completed two 45-minute treadmill running protocols: (1) a flat running protocol at a speed 15% above anaerobic threshold, and (2) a downhill running protocol (- 10% slope) at the same speed. Blood samples were collected before, immediately after, and 1-hour, 24-hours, 2-days, and 4-days after exercise. Isolated serum was assessed for C1q by ELISA, and used to measure mAb (rituximab, daratumumab) mediated CDC against two haematological cancer cell lines (Raji, RPMI-8226) in vitro. Isolated plasma was assessed for markers of inflammation (C-reactive protein [CRP]), and muscle damage (creatine kinase [CK]) by turbidimetry. C1q and CDC activity were not different between running protocols and did not change over time (p > 0.05). Significantly greater perceived muscle soreness (p < 0.001) and fluctuations observed from baseline to 24-hours post-exercise in the downhill running trial in CK (+ 171%) and CRP (+ 66%) suggests some degree of muscle damage was present. It is possible that any increase in C1q post-exercise may have been masked by the increase and subsequent interaction with CRP, which utilises C1q to facilitate muscular repair. This is the first study to investigate whether exercise can increase circulating C1q and improve mAb-mediated CDC and our findings show that downhill running exercise does not increase circulating C1q nor improve CDC in vitro.
Collapse
Affiliation(s)
| | - Frankie F Brown
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Adam J Causer
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Lois Ross
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Daniela Rothschild-Rodriguez
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Noah Browne
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Rachel Eddy
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Kirstie L Cleary
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - James E Turner
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - John P Campbell
- Department for Health, University of Bath, Bath, BA2 7AY, UK.
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| |
Collapse
|
7
|
Wojciuk B, Frulenko I, Brodkiewicz A, Kita D, Baluta M, Jędrzejczyk F, Budkowska M, Turkiewicz K, Proia P, Ciechanowicz A, Kostrzewa-Nowak D, Nowak R. The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. Int J Mol Sci 2024; 25:11608. [PMID: 39519159 PMCID: PMC11545998 DOI: 10.3390/ijms252111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The precise molecular processes underlying the complement's activation, which follows exposure to physical stress still remain to be fully elucidated. However, some possible mechanisms could play a role in initiating changes in the complement's activity, which are observed post-exposure to physical stress stimuli. These are mainly based on metabolic shifts that occur in the microenvironment of muscle tissue while performing its function with increased intensity, as well as the adipose tissue's role in sterile inflammation and adipokine secretion. This review aims to discuss the current opinions on the possible link between the complement activation and diet, age, sex, and health disorders with a particular emphasis on endocrinopathies and, furthermore, the type of physical activity and overall physical fitness. It has been indicated that regular physical activity incorporated into therapeutic strategies potentially improves the management of particular diseases, such as, e.g., autoimmune conditions. Moreover, it represents a favorable influence on immunoaging processes. A better understanding of the complement system's interaction with physical activity will support established clinical therapies targeting complement components.
Collapse
Affiliation(s)
- Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Ignacy Frulenko
- Pomeranian Medical University in Szczecin, 1 Rybacka St., 70-204 Szczecin, Poland;
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Dagmara Kita
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Monica Baluta
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Filip Jędrzejczyk
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Karolina Turkiewicz
- Department of Laboratory Diagnostics, University Clinical Hospital No. 2, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdańsk, Poland
| | - Robert Nowak
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
| |
Collapse
|
8
|
Gu J, Xu J, Jiao A, Cai N, Gu T, Wu P, Cheng X, Chen B, Chen Y, Liu X. Comprehensive analysis of single-cell transcriptomics and genetic factors reveals the mechanisms and preventive strategies for the progression from pulmonary fibrosis to lung cancer. Int Immunopharmacol 2024; 140:112803. [PMID: 39094357 DOI: 10.1016/j.intimp.2024.112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) leads to excessive deposition of fibrous connective tissue in the lungs, increasing the risk of lung cancer due to the enhanced activity of fibroblasts (FBs). Fibroblast-mediated collagen fiber deposition creates a tumor-like microenvironment, laying the foundation for tumorigenesis. Clinically, numerous cases of lung cancer induced by pulmonary fibrosis have been observed. In recent years, the study of nucleotide point mutations, which provide more detailed insights than gene expression, has made significant advancements, offering new perspectives for clinical research. METHODS We initially employed Mendelian randomization to ascertain that the initial stage of lung cancer induced by PF belongs to small cell lung cancer (SCLC). Subsequently, pulmonary neuroendocrine cells (PNECs) were identified by using pseudo-time series analysis as cell clusters with carcinogenic potential. We categorized FBs into four groups according to their cellular metabolism, and then analyzed the cellular communication between FBs and PNECs, as well as changes in intracellular pathways of PNECs. Additionally, we examined the characteristic genome of FBs which is significantly associated with PF and investigated the impact of FBs on immune cells in the PF microenvironment. Finally, we explored strategies for preventing the progression from PF to lung cancer. RESULTS The genetic features of cells with carcinogenic potential in PF tissues were revealed, characterized by upregulation of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), Homeobox B2 (HOXB2), Teashirt Zinc Finger Homeobox 2 (TSHZ2), Insulinoma-associated 1 (INSM1), and reduced activity of RE1 Silencing Transcription Factor (REST). FBs characterized by high glycolysis and low tricarboxylic acid (TCA) cycling played a key role in the progression of PF. The microenvironment of PF resembles the tumor microenvironment, providing a conducive immunosuppressive environment for the occurrence of cancer cells. In dendritic cells, rs9265808 is a susceptibility locus for progression from pulmonary fibrosis to lung cancer, mutations at this locus increase the expression of Complement Factor B (CFB), and excessive activation of the complement pathway is a crucial factor leading to lung cancer development in patients with pulmonary fibrosis. Ensuring adequate nutritional supply and physical function is one of the effective measures to prevent progression from pulmonary fibrosis to lung cancer. CONCLUSION CFB promotes lung cancer occurrence by inducing the accumulation and polarization of a large number of monocytes/macrophages in the lungs, driving disease progression by reducing the physical fitness of patients with pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China; The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiansheng Xu
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Annan Jiao
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Ningning Cai
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Tianrui Gu
- School of Pharmacy, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Wu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinyu Cheng
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Bo Chen
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Yang Chen
- The First Clinical Medical College of Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China; Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Zhang C, Li G, Zhang F, Zhang Y, Hong S, Gao S, Liu Y, Du J, Li Y. IL-33 Facilitates Fibro-Adipogenic Progenitors to Establish the Pro-Regenerative Niche after Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405299. [PMID: 39037903 PMCID: PMC11425282 DOI: 10.1002/advs.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Indexed: 07/24/2024]
Abstract
During the process of muscle regeneration post-injury in adults, muscle stem cells (MuSCs) function is facilitated by neighboring cells within the pro-regenerative niche. However, the precise mechanism triggering the initiation of signaling in the pro-regenerative niche remains unknown. Using single-cell RNA sequencing, 14 different muscle cells are comprehensively mapped during the initial stage following injury. Among these, macrophages and fibro-adipogenic progenitor cells (FAPs) exhibit the most pronounced intercellular communication with other cells. In the FAP subclusters, the study identifies an activated FAP phenotype that secretes chemokines, such as CXCL1, CXCL5, CCL2, and CCL7, to recruit macrophages after injury. Il1rl1, encoding the protein of the interleukin-33 (IL-33) receptor, is identified as a highly expressed signature surface marker of the FAP phenotype. Following muscle injury, autocrine IL-33, an alarmin, has been observed to activate quiescent FAPs toward this inflammatory phenotype through the IL1RL1-MAPK/NF-κB signaling pathway. Il1rl1 deficiency results in decreased chemokine expression and recruitment of macrophages, accompanied by impaired muscle regeneration. These findings elucidate a novel mechanism involving the IL-33/IL1RL1 signaling pathway in promoting the activation of FAPs and facilitating muscle regeneration, which can aid the development of therapeutic strategies for muscle-related disorders and injuries.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| |
Collapse
|
10
|
Correia JC, Jannig PR, Gosztyla ML, Cervenka I, Ducommun S, Præstholm SM, Dias JM, Dumont KD, Liu Z, Liang Q, Edsgärd D, Emanuelsson O, Gregorevic P, Westerblad H, Venckunas T, Brazaitis M, Kamandulis S, Lanner JT, Teixeira AI, Yeo GW, Ruas JL. Zfp697 is an RNA-binding protein that regulates skeletal muscle inflammation and remodeling. Proc Natl Acad Sci U S A 2024; 121:e2319724121. [PMID: 39141348 PMCID: PMC11348326 DOI: 10.1073/pnas.2319724121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Skeletal muscle atrophy is a morbidity and mortality risk factor that happens with disuse, chronic disease, and aging. The tissue remodeling that happens during recovery from atrophy or injury involves changes in different cell types such as muscle fibers, and satellite and immune cells. Here, we show that the previously uncharacterized gene and protein Zfp697 is a damage-induced regulator of muscle remodeling. Zfp697/ZNF697 expression is transiently elevated during recovery from muscle atrophy or injury in mice and humans. Sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Notably, although Zfp697 is expressed in several cell types in skeletal muscle, myofiber-specific Zfp697 genetic ablation in mice is sufficient to hinder the inflammatory and regenerative response to muscle injury, compromising functional recovery. We show that Zfp697 is an essential mediator of the interferon gamma response in muscle cells and that it functions primarily as an RNA-interacting protein, with a very high number of miRNA targets. This work identifies Zfp697 as an integrator of cell-cell communication necessary for tissue remodeling and regeneration.
Collapse
Affiliation(s)
- Jorge C. Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Maya L. Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Stine M. Præstholm
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - José M. Dias
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska, StockholmSE-171 77, Sweden
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Kyle D. Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Zhengye Liu
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Daniel Edsgärd
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Håkan Westerblad
- Muscle Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Tomas Venckunas
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Marius Brazaitis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas44221, Lithuania
| | - Johanna T. Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
| | - Ana I. Teixeira
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska, StockholmSE-171 77, Sweden
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
- Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA92093
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA92093
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, StockholmSE-171 77, Sweden
- Department of Pharmacology and Stanley & Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
11
|
Zhang F, Yao K, Liu Y, Zhou M, Zhang Y, Hong S, Wu J, Zhang C. Complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice. BMC Cardiovasc Disord 2024; 24:417. [PMID: 39127656 PMCID: PMC11316375 DOI: 10.1186/s12872-024-04077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Mutations in fibrillin 1 (FBN1) is the main cause of Marfan syndrome (MFS) with thoracic aortic aneurysm (TAA) as the main complication. Activation of the complement system plays a key role in the formation of thoracic and abdominal aortic aneurysms. However, the role of the complement system in MFS-associated aortic aneurysms remains unclear. In this study, we observed increased levels of complement C3a and C5a in the plasma of MFS patients and mouse, and the increased deposition of the activated complement system product C3b/iC3b was also observed in the elastic fiber rupture zone of 3-month-old MFS mice. The expression of C3a receptor (C3aR) was increased in MFS aortas, and recombinant C3a promoted the expression of cytokines in macrophages. The administration of a C3aR antagonist (C3aRA) attenuated the development of thoracic aortic aneurysms in MFS mice. The increased inflammation response and matrix metalloproteinases activities were also attenuated by C3aRA treatment in MFS mice. Therefore, these findings indicate that the complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Kexin Yao
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Jian Wu
- Section of Physiology and Biochemistry of Sports, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Congcong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
12
|
Klement RJ. The optimal amino acid pattern for humans and its implications for nutrition of cancer patients. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:25. [PMID: 39184928 PMCID: PMC11341996 DOI: 10.21037/tbcr-24-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| |
Collapse
|
13
|
Gu HJ, Kim DY, Shin SH, Rahman MS, Lee HS, Pang MG, Kim JM, Ryu BY. Genome-wide transcriptome analysis reveals that Bisphenol A activates immune responses in skeletal muscle. ENVIRONMENTAL RESEARCH 2024; 252:119034. [PMID: 38701888 DOI: 10.1016/j.envres.2024.119034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Cumulative human exposure to the environmental toxin, bisphenol A (BPA), has raised important health concerns in recent decades. However, the direct genomic regulation of BPA in skeletal muscles and its clinical significance are poorly understood. Therefore, we conducted a genome-wide transcriptome analysis after daily oral administration of BPA at the lowest observed adverse-effect level (LOAEL, 50 mg/kg) in male mice for six weeks to explore the gene-expression regulations in skeletal muscle induced by BPA. The primary Gene Ontology terms linked to BPA-dependent, differentially expressed genes at LOAEL comprised adaptive-immune response, positive regulation of T cell activation, and immune system process. The gene-set enrichment analysis disclosed increased complement-associated genes [complement components 3 (C3) and 4B, complement factor D, complement receptor 2, and immunoglobulin lambda constant 2] in the group administered with BPA, with a false-discovery rate of <0.05. Subsequent validation analysis conducted in BPA-fed animal skeletal muscle tissue and in vitro experiments confirmed that BPA induced immune activation, as evidenced by increased levels of C3 and C4α proteins in mice, C2C12 myoblasts, and mouse skeletal muscle cells. In addition, BPA markedly upregulated the transcription of tumor necrosis factor-α (Tnfα) in C2C12 myoblasts and mouse skeletal muscle cells, which was substantially inhibited by 5z-7-oxozeanol and parthenolide, providing further evidence of BPA-induced inflammation in muscle cells. Our bioinformatics and subsequent animal and in vitro validations demonstrate that BPA can activate inflammation in skeletal muscle, which could be a risk factor underlying chronic muscle weakness and wastage.
Collapse
Affiliation(s)
- Hyo Jin Gu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
14
|
Haykin H, Avishai E, Krot M, Ghiringhelli M, Reshef M, Abboud Y, Melamed S, Merom S, Boshnak N, Azulay-Debby H, Ziv T, Gepstein L, Rolls A. Reward system activation improves recovery from acute myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:841-856. [PMID: 39196183 DOI: 10.1038/s44161-024-00491-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 08/29/2024]
Abstract
Psychological processes have a crucial role in the recovery from acute myocardial infarction (AMI), yet the underlying mechanisms of these effects remain elusive. Here we demonstrate the impact of the reward system, a brain network associated with motivation and positive expectations, on the clinical outcomes of AMI in mice. Chemogenetic activation of dopaminergic neurons in the reward system improved the remodeling processes and vascularization after AMI, leading to enhanced cardiac performance compared to controls. These effects were mediated through several physiological mechanisms, including alterations in immune activity and reduced adrenergic input to the liver. We further demonstrate an anatomical connection between the reward system and the liver, functionally manifested by altered transcription of complement component 3, which in turn affects vascularization and recovery from AMI. These findings establish a causal connection between a motivational brain network and recovery from AMI, introducing potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- H Haykin
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - E Avishai
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Krot
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Ghiringhelli
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - M Reshef
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Y Abboud
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - S Merom
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Boshnak
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Azulay-Debby
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Ziv
- Smoler Proteomics Center, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - L Gepstein
- Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel.
| | - A Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
15
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
16
|
Sang M, Liu S, Yan H, Zhang B, Chen S, Wu B, Ma T, Jiang H, Zhao P, Sun G, Gao X, Zang H, Cheng Y, Li C. Synergistic detoxification efficiency and mechanism of triclocarban degradation by a bacterial consortium in the liver-gut-microbiota axis of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134178. [PMID: 38608581 DOI: 10.1016/j.jhazmat.2024.134178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to human health with long-term exposure. Here, Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 were utilized to degrade TCC at environmental related concentrations for enhancing TCC biodegradation and investigating whether the toxicity of intermediate metabolites is lower than that of the parent compound. The results demonstrated that the bacterial consortium could degrade TCC by 82.0% within 7 days. The calculated 96 h LC50 for TCC, as well as its main degradation product 3,4-Dichloroaniline (DCA) were 0.134 mg/L and 1.318 mg/L respectively. Biodegradation also alleviated histopathological lesions induced by TCC in zebrafish liver and gut tissues. Liver transcriptome analysis revealed that biodegradation weakened differential expression of genes involved in disrupted immune regulation and lipid metabolism caused by TCC, verified through RT-qPCR analysis and measurement of related enzyme activities and protein contents. 16 S rRNA sequencing indicated that exposure to TCC led to gut microbial dysbiosis, which was efficiently improved through TCC biodegradation, resulting in decreased relative abundances of major pathogens. Overall, this study evaluated potential environmental risks associated with biodegradation of TCC and explored possible biodetoxification mechanisms, providing a theoretical foundation for efficient and harmless bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Mingyu Sang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyu Liu
- Heilongjiang Provincial Natural Resources Rights and Interests Investigation and Monitoring Institute, Harbin 150030, China
| | - Haohao Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guanjun Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Gao
- Heilongjiang Boneng Green Energy Technology Co., Ltd, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yi Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
17
|
Hu P. Effects of the immune system on muscle regeneration. Curr Top Dev Biol 2024; 158:239-251. [PMID: 38670708 DOI: 10.1016/bs.ctdb.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we provide an overview of the functions of acute inflammation in muscle regeneration.
Collapse
Affiliation(s)
- Ping Hu
- The 10th People's Hospital affiliated to Tongji University, Shanghai, P. R. China.
| |
Collapse
|
18
|
Gong C, Jiao C, Liang H, Ma Y, Wu Q, Xie Y. Exome-Based Amino Acid Optimization: A Dietary Strategy to Satisfy Human Nutritional Demands and Enhance Muscle Strength in Breast Tumor Mice Undergoing Chemotherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7089-7099. [PMID: 38512774 DOI: 10.1021/acs.jafc.3c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Breast cancer patients undergoing chemotherapy often experience muscle wasting and weakness, which impact their quality of life. A potential solution lies in customizing amino acid compositions based on exome-derived formulations (ExAAs). The study hypothesized that tailoring dietary amino acids using ExAAs could enhance muscle health. Theoretical amino acid requirements were calculated from the genome's exome region, and a breast cancer mouse model undergoing paclitaxel treatment was established. The mice were supplemented with a cancer-specific nutritional formula (QJS), and the effects of QJS and amino acid-adjusted QJS (adjQJS) were compared. Both formulations improved the nutritional status without compromising tumor growth. Notably, adjQJS significantly enhanced muscle strength compared to QJS (1.51 ± 0.25 vs. 1.30 ± 0.08 fold change, p < 0.05). Transcriptome analysis revealed alterations in complement and coagulation cascades, with an observed upregulation of C3 gene expression in adjQJS. Immune regulation also changed, showing a decrease in B cells and an increase in monocytes in skeletal muscle with adjQJS. Importantly, adjQJS resulted in a notable increase in Alistipes abundance compared to QJS (10.19 ± 0.04% vs. 5.03 ± 1.75%). This study highlights the potential of ExAAs as valuable guide for optimizing amino acid composition in diets for breast cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Congcong Gong
- South China University of Technology, Guangzhou 510070, PrR. China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510070, PR. China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510070, PR. China
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, PR. China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510070, PR. China
| | - Yuxin Ma
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, PR. China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR. China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR. China
| |
Collapse
|
19
|
Qi B, Li Y, Peng Z, Luo Z, Zhang X, Chen J, Li G, Sun Y. Macrophage-Myofibroblast Transition as a Potential Origin for Skeletal Muscle Fibrosis After Injury via Complement System Activation. J Inflamm Res 2024; 17:1083-1094. [PMID: 38384372 PMCID: PMC10880461 DOI: 10.2147/jir.s450599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Acute skeletal muscle injury is common in sports. The injured muscle cannot fully recover due to fibrosis resulting from myofibroblasts. Understanding the origin of fibroblasts is, therefore, important for the development of anti-fibrotic therapies. Accumulating evidence shows that a mechanism called macrophage-myofibroblast transition (MMT) can lead to tissue or organ fibrosis, yet it is still unclear whether MMT exists in skeletal muscle and the exact mechanisms. METHODS Single-cell transcriptome of mice skeletal muscle after acute injury was analyzed with a specific attention on the process of MMT. Cell-cell interaction network, pseudotime trajectory analysis, Gene Ontology (GO), and Kyoto Genome Encyclopedia (KEGG) were conducted. A series of experiments in vivo and in vitro were launched for verification. RESULTS Single cell transcriptomic analysis indicated that, following acute injury, there were much interactions between macrophages and myofibroblasts. A detailed analysis on macrophages indicated that, CD68+α-SMA+ cells, which represented the status of MMT, mainly appeared at five days post-injury. KEGG/GO analysis underlined the involvement of complement system, within which C3ar1, C1qa, C1qb, and C1qc were up-regulated. Trajectory analysis also confirmed a potential shift from macrophages to myofibroblasts. These findings were verified by histological study in mice skeletal muscle, that there were much MMT cells at five days, declined gradually, and vanished 14 days after trauma, when there was remarkable fibrosis formation within the injured muscle. Moreover, C3a stimulation could directly induce MMT in BMDMs. CONCLUSION Fibrosis following acute injury is disastrous to skeletal muscle, but the origin of myofibroblasts remains unclear. We proved that, following acute injury, macrophage-myofibroblast transition happened in skeletal muscle, which may contribute to fibrosis formation. This phenomenon mainly occurred at five days post-injury. The complement system can activate MMT. More evidence is needed to directly support the pro-fibrotic role of MMT in skeletal muscle fibrosis after acute injury.
Collapse
Affiliation(s)
- Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Yuqi Li
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoqi Li
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Piao C, Zhang WM, Deng J, Zhou M, Liu TT, Zheng S, Jia LX, Song WC, Liu Y, Du J. Activation of the alternative complement pathway modulates inflammation in thoracic aortic aneurysm/dissection. Am J Physiol Cell Physiol 2024; 326:C647-C658. [PMID: 38189133 DOI: 10.1152/ajpcell.00210.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is a lethal vascular disease, and several pathological factors participate in aortic medial degeneration. We previously discovered that the complement C3a-C3aR axis in smooth muscle cells promotes the development of thoracic aortic dissection (TAD) through regulation of matrix metalloproteinase 2. However, discerning the specific complement pathway that is activated and elucidating how inflammation of the aortic wall is initiated remain unknown. We ascertained that the plasma levels of C3a and C5a were significantly elevated in patients with TAD and that the levels of C3a, C4a, and C5a were higher in acute TAD than in chronic TAD. We also confirmed the activation of the complement in a TAD mouse model. Subsequently, knocking out Cfb (Cfb) or C4 in mice with TAD revealed that the alternative pathway and Cfb played a significant role in the TAD process. Activation of the alternative pathway led to generation of the anaphylatoxins C3a and C5a, and knocking out their receptors reduced the recruitment of inflammatory cells to the aortic wall. Moreover, we used serum from wild-type mice or recombinant mice Cfb as an exogenous source of Cfb to treat Cfb KO mice and observed that it exacerbated the onset and rupture of TAD. Finally, we knocked out Cfb in the FBN1C1041G/+ Marfan-syndrome mice and showed that the occurrence of TAA was reduced. In summary, the alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.NEW & NOTEWORTHY The alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.
Collapse
Affiliation(s)
- Chunmei Piao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Mei Zhang
- Department of Respiratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Deng
- School of Basic Medical Sciences, Yanbian University, Yanji, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Chao Song
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
21
|
Xu C, Hutchins ED, Eckalbar W, Pendarvis K, Benson DM, Lake DF, McCarthy FM, Kusumi K. Comparative proteomic analysis of tail regeneration in the green anole lizard, Anolis carolinensis. NATURAL SCIENCES (WEINHEIM, GERMANY) 2024; 4:e20210421. [PMID: 38505006 PMCID: PMC10947082 DOI: 10.1002/ntls.20210421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth D. Hutchins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Walter Eckalbar
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: School of Medicine, University of California, San Francisco, California, USA
| | - Ken Pendarvis
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Derek M. Benson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Fiona M. McCarthy
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
22
|
Barenie MJ, Escalera A, Carter SJ, Grange HE, Paris HL, Krinsky D, Sogard AS, Schlader ZJ, Fly AD, Mickleborough TD. Grass-Fed and Non-Grass-Fed Whey Protein Consumption Do Not Attenuate Exercise-Induced Muscle Damage and Soreness in Resistance-Trained Individuals: A Randomized, Placebo-Controlled Trial. J Diet Suppl 2023; 21:344-373. [PMID: 37981793 DOI: 10.1080/19390211.2023.2282470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.
Collapse
Affiliation(s)
- Matthew J Barenie
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
- Center for the Study of Obesity, College of Public Health, University of AR for Medical Sciences, Little Rock, Arkansas, USA
| | - Albaro Escalera
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Stephen J Carter
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Hope E Grange
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, California, USA
| | - Danielle Krinsky
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Abigail S Sogard
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| | - Alyce D Fly
- Department of Nutrition and Health Science, Ball State University, Muncie, Indiana, USA
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, IN University, Bloomington, Indiana, USA
| |
Collapse
|
23
|
Shen J, Zhao S, Peng M, Li Y, Zhang L, Li X, Hu Y, Wu M, Xiang S, Wu X, Liu J, Zhang B, Chen Z, Lin D, Liu H, Tang W, Chen J, Sun X, Liao Q, Hide G, Zhou Z, Lun ZR, Wu Z. Macrophage-mediated trogocytosis contributes to destroying human schistosomes in a non-susceptible rodent host, Microtus fortis. Cell Discov 2023; 9:101. [PMID: 37794085 PMCID: PMC10550985 DOI: 10.1038/s41421-023-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Schistosoma parasites, causing schistosomiasis, exhibit typical host specificity in host preference. Many mammals, including humans, are susceptible to infection, while the widely distributed rodent, Microtus fortis, exhibits natural anti-schistosome characteristics. The mechanisms of host susceptibility remain poorly understood. Comparison of schistosome infection in M. fortis with the infection in laboratory mice (highly sensitive to infection) offers a good model system to investigate these mechanisms and to gain an insight into host specificity. In this study, we showed that large numbers of leukocytes attach to the surface of human schistosomes in M. fortis but not in mice. Single-cell RNA-sequencing analyses revealed that macrophages might be involved in the cell adhesion, and we further demonstrated that M. fortis macrophages could be mediated to attach and kill schistosomula with dependence on Complement component 3 (C3) and Complement receptor 3 (CR3). Importantly, we provided direct evidence that M. fortis macrophages could destroy schistosomula by trogocytosis, a previously undescribed mode for killing helminths. This process was regulated by Ca2+/NFAT signaling. These findings not only elucidate a novel anti-schistosome mechanism in M. fortis but also provide a better understanding of host parasite interactions, host specificity and the potential generation of novel strategies for schistosomiasis control.
Collapse
Affiliation(s)
- Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Siyu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Mei Peng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yunyi Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Suoyu Xiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Xiaoying Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Beibei Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zebin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Huanyao Liu
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyan Tang
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Immunology, Center for Precision Medicine and Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Qi Liao
- Institute of Drug Discovery Technology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Geoff Hide
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Zhijun Zhou
- Department of Laboratory Animals, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.
| | - Zhao-Rong Lun
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK.
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Gao S, Huang S, Zhang Y, Fang G, Liu Y, Zhang C, Li Y, Du J. The transcriptional regulator KLF15 is necessary for myoblast differentiation and muscle regeneration by activating FKBP5. J Biol Chem 2023; 299:105226. [PMID: 37673339 PMCID: PMC10622842 DOI: 10.1016/j.jbc.2023.105226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Successful muscle regeneration following injury is essential for functional homeostasis of skeletal muscles. Krüppel-like factor 15 (KLF15) is a metabolic transcriptional regulator in the muscles. However, little is known regarding its function in muscle regeneration. Here, we examined microarray datasets from the Gene Expression Omnibus database, which indicated downregulated KLF15 in muscles from patients with various muscle diseases. Additionally, we found that Klf15 knockout (Klf15KO) impaired muscle regeneration following injury in mice. Furthermore, KLF15 expression was robustly induced during myoblast differentiation. Myoblasts with KLF15 deficiency showed a marked reduction in their fusion capacity. Unbiased transcriptome analysis of muscles on day 7 postinjury revealed downregulated genes involved in cell differentiation and metabolic processes in Klf15KO muscles. The FK506-binding protein 51 (FKBP5), a positive regulator of myoblast differentiation, was ranked as one of the most strongly downregulated genes in the Klf15KO group. A mechanistic search revealed that KLF15 binds directly to the promoter region of FKBP5 and activates FKBP5 expression. Local delivery of FKBP5 rescued the impaired muscle regeneration in Klf15KO mice. Our findings reveal a positive regulatory role of KLF15 in myoblast differentiation and muscle regeneration by activating FKBP5 expression. KLF15 signaling may be a novel therapeutic target for muscle disorders associated with injuries or diseases.
Collapse
Affiliation(s)
- Shijuan Gao
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shan Huang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanhong Zhang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guangming Fang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Congcong Zhang
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yulin Li
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jie Du
- Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Fu K, Cao L, Tang Y, Zhao J, Xiong K, Hong C, Huang C. The anti-myotoxic effects and mechanisms of Sinonatrix annularis serum and a novel plasma metalloproteinase inhibitor towards Deinagkistrodon acutus envenomation. Toxicol Lett 2023; 388:13-23. [PMID: 37805084 DOI: 10.1016/j.toxlet.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Non-venomous snakes commonly evolve natural resistance to venom to escape predators. Sinonatrix annularis serum has been shown to inhibit Deinagkistrodon acutus venom-induced hemorrhage and upregulation of serum CK, CK-MB, LDH, AST and ALT levels. Using TMT-labeled proteomics analysis, 168 proteins were found to be altered significantly in the envenomed gastrocnemius muscle and categorized into pathways such as complement and coagulation cascades, leukocyte transendothelial migration, and JAK/STAT signaling. These alterations were mitigated by S. annularis serum. Subsequently, a novel metalloproteinase inhibitor, SaMPI, was isolated from S. annularis serum by two-step chromatography. It showed strong antidotal effects against D. acutus envenomation, including inhibition of subcutaneous bleeding caused by crude venom and DaMP (a metalloproteinase derived from D. acutus) activity in a 1:1 ratio. Histology and immunoblotting analyses demonstrated that SaMPI mitigated myonecrosis, reduced neutrophil infiltration and local inflammatory factor release, and retarded JAK/STAT and MAPK signaling activation. Analysis of the SaMPI gene cloned by 5'-RACE revealed a shared sequence identity of 58-79% with other SVMP inhibitors. These findings demonstrate the protective effects of SaMPI and indicate its potential value as a candidate for viper bite adjuvant therapy.
Collapse
Affiliation(s)
- Kepu Fu
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Liyun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang 330038, Jiangxi, China
| | - Yitao Tang
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianqi Zhao
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Kejia Xiong
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Congjiang Hong
- Department of Breast Surgery, Ganxi Cancer Hospital, Pingxiang 337099, Jiangxi, China
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
26
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
27
|
Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220123. [PMID: 37305914 PMCID: PMC10258673 DOI: 10.1098/rstb.2022.0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
28
|
Tong Z, Li H, Jin Y, Sheng L, Ying M, Liu Q, Wang C, Teng C. Mechanisms of ferroptosis with immune infiltration and inflammatory response in rotator cuff injury. Genomics 2023; 115:110645. [PMID: 37230182 DOI: 10.1016/j.ygeno.2023.110645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The processes driving ferroptosis and rotator cuff (RC) inflammation are yet unknown. The mechanism of ferroptosis and inflammation involved in the development of RC tears was investigated. The Gene Expression Omnibus database was used to obtain the microarray data relevant to the RC tears for further investigation. In this study, we created an RC tears rat model for in vivo experimental validation. For the additional function enrichment analysis, 10 hub ferroptosis-related genes were chosen to construct the correlation regulation network. In RC tears, it was discovered that genes related to hub ferroptosis and hub inflammatory response were strongly correlated. The outcomes of in vivo tests showed that RC tears were related to Cd68-Cxcl13, Acsl4-Sat1, Acsl3-Eno3, Acsl3-Ccr7, and Ccr7-Eno3 pairings in regulating ferroptosis and inflammatory response. Thus, our results show an association between ferroptosis and inflammation, providing a new avenue to explore the clinical treatment of RC tears.
Collapse
Affiliation(s)
- Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Huimin Li
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Yanglei Jin
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Lingchao Sheng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Mingshuai Ying
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Qixue Liu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Chenhuan Wang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China..
| |
Collapse
|
29
|
Correia JC, Jannig PR, Gosztyla ML, Cervenka I, Ducommun S, Præstholm SM, Dumont K, Liu Z, Liang Q, Edsgärd D, Emanuelsson O, Gregorevic P, Westerblad H, Venckunas T, Brazaitis M, Kamandulis S, Lanner JT, Yeo GW, Ruas JL. Zfp697 is an RNA-binding protein that regulates skeletal muscle inflammation and regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544338. [PMID: 37398033 PMCID: PMC10312635 DOI: 10.1101/2023.06.12.544338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Muscular atrophy is a mortality risk factor that happens with disuse, chronic disease, and aging. Recovery from atrophy requires changes in several cell types including muscle fibers, and satellite and immune cells. Here we show that Zfp697/ZNF697 is a damage-induced regulator of muscle regeneration, during which its expression is transiently elevated. Conversely, sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Myofiber-specific Zfp697 ablation hinders the inflammatory and regenerative response to muscle injury, compromising functional recovery. We uncover Zfp697 as an essential interferon gamma mediator in muscle cells, interacting primarily with ncRNAs such as the pro-regenerative miR-206. In sum, we identify Zfp697 as an integrator of cell-cell communication necessary for tissue regeneration.
Collapse
Affiliation(s)
- Jorge C. Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Paulo R. Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Maya L. Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Stine M. Præstholm
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Kyle Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Zhengye Liu
- Molecular Muscle Physiology and Pathophysiology. Department of Physiology and Pharmacology, Biomedicum. Karolinska Institutet. SE-171 77, Stockholm. Sweden
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Edsgärd
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Biotechnology, Chemistry and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Håkan Westerblad
- Muscle Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| | - Tomas Venckunas
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Johanna T. Lanner
- Molecular Muscle Physiology and Pathophysiology. Department of Physiology and Pharmacology, Biomedicum. Karolinska Institutet. SE-171 77, Stockholm. Sweden
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jorge L. Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum. Karolinska. SE-171 77, Stockholm, Sweden
| |
Collapse
|
30
|
Graca FA, Stephan A, Minden-Birkenmaier BA, Shirinifard A, Wang YD, Demontis F, Labelle M. Platelet-derived chemokines promote skeletal muscle regeneration by guiding neutrophil recruitment to injured muscles. Nat Commun 2023; 14:2900. [PMID: 37217480 DOI: 10.1038/s41467-023-38624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Benjamin A Minden-Birkenmaier
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Oncology, Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
31
|
Ah-Pine F, Malaterre-Septembre A, Bedoui Y, Khettab M, Neal JW, Freppel S, Gasque P. Complement Activation and Up-Regulated Expression of Anaphylatoxin C3a/C3aR in Glioblastoma: Deciphering the Links with TGF-β and VEGF. Cancers (Basel) 2023; 15:cancers15092647. [PMID: 37174113 PMCID: PMC10177042 DOI: 10.3390/cancers15092647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The complement (C) innate immune system has been shown to be activated in the tumor microenvironment of various cancers. The C may support tumor growth by modulating the immune response and promoting angiogenesis through the actions of C anaphylatoxins (e.g., C5a, C3a). The C has important double-edged sword functions in the brain, but little is known about its role in brain tumors. Hence, we analyzed the distribution and the regulated expression of C3a and its receptor C3aR in various primary and secondary brain tumors. We found that C3aR was dramatically upregulated in Grade 4 diffuse gliomas, i.e., glioblastoma multiforme, IDH-wildtype (GBM) and astrocytoma, IDH-mutant, Grade 4, and was much less expressed in other brain tumors. C3aR was observed in tumor-associated macrophages (TAM) expressing CD68, CD18, CD163, and the proangiogenic VEGF. Robust levels of C3a were detected in the parenchyma of GBM as a possible result of Bb-dependent C activation of the alternative C pathway. Interestingly, in vitro models identified TGF-β1 as one of the most potent growth factors that upregulate VEGF, C3, and C3aR in TAM (PMA-differentiated THP1) cell lines. Further studies should help to delineate the functions of C3a/C3aR on TAMs that promote chemotaxis/angiogenesis in gliomas and to explore the therapeutic applications of C3aR antagonists for brain tumors.
Collapse
Affiliation(s)
- Franck Ah-Pine
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Service d'Anatomie et Cytologie Pathologiques, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Axelle Malaterre-Septembre
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| | - Yosra Bedoui
- Service d'Anatomie et Cytologie Pathologiques, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Mohamed Khettab
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Service d'Oncologie Médicale, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - James W Neal
- Institute of Life Sciences, Swansea Medical School, Sketty, Swansea SA2 8PY, UK
| | - Sébastien Freppel
- Service de Neurochirurgie, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Philippe Gasque
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale ZOI (LICE OI), CHU de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| |
Collapse
|
32
|
Wang K, Smith SH, Iijima H, Hettinger ZR, Mallepally A, Shroff SG, Ambrosio F. Bioengineered 3D Skeletal Muscle Model Reveals Complement 4b as a Cell-Autonomous Mechanism of Impaired Regeneration with Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207443. [PMID: 36650030 DOI: 10.1002/adma.202207443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of cell-autonomous skeletal muscle changes after injury can lead to novel interventions to improve functional recovery in an aged population. However, major knowledge gaps persist owing to limitations of traditional biological aging models. 2D cell culture represents an artificial environment, while aging mammalian models are contaminated by influences from non-muscle cells and other organs. Here, a 3D muscle aging system is created to overcome the limitations of these traditional platforms. It is shown that old muscle constructs (OMC) manifest a sarcopenic phenotype, as evidenced by hypotrophic myotubes, reduced contractile function, and decreased regenerative capacity compared to young muscle constructs. OMC also phenocopy the regenerative responses of aged muscle to two interventions, pharmacological and biological. Interrogation of muscle cell-specific mechanisms that contribute to impaired regeneration over time further reveals that an aging-induced increase of complement component 4b (C4b) delays muscle progenitor cell amplification and impairs functional recovery. However, administration of complement factor I, a C4b inactivator, improves muscle regeneration in vitro and in vivo, indicating that C4b inhibition may be a novel approach to enhance aged muscle repair. Collectively, the model herein exhibits capabilities to study cell-autonomous changes in skeletal muscle during aging, regeneration, and intervention.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen H Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Adarsh Mallepally
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
33
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
34
|
Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice. Cell Death Dis 2022; 13:975. [PMID: 36402750 PMCID: PMC9675822 DOI: 10.1038/s41419-022-05416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy.
Collapse
|
35
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
36
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
37
|
Wang S, Du L, Yuan S, Peng GH. Complement C3a receptor inactivation attenuates retinal degeneration induced by oxidative damage. Front Neurosci 2022; 16:951491. [PMID: 36110094 PMCID: PMC9469738 DOI: 10.3389/fnins.2022.951491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal degeneration causes vision loss and threatens the health of elderly individuals worldwide. Evidence indicates that the activation of the complement system is associated with retinal degeneration. However, the mechanism of complement signaling in retinal degeneration needs to be further studied. In this study, we show that the expression of C3 and C3a receptor (C3ar1) is positively associated with the inflammatory response and retinal degeneration. Genetic deletion of C3 and pharmacological inhibition of C3ar1 resulted in the alleviation of neuroinflammation, prevention of photoreceptor cell apoptosis and restoration of visual function. RNA sequencing (RNA-seq) identified a C3ar1-dependent network shown to regulate microglial activation and astrocyte gliosis formation. Mechanistically, we found that STAT3 functioned downstream of the C3-C3ar1 pathway and that the C3ar1-STAT3 pathway functionally mediated the immune response and photoreceptor cell degeneration in response to oxidative stress. These findings reveal an important role of C3ar1 in oxidative-induced retinal degeneration and suggest that intervention of the C3ar1 pathway may alleviate retinal degeneration.
Collapse
Affiliation(s)
- Shaojun Wang
- Senior Department of Ophthalmology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Du
- Senior Department of Ophthalmology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Shunzong Yuan
- Department of Lymphoma, Head and Neck Cancer, The Fifth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital (Former 307th Hospital of the PLA), Beijing, China
- *Correspondence: Shunzong Yuan,
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Guang-Hua Peng,
| |
Collapse
|
38
|
Stengaard K, Hejbøl EK, Jensen PT, Degn M, Ta TML, Stensballe A, Andersen DC, Schrøder HD, Lambertsen KL, Frich LH. Early-stage inflammation changes in supraspinatus muscle after rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1344-1356. [PMID: 35150831 DOI: 10.1016/j.jse.2021.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/12/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff (RC) tendon tear leads to impaired shoulder function and pain. The supraspinatus (SS) tendon is most often affected, but the biological response of the SS muscle to SS tendon tear is largely unknown. This study aimed to investigate time-dependent muscle inflammation, degeneration, fatty infiltration, and regeneration in experimental SS tear conditions. METHODS Forty-five C57BL/6 mice were subjected to SS tendon tear and allowed to recover for 1, 3, 5, 7, 14, or 28 days. The extent of muscle damage was examined using histologic, flow cytometric, proteomic, and chemiluminescence analyses. RESULTS We found that muscle inflammation peaked around day 5 with increased monocyte infiltration and increased cytokine levels in the ipsilateral compared to the contralateral SS muscle. Bioinformatics analysis of proteomics on mice that survived 5 days after RC tendon tear revealed upregulated proteins involved in "neutrophil activation involved in immune response" and "extracellular matrix organization," whereas "skeletal muscle tissue development and contraction" and "respiratory electron transport chain" were among the most downregulated. Histologic analysis of collagen showed increased collagen accumulation and fatty infiltration of the ipsilateral SS over time. Finally, we observed time- and lesion-dependent changes in satellite cell and fibro-adipogenic progenitor populations. CONCLUSION Altogether, we demonstrate that the SS muscle shows severe signs of acute inflammation, early degeneration, and fatty infiltration, as well as reduced regenerative potential following SS tendon tear.
Collapse
Affiliation(s)
- Kira Stengaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Eva Kildall Hejbøl
- Department of Orthopedics, Hospital Sønderjylland, Region of Southern Denmark, Denmark
| | - Peter Toft Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thi My Linh Ta
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Institute of Clinical Research, University of Southern, Denmark
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Frich
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Orthopedics, Hospital Sønderjylland, Region of Southern Denmark, Denmark; Orthopedic Research Unit, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
39
|
Padín-González E, Lancaster P, Bottini M, Gasco P, Tran L, Fadeel B, Wilkins T, Monopoli MP. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front Bioeng Biotechnol 2022; 10:882363. [PMID: 35747492 PMCID: PMC9209764 DOI: 10.3389/fbioe.2022.882363] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022] Open
Abstract
Poly (ethylene glycol) (PEG) is a widely used polymer in a variety of consumer products and in medicine. PEGylation refers to the conjugation of PEG to drugs or nanoparticles to increase circulation time and reduce unwanted host responses. PEG is viewed as being well-tolerated, but previous studies have identified anti-PEG antibodies and so-called pseudoallergic reactions in certain individuals. The increased use of nanoparticles as contrast agents or in drug delivery, along with the introduction of mRNA vaccines encapsulated in PEGylated lipid nanoparticles has brought this issue to the fore. Thus, while these vaccines have proven to be remarkably effective, rare cases of anaphylaxis have been reported, and this has been tentatively ascribed to the PEGylated carriers, which may trigger complement activation in susceptible individuals. Here, we provide a general overview of the use of PEGylated nanoparticles for pharmaceutical applications, and we discuss the activation of the complement cascade that might be caused by PEGylated nanomedicines for a better understanding of these immunological adverse reactions.
Collapse
Affiliation(s)
| | - Pearl Lancaster
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, United Kingdom
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Terence Wilkins
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
- Correspondence: Terence Wilkins, ; Marco P. Monopoli,
| | - Marco P. Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Correspondence: Terence Wilkins, ; Marco P. Monopoli,
| |
Collapse
|
40
|
Muire PJ, Thompson MA, Christy RJ, Natesan S. Advances in Immunomodulation and Immune Engineering Approaches to Improve Healing of Extremity Wounds. Int J Mol Sci 2022; 23:4074. [PMID: 35456892 PMCID: PMC9032453 DOI: 10.3390/ijms23084074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
Delayed healing of traumatic wounds often stems from a dysregulated immune response initiated or exacerbated by existing comorbidities, multiple tissue injury or wound contamination. Over decades, approaches towards alleviating wound inflammation have been centered on interventions capable of a collective dampening of various inflammatory factors and/or cells. However, a progressive understanding of immune physiology has rendered deeper knowledge on the dynamic interplay of secreted factors and effector cells following an acute injury. There is a wide body of literature, both in vitro and in vivo, abstracted on the immunomodulatory approaches to control inflammation. Recently, targeted modulation of the immune response via biotechnological approaches and biomaterials has gained attention as a means to restore the pro-healing phenotype and promote tissue regeneration. In order to fully realize the potential of these approaches in traumatic wounds, a critical and nuanced understanding of the relationships between immune dysregulation and healing outcomes is needed. This review provides an insight on paradigm shift towards interventional approaches to control exacerbated immune response following a traumatic injury from an agonistic to a targeted path. We address such a need by (1) providing a targeted discussion of the wound healing processes to assist in the identification of novel therapeutic targets and (2) highlighting emerging technologies and interventions that utilize an immunoengineering-based approach. In addition, we have underscored the importance of immune engineering as an emerging tool to provide precision medicine as an option to modulate acute immune response following a traumatic injury. Finally, an overview is provided on how an intervention can follow through a successful clinical application and regulatory pathway following laboratory and animal model evaluation.
Collapse
Affiliation(s)
- Preeti J. Muire
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| | | | | | - Shanmugasundaram Natesan
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| |
Collapse
|
41
|
Multipopulational transcriptome analysis of post-weaned beef cattle at arrival further validates candidate biomarkers for predicting clinical bovine respiratory disease. Sci Rep 2021; 11:23877. [PMID: 34903778 PMCID: PMC8669006 DOI: 10.1038/s41598-021-03355-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine respiratory disease (BRD) remains the leading infectious disease in post-weaned beef cattle. The objective of this investigation was to contrast the at-arrival blood transcriptomes from cattle derived from two distinct populations that developed BRD in the 28 days following arrival versus cattle that did not. Forty-eight blood samples from two populations were selected for mRNA sequencing based on even distribution of development (n = 24) or lack of (n = 24) clinical BRD within 28 days following arrival; cattle which developed BRD were further stratified into BRD severity cohorts based on frequency of antimicrobial treatment: treated once (treated_1) or treated twice or more and/or died (treated_2+). Sequenced reads (~ 50 M/sample, 150 bp paired-end) were aligned to the ARS-UCD1.2 bovine genome assembly. One hundred and thirty-two unique differentially expressed genes (DEGs) were identified between groups stratified by disease severity (healthy, n = 24; treated_1, n = 13; treated_2+, n = 11) with edgeR (FDR ≤ 0.05). Differentially expressed genes in treated_1 relative to both healthy and treated_2+ were predicted to increase neutrophil activation, cellular cornification/keratinization, and antimicrobial peptide production. Differentially expressed genes in treated_2+ relative to both healthy and treated_1 were predicted to increase alternative complement activation, decrease leukocyte activity, and increase nitric oxide production. Receiver operating characteristic (ROC) curves generated from expression data for six DEGs identified in our current and previous studies (MARCO, CFB, MCF2L, ALOX15, LOC100335828 (aka CD200R1), and SLC18A2) demonstrated good-to-excellent (AUC: 0.800–0.899; ≥ 0.900) predictability for classifying disease occurrence and severity. This investigation identifies candidate biomarkers and functional mechanisms in at arrival blood that predicted development and severity of BRD.
Collapse
|
42
|
Fu G, Chen T, Wu J, Jiang T, Tang D, Bonaroti J, Conroy J, Scott MJ, Deng M, Billiar TR. Single-Cell Transcriptomics Reveals Compartment-Specific Differences in Immune Responses and Contributions for Complement Factor 3 in Hemorrhagic Shock Plus Tissue Trauma. Shock 2021; 56:994-1008. [PMID: 33710107 PMCID: PMC8429528 DOI: 10.1097/shk.0000000000001765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Hemorrhagic shock with tissue trauma (HS/T) leads to the activation of a system-wide immune-inflammatory response that involves all organs and body compartments. Recent advances in single-cell analysis permit the simultaneous assessment of transcriptomic patterns in a large number of cells making it feasible to survey the landscape of immune cell responses across numerous anatomic sites. Here, we used single-cell RNA sequencing of leukocytes from the blood, liver, and spleen to identify the major shifts in gene expression by cell type and compartment in a mouse HS/T model. At 6 h, dramatic changes in gene expression were observed across multiple-cell types and in all compartments in wild-type mice. Monocytes from circulation and liver exhibited a significant upregulation of genes associated with chemotaxis and migration and a simultaneous suppression of genes associated with interferon signaling and antigen presentation. In contrast, liver conventional DC exhibited a unique pattern compared with other myeloid cells that included a pronounced increase in major histocompatibility complex class II (MHCII) gene expression. The dominant pattern across all compartments for B and T cells was a suppression of genes associated with cell activation and signaling after HS/T. Using complement factor 3 (C3) knockout mice we unveiled a role for C3 in the suppression of monocyte Major Histocompatibility Complex class II expression and activation of gene expression associated with migration, phagocytosis and cytokine upregulation, and an unexpected role in promoting interferon-signaling in a subset of B and T cells across all three compartments after HS/T. This transcriptomic landscape study of immune cells provides new insights into the host immune response to trauma, as well as a rich resource for further investigation of trauma-induced immune responses and complement in driving interferon signaling.
Collapse
Affiliation(s)
- Guang Fu
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Surgery, University of Pittsburgh, PA, USA
| | - Tianmeng Chen
- Department of Surgery, University of Pittsburgh, PA, USA
- Cellular and Molecular Pathology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Junru Wu
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Surgery, University of Pittsburgh, PA, USA
| | - Ting Jiang
- Department of Surgery, University of Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Da Tang
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Surgery, University of Pittsburgh, PA, USA
| | | | - Julia Conroy
- Department of Surgery, University of Pittsburgh, PA, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, PA, USA
- Trauma Research Center, University of Pittsburgh, PA, USA
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, PA, USA
- Department of Surgery, Ohio State University, Ohio, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, PA, USA
- Trauma Research Center, University of Pittsburgh, PA, USA
| |
Collapse
|
43
|
Fang J, Feng C, Chen W, Hou P, Liu Z, Zuo M, Han Y, Xu C, Melino G, Verkhratsky A, Wang Y, Shao C, Shi Y. Redressing the interactions between stem cells and immune system in tissue regeneration. Biol Direct 2021; 16:18. [PMID: 34670590 PMCID: PMC8527311 DOI: 10.1186/s13062-021-00306-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19.
Collapse
Affiliation(s)
- Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Wangwang Chen
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Pengbo Hou
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Zhanhong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Muqiu Zuo
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuyi Han
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Chenchang Xu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China. .,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
44
|
Scala P, Rehak L, Giudice V, Ciaglia E, Puca AA, Selleri C, Della Porta G, Maffulli N. Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine. Int J Mol Sci 2021; 22:10867. [PMID: 34639203 PMCID: PMC8509639 DOI: 10.3390/ijms221910867] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022] Open
Abstract
In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Laura Rehak
- Athena Biomedical innovations, Viale Europa 139, 50126 Florence, Italy;
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Cardiovascular Research Unit, IRCCS MultiMedica, Via Milanese 300, 20138 Milan, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
45
|
Ohira T, Ino Y, Kimura Y, Nakai Y, Kimura A, Kurata Y, Kagawa H, Kimura M, Egashira K, Matsuda C, Ohira Y, Furukawa S, Hirano H. Effects of microgravity exposure and fructo-oligosaccharide ingestion on the proteome of soleus and extensor digitorum longus muscles in developing mice. NPJ Microgravity 2021; 7:34. [PMID: 34535681 PMCID: PMC8448765 DOI: 10.1038/s41526-021-00164-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids produced by the gut bacterial fermentation of non-digestible carbohydrates, e.g., fructo-oligosaccharide (FOS), contribute to the maintenance of skeletal muscle mass and oxidative metabolic capacity. We evaluated the effect of FOS ingestion on protein expression of soleus (Sol) and extensor digitorum longus muscles in mice exposed to microgravity (μ-g). Twelve 9-week-old male C57BL/6J mice were raised individually on the International Space Station under μ-g or artificial 1-g and fed a diet with or without FOS (n = 3/group). Regardless of FOS ingestion, the absolute wet weights of both muscles tended to decrease, and the fiber phenotype in Sol muscles shifted toward fast-twitch type following μ-g exposure. However, FOS ingestion tended to mitigate the μ-g-exposure-related decrease in oxidative metabolism and enhance glutathione redox detoxification in Sol muscles. These results indicate that FOS ingestion mildly suppresses metabolic changes and oxidative stress in antigravity Sol muscles during spaceflight.
Collapse
Affiliation(s)
- Takashi Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan. .,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi Osaka-Sayama, Osaka, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan. .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Mitsuo Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Chie Matsuda
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
46
|
Maier G, Delezie J, Westermark PO, Santos G, Ritz D, Handschin C. Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. J Physiol 2021; 600:769-796. [PMID: 34142717 PMCID: PMC9290843 DOI: 10.1113/jp281535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Key points Maximal endurance performance is greater in the early daytime. Timed exercise differentially alters the muscle transcriptome and (phospho)‐proteome. Early daytime exercise triggers energy provisioning and tissue regeneration. Early night‐time exercise activates stress‐related and catabolic pathways. Scheduled training has limited effects on the muscle and liver circadian clocks.
Abstract Timed physical activity might potentiate the health benefits of training. The underlying signalling events triggered by exercise at different times of day are, however, poorly understood. Here, we found that time‐dependent variations in maximal treadmill exercise capacity of naïve mice were associated with energy stores, mostly hepatic glycogen levels. Importantly, running at different times of day resulted in a vastly different activation of signalling pathways, e.g. related to stress response, vesicular trafficking, repair and regeneration. Second, voluntary wheel running at the opposite phase of the dark, feeding period surprisingly revealed a minimal zeitgeber (i.e. phase‐shifting) effect of training on the muscle clock. This integrated study provides important insights into the circadian regulation of endurance performance and the control of the circadian clock by exercise. In future studies, these results could contribute to better understanding circadian aspects of training design in athletes and the application of chrono‐exercise‐based interventions in patients.
Collapse
Affiliation(s)
- Geraldine Maier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Julien Delezie
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Pål O Westermark
- Leibniz-Institut für Nutztierbiologie, Institut für Genetik und Biometrie, Wilhelm-Stahl-Allee 2, Dummerstorf, D-18196, Germany
| | - Gesa Santos
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| |
Collapse
|
47
|
Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration. Semin Cell Dev Biol 2021; 119:32-38. [PMID: 34140216 DOI: 10.1016/j.semcdb.2021.05.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/02/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
The adult skeletal muscle fully regenerates after injury thanks to the properties of muscle stem cells that follow the adult myogenic program to replace damaged myofibers. Muscle regeneration also relies upon the coordinated actions of several other cell types, among which immune cells. Leukocytes infiltrate the damaged muscle soon after injury and support the regeneration process in a variety of ways, from the activation of muscle stem cells to the maturation of newly formed myofibers. Leukocytes also interact with other cell types such as fibroadipogenic precursors and endothelial cells. This review presents the interactions that leukocytes develop with the cells present in their vicinity and the impact they have on skeletal muscle regeneration.
Collapse
Affiliation(s)
- Georgiana Panci
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, F-69008 Lyon, France.
| |
Collapse
|
48
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
49
|
Gao HN, Hu H, Wen PC, Lian S, Xie XL, Song HL, Yang ZN, Ren FZ. Yak milk-derived exosomes alleviate lipopolysaccharide-induced intestinal inflammation by inhibiting PI3K/AKT/C3 pathway activation. J Dairy Sci 2021; 104:8411-8424. [PMID: 34001362 DOI: 10.3168/jds.2021-20175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/05/2021] [Indexed: 01/05/2023]
Abstract
Intestinal epithelial cells (IEC) are important parts of the mucosal barrier, whose function can be impaired upon various injury factors such as lipopolysaccharide. Although food-derived exosomes are preventable against intestinal barrier injuries, there have been few studies on the effect of yak milk-derived exosomes and the underlying mechanism that remains poorly understood. This study aimed to characterize the effect of exosomal proteins derived from yak and cow milk on the barrier function of IEC-6 treated with lipopolysaccharide and the relevant mechanism involved. Proteomics study revealed 392 differentially expressed proteins, with 58 higher expressed and 334 lower expressed in yak milk-derived exosomes than those in cow exosomes. Additionally, the top 20 proteins with a relatively consistent higher expression in yak milk exosomes than cow milk exosomes were identified. Protein CD46 was found to be a regulator for alleviating inflammatory injury of IEC-6. In vitro assay of the role of yak milk exosomes on survival of IEC-6 in inflammation by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay confirmed the effectiveness of yak milk exosomes to increase IEC-6 survival up to 18% for 12 h compared with cow milk exosomes (up to 12%), indicating a therapeutic effect of yak milk exosomes in the prevention of intestinal inflammation. Furthermore, yak and cow milk exosomes were shown to activate the PI3K/AKT/C3 signaling pathway, thus promoting IEC-6 survival. Our findings demonstrated an important relationship between yak and cow milk exosomes and intestinal inflammation, facilitating further understanding of the mechanisms of inflammation-driven epithelial homeostasis. Interestingly, compared with cow milk exosomes, yak milk exosomes activated the PI3K/AKT/C3 signaling pathway more to lower the incidence and severity of intestine inflammation, which might represent a potential innovative therapeutic option for intestinal inflammation.
Collapse
Affiliation(s)
- H N Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - H Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - P C Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - S Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - X L Xie
- Treasure of Tibet Yak Dairy Co., Ltd., Lhasa 610000, China
| | - H L Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Z N Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - F Z Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
50
|
Shen H, Yoneda S, Sakiyama-Elbert SE, Zhang Q, Thomopoulos S, Gelberman RH. Flexor Tendon Injury and Repair. The Influence of Synovial Environment on the Early Healing Response in a Canine Model. J Bone Joint Surg Am 2021; 103:e36. [PMID: 33475308 PMCID: PMC8192118 DOI: 10.2106/jbjs.20.01253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Environmental conditions strongly influence the healing capacity of connective tissues. Well-vascularized extrasynovial tendons typically undergo a robust wound-healing process following transection and repair. In contrast, avascular intrasynovial tendons do not mount an effective repair response. The current study tests the hypothesis that flexor tendons, as a function of their synovial environment, exhibit unique inflammatory, angiogenic, and metabolic responses to injury and repair. METHODS Flexor tendons present a distinct opportunity to test the study hypothesis, as they have proximal regions that are extrasynovial and distal regions that are intrasynovial. In an internally controlled study design, the second and fifth forepaw flexor tendons were transected and repaired in either the extrasynovial or the intrasynovial anatomical region. Histological, gene expression, and proteomics analyses were performed at 3 and 7 days to define the early biological events that drive synovial environment-dependent healing responses. RESULTS Uninjured intrasynovial tendons were avascular, contained high levels of proteoglycans, and expressed inflammatory factors, complement proteins, and glycolytic enzymes. In contrast, extrasynovial tendons were well vascularized, contained low levels of proteoglycans, and were enriched in inflammation inhibitors and oxidative phosphorylation enzymes. The response to injury and repair was markedly different between the 2 tendon regions. Extrasynovial tendons displayed a robust and rapid neovascularization response, increased expression levels of complement proteins, and an acute shift in metabolism to glycolysis, whereas intrasynovial tendons showed minimal vascularity and muted inflammatory and metabolic responses. CONCLUSIONS The regional molecular profiles of intact and healing flexor tendons revealed extensive early differences in innate immune response, metabolism, vascularization, and expression of extracellular matrix as a function of the synovial environment. These differences reveal mechanisms through which extrasynovial tendons heal more effectively than do intrasynovial tendons. CLINICAL RELEVANCE To improve outcomes after operative repair, future treatment strategies should promote features of extrasynovial healing, such as enhanced vascularization and modulation of the complement system and/or glucose metabolism.
Collapse
Affiliation(s)
- Hua Shen
- Washington University in St. Louis, St. Louis, Missouri
| | - Susumu Yoneda
- Washington University in St. Louis, St. Louis, Missouri
- University of the Ryukyus, Okinawa, Japan
| | | | - Qiang Zhang
- Washington University in St. Louis, St. Louis, Missouri
| | | | | |
Collapse
|