1
|
Atif M, Lee Y. Taste detection of flonicamid in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104302. [PMID: 40112957 DOI: 10.1016/j.ibmb.2025.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Flonicamid, a widely used insecticide, presents an intriguing question: does it function as an antifeedant by directly activating bitter-sensing gustatory receptor neurons (GRNs) in Drosophila melanogaster. Here, we found that electrophysiological recordings revealed that S-type labellar sensilla exhibited strong neuronal responses to flonicamid, while inhibition of bitter-sensing GRNs nullified this response. Genetic screening identified Gr28b, Gr93a, and Gr98b as essential gustatory receptors for flonicamid detection. Isoform-specific rescue experiments confirmed that Gr28b.a is responsible for restoring sensory responses in Gr28b mutants. Proboscis extension response assays demonstrated that wild-type flies avoided flonicamid, whereas Gr28b, Gr93a, and Gr98b mutants failed to. Functional rescue of these mutants restored the behavioral response, confirming the involvement of these receptors in mediating gustatory aversion. Our findings uncover a novel sensory mechanism for detecting flonicamid through specific gustatory receptors and highlight their potential as molecular targets for insect control strategies.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
2
|
Nhuchhen Pradhan R, Montell C, Lee Y. Cholesterol taste avoidance in Drosophila melanogaster. eLife 2025; 14:RP106256. [PMID: 40244888 PMCID: PMC12005718 DOI: 10.7554/elife.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.
Collapse
Affiliation(s)
- Roshani Nhuchhen Pradhan
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Popkin-Hall ZR, Slotman MA. Molecular evolution of gustatory receptors in the Anopheles gambiae complex. BMC Ecol Evol 2025; 25:22. [PMID: 40098122 PMCID: PMC11912695 DOI: 10.1186/s12862-025-02359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Mosquitoes in the Anopheles (An.) gambiae species complex are major vectors of Plasmodium falciparum malaria. One reason for this is the high anthropophily of the constituent species An. coluzzii, An. gambiae sensu stricto, and An. arabiensis. In contrast, their sister species An. quadriannulatus is highly zoophilic. Anopheles mosquitoes largely rely on chemical cues for host-seeking, which are primarily detected by four chemosensory gene families: olfactory receptors (Ors), ionotropic receptors (Irs), gustatory receptors (Grs), and odorant binding proteins (Obps). Genes from these families that have been implicated in host adaptation show evidence of positive selection in other insect species, including other mosquitoes. As such, we analyzed the molecular evolutionary patterns of the gustatory receptors within the Anopheles gambiae complex, with a particular interest in identifying Grs that show evidence of positive selection in highly anthropophilic species. RESULTS We identified sixteen Grs that show evidence of potential positive selection using the McDonald-Kreitman test, including four putative sugar receptors and two Grs with unknown ligands that are relatively highly expressed in chemosensory organs of either An. coluzzii or An. quadriannulatus. In addition, we identified twelve Grs that show evidence of potential purifying selection using the McDonald-Kreitman test, and twelve Grs that may have experienced a selective sweep using the DH test, including three putative sugar receptors and the carbon dioxide receptor Gr24. We also identified both positive and purifying selection in the coastal species An. melas (West Africa) and An. merus (East Africa). CONCLUSIONS Our results, together with transcriptomic data, identify four Grs as possible candidates for involvement in the evolution of vertebrate host preference in the An. gambiae complex, as may have occurred in the An. farauti complex. They also point to sugar receptors as playing a role in recent adaptation of some of these species. As the vast majority of Grs have unknown functions and much is still unknown about the role of Grs in these species, a more complete interpretation of our data necessitates further characterization of these genes.
Collapse
Affiliation(s)
- Zachary R Popkin-Hall
- Department of Entomology, Texas A&M University, College Station, TX, USA.
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Avans University, Breda, Netherlands
| |
Collapse
|
4
|
Mi T, Sheng C, Lee CK, Nguyen P, Zhang YV. Harnessing Insect Chemosensory and Mechanosensory Receptors Involved in Feeding for Precision Pest Management. Life (Basel) 2025; 15:110. [PMID: 39860050 PMCID: PMC11766477 DOI: 10.3390/life15010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Chemosensation and mechanosensation are vital to insects' survival and behavior, shaping critical physiological processes such as feeding, metabolism, mating, and reproduction. During feeding, insects rely on diverse chemosensory and mechanosensory receptors to distinguish between nutritious and harmful substances, enabling them to select suitable food sources while avoiding toxins. These receptors are distributed across various body parts, allowing insects to detect environmental cues about food quality and adjust their behaviors accordingly. A deeper understanding of insect sensory physiology, especially during feeding, not only enhances our knowledge of insect biology but also offers significant opportunities for practical applications. This review highlights recent advancements in research on feeding-related sensory receptors, covering a wide range of insect species, from the model organism Drosophila melanogaster to agricultural and human pests. Additionally, this review examines the potential of targeting insect sensory receptors for precision pest control. Disrupting behaviors such as feeding and reproduction emerges as a promising strategy for pest management. By interfering with these essential behaviors, we can effectively control pest populations while minimizing environmental impacts and promoting ecological balance.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Chengwang Sheng
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Pesticide Science, Anhui Agricultural University, Hefei 230036, China
| | - Cassidy Kylene Lee
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
| | - Peter Nguyen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yali V. Zhang
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; (T.M.); (C.S.); (C.K.L.)
- Department of Physiology, The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Sang J, Lee Y. Age-dependent switched taste behavior to ribose. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104194. [PMID: 39406300 DOI: 10.1016/j.ibmb.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Chemical detection is vital for animal survival, aiding in avoiding toxins and selecting nutritious foods. While Drosophila larvae exhibit appetitive feeding behavior toward ribose, an important sugar for RNA, nucleotide, and nucleoside synthesis, how adult Drosophila perceives ribose remains unclear. Through behavioral and electrophysiological investigations, we unexpectedly discovered that adult flies actively avoid ribose. Our external electrophysiological analysis revealed that ribose is detected through bitter-sensing gustatory receptor neurons in S-type sensilla, suggesting its perception as a bitter compound. Additionally, we identify painless as crucial for both ribose aversion and the neuronal response to ribose.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
6
|
Sato R. Molecular Functions and Physiological Roles of Gustatory Receptors of the Silkworm Bombyx mori. Int J Mol Sci 2024; 25:10157. [PMID: 39337641 PMCID: PMC11432556 DOI: 10.3390/ijms251810157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
7
|
Asefa WR, Woo JN, Kim SY, Choi H, Sung H, Choi MS, Choi M, Yoon SE, Kim YJ, Suh BC, Kang K, Kwon JY. Molecular and cellular basis of sodium sensing in Drosophila labellum. iScience 2024; 27:110248. [PMID: 39015148 PMCID: PMC11250893 DOI: 10.1016/j.isci.2024.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
Appropriate ingestion of salt is essential for physiological processes such as ionic homeostasis and neuronal activity. Generally, low concentrations of salt elicit attraction, while high concentrations elicit aversive responses. Here, we observed that sugar neurons in the L sensilla of the Drosophila labellum cf. responses to NaCl, while sugar neurons in the S-c sensilla do not respond to NaCl, suggesting that gustatory receptor neurons involved in NaCl sensing may employ diverse molecular mechanisms. Through an RNAi screen of the entire Ir and ppk gene families and molecular genetic approaches, we identified IR76b, IR25a, and IR56b as necessary components for NaCl sensing in the Drosophila labellum. Co-expression of these three IRs in heterologous systems such as S2 cells or Xenopus oocytes resulted in a current in response to sodium stimulation, suggesting formation of a sodium-sensing complex. Our results should provide insights for research on the diverse combinations constituting salt receptor complexes.
Collapse
Affiliation(s)
- Wayessa Rahel Asefa
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin-Nyeong Woo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seon Yeong Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyungjun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hayeon Sung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, USA
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minkook Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju 61005, Republic of Korea
| | - Young-Joon Kim
- Korea Drosophila Resource Center, Gwangju 61005, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - KyeongJin Kang
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Pandey P, Shrestha B, Lee Y. Avoiding alkaline taste through ionotropic receptors. iScience 2024; 27:110087. [PMID: 38947501 PMCID: PMC11214294 DOI: 10.1016/j.isci.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Taste organs contain distinct gustatory receptors that help organisms differentiate between nourishing and potentially harmful foods. The detection of high pH levels plays a crucial role in food selection, but the specific gustatory receptors responsible for perceiving elevated pH in foods have remained unknown. By using Drosophila melanogaster as a model organism, we have uncovered the involvement of ionotropic receptors (IRs) in avoiding high-pH foods. Our study involved a combination of behavioral tests and electrophysiological analyses, which led to the identification of six Irs from bitter-sensing gustatory receptor neurons essential for rejecting food items with elevated pH levels. Using the same methodology, our study reevaluated the significance of Alka and OtopLa. The findings highlight that Alka, in conjunction with IRs, is crucial for detecting alkaline substances, whereas OtopLa does not contribute to this process. Overall, our study offers valuable insights into the intricate mechanisms governing taste perception in organisms.
Collapse
Affiliation(s)
- Prakash Pandey
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
9
|
Pradhan RN, Shrestha B, Lee Y. Avoiding cantharidin through ionotropic receptors. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133497. [PMID: 38278077 DOI: 10.1016/j.jhazmat.2024.133497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
The discernment and aversion of noxious gustatory stimuli profoundly influence homeostasis maintenance and survival of fauna. Cantharidin, a purported aphrodisiac, is a monoterpenoid compound secreted by many species of blister beetle, particularly by the Spanish fly, Lytta vesicatoria. Although the various advantageous functions of cantharidin have been described, its taste analysis and toxic properties in animalshave been rarely explored. Our study using Drosophila melanogaster examines the taste properties of cantharidin along with its potential hazardous effect in the internal organs of animals. Here, we find that cantharidin activates bitter taste receptors. Our findings show that specific ionotropic receptors (IR7g, IR51b, and IR94f) in labellar bitter-sensing neurons, along with co-receptors IR25a and IR76b, are responsible for detecting cantharidin. By introducing the IR7g and IR51b in sweet and bitter neurons, naturally expressing IR76b and IR25a, we show that these genes are sufficient for cantharidin perception. Moreover, we witness the deleterious ramifications of cantharidin on survival and visceral integrities, shedding light on its hazardous effect.
Collapse
Affiliation(s)
- Roshani Nhuchhen Pradhan
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
10
|
Peláez JN, Bernstein S, Okoro J, Rodas E, Liang I, Leipertz A, Marion-Poll F, Whiteman NK. Taste evolution in an herbivorous drosophilid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582299. [PMID: 38464294 PMCID: PMC10925181 DOI: 10.1101/2024.02.27.582299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Plant secondary metabolites pose a challenge for generalist herbivorous insects because they are not only potentially toxic, they also may trigger aversion. On the contrary, some highly specialized herbivorous insects evolved to use these same compounds as 'token stimuli' for unambiguous determination of their host plants. Two questions that emerge from these observations are how recently derived herbivores evolve to overcome this aversion to plant secondary metabolites and the extent to which they evolve increased attraction to these same compounds. In this study, we addressed these questions by focusing on the evolution of bitter taste preferences in the herbivorous drosophilid Scaptomyza flava, which is phylogenetically nested deep in the paraphyletic Drosophila. We measured behavioral and neural responses of S. flava and a set of non-herbivorous species representing a phylogenetic gradient (S. pallida, S. hsui, and D. melanogaster) towards host- and non-host derived bitter plant compounds. We observed that S. flava evolved a shift in bitter detection, rather than a narrow shift towards glucosinolates, the precursors of mustard-specific defense compounds. In a dye-based consumption assay, S. flava exhibited shifts in aversion toward the non-mustard bitter, plant-produced alkaloids caffeine and lobeline, and reduced aversion towards glucosinolates, whereas the non-herbivorous species each showed strong aversion to all bitter compounds tested. We then examined whether these changes in bitter preferences of S. flava could be explained by changes in sensitivity in the peripheral nervous system and compared electrophysiological responses from the labellar sensilla of S. flava, S. pallida, and D. melanogaster. Using scanning electron microscopy, we also created a map of labellar sensilla in S. flava and S. pallida. We assigned each sensillum to a functional sensilla class based on their morphology and initial response profiles to bitter and sweet compounds. Despite a high degree of conservation in the morphology and spatial placement of sensilla between S. flava and S. pallida, electrophysiological studies revealed that S. flava had reduced sensitivity to glucosinolates to varying degrees. We found this reduction only in I type sensilla. Finally, we speculate on the potential role that evolutionary genetic changes in gustatory receptors between S. pallida and S. flava may play in driving these patterns. Specifically, we hypothesize that the evolution of bitter receptors expressed in I type sensilla may have driven the reduced sensitivity observed in S. flava, and ultimately, its reduced bitter aversion. The S. flava system showcases the importance of reduced aversion to bitter defense compounds in relatively young herbivorous lineages, and how this may be achieved at the molecular and physiological level.
Collapse
Affiliation(s)
- Julianne N. Peláez
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Susan Bernstein
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Judith Okoro
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Esteban Rodas
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Irene Liang
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Anna Leipertz
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, 91120 Palaiseau, France
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular & Cellular Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Lu S, Qian CS, Grueber WB. Mechanisms of gas sensing by internal sensory neurons in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576342. [PMID: 38293088 PMCID: PMC10827222 DOI: 10.1101/2024.01.20.576342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Internal sensory neurons monitor the chemical and physical state of the body, providing critical information to the central nervous system for maintaining homeostasis and survival. A population of larval Drosophila sensory neurons, tracheal dendrite (td) neurons, elaborate dendrites along respiratory organs and may serve as a model for elucidating the cellular and molecular basis of chemosensation by internal neurons. We find that td neurons respond to decreases in O2 levels and increases in CO2 levels. We assessed the roles of atypical soluble guanylyl cyclases (Gycs) and a gustatory receptor (Gr) in mediating these responses. We found that Gyc88E/Gyc89Db were necessary for responses to hypoxia, and that Gr28b was necessary for responses to CO2. Targeted expression of Gr28b isoform c in td neurons rescued responses to CO2 in mutant larvae and also induced ectopic sensitivity to CO2 in the td network. Gas-sensitive td neurons were activated when larvae burrowed for a prolonged duration, demonstrating a natural-like feeding condition in which td neurons are activated. Together, our work identifies two gaseous stimuli that are detected by partially overlapping subsets of internal sensory neurons, and establishes roles for Gyc88E/Gyc89Db in the detection of hypoxia, and Gr28b in the detection of CO2.
Collapse
Affiliation(s)
- Shan Lu
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Biological Sciences, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Cheng Sam Qian
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Wesley B. Grueber
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Physiology and Cellular Biophysics, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Neuroscience, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| |
Collapse
|
12
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. eLife 2023; 12:RP89795. [PMID: 38060294 PMCID: PMC10703443 DOI: 10.7554/elife.89795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, gustatory sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand -gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence, and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor 1 (VR1), which is activated by capsaicin, a chemical to which wild-type Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M UniversityBryanUnited States
| |
Collapse
|
13
|
Ahn JE, Amrein H. Opposing chemosensory functions of closely related gustatory receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545761. [PMID: 37905057 PMCID: PMC10614748 DOI: 10.1101/2023.06.20.545761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Most animals have functionally distinct populations of taste cells, expressing receptors that are tuned to compounds of different valence. This organizational feature allows for discrimination between chemicals associated with specific taste modalities and facilitates differentiating between unadulterated foods and foods contaminated with toxic substances. In the fruit fly D. melanogaster , primary sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor (VR1), which is activated by capsaicin, a chemical to which wildtype Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca 2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.
Collapse
|
14
|
Li X, Sun Y, Gao S, Li Y, Liu L, Zhu Y. Taste coding of heavy metal ion-induced avoidance in Drosophila. iScience 2023; 26:106607. [PMID: 37128604 PMCID: PMC10148117 DOI: 10.1016/j.isci.2023.106607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/04/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Increasing pollution of heavy metals poses great risks to animals globally. Their survival likely relies on an ability to detect and avoid harmful heavy metal ions (HMIs). Currently, little is known about the neural mechanisms of HMI detection. Here, we show that Drosophila and related species of Drosophilidae actively avoid toxic HMIs at micromolar concentrations. The high sensitivity to HMIs is biologically relevant. Particularly, their sensitivity to cadmium is as high as that to the most bitter substance, denatonium. Detection of HMIs in food requires Gr66a + gustatory neurons but is independent of bitter-taste receptors. In these neurons, the ionotropic receptors IR76b, IR25a, and IR7a are required for the perception of heavy metals. Furthermore, IR47a mediates the activation of a distinct group of non-Gr66a + gustatory neurons elicited by HMIs. Together, our findings reveal a surprising taste quality represented by noxious metal ions.
Collapse
Affiliation(s)
- Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Corresponding author
| |
Collapse
|
15
|
Benton R, Dahanukar A. Chemosensory Coding in Drosophila Single Sensilla. Cold Spring Harb Protoc 2023; 2023:107803-pdb.top. [PMID: 36446528 DOI: 10.1101/pdb.top107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chemical senses-smell and taste-detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila melanogaster provides an attractive model to study chemosensory coding because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, nearly all peripheral chemosensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs housed in specialized hairs called sensilla. Here, we briefly review anatomical, molecular, and physiological properties of adult Drosophila olfactory and gustatory systems and provide background to methods for electrophysiological recordings of ligand-evoked activity from different types of chemosensory sensilla.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Anupama Dahanukar
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
16
|
Fujii S, Ahn JE, Jagge C, Shetty V, Janes C, Mohanty A, Slotman M, Adelman ZN, Amrein H. RNA Taste Is Conserved in Dipteran Insects. J Nutr 2023; 153:1636-1645. [PMID: 36907444 DOI: 10.1016/j.tjnut.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Ribonucleosides and RNA are an underappreciated nutrient group essential during Drosophila larval development and growth. Detection of these nutrients requires at least one of the 6 closely related taste receptors encoded by the Gr28 genes, one of the most conserved insect taste receptor subfamilies. OBJECTIVES We investigated whether blow fly larvae and mosquito larvae, which shared the last ancestor with Drosophila about 65-260 million years ago, respectively, can taste RNA and ribose. We also tested whether the Gr28 homologous genes of the mosquitoes Aedes aegypti and Anopheles gambiae can sense these nutrients when expressed in transgenic Drosophila larvae. METHODS Taste preference in blow flies was examined by adapting a 2-choice preference assay that has been well-established for Drosophila larvae. For the mosquito Aedes aegypti larvae, we developed a new 2-choice preference assay that accommodates the aquatic environment of these insects. Finally, we identified Gr28 homologs in these species and expressed them in Drosophila melanogaster to determine their potential function as RNA receptors. RESULTS Larvae of the blow fly Cochliomyia macellaria and Lucilia cuprina are strongly attracted to RNA (0.5 mg/mL) in the 2-choice feeding assays (P < 0.05). Similarly, the mosquito Aedes aegypti larvae showed a strong preference for RNA (2.5 mg/mL) in an aquatic 2-choice feeding assay. Moreover, when Gr28 homologs of Aedes or Anopheles mosquitoes are expressed in appetitive taste neurons of Drosophila melanogaster larvae lacking their Gr28 genes, preference for RNA (0.5 mg/mL) and ribose (0.1 M) is rescued (P < 0.05). CONCLUSIONS The appetitive taste for RNA and ribonucleosides in insects emerged about 260 million years ago, the time mosquitoes and fruit flies diverged from their last common ancestor. Like sugar receptors, receptors for RNA have been highly conserved during insect evolution, suggesting that RNA is a critical nutrient for fast-growing insect larvae. J NUTR 2023;xx:xx-xx.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Ji-Eun Ahn
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Christopher Jagge
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Vinaya Shetty
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Christopher Janes
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Avha Mohanty
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Michel Slotman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zach N Adelman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Hubert Amrein
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
17
|
Mi T, Mack JO, Koolmees W, Lyon Q, Yochimowitz L, Teng ZQ, Jiang P, Montell C, Zhang YV. Alkaline taste sensation through the alkaliphile chloride channel in Drosophila. Nat Metab 2023; 5:466-480. [PMID: 36941450 PMCID: PMC10665042 DOI: 10.1038/s42255-023-00765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023]
Abstract
The sense of taste is an important sentinel governing what should or should not be ingested by an animal, with high pH sensation playing a critical role in food selection. Here we explore the molecular identities of taste receptors detecting the basic pH of food using Drosophila melanogaster as a model. We identify a chloride channel named alkaliphile (Alka), which is both necessary and sufficient for aversive taste responses to basic food. Alka forms a high-pH-gated chloride channel and is specifically expressed in a subset of gustatory receptor neurons (GRNs). Optogenetic activation of alka-expressing GRNs is sufficient to suppress attractive feeding responses to sucrose. Conversely, inactivation of these GRNs causes severe impairments in the aversion to high pH. Altogether, our discovery of Alka as an alkaline taste receptor lays the groundwork for future research on alkaline taste sensation in other animals.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - John O Mack
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Quinn Lyon
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Yali V Zhang
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Physiology, The Diabetes Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Molecular sensors in the taste system of Drosophila. Genes Genomics 2023; 45:693-707. [PMID: 36828965 DOI: 10.1007/s13258-023-01370-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Most animals, including humans and insects, consume foods based on their senses. Feeding is mostly regulated by taste and smell. Recent insect studies shed insight into the cross-talk between taste and smell, sweetness and temperature, sweetness and texture, and other sensory modality pairings. Five canonical tastes include sweet, umami, bitter, salty, and sour. Furthermore, other receptors that mediate the detection of noncanonical sensory attributes encoded by taste stimuli, such as Ca2+, Zn2+, Cu2+, lipid, and carbonation, have been characterized. Deorphanizing receptors and interactions among different modalities are expanding the taste field. METHODS Our study explores the taste system of Drosophila melanogaster and perception processing in insects to broaden the neuroscience of taste. Attractive and aversive taste cues and their chemoreceptors are categorized as tables. In addition, we summarize the recent progress in animal behavior as affected by the integration of multisensory information in relation to different gustatory receptor neuronal activations, olfaction, texture, and temperature. We mainly focus on peripheral responses and insect decision-making. CONCLUSION Drosophila is an excellent model animal to study the cellular and molecular mechanism of the taste system. Despite the divergence in the receptors to detect chemicals, taste research in the fruit fly can offer new insights into the many different taste sensors of animals and how to test the interaction among different sensory modalities.
Collapse
|
19
|
Reisenman CE, Wong J, Vedagarbha N, Livelo C, Scott K. Taste adaptations associated with host specialization in the specialist Drosophila sechellia. J Exp Biol 2023; 226:jeb244641. [PMID: 36637369 PMCID: PMC10088416 DOI: 10.1242/jeb.244641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Chemosensory-driven host plant specialization is a major force mediating insect ecological adaptation and speciation. Drosophila sechellia, a species endemic to the Seychelles islands, feeds and oviposits on Morinda citrifolia almost exclusively. This fruit is harmless to D. sechellia but toxic to other Drosophilidae, including the closely related generalists D. simulans and D. melanogaster, because of its high content of fatty acids. While several olfactory adaptations mediating D. sechellia's preference for its host have been uncovered, the role of taste has been much less examined. We found that D. sechellia has reduced taste and feeding aversion to bitter compounds and host fatty acids that are aversive to D. melanogaster and D. simulans. The loss of aversion to canavanine, coumarin and fatty acids arose in the D. sechellia lineage, as its sister species D. simulans showed responses akin to those of D. melanogaster. Drosophila sechellia has increased taste and feeding responses towards M. citrifolia. These results are in line with D. sechellia's loss of genes that encode bitter gustatory receptors (GRs) in D. melanogaster. We found that two GR genes which are lost in D. sechellia, GR39a.a and GR28b.a, influence the reduction of aversive responses to some bitter compounds. Also, D. sechellia has increased appetite for a prominent host fatty acid compound that is toxic to its relatives. Our results support the hypothesis that changes in the taste system, specifically a reduction of sensitivity to bitter compounds that deter generalist ancestors, contribute to the specialization of D. sechellia for its host.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Namrata Vedagarbha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| |
Collapse
|
20
|
Vernier CL, Leitner N, Zelle KM, Foltz M, Dutton S, Liang X, Halloran S, Millar JG, Ben-Shahar Y. A pleiotropic chemoreceptor facilitates the production and perception of mating pheromones. iScience 2022; 26:105882. [PMID: 36691619 PMCID: PMC9860498 DOI: 10.1016/j.isci.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Optimal mating decisions depend on the robust coupling of signal production and perception because independent changes in either could carry a fitness cost. However, since the perception and production of mating signals are often mediated by different tissues and cell types, the mechanisms that drive and maintain their coupling remain unknown for most animal species. Here, we show that in Drosophila, behavioral responses to, and the production of, a putative inhibitory mating pheromone are co-regulated by Gr8a, a member of the Gustatory receptor gene family. Specifically, through behavioral and pheromonal data, we found that Gr8a independently regulates the behavioral responses of males and females to a putative inhibitory pheromone, as well as its production in the fat body and oenocytes of males. Overall, these findings provide a relatively simple molecular explanation for how pleiotropic receptors maintain robust mating signaling systems at the population and species levels.
Collapse
Affiliation(s)
- Cassondra L. Vernier
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Nicole Leitner
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Kathleen M. Zelle
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Merrin Foltz
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Sophia Dutton
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Xitong Liang
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sean Halloran
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA,Corresponding author
| |
Collapse
|
21
|
Structural model for ligand binding and channel opening of an insect gustatory receptor. J Biol Chem 2022; 298:102573. [PMID: 36209821 PMCID: PMC9643425 DOI: 10.1016/j.jbc.2022.102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Insect gustatory receptors play roles in sensing tastants, such as sugars and bitter substances. We previously demonstrated that the BmGr9 silkworm gustatory receptor is a d-fructose–gated ion channel receptor. However, the molecular mechanism of how d-fructose could initiate channel opening were unclear. Herein, we present a structural model for a channel pore and a d-fructose–binding site in BmGr9. Since the membrane topology and oligomeric state of BmGr9 appeared to be similar to those of an insect odorant receptor coreceptor, Orco, we constructed a structural model of BmGr9 based on the cryo-EM Orco structure. Our site-directed mutagenesis data suggested that the transmembrane region 7 forms channel pore and controls channel gating. This model also suggested that a pocket formed by transmembrane helices 2 to 4 and 6 binds d-fructose. Using mutagenesis experiments in combination with docking simulations, we were able to determine the potent binding mode of d-fructose. Finally, based on these data, we propose a conformational change that leads to channel opening upon d-fructose binding. Taken together, these findings detail the molecular mechanism by which an insect gustatory receptor can be activated by its ligand molecule.
Collapse
|
22
|
Identification of Candidate Chemosensory Gene Families by Head Transcriptomes Analysis in the Mexican Fruit Fly, Anastrepha ludens Loew (Diptera: Tephritidae). Int J Mol Sci 2022; 23:ijms231810531. [PMID: 36142444 PMCID: PMC9500802 DOI: 10.3390/ijms231810531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Insect chemosensory systems, such as smell and taste, are mediated by chemosensory receptor and non-receptor protein families. In the last decade, many studies have focused on discovering these families in Tephritidae species of agricultural importance. However, to date, there is no information on the Mexican fruit fly Anastrepha ludens Loew, a priority pest of quarantine importance in Mexico and other countries. This work represents the first effort to identify, classify and characterize the six chemosensory gene families by analyzing two head transcriptomes of sexually immature and mature adults of A. ludens from laboratory-reared and wild populations, respectively. We identified 120 chemosensory genes encoding 31 Odorant-Binding Proteins (OBPs), 5 Chemosensory Proteins (CSPs), 2 Sensory Neuron Membrane Proteins (SNMPs), 42 Odorant Receptors (ORs), 17 Ionotropic Receptors (IRs), and 23 Gustatory Receptors (GRs). The 120 described chemosensory proteins of the Mexican fruit fly significantly contribute to the genetic databases of insects, particularly dipterans. Except for some OBPs, this work reports for the first time the repertoire of olfactory proteins for one species of the genus Anastrepha, which provides a further basis for studying the olfactory system in the family Tephritidae, one of the most important for its economic and social impact worldwide.
Collapse
|
23
|
Aryal B, Lee Y. Histamine avoidance through three gustatory receptors in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103760. [PMID: 35346814 DOI: 10.1016/j.ibmb.2022.103760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Histamine is a fermented food product that exerts adverse health effects on animals when consumed in high amounts. This biogenic amine is fermented by microorganisms from histidine through the activity of histidine decarboxylase. Drosophila melanogaster can discriminate histidine and histamine using GR22e and IR76b in bitter-sensing gustatory receptor neurons (GRNs). In this study, RNA interference screens were conducted to examine 28 uncharacterized gustatory receptor genes using electrophysiology and behavioral experiments, including the binary food choice and proboscis extension response assays. GR9a and GR98a were first identified as specific histamine receptors by evaluating newly generated null mutants and recovery experiments by expressing their wild-type cDNA in the bitter-sensing GRNs. We further determined that histamine sensation was mainly mediated by the labellum but not by the legs, as demonstrated by the proboscis extension response assay. Our findings indicated that toxic histamine directly activates bitter-sensing GRNs in S-type sensilla, and this response is mediated by the GR9a, GR22e, and GR98a gustatory receptors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
24
|
Aryal B, Dhakal S, Shrestha B, Lee Y. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr Biol 2022; 32:1376-1386.e4. [PMID: 35176225 DOI: 10.1016/j.cub.2022.01.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
Abstract
Amino acids are essential nutrients that act as building blocks for protein synthesis. Recent studies in Drosophila have demonstrated that glycine, phenylalanine, and threonine elicit attraction, whereas tryptophan elicits aversion at ecologically relevant concentrations. Here, we demonstrated that eight amino acids, including arginine, glycine, alanine, serine, phenylalanine, threonine, cysteine, and proline, differentially stimulate feeding behavior by activating sweet-sensing gustatory receptor neurons (GRNs) in L-type and S-type sensilla. In turn, this process is mediated by three GRs (GR5a, GR61a, and GR64f), as well as two broadly required ionotropic receptors (IRs), IR25a and IR76b. However, GR5a, GR61a, and GR64f are only required for sensing amino acids in the sweet-sensing GRNs of L-type sensilla. This suggests that amino acid sensing in different type sensilla occurs through dual mechanisms. Furthermore, our findings indicated that ecologically relevant high concentrations of arginine, lysine, proline, valine, tryptophan, isoleucine, and leucine elicit aversive responses via bitter-sensing GRNs, which are mediated by three IRs (IR25a, IR51b, and IR76b). More importantly, our results demonstrate that arginine, lysine, and proline induce biphasic responses in a concentration-dependent manner. Therefore, amino acid detection in Drosophila occurs through two classes of receptors that activate two sets of sensory neurons in physiologically distinct pathways, which ultimately mediates attraction or aversion behaviors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Subash Dhakal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
25
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
26
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
27
|
Yang J, Guo H, Jiang NJ, Tang R, Li GC, Huang LQ, van Loon JJA, Wang CZ. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genet 2021; 17:e1009527. [PMID: 34264948 PMCID: PMC8282186 DOI: 10.1371/journal.pgen.1009527] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Glucosinolates are token stimuli in host selection of many crucifer specialist
insects, but the underlying molecular basis for host selection in these insects
remains enigmatic. Using a combination of behavioral, electrophysiological, and
molecular methods, we investigate glucosinolate receptors in the cabbage
butterfly Pieris rapae. Sinigrin, as a potent feeding
stimulant, elicited activity in larval maxillary lateral sensilla styloconica,
as well as in adult medial tarsal sensilla. Two P.
rapae gustatory receptor genes PrapGr28
and PrapGr15 were identified with high expression in female
tarsi, and the subsequent functional analyses showed that
Xenopus oocytes only expressing PrapGr28
had specific responses to sinigrin; when ectopically expressed in
Drosophila sugar sensing neurons, PrapGr28 conferred
sinigrin sensitivity to these neurons. RNA interference experiments further
showed that knockdown of PrapGr28 reduced the sensitivity of
adult medial tarsal sensilla to sinigrin. Taken together, we conclude that
PrapGr28 is a gustatory receptor tuned to sinigrin in P.
rapae, which paves the way for revealing the molecular
basis of the relationships between crucifer plants and their specialist
insects. Preference of crucifer specialist insects to glucosinolates is well known in the
field of insect-plant interactions, but its molecular basis is unclear. This
study uses an integrative approach to investigate the molecular basis of
glucosinolate detection by gustatory receptor neurons in the larval mouthparts
and adult forelegs of the cabbage butterfly Pieris rapae, and
finally reveal that PrapGr28 is a bitter receptor tuned to sinigrin. The current
work takes a significant step towards identifying gustatory receptors tuned to
glucosinolates, crucial recognition signals in crucifer host plants, providing
insights into co-evolution of herbivorous insects and their host plants.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Rui Tang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
| | - Joop J. A. van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University and
Research, Wageningen, the Netherlands
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing,
China
- CAS Center for Excellence in Biotic Interactions, University of Chinese
Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Shrestha B, Lee Y. Mechanisms of DEET gustation in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103550. [PMID: 33549816 DOI: 10.1016/j.ibmb.2021.103550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
DEET is the most widely used active ingredient in insect repellents and offers protection against insect bites. We previously reported that DEET suppresses the feeding behavior of Drosophila, which is guided by gustatory receptors (GRs) in bitter-sensing gustatory receptor neurons. Here, we sought to identify new candidates using egg-laying assays. Upon screening all GR mutants, GR89a was identified as a potential DEET receptor. Gr89a mutants exhibited reduced oviposition avoidance, feeding avoidance, and electrophysiological responses compared to Gr32a, Gr33a, and Gr66a mutants. However, GR89a was found to modulate DEET avoidance, as demonstrated by genetic and RNA interference assays. Furthermore, we found that DEET ingestion severely affected larval and pupal development and survival, and therefore may act as an effective larvicide.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
29
|
Dweck HK, Talross GJ, Wang W, Carlson JR. Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii. eLife 2021; 10:64317. [PMID: 33616529 PMCID: PMC7899650 DOI: 10.7554/elife.64317] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/23/2021] [Indexed: 01/17/2023] Open
Abstract
Although most Drosophila species lay eggs in overripe fruit, the agricultural pest Drosophila suzukii lays eggs in ripe fruit. We found that changes in bitter taste perception have accompanied this adaptation. We show that bitter-sensing mutants of Drosophila melanogaster undergo a shift in egg laying preference toward ripe fruit. D. suzukii has lost 20% of the bitter-sensing sensilla from the labellum, the major taste organ of the head. Physiological responses to various bitter compounds are lost. Responses to strawberry purées are lost from two classes of taste sensilla. Egg laying is not deterred by bitter compounds that deter other species. Profiling of labellar transcriptomes reveals reduced expression of several bitter Gr genes (gustatory receptors). These findings support a model in which bitter compounds in early ripening stages deter egg laying in most Drosophila species, but a loss of bitter response contributes to the adaptation of D. suzukii to ripe fruit. A new agricultural pest has recently emerged in the United States and Northern Europe. The invasive species is a type of fruit fly that normally lives in Southeast Asia called Drosophila suzukii (also known as the spotted wing Drosophila). This fly poses a threat to fruit crops – including strawberries, blueberries, cherries, peaches and grapes – because, while other fruit flies lay eggs in overripe fruit, D. suzukii lays eggs in ripe fruit, leading to agricultural losses. This shift in where fruit flies prefer to lay their eggs is related to changes in the senses of smell and touch, and taste could also play a role. Insects have evolved mechanisms that dissuade them from eating or laying eggs in plants with high levels of toxins, which taste bitter. If D. suzukii is less sensitive to bitter tastes than other flies, this could help explain why it lays eggs in just-ripe fruit, since the levels of certain bitter compounds are higher in the early stages of ripening than later on. To figure out if this is the case, Dweck et al. studied different species of fruit fly. Compared to Drosophila melanogaster (a fruit fly common in America and Europe that is regularly used in scientific studies), D. suzukii had fewer bitter taste receptor neurons on the major taste organ of the fly head. These receptor neurons were also less responsive to a variety of bitter compounds. Next, Dweck et al. tested whether D. melanogaster and D. suzukii showed different preferences for where to lay their eggs by offering them strawberry purées made from fruit at different ripening stages. In this experiment, D. suzukii preferred to lay its eggs on purées made from unripe or just-ripe strawberries, while D. melanogaster showed a preference for fermented (overripe) purée. Furthermore, when D. melanogaster flies were genetically modified so that they became less sensitive to bitter taste, they preferred to lay their eggs in ripe (rather than overripe) fruit, similar to D. suzukii. These results suggest that taste has a major role in the egg laying preferences of D. suzukii. Further research is needed to determine which bitter compounds influence egg-laying decisions in each species of fruit fly, and what receptors respond to these compounds. However, Dweck et al.’s results lay the groundwork for new approaches to reducing D. suzukii’s impact on agriculture.
Collapse
Affiliation(s)
- Hany Km Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Gaëlle Js Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Wanyue Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
30
|
Ferreira EA, Lambert S, Verrier T, Marion-Poll F, Yassin A. Soft Selective Sweep on Chemosensory Genes Correlates with Ancestral Preference for Toxic Noni in a Specialist Drosophila Population. Genes (Basel) 2020; 12:genes12010032. [PMID: 33383708 PMCID: PMC7824377 DOI: 10.3390/genes12010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how organisms adapt to environmental changes is a major question in evolution and ecology. In particular, the role of ancestral variation in rapid adaptation remains unclear because its trace on genetic variation, known as soft selective sweep, is often hardly recognizable from genome-wide selection scans. Here, we investigate the evolution of chemosensory genes in Drosophila yakuba mayottensis, a specialist subspecies on toxic noni (Morinda citrifolia) fruits on the island of Mayotte. We combine population genomics analyses and behavioral assays to evaluate the level of divergence in chemosensory genes and perception of noni chemicals between specialist and generalist subspecies of D. yakuba. We identify a signal of soft selective sweep on a handful of genes, with the most diverging ones involving a cluster of gustatory receptors expressed in bitter-sensing neurons. Our results highlight the potential role of ancestral genetic variation in promoting host plant specialization in herbivorous insects and identify a number of candidate genes underlying behavioral adaptation.
Collapse
Affiliation(s)
- Erina A. Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.A.F.); (F.M.-P.)
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
| | - Sophia Lambert
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
| | - Thibault Verrier
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
| | - Frédéric Marion-Poll
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.A.F.); (F.M.-P.)
- AgroParisTech, Université Paris-Saclay, 75231 Paris, France
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.A.F.); (F.M.-P.)
- Institut Systématique Evolution Biodiversité (ISYEB) Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE 57 rue Cuvier, CP 50, 75005 Paris, France; (S.L.); (T.V.)
- Correspondence:
| |
Collapse
|
31
|
Rimal S, Sang J, Dhakal S, Lee Y. Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster. Mol Cells 2020; 43:530-538. [PMID: 32451368 PMCID: PMC7332364 DOI: 10.14348/molcells.2020.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 01/23/2023] Open
Abstract
The Gustatory system enables animals to detect toxic bitter chemicals, which is critical for insects to survive food induced toxicity. Cucurbitacin is widely present in plants such as cucumber and gourds that acts as an anti-herbivore chemical and an insecticide. Cucurbitacin has a harmful effect on insect larvae as well. Although various beneficial effects of cucurbitacin such as alleviating hyperglycemia have also been documented, it is not clear what kinds of molecular sensors are required to detect cucurbitacin in nature. Cucurbitacin B, a major bitter component of bitter melon, was applied to induce action potentials from sensilla of a mouth part of the fly, labellum. Here we identify that only Gr33a is required for activating bitter-sensing gustatory receptor neurons by cucurbitacin B among available 26 Grs, 23 Irs, 11 Trp mutants, and 26 Gr-RNAi lines. We further investigated the difference between control and Gr33a mutant by analyzing binary food choice assay. We also measured toxic effect of Cucurbitacin B over 0.01 mM range. Our findings uncover the molecular sensor of cucurbitacin B in Drosophila melanogaster. We propose that the discarded shell of Cucurbitaceae can be developed to make a new insecticide.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Jiun Sang
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Subash Dhakal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
32
|
Xu Q, Wu Z, Zeng X, An X. Identification and Expression Profiling of Chemosensory Genes in Hermetia illucens via a Transcriptomic Analysis. Front Physiol 2020; 11:720. [PMID: 32655421 PMCID: PMC7325966 DOI: 10.3389/fphys.2020.00720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/29/2020] [Indexed: 02/03/2023] Open
Abstract
The black soldier fly, Hermetia illucens, is a cosmopolitan insect of the family Stratiomyidae (Diptera). Chemosensory genes encode proteins involved directly in the detection of odorants. In this study, we sequenced the antennal transcriptome of H. illucens adults to identify chemosensory genes. Putative unigenes encoding 27 odorant binding proteins (OBPs), five chemosensory proteins (CSPs), 70 odorant receptors (ORs), 25 ionotropic receptors (IRs), 10 gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs) were identified. Tissue-specific expression profiles of the identified OBPs, CSPs and SNMPs were investigated using RT-PCR. Eight OBPs (HillOBP1-2, 9, 11-14, and 17), one CSP (HillCSP5) and one SNMP (HillSNMP1) were predominantly expressed in antennae. Further real-time quantitative PCR analyses revealed that the antennae-enriched unigenes also exhibited significant differences in expression between males and females. Among the sex-biased unigenes, six ORs showed female-biased expression, suggesting that these genes might participate in female-specific behaviors such as oviposition site searching. Sixteen ORs and two OBPs showed male-biased expression, indicating that they may play key roles in the detection of female sex pheromones. Our study is the first attempt to delineate the molecular basis of chemoreception in H. illucens. Our data provide useful information for comparative studies on the differentiation and evolution of Dipteran chemosensory gene families.
Collapse
Affiliation(s)
- Qiyun Xu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xincheng An
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
33
|
Muñoz IJ, Schilman PE, Barrozo RB. Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Sci Rep 2020; 10:9443. [PMID: 32523008 PMCID: PMC7287067 DOI: 10.1038/s41598-020-65932-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
The sense of taste provides information about the “good” or “bad” quality of a food source, which may be potentially nutritious or toxic. Most alkaloids taste bitter to humans, and because bitter taste is synonymous of noxious food, they are generally rejected. This response may be due to an innate low palatability or due to a malaise that occurs after food ingestion, which could even lead to death. We investigated in the kissing bug Rhodnius prolixus, whether alkaloids such as quinine, caffeine and theophylline, are merely distasteful, or if anti-appetitive responses are caused by a post-ingestion physiological effect, or both of these options. Although anti-appetitive responses were observed for the three alkaloids, only caffeine and theophylline affect metabolic and respiratory parameters that reflected an underlying physiological stress following their ingestion. Furthermore, caffeine caused the highest mortality. In contrast, quinine appears to be a merely unpalatable compound. The sense of taste helps insects to avoid making wrong feeding decisions, such as the intake of bitter/toxic foods, and thus avoid potentially harmful effects on health, a mechanism preserved in obligate hematophagous insects.
Collapse
Affiliation(s)
- Ignacio J Muñoz
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET; Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina.,Laboratorio de Ecofisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina
| | - Pablo E Schilman
- Laboratorio de Ecofisiología de Insectos, Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina.
| | - Romina B Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad Biología Experimental Aplicada, CONICET; Departamento Biodiversidad Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, UBA, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Leung NY, Thakur DP, Gurav AS, Kim SH, Di Pizio A, Niv MY, Montell C. Functions of Opsins in Drosophila Taste. Curr Biol 2020; 30:1367-1379.e6. [PMID: 32243853 DOI: 10.1016/j.cub.2020.01.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Rhodopsin is a light receptor comprised of an opsin protein and a light-sensitive retinal chromophore. Despite more than a century of scrutiny, there is no evidence that opsins function in chemosensation. Here, we demonstrate that three Drosophila opsins, Rh1, Rh4, and Rh7, are needed in gustatory receptor neurons to sense a plant-derived bitter compound, aristolochic acid (ARI). The gustatory requirements for these opsins are light-independent and do not require retinal. The opsins enabled flies to detect lower concentrations of aristolochic acid by initiating an amplification cascade that includes a G-protein, phospholipase Cβ, and the TRP channel, TRPA1. In contrast, responses to higher levels of the bitter compound were mediated through direct activation of TRPA1. Our study reveals roles for opsins in chemosensation and raise questions concerning the original roles for these classical G-protein-coupled receptors.
Collapse
Affiliation(s)
- Nicole Y Leung
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Dhananjay P Thakur
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adishthi S Gurav
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Sang Hoon Kim
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antonella Di Pizio
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Craig Montell
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
35
|
Cellular Basis of Bitter-Driven Aversive Behaviors in Drosophila Larva. eNeuro 2020; 7:ENEURO.0510-19.2020. [PMID: 32220859 PMCID: PMC7189479 DOI: 10.1523/eneuro.0510-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/04/2022] Open
Abstract
Feeding, a critical behavior for survival, consists of a complex series of behavioral steps. In Drosophila larvae, the initial steps of feeding are food choice, during which the quality of a potential food source is judged, and ingestion, during which the selected food source is ingested into the digestive tract. It remains unclear whether these steps employ different mechanisms of neural perception. Here, we provide insight into the two initial steps of feeding in Drosophila larva. We find that substrate choice and ingestion are determined by independent circuits at the cellular level. First, we took 22 candidate bitter compounds and examined their influence on choice preference and ingestion behavior. Interestingly, certain bitter tastants caused different responses in choice and ingestion, suggesting distinct mechanisms of perception. We further provide evidence that certain gustatory receptor neurons (GRNs) in the external terminal organ (TO) are involved in determining choice preference, and a pair of larval pharyngeal GRNs is involved in mediating both avoidance and suppression of ingestion. Our results show that feeding behavior is coordinated by a multistep regulatory process employing relatively independent neural elements. These findings are consistent with a model in which distinct sensory pathways act as modulatory circuits controlling distinct subprograms during feeding.
Collapse
|
36
|
Chen YCD, Dahanukar A. Recent advances in the genetic basis of taste detection in Drosophila. Cell Mol Life Sci 2020; 77:1087-1101. [PMID: 31598735 PMCID: PMC7125039 DOI: 10.1007/s00018-019-03320-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023]
Abstract
The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H2O2, bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA.
- Department of Molecular, Cell and Systems Biology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
37
|
Liu J, Wu H, Yi J, Zhang G. Two gustatory receptors are necessary for sensing sucrose in an egg parasitoid, Trichogramma chilonis. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00301-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Dweck HKM, Carlson JR. Molecular Logic and Evolution of Bitter Taste in Drosophila. Curr Biol 2019; 30:17-30.e3. [PMID: 31839451 DOI: 10.1016/j.cub.2019.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 01/05/2023]
Abstract
Taste systems detect a vast diversity of toxins, which are perceived as bitter. When a species adapts to a new environment, its taste system must adapt to detect new death threats. We deleted each of six commonly expressed bitter gustatory receptors (Grs) from Drosophila melanogaster. Systematic analysis revealed that requirements for these Grs differed for the same tastant in different neurons and for different tastants in the same neuron. Responses to some tastants in some neurons required four Grs, including Gr39a. Deletions also produced increased or novel responses, supporting a model of Gr-Gr inhibitory interactions. Coexpression of four Grs conferred several bitter responses to a sugar neuron. We then examined bitter coding in three other Drosophila species. We found major evolutionary shifts. One shift depended on the concerted activity of seven Grs. This work shows how the complex logic of bitter coding provides the capacity to detect innumerable hazards and the flexibility to adapt to new ones.
Collapse
Affiliation(s)
- Hany K M Dweck
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
39
|
Zhou LY, Li W, Liu HY, Xiang F, Kang YK, Yin X, Huang AP, Wang YJ. Systemic identification and analyses of genes potentially involved in chemosensory in the devastating tea pest Basilepta melanopus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100586. [DOI: 10.1016/j.cbd.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 11/27/2022]
|
40
|
Wu Z, Kang C, Qu M, Chen J, Chen M, Bin S, Lin J. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics 2019; 20:646. [PMID: 31412763 PMCID: PMC6693287 DOI: 10.1186/s12864-019-6022-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME) responders and non-responders. Representing a non-responders, Bactrocera minax display unique olfactory sensory characteristics compared with other Bactrocera species. The chemical senses of insects mediate behaviors that are associated with survival and reproduction. Here, we report the generation of transcriptomes from antennae and the rectal glands of both male and female adults of B. minax using Illumina sequencing technology, and annotated gene families potentially responsible for chemosensory. Results We developed four transcriptomes from different tissues of B. minax and identified a set of candidate genes potentially responsible for chemosensory by analyzing the transcriptomic data. The candidates included 40 unigenes coding for odorant receptors (ORs), 30 for ionotropic receptors (IRs), 17 for gustatory receptors (GRs), three for sensory neuron membrane proteins (SNMPs), 33 for odorant-binding proteins (OBPs), four for chemosensory proteins (CSPs). Sex- and tissue-specific expression profiles for candidate chemosensory genes were analyzed via transcriptomic data analyses, and expression profiles of all ORs and antennal IRs were investigated by real-time quantitative PCR (RT-qPCR). Phylogenetic analyses were also conducted on gene families and paralogs from other insect species together. Conclusions A large number of chemosensory genes were identified from transcriptomic data. Identification of these candidate genes and their expression profiles in various tissues provide useful information for future studies towards revealing their function in B. minax. Electronic supplementary material The online version of this article (10.1186/s12864-019-6022-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Cong Kang
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mengqiu Qu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Junlong Chen
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Shuying Bin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Jintian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
41
|
Rimal S, Lee Y. Molecular sensor of nicotine in taste of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103178. [PMID: 31226410 DOI: 10.1016/j.ibmb.2019.103178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Nicotine is an alkaloid and potent parasympathomimetic stimulant found in the leaves of many plants including Nicotiana tabacum, which functions as an anti-herbivore chemical and an insecticide. Chemoreceptors embedded in the gustatory receptor neurons (GRNs) enable animals to judge the quality of bitter compounds and respond to them. Various taste receptors such as gustatory receptors (GRs), ionotropic receptors (IRs), transient receptor potential channels (TRPs), and pickpocket channels (PPKs) have been shown to have important roles in taste sensation. However, the mechanism underlying nicotine taste sensation has not been resolved in the insect model. Here we identify molecular receptors to detect the taste of nicotine and provide electrophysiological and behavioral evidence that gustatory receptors are required for avoiding nicotine-laced foods. Our results demonstrate that gustatory receptors are reasonable targets to develop new pesticides that maximize the insecticidal effects of nicotine.
Collapse
Affiliation(s)
- Suman Rimal
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
42
|
Identification and functional characterization of D-fructose receptor in an egg parasitoid, Trichogramma chilonis. PLoS One 2019; 14:e0217493. [PMID: 31216287 PMCID: PMC6583964 DOI: 10.1371/journal.pone.0217493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
In insects, the gustatory system has a critical function not only in selecting food and feeding behaviours but also in growth and metabolism. Gustatory receptors play an irreplaceable role in insect gustatory signalling. Trichogramma chilonis is an effective biocontrol agent against agricultural insect pests. However, the molecular mechanism of gustation in T. chilonis remains elusive. In this study, we found that T. chilonis adults had a preference for D-fructose and that D-fructose contributed to prolong longevity and improve fecundity. Then, We also isolated the full-length cDNA encoding candidate gustatory receptor (TchiGR43a) based on the transcriptome data of T. chilonis, and observed that the candidate gustatory receptor gene was expressed from the larval to adult stages. The expression levels of TchiGR43a were similar between female and male. A Xenopus oocyte expression system and two-electrode voltage-clamp recording further verified the function analysis of TchiGR43a. Electrophysiological results showed that TchiGR43a was exclusively tuned to D-fructose. By the studies of behaviour, molecular biology and electrophysiology in T. chilonis, our results lay a basic fundation of further study on the molecular mechanisms of gustatory reception and provide theoretical basis for the nutritional requirement of T. chilonis in biocontrol.
Collapse
|
43
|
Sang J, Rimal S, Lee Y. Gustatory receptor 28b is necessary for avoiding saponin in Drosophila melanogaster. EMBO Rep 2019; 20:embr.201847328. [PMID: 30622216 DOI: 10.15252/embr.201847328] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022] Open
Abstract
Saponins function as a natural self-defense mechanism for plants to deter various insects due to their unpleasant taste and their toxicity. Here, we provide evidence that saponin from Quillaja saponaria functions as an antifeedant as well as an insecticide to ward off insects in both the larval and the adult stages. Using a behavioral screen of 26 mutant fly lines, we show that the Gr28b gene cluster plays a role in saponin avoidance in the labellum. The Gr28b mutant does not avoid saponin and exhibits increased lethality when fed saponin-mixed food. Tissue-specific rescue experiments with five different Gr28b isoforms revealed that only the Gr28b.c isoform is required for saponin sensation. We propose that in contrast to sensing many other bitter compounds, saponin sensing does not require the function of core taste receptors, such as GR32a, GR33a, and GR66a. Our results reveal a novel role for GR28b in taste. In addition, the ability of saponin to act as insecticides as well as antifeedants suggests its potential application in controlling insect pests.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University BK21 PLUS project, Seoul, Korea
| | - Suman Rimal
- Department of Bio and Fermentation Convergence Technology, Kookmin University BK21 PLUS project, Seoul, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University BK21 PLUS project, Seoul, Korea
| |
Collapse
|
44
|
Kimura KI, Urushizaki A, Sato C, Yamamoto D. A novel sex difference in Drosophila contact chemosensory neurons unveiled using single cell labeling. J Neurogenet 2018; 33:116-124. [PMID: 30457022 DOI: 10.1080/01677063.2018.1531858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among the sensory modalities involved in controlling mating behavior in Drosophila melanogaster, contact sex pheromones play a primary role. The key receptor neurons for contact sex pheromones are located on the forelegs, which are activated in males upon touching the female abdomen during tapping events in courtship actions. A fruitless (fru)-positive (fru [+]) male-pheromone sensing cell (M-cell) and a fru [+] female-pheromone sensing cell (F-cell) are paired in a sensory bristle on the legs, and some fru [+] chemoreceptor axons project across the midline in the thoracic neuromere in males but not in females. However, the receptor cells that form sexually dimorphic axon terminals in the thoracic ganglia remain unknown. By generating labeled single-cell clones, we show that only a specific subset of fru [+] chemosensory neurons have axons that cross the midline in males. We further demonstrate that there exist two male-specific bristles, each harboring two chemosensory neurons; neither of which exhibits midline crossing, a masculine characteristic. This study reveals hitherto unrecognized sex differences in chemosensory neurons, imposing us to reinvestigate the pheromone input pathways that impinge on the central courtship circuit.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- a Laboratory of Biology , Hokkaido University of Education, Sapporo Campus , Sapporo , Japan
| | - Akira Urushizaki
- a Laboratory of Biology , Hokkaido University of Education, Sapporo Campus , Sapporo , Japan
| | - Chiaki Sato
- a Laboratory of Biology , Hokkaido University of Education, Sapporo Campus , Sapporo , Japan
| | - Daisuke Yamamoto
- b Neuro-Network Evolution Project, Advanced ICT Research Institute , National Institute of Information and Communications Technology , Kobe , Japan
| |
Collapse
|
45
|
Mishra D, Thorne N, Miyamoto C, Jagge C, Amrein H. The taste of ribonucleosides: Novel macronutrients essential for larval growth are sensed by Drosophila gustatory receptor proteins. PLoS Biol 2018; 16:e2005570. [PMID: 30086130 PMCID: PMC6080749 DOI: 10.1371/journal.pbio.2005570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/27/2018] [Indexed: 02/04/2023] Open
Abstract
Animals employ various types of taste receptors to identify and discriminate between different nutritious food chemicals. These macronutrients are thought to fall into 3 major groups: carbohydrates/sugars, proteins/amino acids, and fats. Here, we report that Drosophila larvae exhibit a novel appetitive feeding behavior towards ribose, ribonucleosides, and RNA. We identified members of the gustatory receptor (Gr) subfamily 28 (Gr28), expressed in both external and internal chemosensory neurons as molecular receptors necessary for cellular and appetitive behavioral responses to ribonucleosides and RNA. Specifically, behavioral preference assays show that larvae are strongly attracted to ribose- or RNA-containing agarose in a Gr28-dependent manner. Moreover, Ca2+ imaging experiments reveal that Gr28a-expressing taste neurons are activated by ribose, RNA and some ribonucleosides and that these responses can be conveyed to Gr43aGAL4 fructose-sensing neurons by expressing single members of the Gr28 gene family. Lastly, we establish a critical role in behavioral fitness for the Gr28 genes by showing that Gr28 mutant larvae exhibit low survival rates when challenged to find ribonucleosides in food. Together, our work identifies a novel taste modality dedicated to the detection of RNA and ribonucleosides, nutrients that are essential for survival during the accelerated growth phase of Drosophila larvae. Insects that undergo complete metamorphosis grow only during the larval stage of development. In many species, this period is restricted to a few days, during which larvae might increase their weight up to several hundred-fold. Drosophila melanogaster, for example, grow from a tiny first-instar larva of about 10 μg to a wandering third-instar larva weighing about 2 mg over a period of only 4.5 days. The main macronutrients known to be critical for this period of rapid growth are amino acids and sugars. In this study, we identify ribonucleosides and RNA as a new, additional type of nutrient necessary for rapid larval growth and survival. We show that larvae harbor taste neurons that express taste receptors necessary for sensing ribonucleosides and RNA. Larvae lacking these taste receptors show high mortality rates when exposed to a complex food environment that requires the location of ribonucleoside-containing food. We hypothesize that the ability to taste RNA evolved as a new taste modality in larvae of insects that go through a rapid growth period because ingestion of ribonucleosides, as opposed to de novo synthesis, provides a survival advantage during a period of extreme growth.
Collapse
Affiliation(s)
- Dushyant Mishra
- Texas A&M Health Science Center, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Natasha Thorne
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Chika Miyamoto
- Texas A&M Health Science Center, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Christopher Jagge
- Texas A&M Health Science Center, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Hubert Amrein
- Texas A&M Health Science Center, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Kasubuchi M, Shii F, Tsuneto K, Yamagishi T, Adegawa S, Endo H, Sato R. Insect taste receptors relevant to host identification by recognition of secondary metabolite patterns of non-host plants. Biochem Biophys Res Commun 2018; 499:901-906. [DOI: 10.1016/j.bbrc.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
47
|
Kim H, Kim H, Kwon JY, Seo JT, Shin DM, Moon SJ. Drosophila Gr64e mediates fatty acid sensing via the phospholipase C pathway. PLoS Genet 2018; 14:e1007229. [PMID: 29420533 PMCID: PMC5821400 DOI: 10.1371/journal.pgen.1007229] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/21/2018] [Accepted: 01/29/2018] [Indexed: 12/02/2022] Open
Abstract
Animals use taste to sample and ingest essential nutrients for survival. Free fatty acids (FAs) are energy-rich nutrients that contribute to various cellular functions. Recent evidence suggests FAs are detected through the gustatory system to promote feeding. In Drosophila, phospholipase C (PLC) signaling in sweet-sensing cells is required for FA detection but other signaling molecules are unknown. Here, we show Gr64e is required for the behavioral and electrophysiological responses to FAs. GR64e and TRPA1 are interchangeable when they act downstream of PLC: TRPA1 can substitute for GR64e in FA but not glycerol sensing, and GR64e can substitute for TRPA1 in aristolochic acid but not N-methylmaleimide sensing. In contrast to its role in FA sensing, GR64e functions as a ligand-gated ion channel for glycerol detection. Our results identify a novel FA transduction molecule and reveal that Drosophila Grs can act via distinct molecular mechanisms depending on context. Fatty acids (FAs) are energy-rich nutrients that are detected through the gustatory system to promote feeding. Here, we show FA detection requires a Drosophila gustatory receptor, Gr64e. Although GR64e functions as a ligand-gated ion channel for glycerol detection, in FA sensing, it acts downstream of phospholipase C signaling. We identified a novel signaling molecule for FA sensing in Drosophila. Furthermore, our findings suggest Drosophila GRs have multiple modes of action depending on their cellular and molecular context.
Collapse
Affiliation(s)
- Hyeyon Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Yonsei-ro 50–1, Seodaemun-gu, Seoul, Korea
| | - Haein Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Yonsei-ro 50–1, Seodaemun-gu, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Yonsei-ro 50–1, Seodaemun-gu, Seoul, Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Yonsei-ro 50–1, Seodaemun-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
48
|
Diversity of Internal Sensory Neuron Axon Projection Patterns Is Controlled by the POU-Domain Protein Pdm3 in Drosophila Larvae. J Neurosci 2018; 38:2081-2093. [PMID: 29367405 DOI: 10.1523/jneurosci.2125-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/23/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Internal sensory neurons innervate body organs and provide information about internal state to the CNS to maintain physiological homeostasis. Despite their conservation across species, the anatomy, circuitry, and development of internal sensory systems are still relatively poorly understood. A largely unstudied population of larval Drosophila sensory neurons, termed tracheal dendrite (td) neurons, innervate internal respiratory organs and may serve as a model for understanding the sensing of internal states. Here, we characterize the peripheral anatomy, central axon projection, and diversity of td sensory neurons. We provide evidence for prominent expression of specific gustatory receptor genes in distinct populations of td neurons, suggesting novel chemosensory functions. We identify two anatomically distinct classes of td neurons. The axons of one class project to the subesophageal zone (SEZ) in the brain, whereas the other terminates in the ventral nerve cord (VNC). We identify expression and a developmental role of the POU-homeodomain transcription factor Pdm3 in regulating the axon extension and terminal targeting of SEZ-projecting td neurons. Remarkably, ectopic Pdm3 expression is alone sufficient to switch VNC-targeting axons to SEZ targets, and to induce the formation of putative synapses in these ectopic target zones. Our data thus define distinct classes of td neurons, and identify a molecular factor that contributes to diversification of axon targeting. These results introduce a tractable model to elucidate molecular and circuit mechanisms underlying sensory processing of internal body status and physiological homeostasis.SIGNIFICANCE STATEMENT How interoceptive sensory circuits develop, including how sensory neurons diversify and target distinct central regions, is still poorly understood, despite the importance of these sensory systems for maintaining physiological homeostasis. Here, we characterize classes of Drosophila internal sensory neurons (td neurons) and uncover diverse axonal projections and expression of chemosensory receptor genes. We categorize td neurons into two classes based on dichotomous axon target regions, and identify the expression and role of the transcription factor Pdm3 in mediating td axon targeting to one of these target regions. Our results provide an entry point into studying internal sensory circuit development and function, and establish Pdm3 as a regulator of interoceptive axon targeting.
Collapse
|