1
|
Anbalagan S. Sugar-sensing swodkoreceptors and swodkocrine signaling. Animal Model Exp Med 2025; 8:944-961. [PMID: 40110750 DOI: 10.1002/ame2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Sugars are one of the major metabolites and are essential for nucleic acid synthesis and energy production. In addition, sugars can act as signaling molecules. To study sugar signaling at the systemic level, there is an urgent need to systematically identify sugar-sensing proteins and nucleic acids. I propose the terms "swodkoreceptor" and "swodkocrine signaling," derived from the Polish word "słodki" meaning "sweet," to comprise all sugar-sensing proteins and signaling events, respectively, regardless of their cellular location and signaling domains. This proposal is intended to facilitate the inclusion of proteins such as the Escherichia coli LacI repressor as an allolactose receptor, human glucokinase regulatory protein (GCKR) as a fructose receptor, and other sugar-binding based allosterically regulated enzymes and transcription factors as sugar-sensing receptors. In addition, enzyme-interacting proteins whose interaction state is regulated by sugar binding have also been proposed as sugar receptors. The systemic study of protein- and nucleic-acid-based swodkoreceptors may help to identify organelle-specific swodkoreceptors and to also address receptor duality. The study of intra- and inter-organism swodkocrine signaling and its crosstalk with gasocrine signaling may help to understand the etiology of diseases due to dysregulation in sugar homeostasis and signaling.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
2
|
Ren XM, Wang J, Zhao F, Zhang P, Zhang Z, Yang Z, He H, Xu Z, Huang B, Pan X. 6:2 fluorotelomer sulfonate as a safer alternative to PFOS: Comparative cytotoxicity and oxidative stress mechanisms in pancreatic β-cells (INS-1 model). Toxicol In Vitro 2025; 105:106034. [PMID: 39978700 DOI: 10.1016/j.tiv.2025.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Previous studies suggest that 6:2 fluorotelomer sulfonate (6:2 FTSA) exhibits lower hepatotoxicity and reduced reproductive and developmental toxicity compared to perfluorooctane sulfonate (PFOS), indicating it may offer a safer alternative. This study aimed to investigate whether 6:2 FTSA is safer than PFOS in terms of its cytotoxic effects on pancreatic β-cells. Using rat insulinoma cells (INS-1) as a model of pancreatic β-cells, we compared the effects of 6:2 FTSA and PFOS in both their acid (6:2 FTSA-H, PFOS-H) and potassium salt forms (6:2 FTSA-K, PFOS-K) on cell viability through Cell Counting Kit-8 (CCK-8) assays, Trypan Blue staining, and apoptosis assays. Results indicated that 6:2 FTSA was less toxic to INS-1 cells than PFOS (6:2 FTSA-H < PFOS-H; 6:2 FTSA-K < PFOS-K), the LOECs of 6:2 FTSA-H, 6:2 FTSA-K, PFOS-H, and PFOS-K were 150 μM, 150 μM, 20 μM, and 10 μM under FBS free conditions, respectively. To further explore whether these compounds induce cell death via oxidative stress, we measured intracellular reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels. All four compounds induced oxidative stress in INS-1 cells, with oxidative stress levels corresponding to cytotoxicity, suggesting β-cell death may occur via an oxidative stress mechanism. In conclusion, this study supports the notion that 6:2 FTSA is a safer alternative to PFOS, particularly regarding risks related to pancreatic β-cell cytotoxic effects. While the in vitro experiments in this study provide valuable preliminary information on the compounds' effects on cells and their mechanisms, they cannot fully capture the complexity of the in vivo environment. Therefore, future research should include in vivo experiments to validate the findings from the in vitro studies and comprehensively evaluate the actual effects of the compounds in living organisms.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Jianying Wang
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Fenqing Zhao
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Pingping Zhang
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Zhenghuan Zhang
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Zhongneng Yang
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
3
|
Gersing S, Hansen T, Lindorff-Larsen K, Hartmann-Petersen R. Glucokinase: from allosteric glucose sensing to disease variants. Trends Biochem Sci 2025; 50:255-266. [PMID: 39753435 DOI: 10.1016/j.tibs.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025]
Abstract
Human glucokinase (GCK) functions as a glucose sensor in the pancreas and liver, where GCK activity regulates insulin secretion and glycogen synthesis, respectively. GCK's low affinity for glucose and the sigmoidal substrate dependency of enzymatic turnover enables it to act as a sensor that makes cells responsive to changes in circulating glucose levels. Its unusual kinetic properties are intrinsically linked to the enzyme's conformational dynamics. Accordingly, genetic variants that alter the dynamics or other aspects of GCK function are linked to three glucose homeostasis diseases. In this review, we describe the enzyme GCK, focusing on its role as a glucose sensor, its unusual kinetic properties, and recent large-scale efforts to assess GCK variant effects.
Collapse
Affiliation(s)
- Sarah Gersing
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark.
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark.
| |
Collapse
|
4
|
Bahl V, Rifkind R, Waite E, Hamdan Z, May CL, Manduchi E, Voight BF, Lee MYY, Tigue M, Manuto N, Glaser B, Avrahami D, Kaestner KH. G6PC2 controls glucagon secretion by defining the set point for glucose in pancreatic α cells. Sci Transl Med 2025; 17:eadi6148. [PMID: 39742505 DOI: 10.1126/scitranslmed.adi6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2024] [Accepted: 11/11/2024] [Indexed: 01/03/2025]
Abstract
Elevated glucagon concentrations have been reported in patients with type 2 diabetes (T2D). A critical role for α cell-intrinsic mechanisms in regulating glucagon secretion was previously established through genetic manipulation of the glycolytic enzyme glucokinase (GCK) in mice. Genetic variation at the glucose-6-phosphatase catalytic subunit 2 (G6PC2) locus, encoding an enzyme that opposes GCK, has been reproducibly associated with fasting blood glucose and hemoglobin A1c. Here, we found that trait-associated variants in the G6PC2 promoter are located in open chromatin not just in β but also in α cells and documented allele-specific G6PC2 expression of linked variants in human α cells. Using α cell-specific gene ablation of G6pc2 in mice, we showed that this gene plays a critical role in controlling glucose suppression of amino acid-stimulated glucagon secretion independent of alterations in insulin output, islet hormone content, or islet morphology, findings that we confirmed in primary human α cells. Collectively, our data demonstrate that G6PC2 affects glycemic control via its action in α cells and possibly suggest that G6PC2 inhibitors might help control blood glucose through a bihormonal mechanism.
Collapse
Affiliation(s)
- Varun Bahl
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Reut Rifkind
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eric Waite
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Zenab Hamdan
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Catherine Lee May
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Elisabetta Manduchi
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Benjamin F Voight
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Y Y Lee
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Mark Tigue
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Manuto
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dana Avrahami
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| |
Collapse
|
5
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
6
|
Martin CC, Oeser JK, Wangmo T, Flemming BP, Attie AD, Keller MP, O’Brien RM. Multiple promoter and enhancer differences likely contribute to augmented G6PC2 expression in human versus mouse pancreatic islet alpha cells. J Mol Endocrinol 2024; 73:e240051. [PMID: 39121091 PMCID: PMC11439184 DOI: 10.1530/jme-24-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/11/2024]
Abstract
G6PC2 encodes a glucose-6-phosphatase catalytic subunit that opposes the action of glucokinase in pancreatic islets, thereby modulating the sensitivity of insulin and glucagon secretion to glucose. In mice, G6pc2 is expressed at ~20-fold higher levels in β-cells than in α-cells, whereas in humans G6PC2 is expressed at only ~5-fold higher levels in β-cells. We therefore hypothesize that G6PC2 likely influences glucagon secretion to a greater degree in humans. With a view to generating a humanized mouse that recapitulates augmented G6PC2 expression levels in α-cells, we sought to identify the genomic regions that confer differential mouse G6pc2 expression in α-cells versus β-cells as well as the evolutionary changes that have altered this ratio in humans. Studies in islet-derived cell lines suggest that the elevated G6pc2 expression in mouse β-cells versus α-cells is mainly due to a difference in the relative activity of the proximal G6pc2 promoter in these cell types. Similarly, the smaller difference in G6PC2 expression between α-cells and β-cells in humans is potentially explained by a change in relative proximal G6PC2 promoter activity. However, we show that both glucocorticoid levels and multiple differences in the relative activity of eight transcriptional enhancers between mice and humans likely contribute to differential G6PC2 expression. Finally, we show that a mouse-specific non-coding RNA, Gm13613, whose expression is controlled by G6pc2 enhancer I, does not regulate G6pc2 expression, indicating that altered expression of Gm13613 in a humanized mouse that contains both the human promoter and enhancers should not affect G6PC2 function.
Collapse
Affiliation(s)
- Cyrus C. Martin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Tenzin Wangmo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Brian P. Flemming
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, University of Wisconsin-Madison
- Department of Medicine, University of Wisconsin-Madison, WI 53706
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
7
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
8
|
Ma X, Zhu R, Zhang H, Meng Z. pH-responsive persistent luminescence nanoprobes biosensor for autofluorescence-free determination of glucose level in human samples and fingerprint encryption. LUMINESCENCE 2024; 39:e4900. [PMID: 39261303 DOI: 10.1002/bio.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Glucose level is an important indicator of diabetes, and maintaining an appropriate physiological concentration of glucose is important for human health. However, traditional optical sensors are interfered by the interference of strong background autofluorescence and natural responsive luminescence, which severely limits their application in complex biological samples. Herein, as a novel glucose biosensing probe, green-emitting Zn2GeO4:Mn2+, Eu3+ (ZGME) persistent luminescence nanoparticles (PLNPs) with pH stimulus-responsive was prepared by a facile one-pot hydrothermal method. We also investigated the pH stimulus-responsive luminescence behaviour of ZGME over a range of pH values from 2.8 to 8.0. Taking advantage of the interesting property that ZGME photoluminescence intensity has a pH response, within an extraordinarily narrow pH range of 5.0-6.5 for highly selectivity and sensitive determination of glucose level in human samples by acid-responsive quenching and persistent luminescent performance. The detection results show high accuracy of the measured values of glucose in serum with a wide detection range (2.5 μg L-1-10 mg L-1) and low detection limit (0.5 μg L-1). Finally, the pH-responsive persistent luminescence also makes ZGME promising for high-level fingerprint information encryption. Hence, the established pH stimulation-responsive PLNPs-based biosensing probe offers excellent performance with high selective, accuracy and signal-to-noise ratio for detection of glucose level in human samples.
Collapse
Affiliation(s)
- Xiaohu Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Runzhi Zhu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Hui Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Zhe Meng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
9
|
Knuth ER, Foster HR, Jin E, Ekstrand MH, Knudsen JG, Merrins MJ. Leucine Suppresses α-Cell cAMP and Glucagon Secretion via a Combination of Cell-Intrinsic and Islet Paracrine Signaling. Diabetes 2024; 73:1426-1439. [PMID: 38870025 PMCID: PMC11333377 DOI: 10.2337/db23-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glucagon is critical for the maintenance of blood glucose, however nutrient regulation of pancreatic α-cells remains poorly understood. Here, we identified a role of leucine, a well-known β-cell fuel, in the α-cell-intrinsic regulation of glucagon release. In islet perifusion assays, physiologic concentrations of leucine strongly inhibited alanine- and arginine-stimulated glucagon secretion from human and mouse islets under hypoglycemic conditions. Mechanistically, leucine dose-dependently reduced α-cell cAMP, independently of Ca2+, ATP/ADP, or fatty acid oxidation. Leucine also reduced α-cell cAMP in islets treated with somatostatin receptor 2 antagonists or diazoxide, compounds that limit paracrine signaling from β/δ-cells. Studies in dispersed mouse islets confirmed an α-cell-intrinsic effect. The inhibitory effect of leucine on cAMP was mimicked by glucose, α-ketoisocaproate, succinate, and the glutamate dehydrogenase activator BCH and blocked by cyanide, indicating a mechanism dependent on mitochondrial metabolism. Glucose dose-dependently reduced the impact of leucine on α-cell cAMP, indicating an overlap in function; however, leucine was still effective at suppressing glucagon secretion in the presence of elevated glucose, amino acids, and the incretin GIP. Taken together, these findings show that leucine plays an intrinsic role in limiting the α-cell secretory tone across the physiologic range of glucose levels, complementing the inhibitory paracrine actions of β/δ-cells. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Emily R. Knuth
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Hannah R. Foster
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Erli Jin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Maia H. Ekstrand
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J. Merrins
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
10
|
Sjöholm Å. Glucokinase activators and imeglimin: new weaponry in the armamentarium against type 2 diabetes. BMJ Open Diabetes Res Care 2024; 12:e004291. [PMID: 39214626 PMCID: PMC11367400 DOI: 10.1136/bmjdrc-2024-004291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of β-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.Allosteric activators of glucokinase, an enzyme stimulating insulin secretion in β-cells and suppressing hepatic glucose production, are oral low-molecular-weight drugs. One of these, dorzagliatin, is approved in China for use in adult patients with T2D, either as monotherapy or as an add-on to metformin. It remains to be seen whether the drug will produce sustained antidiabetic effects over many years and whether the side effects that led to the discontinuation of early drug candidates will limit the usefulness of dorzagliatin.Imeglimin-which shares structural similarities with metformin-targets mitochondrial dysfunction and was approved in Japan against T2D. In preclinical studies, the drug has also shown promising β-cell protective and preservative effects that may translate into disease-modifying effects.Hopefully, these two newcomers will contribute to filling the great medical need for new treatment modalities, preferably with disease-modifying potential. It remains to be seen where they will fit in contemporary treatment algorithms, which combinations of drugs are effective and which should be avoided. Time will tell to what extent these new antidiabetic agents will add value to the current treatment options against T2D in terms of sustained antidiabetic effect, acceptable safety, utility in combination therapy, and impact on hard end-points such as cardiovascular disease.
Collapse
Affiliation(s)
- Åke Sjöholm
- University of Gävle, Gavle, Sweden
- Department of Internal Medicine, Region Gävleborg, Gavle, Sweden
| |
Collapse
|
11
|
Song J, Wang L, Wang L, Guo X, He Q, Cui C, Hu H, Zang N, Yang M, Yan F, Liang K, Wang C, Liu F, Sun Y, Sun Z, Lai H, Hou X, Chen L. Mesenchymal stromal cells ameliorate mitochondrial dysfunction in α cells and hyperglucagonemia in type 2 diabetes via SIRT1/FoxO3a signaling. Stem Cells Transl Med 2024; 13:776-790. [PMID: 38864709 PMCID: PMC11328933 DOI: 10.1093/stcltm/szae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
Dysregulation of α cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stromal cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α-cell mitochondrial dysfunction remains unclear. Here, human umbilical cord MSCs (hucMSCs) were used to treat 2 kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by Western blotting analysis. In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued the islet structure and decreased α- to β-cell ratio. Glucagon secretion from αTC1-6 cells was consistently inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion. Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.
Collapse
Affiliation(s)
- Jia Song
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Lingshu Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Liming Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Xinghong Guo
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Qin He
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chen Cui
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Huiqing Hu
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Nan Zang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Mengmeng Yang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Fei Yan
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Kai Liang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chuan Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Fuqiang Liu
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yujing Sun
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Zheng Sun
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Hong Lai
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| | - Xinguo Hou
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| | - Li Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| |
Collapse
|
12
|
Liu L, El K, Dattaroy D, Barella LF, Cui Y, Gray SM, Guedikian C, Chen M, Weinstein LS, Knuth E, Jin E, Merrins MJ, Roman J, Kaestner KH, Doliba N, Campbell JE, Wess J. Intra-islet α-cell Gs signaling promotes glucagon release. Nat Commun 2024; 15:5129. [PMID: 38879678 PMCID: PMC11180188 DOI: 10.1038/s41467-024-49537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Diptadip Dattaroy
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Luiz F Barella
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Sarah M Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Carla Guedikian
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Emily Knuth
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erli Jin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew J Merrins
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jeffrey Roman
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicolai Doliba
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Jürgen Wess
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Acreman S, Ma J, Denwood G, Gao R, Tarasov A, Rorsman P, Zhang Q. The endoplasmic reticulum plays a key role in α-cell intracellular Ca 2+ dynamics and glucose-regulated glucagon secretion in mouse islets. iScience 2024; 27:109665. [PMID: 38646167 PMCID: PMC11033163 DOI: 10.1016/j.isci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.
Collapse
Affiliation(s)
- Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Li P, Zhu D. Clinical investigation of glucokinase activators for the restoration of glucose homeostasis in diabetes. J Diabetes 2024; 16:e13544. [PMID: 38664885 PMCID: PMC11045918 DOI: 10.1111/1753-0407.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/29/2024] Open
Abstract
As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.
Collapse
Affiliation(s)
- Ping Li
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
15
|
Li Z, Wu N, Wang J, Yue Y, Geng L, Zhang Q. Low molecular weight fucoidan restores diabetic endothelial glycocalyx by targeting neuraminidase2: A new therapy target in glycocalyx shedding. Br J Pharmacol 2024; 181:1404-1420. [PMID: 37994102 DOI: 10.1111/bph.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic vascular complication is a leading cause of disability and mortality in diabetes patients. Low molecular weight fucoidan (LMWF) is a promising drug candidate for vascular complications. Glycocalyx injury predates the occurrence of diabetes vascular complications. Protecting glycocalyx from degradation relieves diabetic vascular complications. LMWF has the potential to protect the diabetes endothelial glycocalyx from shedding. EXPERIMENTAL APPROACH The protective effect of LMWF on diabetic glycocalyx damage was investigated in db/db mice and Human Umbilical Vein Endothelial Cells (HUVEC) through transmission electron microscopy and WGA labelling. The effect of LMWF on glycocalyx degrading enzymes expression was investigated. Neuraminidase2 (NEU2) overexpression/knockdown was performed in HUVECs to verify the important role of NEU2 in glycocalyx homeostasis. The interaction between NEU2 and LMWF was detected by ELISA and surface plasmon resonance analysis (SPR). KEY RESULTS LMWF normalizes blood indexes including insulin, triglyceride, uric acid and reduces diabetes complications adverse events. LMWF alleviates diabetic endothelial glycocalyx damage in db/db mice kidney/aorta and high concentration glucose treated HUVECs. NEU2 is up-regulated in db/db mice and HUVECs with high concentration glucose. Overexpression/knockdown NEU2 results in glycocalyx shedding in HUVEC. Down-regulation and interaction of LMWF with NEU2 is a new therapy target in glycocalyx homeostasis. NEU2 was positively correlated with phosphorylated IR-β. CONCLUSION AND IMPLICATIONS NEU2 is an effective target for glycocalyx homeostasis and LMWF is a promising drug to alleviate vascular complications in diabetes by protecting endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
16
|
Coykendall VM, Qian MF, Tellez K, Bautista A, Bevacqua RJ, Gu X, Hang Y, Neukam M, Zhao W, Chang C, MacDonald PE, Kim SK. RFX6 Maintains Gene Expression and Function of Adult Human Islet α-Cells. Diabetes 2024; 73:448-460. [PMID: 38064570 PMCID: PMC10882151 DOI: 10.2337/db23-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 02/22/2024]
Abstract
Mutations in the gene encoding the transcription factor regulatory factor X-box binding 6 (RFX6) are associated with human diabetes. Within pancreatic islets, RFX6 expression is most abundant in islet α-cells, and α-cell RFX6 expression is altered in diabetes. However, the roles of RFX6 in regulating gene expression, glucagon output, and other crucial human adult α-cell functions are not yet understood. We developed a method for selective genetic targeting of human α-cells and assessed RFX6-dependent α-cell function. RFX6 suppression with RNA interference led to impaired α-cell exocytosis and dysregulated glucagon secretion in vitro and in vivo. By contrast, these phenotypes were not observed with RFX6 suppression across all islet cells. Transcriptomics in α-cells revealed RFX6-dependent expression of genes governing nutrient sensing, hormone processing, and secretion, with some of these exclusively expressed in human α-cells. Mapping of RFX6 DNA-binding sites in primary human islet cells identified a subset of direct RFX6 target genes. Together, these data unveil RFX6-dependent genetic targets and mechanisms crucial for regulating adult human α-cell function. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Vy M.N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Mollie F. Qian
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Krissie Tellez
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Romina J. Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| | - Martin Neukam
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Charles Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
17
|
Feng L, Chen C, Guo Q, Chen L, Yang W. Improvement of early-phase insulin secretion is an independent factor for achieving glycaemic control: A pooled analysis of SEED and DAWN study. Diabetes Obes Metab 2024; 26:745-753. [PMID: 37985364 DOI: 10.1111/dom.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
AIM To investigate the effect of improving early phase insulin secretion function for glycaemic control in patients with type 2 diabetes mellitus treated with a new class of antidiabetic drug dorzagliatin. MATERIALS AND METHODS Early insulin secretion function was studied in 726 participants of which 414 were treated with dorzagliatin in the SEED and DAWN study. The early insulinogenic index (IGI30min ) and disposition index (DI) were used to assess early-phase insulin secretion function in this study. Logistic regression analysis was performed to verify the importance of IGI30min and DI indices for achieving effective glycaemic control. RESULTS The reduction in HbA1c has a significant correlation with the improvement of IGI30min for patients that received 24 weeks of dorzagliatin treatment (p < .001), and this correlation was not observed in the placebo group (p = .364). In the dorzagliatin treatment group, the responders showed significant improvements in homeostasis model assessment 2-β, IGI30min and DI compared with the non-responders. Logistic regression analysis revealed that the odds ratio (OR) for achieving glycaemic control was 1.28 (95% CI 1.14-1.43) for baseline IGI30min , and 1.24 (95% CI 1.14-1.35) for the 24-week incremental IGI30min from baseline. The OR for baseline DI and 24-week changes in DI from baseline were 1.39 (95% CI 1.2-1.6) and 1.30 (95% CI 1.19-1.43) respectively. The timing of insulin secretion analysis showed the significant contribution of early-phase insulin secretion, rather than late-phase insulin secretion, to postprandial glucose control with the OR for the incremental IGI30min and IGI2h to postprandial glucose control were 1.3 (95% CI 1.19-1.42) and 1 (95% CI 1-1.01) respectively. CONCLUSIONS Restoring the impaired early-phase insulin secretion function in patients with type 2 diabetes mellitus is a critical factor for improving the glycaemic control by dorzagliatin treatment.
Collapse
Affiliation(s)
| | | | | | - Li Chen
- Hua Medicine, Shanghai, China
| | - Wenying Yang
- Japan-China Friendship Hospital, Beijing, China
- Taikang Yanyuan Rehabilitation Hospital, Beijing, China
| |
Collapse
|
18
|
Li C, Juliana CA, Yuan Y, Li M, Lu M, Chen P, Boodhansingh KE, Doliba NM, Bhatti TR, Adzick NS, Stanley CA, De León DD. Phenotypic Characterization of Congenital Hyperinsulinism Due to Novel Activating Glucokinase Mutations. Diabetes 2023; 72:1809-1819. [PMID: 37725835 PMCID: PMC10658072 DOI: 10.2337/db23-0465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in β-cells and α-cells to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Christine A. Juliana
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yue Yuan
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Lu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Pan Chen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tricia R. Bhatti
- Department of Pathology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - N. Scott Adzick
- Department of Surgery, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Li C, Zhang Y, Chen L, Li X. Glucokinase and glucokinase activator. LIFE METABOLISM 2023; 2:load031. [PMID: 39872624 PMCID: PMC11749227 DOI: 10.1093/lifemeta/load031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 01/30/2025]
Abstract
Glucokinase (GK) plays a pivotal role in glucose homeostasis as the glucose sensor in the pancreas and liver. Loss of function of GK results in hyperglycemia, and gain of function causes congenital hyperinsulinemic hypoglycemia. We speculate that the progressive loss of GK at both messenger RNA (mRNA) and protein levels in the islets and liver would be the key mechanism for Type 2 diabetes (T2D) pathogenesis. The development of GK activator (GKA) as an anti-diabetic drug has been endeavored for several decades. The failure of the early development of GKAs is due to the limitation of understanding the mode of GKA action. The success of dorzagliatin in the treatment of T2D has brought new hope for GK in setting a good model for repairing the underlying defects in the pancreatic islets and liver of T2D patients.
Collapse
Affiliation(s)
- Changhong Li
- Nanjing AscendRare and Hua Medicine, Nanjing, Jiangsu 210000, China
| | - Yi Zhang
- Hua Medicine, Shanghai 201203, China
| | - Li Chen
- Hua Medicine, Shanghai 201203, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Armour SL, Frueh A, Chibalina MV, Dou H, Argemi-Muntadas L, Hamilton A, Katzilieris-Petras G, Carmeliet P, Davies B, Moritz T, Eliasson L, Rorsman P, Knudsen JG. Glucose Controls Glucagon Secretion by Regulating Fatty Acid Oxidation in Pancreatic α-Cells. Diabetes 2023; 72:1446-1459. [PMID: 37494670 PMCID: PMC10545563 DOI: 10.2337/db23-0056] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Whole-body glucose homeostasis is coordinated through secretion of glucagon and insulin from pancreatic islets. When glucose is low, glucagon is released from α-cells to stimulate hepatic glucose production. However, the mechanisms that regulate glucagon secretion from pancreatic α-cells remain unclear. Here we show that in α-cells, the interaction between fatty acid oxidation and glucose metabolism controls glucagon secretion. The glucose-dependent inhibition of glucagon secretion relies on pyruvate dehydrogenase and carnitine palmitoyl transferase 1a activity and lowering of mitochondrial fatty acid oxidation by increases in glucose. This results in reduced intracellular ATP and leads to membrane repolarization and inhibition of glucagon secretion. These findings provide a new framework for the metabolic regulation of the α-cell, where regulation of fatty acid oxidation by glucose accounts for the stimulation and inhibition of glucagon secretion. ARTICLE HIGHLIGHTS It has become clear that dysregulation of glucagon secretion and α-cell function plays an important role in the development of diabetes, but we do not know how glucagon secretion is regulated. Here we asked whether glucose inhibits fatty acid oxidation in α-cells to regulate glucagon secretion. We found that fatty acid oxidation is required for the inhibitory effects of glucose on glucagon secretion through reductions in ATP. These findings provide a new framework for the regulation of glucagon secretion by glucose.
Collapse
Affiliation(s)
- Sarah L. Armour
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Frueh
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Margarita V. Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lidia Argemi-Muntadas
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Hamilton
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Georgios Katzilieris-Petras
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong, People’s Republic of China
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Riahi Y, Kogot-Levin A, Kadosh L, Agranovich B, Malka A, Assa M, Piran R, Avrahami D, Glaser B, Gottlieb E, Jackson F, Cerasi E, Bernal-Mizrachi E, Helman A, Leibowitz G. Hyperglucagonaemia in diabetes: altered amino acid metabolism triggers mTORC1 activation, which drives glucagon production. Diabetologia 2023; 66:1925-1942. [PMID: 37480416 DOI: 10.1007/s00125-023-05967-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 07/24/2023]
Abstract
AIM/HYPOTHESIS Hyperglycaemia is associated with alpha cell dysfunction, leading to dysregulated glucagon secretion in type 1 and type 2 diabetes; however, the mechanisms involved are still elusive. The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) plays a major role in the maintenance of alpha cell mass and function. We studied the regulation of alpha cell mTORC1 by nutrients and its role in the development of hyperglucagonaemia in diabetes. METHODS Alpha cell mTORC1 activity was assessed by immunostaining for phosphorylation of its downstream target, the ribosomal protein S6, and glucagon, followed by confocal microscopy on pancreatic sections and flow cytometry on dispersed human and mouse islets and the alpha cell line, αTC1-6. Metabolomics and metabolic flux were studied by 13C glucose labelling in 2.8 or 16.7 mmol/l glucose followed by LC-MS analysis. To study the role of mTORC1 in mediating hyperglucagonaemia in diabetes, we generated an inducible alpha cell-specific Rptor knockout in the Akita mouse model of diabetes and tested the effects on glucose tolerance by IPGTT and on glucagon secretion. RESULTS mTORC1 activity was increased in alpha cells from diabetic Akita mice in parallel to the development of hyperglycaemia and hyperglucagonaemia (two- to eightfold increase). Acute exposure of mouse and human islets to amino acids stimulated alpha cell mTORC1 (3.5-fold increase), whereas high glucose concentrations inhibited mTORC1 (1.4-fold decrease). The mTORC1 response to glucose was abolished in human and mouse diabetic alpha cells following prolonged islet exposure to high glucose levels, resulting in sustained activation of mTORC1, along with increased glucagon secretion. Metabolomics and metabolic flux analysis showed that exposure to high glucose levels enhanced glycolysis, glucose oxidation and the synthesis of glucose-derived amino acids. In addition, chronic exposure to high glucose levels increased the expression of Slc7a2 and Slc38a4, which encode amino acid transporters, as well as the levels of branched-chain amino acids and methionine cycle metabolites (~1.3-fold increase for both). Finally, conditional Rptor knockout in alpha cells from adult diabetic mice inhibited mTORC1, thereby inhibiting glucagon secretion (~sixfold decrease) and improving diabetes, despite persistent insulin deficiency. CONCLUSIONS/INTERPRETATION Alpha cell exposure to hyperglycaemia enhances amino acid synthesis and transport, resulting in sustained activation of mTORC1, thereby increasing glucagon secretion. mTORC1 therefore plays a major role in mediating alpha cell dysfunction in diabetes. DATA AVAILABILITY All sequencing data are available from the Gene Expression Omnibus (GEO) repository (accession no. GSE154126; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154126 ).
Collapse
Affiliation(s)
- Yael Riahi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kadosh
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Agranovich
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Assaf Malka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Assa
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dana Avrahami
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Gottlieb
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fields Jackson
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Erol Cerasi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aharon Helman
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| | - Gil Leibowitz
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
22
|
Armour SL, Stanley JE, Cantley J, Dean ED, Knudsen JG. Metabolic regulation of glucagon secretion. J Endocrinol 2023; 259:e230081. [PMID: 37523232 PMCID: PMC10681275 DOI: 10.1530/joe-23-0081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Since the discovery of glucagon 100 years ago, the hormone and the pancreatic islet alpha cells that produce it have remained enigmatic relative to insulin-producing beta cells. Canonically, alpha cells have been described in the context of glucagon's role in glucose metabolism in liver, with glucose as the primary nutrient signal regulating alpha cell function. However, current data reveal a more holistic model of metabolic signalling, involving glucagon-regulated metabolism of multiple nutrients by the liver and other tissues, including amino acids and lipids, providing reciprocal feedback to regulate glucagon secretion and even alpha cell mass. Here we describe how various nutrients are sensed, transported and metabolised in alpha cells, providing an integrative model for the metabolic regulation of glucagon secretion and action. Importantly, we discuss where these nutrient-sensing pathways intersect to regulate alpha cell function and highlight key areas for future research.
Collapse
Affiliation(s)
- Sarah L Armour
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| | - Jade E. Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - James Cantley
- Division of Cellular and systems medicine, School of Medicine, University of Dundee, UK
| | - E. Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
- Division of Diabetes, Endocrinology, & Metabolism, Vanderbilt University Medical Center school of medicine, USA
| | - Jakob G Knudsen
- Section for cell biology and physiology, Department of Biology, University of Copenhagen, DK
| |
Collapse
|
23
|
Knuth ER, Foster HR, Jin E, Merrins MJ. Leucine suppresses glucagon secretion from pancreatic islets by directly modulating α-cell cAMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551113. [PMID: 37577685 PMCID: PMC10418066 DOI: 10.1101/2023.07.31.551113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Objective Pancreatic islets are nutrient sensors that regulate organismal blood glucose homeostasis. Glucagon release from the pancreatic α-cell is important under fasted, fed, and hypoglycemic conditions, yet metabolic regulation of α-cells remains poorly understood. Here, we identified a previously unexplored role for physiological levels of leucine, which is classically regarded as a β-cell fuel, in the intrinsic regulation of α-cell glucagon release. Methods GcgCreERT:CAMPER and GcgCreERT:GCaMP6s mice were generated to perform dynamic, high-throughput functional measurements of α-cell cAMP and Ca2+ within the intact islet. Islet perifusion assays were used for simultaneous, time-resolved measurements of glucagon and insulin release from mouse and human islets. The effects of leucine were compared with glucose and the mitochondrial fuels 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH, non-metabolized leucine analog that activates glutamate dehydrogenase), α-ketoisocaproate (KIC, leucine metabolite), and methyl-succinate (complex II fuel). CYN154806 (Sstr2 antagonist), diazoxide (KATP activator, which prevents Ca2+-dependent exocytosis from α, β, and δ-cells), and dispersed α-cells were used to inhibit islet paracrine signaling and identify α-cell intrinsic effects. Results Mimicking the effect of glucose, leucine strongly suppressed amino acid-stimulated glucagon secretion. Mechanistically, leucine dose-dependently reduced α-cell cAMP at physiological concentrations, with an IC50 of 57, 440, and 1162 μM at 2, 6, and 10 mM glucose, without affecting α-cell Ca2+. Leucine also reduced α-cell cAMP in islets treated with Sstr2 antagonist or diazoxide, as well as dispersed α-cells, indicating an α-cell intrinsic effect. The effect of leucine was matched by KIC and the glutamate dehydrogenase activator BCH, but not methyl-succinate, indicating a dependence on mitochondrial anaplerosis. Glucose, which stimulates anaplerosis via pyruvate carboxylase, had the same suppressive effect on α-cell cAMP but with lower potency. Similarly to mouse islets, leucine suppressed glucagon secretion from human islets under hypoglycemic conditions. Conclusions These findings highlight an important role for physiological levels of leucine in the metabolic regulation of α-cell cAMP and glucagon secretion. Leucine functions primarily through an α-cell intrinsic effect that is dependent on glutamate dehydrogenase, in addition to the well-established α-cell regulation by β/δ-cell paracrine signaling. Our results suggest that mitochondrial anaplerosis-cataplerosis facilitates the glucagonostatic effect of both leucine and glucose, which cooperatively suppress α-cell tone by reducing cAMP.
Collapse
Affiliation(s)
- Emily R. Knuth
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
24
|
Teng T, Sun G, Ding H, Song X, Bai G, Shi B, Shang T. Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure. J Anim Sci Biotechnol 2023; 14:84. [PMID: 37400906 DOI: 10.1186/s40104-023-00886-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Cold regions have long autumn and winter seasons and low ambient temperatures. When pigs are unable to adjust to the cold, oxidative damage and inflammation may develop. However, the differences between cold and non-cold adaptation regarding glucose and lipid metabolism, gut microbiota and colonic mucosal immunological features in pigs are unknown. This study revealed the glucose and lipid metabolic responses and the dual role of gut microbiota in pigs during cold and non-cold adaptation. Moreover, the regulatory effects of dietary glucose supplements on glucose and lipid metabolism and the colonic mucosal barrier were evaluated in cold-exposed pigs. RESULTS Cold and non-cold-adapted models were established by Min and Yorkshire pigs. Our results exhibited that cold exposure induced glucose overconsumption in non-cold-adapted pig models (Yorkshire pigs), decreasing plasma glucose concentrations. In this case, cold exposure enhanced the ATGL and CPT-1α expression to promote liver lipolysis and fatty acid oxidation. Meanwhile, the two probiotics (Collinsella and Bifidobacterium) depletion and the enrichment of two pathogens (Sutterella and Escherichia-Shigella) in colonic microbiota are not conducive to colonic mucosal immunity. However, glucagon-mediated hepatic glycogenolysis in cold-adapted pig models (Min pigs) maintained the stability of glucose homeostasis during cold exposure. It contributed to the gut microbiota (including the enrichment of the Rikenellaceae RC9 gut group, [Eubacterium] coprostanoligenes group and WCHB1-41) that favored cold-adapted metabolism. CONCLUSIONS The results of both models indicate that the gut microbiota during cold adaptation contributes to the protection of the colonic mucosa. During non-cold adaptation, cold-induced glucose overconsumption promotes thermogenesis through lipolysis, but interferes with the gut microbiome and colonic mucosal immunity. Furthermore, glucagon-mediated hepatic glycogenolysis contributes to glucose homeostasis during cold exposure.
Collapse
Affiliation(s)
- Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guodong Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Tingting Shang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
25
|
Ho T, Potapenko E, Davis DB, Merrins MJ. A plasma membrane-associated glycolytic metabolon is functionally coupled to K ATP channels in pancreatic α and β cells from humans and mice. Cell Rep 2023; 42:112394. [PMID: 37058408 PMCID: PMC10513404 DOI: 10.1016/j.celrep.2023.112394] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
The ATP-sensitive K+ (KATP) channel is a key regulator of hormone secretion from pancreatic islet endocrine cells. Using direct measurements of KATP channel activity in pancreatic β cells and the lesser-studied α cells, from both humans and mice, we provide evidence that a glycolytic metabolon locally controls KATP channels on the plasma membrane. The two ATP-consuming enzymes of upper glycolysis, glucokinase and phosphofructokinase, generate ADP that activates KATP. Substrate channeling of fructose 1,6-bisphosphate through the enzymes of lower glycolysis fuels pyruvate kinase, which directly consumes the ADP made by phosphofructokinase to raise ATP/ADP and close the channel. We further show the presence of a plasma membrane-associated NAD+/NADH cycle whereby lactate dehydrogenase is functionally coupled to glyceraldehyde-3-phosphate dehydrogenase. These studies provide direct electrophysiological evidence of a KATP-controlling glycolytic signaling complex and demonstrate its relevance to islet glucose sensing and excitability.
Collapse
Affiliation(s)
- Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
26
|
Remedi MS, Nichols CG. Glucokinase Inhibition: A Novel Treatment for Diabetes? Diabetes 2023; 72:170-174. [PMID: 36669001 PMCID: PMC9871191 DOI: 10.2337/db22-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/12/2022] [Indexed: 01/21/2023]
Abstract
Chronic hyperglycemia increases pancreatic β-cell metabolic activity, contributing to glucotoxicity-induced β-cell failure and loss of functional β-cell mass, potentially in multiple forms of diabetes. In this perspective we discuss the novel paradoxical and counterintuitive concept of inhibiting glycolysis, particularly by targeted inhibition of glucokinase, the first enzyme in glycolysis, as an approach to maintaining glucose sensing and preserving functional β-cell mass, thereby improving insulin secretion, in the treatment of diabetes.
Collapse
Affiliation(s)
- Maria S. Remedi
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
27
|
Ashcroft FM, Lloyd M, Haythorne EA. Glucokinase activity in diabetes: too much of a good thing? Trends Endocrinol Metab 2023; 34:119-130. [PMID: 36586779 DOI: 10.1016/j.tem.2022.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is a global health problem characterised by chronic hyperglycaemia due to inadequate insulin secretion. Because glucose must be metabolised to stimulate insulin release it was initially argued that drugs that stimulate glucokinase (the first enzyme in glucose metabolism) would enhance insulin secretion in diabetes. However, in the long term, glucokinase activators have been largely disappointing. Recent studies show it is hyperactivation of glucose metabolism, not glucose itself, that underlies the progressive decline in beta-cell function in diabetes. This perspective discusses if glucokinase activators exacerbate this decline (by promoting glucose metabolism) and, counterintuitively, if glucokinase inhibitors might be a better therapeutic strategy for preserving beta-cell function in T2D.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK.
| | - Matthew Lloyd
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
28
|
Chow E, Wang K, Lim CK, Tsoi ST, Fan B, Poon E, Luk AO, Ma RC, Ferrannini E, Mari A, Chen L, Chan JC. Dorzagliatin, a Dual-Acting Glucokinase Activator, Increases Insulin Secretion and Glucose Sensitivity in Glucokinase Maturity-Onset Diabetes of the Young and Recent-Onset Type 2 Diabetes. Diabetes 2023; 72:299-308. [PMID: 36342518 PMCID: PMC9871194 DOI: 10.2337/db22-0708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Glucokinase (GK, gene symbol GCK) maturity-onset diabetes of the young (MODY) is caused by heterozygous inactivating mutations in GK and impaired glucose sensing. We investigated effects of dorzagliatin, a novel allosteric GK activator, on insulin secretion rates (ISRs) and β-cell glucose sensitivity (βCGS) in GCK-MODY and recent-onset type 2 diabetes. In a double-blind, randomized, crossover study, 8 participants with GCK-MODY and 10 participants with type 2 diabetes underwent 2-h 12 mmol/L hyperglycemic clamps following a single oral dose of dorzagliatin 75 mg or matched placebo. Effects of dorzagliatin on wild-type and mutant GK enzyme activity were investigated using an NADP+-coupled assay with glucose-6-phosphate dehydrogenase in vitro. In GCK-MODY, dorzagliatin significantly increased absolute and incremental second-phase ISRs versus placebo but not the acute insulin response. Dorzagliatin improved βCGS in GCK-MODY with an upward and leftward shift in ISR-glucose response. Dorzagliatin increased basal ISRs in type 2 diabetes, with smaller changes in second-phase ISRs versus GCK-MODY. In vitro, dorzagliatin directly reduced the glucose half saturation concentration of wild-type GK and selected GK mutants to varying degrees. Dorzagliatin directly restored enzyme activity of select GK mutants and enhanced wild-type GK activity, thereby correcting the primary defect of glucose sensing in GCK-MODY.
Collapse
Affiliation(s)
- Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
- Corresponding authors: Juliana C.N. Chan, , and Elaine Chow,
| | - Ke Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Cadmon K.P. Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Sandra T.F. Tsoi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Emily Poon
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrea O.Y. Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council of Italy (CNR), Padua, Italy
| | - Li Chen
- Hua Medicine, Shanghai, China
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Hong Kong, China
- Corresponding authors: Juliana C.N. Chan, , and Elaine Chow,
| |
Collapse
|
29
|
Abstract
Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting β-cells, the α-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Metabolic Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Gothenburg, Sweden.
| |
Collapse
|
30
|
McLaughlin K, Acreman S, Nawaz S, Cutteridge J, Clark A, Knudsen JG, Denwood G, Spigelman AF, Manning Fox JE, Singh SP, MacDonald PE, Hastoy B, Zhang Q. Loss of tetraspanin-7 expression reduces pancreatic β-cell exocytosis Ca 2+ sensitivity but has limited effect on systemic metabolism. Diabet Med 2022; 39:e14984. [PMID: 36264270 PMCID: PMC9828109 DOI: 10.1111/dme.14984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate β-cell L-type Ca2+ channel activity. However, the role of Tspan7 in pancreatic β-cell function is not yet fully understood. METHODS Histological analyses were conducted using immunostaining. Whole-body metabolism was tested using glucose tolerance test. Islet hormone secretion was quantified using static batch incubation or dynamic perifusion. β-cell transmembrane currents, electrical activity and exocytosis were measured using whole-cell patch-clamping and capacitance measurements. Gene expression was studied using mRNA-sequencing and quantitative PCR. RESULTS Tspan7 is expressed in insulin-containing granules of pancreatic β-cells and glucagon-producing α-cells. Tspan7 knockout mice (Tspan7y/- mouse) exhibit reduced body weight and ad libitum plasma glucose but normal glucose tolerance. Tspan7y/- islets have normal insulin content and glucose- or tolbutamide-stimulated insulin secretion. Depolarisation-triggered Ca2+ current was enhanced in Tspan7y/- β-cells, but β-cell electrical activity and depolarisation-evoked exocytosis were unchanged suggesting that exocytosis was less sensitive to Ca2+ . TSPAN7 knockdown (KD) in human pseudo-islets led to a significant reduction in insulin secretion stimulated by 20 mM K+ . Transcriptomic analyses show that TSPAN7 KD in human pseudo-islets correlated with changes in genes involved in hormone secretion, apoptosis and ER stress. Consistent with rodent β-cells, exocytotic Ca2+ sensitivity was reduced in a human β-cell line (EndoC-βH1) following Tspan7 KD. CONCLUSION Tspan7 is involved in the regulation of Ca2+ -dependent exocytosis in β-cells. Its function is more significant in human β-cells than their rodent counterparts.
Collapse
Affiliation(s)
- Kerry McLaughlin
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
| | - Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research UnitUniversity of GoteborgGöteborgSweden
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
| | - Joseph Cutteridge
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
| | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
| | - Aliya F. Spigelman
- Alberta Diabetes Institute and Department of PharmacologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute and Department of PharmacologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Patrick E. MacDonald
- Alberta Diabetes Institute and Department of PharmacologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of Oxford, Churchill HospitalOxfordUK
| |
Collapse
|
31
|
Chen KH, Doliba N, May CL, Roman J, Ustione A, Tembo T, Negron A, Radovick S, Piston DW, Glaser B, Kaestner KH, Matschinsky FM. Genetic activation of glucokinase in a minority of pancreatic beta cells causes hypoglycemia in mice. Life Sci 2022; 309:120952. [PMID: 36100080 PMCID: PMC10312065 DOI: 10.1016/j.lfs.2022.120952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/05/2023]
Abstract
AIMS Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of β-cells is sufficient to change the glucose set-point of the whole islet. MATERIAL AND METHODS Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of β-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles. Metabolic analyses consisted of glucose tolerance tests, perifusion of isolated islets and intracellular calcium measurements. KEY FINDINGS The αGSU-Cre transgene produced genetically mosaic islets, as Cre was active in 15 ± 1.2 % of β-cells. While mice deficient for GK in a subset of islet cells were normal, unexpectedly, GKKI mice were chronically hypoglycemic, glucose intolerant, and had a lower threshold for glucose stimulated insulin secretion. GKKI mice exhibited an average fasting blood glucose level of 3.5 mM. GKKI islets responded with intracellular calcium signals that spread through the whole islets at 1 mM and secreted insulin at 3 mM glucose. SIGNIFICANCE Genetic activation of GK in a minority of β-cells is sufficient to change the glucose threshold for insulin secretion in the entire islet and thereby glucose homeostasis in the whole animal. These data support the model in which β-cells with higher GK activity function as 'hub' or 'trigger' cells and thus control insulin secretion by the β-cell collective within the islet.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Nicolai Doliba
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Catherine L May
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Jeffrey Roman
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Teguru Tembo
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Ariel Negron
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Sally Radovick
- Department of Medicine and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
32
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
33
|
Wang K, Shi M, Huang C, Fan B, Luk AOY, Kong APS, Ma RCW, Chan JCN, Chow E. Evaluating the impact of glucokinase activation on risk of cardiovascular disease: a Mendelian randomisation analysis. Cardiovasc Diabetol 2022; 21:192. [PMID: 36151532 PMCID: PMC9503210 DOI: 10.1186/s12933-022-01613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucokinase activators (GKAs) are an emerging class of glucose lowering drugs that activate the glucose-sensing enzyme glucokinase (GK). Pending formal cardiovascular outcome trials, we applied two-sample Mendelian randomisation (MR) to investigate the impact of GK activation on risk of cardiovascular diseases. METHODS We used independent genetic variants in or around the glucokinase gene meanwhile associated with HbA1c at genome-wide significance (P < 5 × 10-8) in the Meta-Analyses of Glucose and Insulin-related traits Consortium study (N = 146,806; European ancestry) as instrumental variables (IVs) to mimic the effects of GK activation. We assessed the association between genetically proxied GK activation and the risk of coronary artery disease (CAD; 122,733 cases and 424,528 controls), peripheral arterial disease (PAD; 7098 cases and 206,541 controls), stroke (40,585 cases and 406,111 controls) and heart failure (HF; 47,309 cases and 930,014 controls), using genome-wide association study summary statistics of these outcomes in Europeans. We compared the effect estimates of genetically proxied GK activation with estimates of genetically proxied lower HbA1c on the same outcomes. We repeated our MR analyses in East Asians as validation. RESULTS Genetically proxied GK activation was associated with reduced risk of CAD (OR 0.38 per 1% lower HbA1c, 95% CI 0.29-0.51, P = 8.77 × 10-11) and HF (OR 0.54 per 1% lower HbA1c, 95% CI 0.41-0.73, P = 3.55 × 10-5). The genetically proxied protective effects of GKA on CAD and HF exceeded those due to non-targeted HbA1c lowering. There was no causal relationship between genetically proxied GK activation and risk of PAD or stroke. The estimates in sensitivity analyses and in East Asians were generally consistent. CONCLUSIONS GKAs may protect against CAD and HF which needs confirmation by long-term clinical trials.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Mai Shi
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Chuiguo Huang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Phase 1 Clinical Trial Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.,Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China. .,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China. .,Phase 1 Clinical Trial Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
34
|
Type 2 Diabetes Mellitus (T2DM) and Carbohydrate Metabolism in Relation to T2DM from Endocrinology, Neurophysiology, Molecular Biology, and Biochemistry Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1708769. [PMID: 35983003 PMCID: PMC9381199 DOI: 10.1155/2022/1708769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe disease caused by metabolic disorders, particularly carbohydrate metabolism disorders. The disease is a fatal global trouble characterised by high prevalence rates, causing death, blindness, kidney failure, myocardial infarction, amputation of lower limps, and stroke. Biochemical metabolic pathways like glycolysis, gluconeogenesis, glycogenesis, and glycogenolysis are critical pathways that regulate blood glucose levels with the glucokinase (GK) enzyme playing a central role in glucose homeostasis. Any factor that perturbs the aforementioned biochemical pathways is detrimental. Endocrinological, neurophysiological, and molecular biological pathways that are linked to carbohydrate metabolism should be studied, grasped, and manipulated in order to alleviate T2DM global chaos. The challenge, howbeit, is that, since the body is an integration of systems that complement one another, studying one “isolated” system is not very useful. This paper serves to discuss endocrinology, neurophysiology, and molecular biology pathways that are involved in carbohydrate metabolism in relation to T2DM.
Collapse
|
35
|
Colberg SR. Why Glucagon Matters for Hypoglycemia and Physical Activity in Individuals With Type 1 Diabetes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:889248. [PMID: 36992764 PMCID: PMC10012082 DOI: 10.3389/fcdhc.2022.889248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
|
36
|
Doliba NM, Rozo AV, Roman J, Qin W, Traum D, Gao L, Liu J, Manduchi E, Liu C, Golson ML, Vahedi G, Naji A, Matschinsky FM, Atkinson MA, Powers AC, Brissova M, Kaestner KH, Stoffers DA, for the HPAP Consortium. α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody-positive individuals. J Clin Invest 2022; 132:156243. [PMID: 35642629 PMCID: PMC9151702 DOI: 10.1172/jci156243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDMultiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODSHere, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTSSimilar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSIONWe found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDINGThis work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
Collapse
Affiliation(s)
- Nicolai M. Doliba
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | - Wei Qin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | | | | | | | | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria L. Golson
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Golnaz Vahedi
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism,,Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics,,Institute for Diabetes, Obesity, and Metabolism
| | - Mark A. Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, Florida, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity, and Metabolism,,Department of Genetics, and
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism,,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
| | | |
Collapse
|
37
|
Zhu D, Li X, Ma J, Zeng J, Gan S, Dong X, Yang J, Lin X, Cai H, Song W, Li X, Zhang K, Zhang Q, Lu Y, Bu R, Shao H, Wang G, Yuan G, Ran X, Liao L, Zhao W, Li P, Sun L, Shi L, Jiang Z, Xue Y, Jiang H, Li Q, Li Z, Fu M, Liang Z, Guo L, Liu M, Xu C, Li W, Yu X, Qin G, Yang Z, Su B, Zeng L, Geng H, Shi Y, Zhao Y, Zhang Y, Yang W, Chen L. Dorzagliatin in drug-naïve patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med 2022; 28:965-973. [PMID: 35551294 DOI: 10.1038/s41591-022-01802-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Improving glucose sensitivity remains an unmet medical need in treating type 2 diabetes (T2D). Dorzagliatin is a dual-acting, orally bioavailable glucokinase activator that enhances glucokinase activity in a glucose-dependent manner, improves glucose-stimulated insulin secretion and demonstrates effects on glycemic control in patients with T2D. We report the findings of a randomized, double-blind, placebo-controlled phase 3 clinical trial to evaluate the efficacy and safety of dorzagliatin in patients with T2D. Eligible drug-naïve patients with T2D (n = 463) were randomly assigned to the dorzagliatin or placebo group at a ratio of 2:1 for 24 weeks of double-blind treatment, followed by 28 weeks of open-label treatment with dorzagliatin for all patients. The primary efficacy endpoint was the change in glycated hemoglobin from baseline to week 24. Safety was assessed throughout the trial. At week 24, the least-squares mean change in glycated hemoglobin from baseline (95% confidence interval) was -1.07% (-1.19%, -0.95%) in the dorzagliatin group and -0.50% (-0.68%, -0.32%) in the placebo group (estimated treatment difference, -0.57%; 95% confidence interval: -0.79%, -0.36%; P < 0.001). The incidence of adverse events was similar between the two groups. There were no severe hypoglycemia events or drug-related serious adverse events in the dorzagliatin group. In summary, dorzagliatin improved glycemic control in drug-naïve patients with T2D and showed a good tolerability and safety profile.
Collapse
Affiliation(s)
- Dalong Zhu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaoying Li
- Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Jiao'e Zeng
- Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Shenglian Gan
- The First People's Hospital of Changde City, Changde, China
| | - Xiaolin Dong
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Yang
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Hanqing Cai
- The Second Hospital of Jilin University, Changchun, China
| | - Weihong Song
- Chenzhou First People's Hospital, Chenzhou, China
| | - Xuefeng Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Keqin Zhang
- Tongji Hospital of Tongji University, Shanghai, China
| | - Qiu Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yibing Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Huige Shao
- Changsha Central Hospital, Changsha, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun, China
| | - Guoyue Yuan
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xingwu Ran
- West China Hospital, Sichuan University, Chengdu, China
| | - Lin Liao
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wenjuan Zhao
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Li
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Sun
- Siping Hospital of China Medical University, Siping, China
| | - Lixin Shi
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhaoshun Jiang
- The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Yaoming Xue
- Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Hongwei Jiang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Quanmin Li
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | | | - Maoxiong Fu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | | | - Lian Guo
- Chongqing University Three Gorges Central Hospital, Chongqing, China
| | - Ming Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Chun Xu
- The Third Medical Center of PLA General Hospital, Beijing, China
| | - Wenhui Li
- Peking Union Medical College Hospital, Beijing, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College of HUST, Wuhan, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhou Yang
- Jiangxi Pingxiang People's Hospital, Pingxiang, China
| | - Benli Su
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Longyi Zeng
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Yu Zhao
- Hua Medicine, Shanghai, China
| | | | - Wenying Yang
- China-Japan Friendship Hospital, Beijing, China.
| | - Li Chen
- Hua Medicine, Shanghai, China.
| |
Collapse
|
38
|
Zmazek J, Grubelnik V, Markovič R, Marhl M. Modeling the Amino Acid Effect on Glucagon Secretion from Pancreatic Alpha Cells. Metabolites 2022; 12:metabo12040348. [PMID: 35448534 PMCID: PMC9028923 DOI: 10.3390/metabo12040348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a burdensome problem in modern society, and intensive research is focused on better understanding the underlying cellular mechanisms of hormone secretion for blood glucose regulation. T2DM is a bi-hormonal disease, and in addition to 100 years of increasing knowledge about the importance of insulin, the second hormone glucagon, secreted by pancreatic alpha cells, is becoming increasingly important. We have developed a mathematical model for glucagon secretion that incorporates all major metabolic processes of glucose, fatty acids, and glutamine as the most abundant postprandial amino acid in blood. In addition, we consider cAMP signaling in alpha cells. The model predictions quantitatively estimate the relative importance of specific metabolic and signaling pathways and particularly emphasize the important role of glutamine in promoting glucagon secretion, which is in good agreement with known experimental data.
Collapse
Affiliation(s)
- Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia; (J.Z.); (R.M.)
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia; (J.Z.); (R.M.)
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia; (J.Z.); (R.M.)
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
39
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
40
|
Dai XQ, Camunas-Soler J, Briant LJB, Dos Santos T, Spigelman AF, Walker EM, Arrojo E Drigo R, Bautista A, Jones RC, Avrahami D, Lyon J, Nie A, Smith N, Zhang Y, Johnson J, Manning Fox JE, Michelakis ED, Light PE, Kaestner KH, Kim SK, Rorsman P, Stein RW, Quake SR, MacDonald PE. Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metab 2022; 34:256-268.e5. [PMID: 35108513 PMCID: PMC8852281 DOI: 10.1016/j.cmet.2021.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
In diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches. Rising glucose suppresses α cell exocytosis by reducing P/Q-type Ca2+ channel activity, and this is disrupted in type 2 diabetes (T2D). Upon high-fat feeding of mice, α cells shift toward a "β cell-like" electrophysiological profile in concert with indications of impaired identity. In human α cells we identified links between cell membrane properties and cell surface signaling receptors, mitochondrial respiratory chain complex assembly, and cell maturation. Cell-type classification using machine learning of electrophysiology data demonstrated a heterogenous loss of "electrophysiologic identity" in α cells from donors with type 2 diabetes. Indeed, a subset of α cells with impaired exocytosis is defined by an enrichment in progenitor and lineage markers and upregulation of an immature transcriptomic phenotype, suggesting important links between α cell maturation state and dysfunction.
Collapse
Affiliation(s)
- Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Joan Camunas-Soler
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford OX3 7LE, UK
| | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Emily M Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rafael Arrojo E Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Robert C Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dana Avrahami
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - James Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Aifang Nie
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Janyne Johnson
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | | | - Peter E Light
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford OX3 7LE, UK
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada.
| |
Collapse
|
41
|
Langer S, Waterstradt R, Hillebrand G, Santer R, Baltrusch S. The novel GCK variant p.Val455Leu associated with hyperinsulinism is susceptible to allosteric activation and is conducive to weight gain and the development of diabetes. Diabetologia 2021; 64:2687-2700. [PMID: 34532767 PMCID: PMC8563668 DOI: 10.1007/s00125-021-05553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The mammalian enzyme glucokinase (GK), expressed predominantly in liver and pancreas, plays an essential role in carbohydrate metabolism. Monogenic GK disorders emphasise the role of GK in determining the blood glucose set point. METHODS A family with congenital hyperinsulinism (CHI) was examined for GCK gene variants by Sanger sequencing. A combined approach, involving kinetic analysis (also using GK activators and inhibitors), intracellular translocation assays, insulin secretion measurements and structural modelling, was used to investigate the novel variant compared with known variants. RESULTS We report on the novel gain-of-function GCK variant p.Val455Leu (V455L), inherited as an autosomal dominant trait in a German family with CHI and concomitant obesity (fasting blood glucose 2.1 mmol/l, BMI 45.0 kg/m2, HOMA-IR 1.5 in an adult female family member); one male family member developed type 2 diabetes until age 35 years (with fasting glucose 2.8-3.7 mmol/l, BMI 38.9 kg/m2, HOMA-IR 4.6). Kinetic characterisation of the V455L variant revealed a significant increase in glucose affinity (glucose concentration at which reaction rate is half its maximum rate [S0.5]: mutant 2.4 ± 0.3 mmol/l vs wild-type 7.6 ± 1.0 mmol/l), accompanied by a distinct additive susceptibility to both the endogenous activator fructose 2,6-bisphosphatase and the synthetic allosteric activator RO-28-1675. The effect of RO-28-1675 was more pronounced when compared with the previously known GK variants V455M and V455E. Binding to the inhibitor glucokinase regulatory protein was unimpaired for V455L and V455E but was reduced for V455M, whereas mannoheptulose inhibited all GK variants and the wild-type enzyme. Structural analyses suggested a role for residue 455 in rearrangements between the inactive and active conformations of GK and also in allosteric activation. Comparison with V455M and V455E and an overview of activating GK variants provided a context for the novel sequence aberration in terms of altered GK enzyme characteristics caused by single amino acid changes. CONCLUSION/INTERPRETATION We provide new knowledge on the structure-function relationship of GK, with special emphasis on enzyme activation, potentially yielding fresh strategic insights into breaking the vicious circle of fluctuating blood glucose levels and the attendant risk of long-lasting metabolic changes in both CHI and type 2 diabetes.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Georg Hillebrand
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
- Department of Pediatrics, Medical Center Itzehoe, Itzehoe, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, Rostock, Germany.
| |
Collapse
|
42
|
Kim A, Knudsen JG, Madara JC, Benrick A, Hill TG, Abdul Kadir L, Kellard JA, Mellander L, Miranda C, Lin H, James T, Suba K, Spigelman AF, Wu Y, MacDonald PE, Wernstedt Asterholm I, Magnussen T, Christensen M, Vilsbøll T, Salem V, Knop FK, Rorsman P, Lowell BB, Briant LJB. Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes. eLife 2021; 10:e72919. [PMID: 34787082 PMCID: PMC8654374 DOI: 10.7554/elife.72919] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023] Open
Abstract
Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Anna Benrick
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lina Abdul Kadir
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Joely A Kellard
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lisa Mellander
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Caroline Miranda
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Haopeng Lin
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Timothy James
- Department of Clinical Biochemistry, John Radcliffe, Oxford NHS TrustOxfordUnited Kingdom
| | - Kinga Suba
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Aliya F Spigelman
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Yanling Wu
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Patrick E MacDonald
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Ingrid Wernstedt Asterholm
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Tore Magnussen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
| | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Linford JB Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Computer Science, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
43
|
Wada E, Kobayashi M, Kohno D, Kikuchi O, Suga T, Matsui S, Yokota-Hashimoto H, Honzawa N, Ikeuchi Y, Tsuneoka H, Hirano T, Obinata H, Sasaki T, Kitamura T. Disordered branched chain amino acid catabolism in pancreatic islets is associated with postprandial hypersecretion of glucagon in diabetic mice. J Nutr Biochem 2021; 97:108811. [PMID: 34197915 DOI: 10.1016/j.jnutbio.2021.108811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/01/2023]
Abstract
Dysregulation of glucagon is associated with the pathophysiology of type 2 diabetes. We previously reported that postprandial hyperglucagonemia is more obvious than fasting hyperglucagonemia in type 2 diabetes patients. However, which nutrient stimulates glucagon secretion in the diabetic state and the underlying mechanism after nutrient intake are unclear. To answer these questions, we measured plasma glucagon levels in diabetic mice after oral administration of various nutrients. The effects of nutrients on glucagon secretion were assessed using islets isolated from diabetic mice and palmitate-treated islets. In addition, we analyzed the expression levels of branched chain amino acid (BCAA) catabolism-related enzymes and their metabolites in diabetic islets. We found that protein, but not carbohydrate or lipid, increased plasma glucagon levels in diabetic mice. Among amino acids, BCAAs, but not the other essential or nonessential amino acids, increased plasma glucagon levels. BCAAs also directly increased the intracellular calcium concentration in α cells. When BCAAs transport was suppressed by an inhibitor of system L-amino acid transporters, glucagon secretion was reduced even in the presence of BCAAs. We also found that the expression levels of BCAA catabolism-related enzymes and their metabolite contents were altered in diabetic islets and palmitate-treated islets compared to control islets, indicating disordered BCAA catabolism in diabetic islets. Furthermore, BCKDK inhibitor BT2 suppressed BCAA-induced hypersecretion of glucagon in diabetic islets and palmitate-treated islets. Taken together, postprandial hypersecretion of glucagon in the diabetic state is attributable to disordered BCAA catabolism in pancreatic islet cells.
Collapse
Affiliation(s)
- Eri Wada
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Osamu Kikuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takayoshi Suga
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Sho Matsui
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan; Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiromi Yokota-Hashimoto
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Norikiyo Honzawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yuichi Ikeuchi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Haruka Tsuneoka
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Touko Hirano
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsutomu Sasaki
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan; Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
44
|
Nakamura A, Omori K, Terauchi Y. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes? Diabetes Obes Metab 2021; 23:2199-2206. [PMID: 34105236 DOI: 10.1111/dom.14459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Glucokinase, which phosphorylates glucose to form glucose-6-phosphate, plays a critical role in regulating blood glucose levels. On the basis of data of glucokinase-knockout and transgenic mice and humans with glucokinase mutations, glucokinase was targeted for drug development aiming to augment its activity, and thereby reduce hyperglycaemia in patients with diabetes. In fact, various small molecule compounds have been developed and clinically tested as glucokinase activators. However, some have been discontinued because of efficacy and safety issues. One of these issues is loss of the drug's efficacy over time. This unsustained glycaemic efficacy may be associated with the excess glycolysis by glucokinase activation in pancreatic beta cells, resulting in beta-cell failure. Recently, we have shown that glucokinase haploinsufficiency ameliorated glucose intolerance by increasing beta-cell function and mass in a mouse model of diabetes. Given that a similar phenotype has been observed in glucokinase-activated beta cells and diabetic beta cells, glucokinase inactivation may be a new therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuno Omori
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
45
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Martínez MS, Manzano A, Olivar LC, Nava M, Salazar J, D’Marco L, Ortiz R, Chacín M, Guerrero-Wyss M, Cabrera de Bravo M, Cano C, Bermúdez V, Angarita L. The Role of the α Cell in the Pathogenesis of Diabetes: A World beyond the Mirror. Int J Mol Sci 2021; 22:9504. [PMID: 34502413 PMCID: PMC8431704 DOI: 10.3390/ijms22179504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon's secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans' islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (β) cell dedifferentiation into glucagon-positive producing cells, and loss of paracrine and endocrine regulation due to β cell mass loss. Other abnormalities like α cell insulin resistance, sensor machinery dysfunction, or paradoxical ATP-sensitive potassium channels (KATP) opening have also been linked to glucagon hypersecretion. Recent clinical trials in phases 1 or 2 have shown new molecules with glucagon-antagonist properties with considerable effectiveness and acceptable safety profiles. Glucagon-like peptide-1 (GLP-1) agonists and Dipeptidyl Peptidase-4 inhibitors (DPP-4 inhibitors) have been shown to decrease glucagon secretion in T2DM, and their possible therapeutic role in T1DM means they are attractive as an insulin-adjuvant therapy.
Collapse
Affiliation(s)
- María Sofía Martínez
- MedStar Health Internal Medicine, Georgetown University Affiliated, Baltimore, MD 21218-2829, USA;
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis Carlos Olivar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis D’Marco
- Department of Nephrology, Hospital Clinico Universitario de Valencia, INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Rina Ortiz
- Facultad de Medicina, Universidad Católica de Cuenca, Ciudad de Cuenca, Azuay 010105, Ecuador;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile;
| | | | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Lisse Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile
| |
Collapse
|
47
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
48
|
Acreman S, Zhang Q. Regulation of α-cell glucagon secretion: The role of second messengers. Chronic Dis Transl Med 2021; 8:7-18. [PMID: 35620162 PMCID: PMC9128566 DOI: 10.1016/j.cdtm.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Glucagon is a potent glucose‐elevating hormone that is secreted by pancreatic α‐cells. While well‐controlled glucagon secretion plays an important role in maintaining systemic glucose homeostasis and preventing hypoglycaemia, it is increasingly apparent that defects in the regulation of glucagon secretion contribute to impaired counter‐regulation and hyperglycaemia in diabetes. It has therefore been proposed that pharmacological interventions targeting glucagon secretion/signalling can have great potential in improving glycaemic control of patients with diabetes. However, despite decades of research, a consensus on the precise mechanisms of glucose regulation of glucagon secretion is yet to be reached. Second messengers are a group of small intracellular molecules that relay extracellular signals to the intracellular signalling cascade, modulating cellular functions. There is a growing body of evidence that second messengers, such as cAMP and Ca2+, play critical roles in α‐cell glucose‐sensing and glucagon secretion. In this review, we discuss the impact of second messengers on α‐cell electrical activity, intracellular Ca2+ dynamics and cell exocytosis. We highlight the possibility that the interaction between different second messengers may play a key role in the glucose‐regulation of glucagon secretion.
Collapse
|
49
|
Role of cAMP in Double Switch of Glucagon Secretion. Cells 2021; 10:cells10040896. [PMID: 33919776 PMCID: PMC8070687 DOI: 10.3390/cells10040896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Glucose metabolism plays a crucial role in modulating glucagon secretion in pancreatic alpha cells. However, the downstream effects of glucose metabolism and the activated signaling pathways influencing glucagon granule exocytosis are still obscure. We developed a computational alpha cell model, implementing metabolic pathways of glucose and free fatty acids (FFA) catabolism and an intrinsically activated cAMP signaling pathway. According to the model predictions, increased catabolic activity is able to suppress the cAMP signaling pathway, reducing exocytosis in a Ca2+-dependent and Ca2+ independent manner. The effect is synergistic to the pathway involving ATP-dependent closure of KATP channels and consequent reduction of Ca2+. We analyze the contribution of each pathway to glucagon secretion and show that both play decisive roles, providing a kind of "secure double switch". The cAMP-driven signaling switch plays a dominant role, while the ATP-driven metabolic switch is less favored. The ratio is approximately 60:40, according to the most recent experimental evidence.
Collapse
|
50
|
Essaouiba A, Jellali R, Shinohara M, Scheidecker B, Legallais C, Sakai Y, Leclerc E. Analysis of the behavior of 2D monolayers and 3D spheroid human pancreatic beta cells derived from induced pluripotent stem cells in a microfluidic environment. J Biotechnol 2021; 330:45-56. [PMID: 33617908 DOI: 10.1016/j.jbiotec.2021.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
The limited availability of primary human β-cells/islets and their quality (due to donor diversity) restrict the development of in vitro models for diabetes research. Human induced pluripotent stem cells (hiPSCs) may be a promising cell-source for diabetes studies, anti-diabetic drug screening and personalized therapies. However, achieving levels of maturity/functionality that are comparable to the in vivo situation and islets rebuilt from iPSCs is still challenging. Here, we compare and discuss two strategies for culturing human pancreatic β-cells derived from hiPSCs in microfluidic biochips. First, we confirmed that the protocol in conventional Petri 2D monolayer led to insulin, PDX1 and MAFA positive staining, to C-Peptide productive cells, and to tissue responsive to high/low glucose and GLP1 stimulation. This protocol and its subsequent modifications (including extracellular matrix coating, cell adhesion time, cell inoculation density, flow rate) was not successful in the 2D biochip culture. We proposed a second strategy using 3D spheroids created from honeycomb static cultures. Spheroids in static experiments carried out over 14 days demonstrated that they expressed high levels of β-cell markers (INS mRNA) and higher α-cell markers (GCG mRNA and glucagon positive staining), when compared to Petri 2D cultures. Furthermore, the 3D spheroids were specifically able to secrete insulin in response to both high/low glucose stimulation and GLP1 exposure. The spheroids were successfully inoculated into biochips and maintained for 10 days in perfusion. The 3D biochip cultures increased mRNA levels of GCG and maintained high levels of β-cell markers and responsiveness to both high/low glucose and GLP1 stimulation. Finally, C-peptide and insulin secretion were higher in biochips when compared to static spheroids. These results illustrate the promising potential for hiPSCs derived β-cells and their spheroid-based pancreas-on-chip model for pancreatic disease/diabetes modeling and anti-diabetic drug screening.
Collapse
Affiliation(s)
- Amal Essaouiba
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France; CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France.
| | - Marie Shinohara
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Benedikt Scheidecker
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France
| | - Yasuyuki Sakai
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Eric Leclerc
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60319, 60203, Compiègne Cedex, France; CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|