1
|
Fabian C, Mahajan S, Schmidt MHH. EGFL7: An emerging biomarker with great therapeutic potential. Pharmacol Ther 2025; 266:108764. [PMID: 39631508 DOI: 10.1016/j.pharmthera.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
EGFL7 is a factor involved in the regulation of various essential biological mechanisms. Endothelial cells and neurons secrete the EGFL7 protein into the extracellular matrix, where it interacts with other matrix proteins, thereby regulating several important signaling pathways. To date, extensive in vitro and in vivo studies have illuminated the central role of EGFL7 in governing major biological processes involving blood vessels and the central nervous system. Notably, EGFL7 has also emerged as a key factor in a spectrum of diseases including cancer, stroke, multiple sclerosis and preeclampsia. Its influence on various diseases and multiple regulatory pathways highlights EGFL7 as an emerging biomarker and therapeutic target. Thus, the multifaceted regulatory functions of EGFL7 will be discussed in the physiological context before delving into its involvement in the progression of different diseases. Finally, the review will provide an insight into the broad therapeutic potential of EGFL7 by describing its role as a powerful biomarker and discussing potential strategies to therapeutically target EGFL7 function in a plethora of human diseases.
Collapse
Affiliation(s)
- Carina Fabian
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sukrit Mahajan
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden School of Medicine, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
2
|
McDonald B, Schmidt MHH. Structure, function, and recombinant production of EGFL7. Biol Chem 2024; 405:691-700. [PMID: 38805373 DOI: 10.1515/hsz-2023-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The secreted factor Epidermal growth factor-like protein 7 (EGFL7) is involved in angiogenesis, vasculogenesis, as well as neurogenesis. Importantly, EGFL7 is also implicated in various pathological conditions, including tumor angiogenesis in human cancers. Thus, understanding the mechanisms through which EGFL7 regulates and promotes blood vessel formation is of clear practical importance. One principle means by which EGFL7's function is investigated is via the expression and purification of the recombinant protein. This mini-review describes three methods used to produce recombinant EGFL7 protein. First, a brief overview of EGFL7's genetics, structure, and function is provided. This is followed by an examination of the advantages and disadvantages of three common expression systems used in the production of recombinant EGFL7; (i) Escherichia coli (E. coli), (ii) human embryonic kidney (HEK) 293 cells or other mammalian cells, and (iii) a baculovirus-based Sf9 insect cell expression system. Based on the available evidence, we conclude that the baculovirus-based Sf9 insect cell expression currently has the advantages of producing active recombinant EGFL7 in the native conformation with the presence of acceptable posttranslational modifications, while providing sufficient yield and stability for experimental purposes.
Collapse
Affiliation(s)
- Brennan McDonald
- 9169 Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Mirko H H Schmidt
- 9169 Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
3
|
Lai Q, Wang N, Wang B, Chen Y. The correlation of GluR3B antibody with T lymphocyte subsets and inflammatory factors and their role in the progression of epilepsy. J Transl Med 2024; 22:877. [PMID: 39350251 PMCID: PMC11440680 DOI: 10.1186/s12967-024-05699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE To investigate changes in proportions of peripheral blood lymphocyte subsets, the correlation between the lymphocyte subsets and cytokine levels in patients with GluR3B antibody-positive epilepsy, analyze the role of GluR3B antibodies and cytokines in the progression of epilepsy. In addition, the immunotherapeutic effect in patients with GluR3B antibody-positive epilepsy will be evaluated. METHODS Patients with epilepsy hospitalized in the Department of Neurology of the affiliated Hospital of Xuzhou Medical University from December 2016 to May 2023 were recruited. GluR3B antibody levels were measured by enzyme-linked immunosorbent assay (ELISA). Lymphocyte subset proportions were determined using flow cytometry, and serum concentrations of 12 cytokines were measured using cytometric beads array. Differences in T lymphocyte subsets and inflammatory factors were analysed between GluR3B antibody positive and negative patients. Structural equation modeling (SEM) was used to analyse the role of GluR3B antibodies and inflammatory factors in drug-resistant epilepsy (DRE). Finally, the therapeutic effect of immunotherapy on epilepsy patients with GluR3B antibodies was assessed. RESULTS In this study, sixty-four cases of DRE, sixty-six cases of drug-naïve epilepsy (DNE), and forty-one cases of drug-responsive epilepsy were recruited. (1) DRE patients with positive GluR3B antibody were characterized by a significant increase in the proportion of cluster of differentiation (CD)4+ T lymphocytes, a decrease in CD8+ T lymphocytes, and an increase of CD4+/CD8+ ratio. Similar alterations in T lymphocyte subsets were observed in GluR3B antibody-positive patients with DNE. GluR3B antibody levels correlated positively with CD4+ T lymphocytes (r = 0.23) and negatively with CD8+ T lymphocytes (r=-0.18). (2) In patients with DRE, the serum concentrations of interleukin-1β (IL-1β), IL-8, and interferon-gamma (IFN-γ) were significantly higher in those with positive GluR3B antibody compared to those with negative GluR3B antibody. Serum IL-1β levels were also higher in GluR3B antibody-positive DNE patients compared to antibody-negative DNE patients. In drug-responsive epilepsy patients with GluR3B antibody-positive, both serum IL-1β and IFN-γ levels were higher than those with GluR3B antibody-negative. Moreover, the concentrations of serum GluR3B antibody were positively correlated with the levels of IL-1β, IL-8, and IFN-γ. (3) SEM analysis indicated that GluR3B antibody may be a direct risk factor for DRE (direct effect = 4.479, 95%CI 0.409-8.503), or may be involved in DRE progression through affecting IFN-γ and IL-8 levels (total indirect effect = 5.101, 95%CI 1.756-8.818). (4) Immunotherapy significantly decreased seizure frequency and serum GluR3B antibody levels, and the seizure frequency was positively correlated with the levels of GluR3B antibody levels in patients receiving immunotherapy. CONCLUSIONS This study demonstrates that GluR3B antibody may influence the progression of epilepsy through altering the proportion of CD4+ and CD8+ lymphocyte subsets and increasing proinflammatory cytokines. The seizure suppression of immunotherapy is associated with the decrease of GluR3B antibody levels. Thus, the present study contributes to a better understanding of the immunoregulatory mechanisms of autoimmune-associated epilepsy and provides a potential target for DRE.
Collapse
Affiliation(s)
- Qingwei Lai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China.
| | - Nuan Wang
- China University of Mining and Technology, Xuzhou, China
- Department of Neurology, First People's Hospital of Xuzhou, Xuzhou, China
| | - Binbin Wang
- Department of Neurology, People's Hospital of Suining, Xuzhou, China
| | - Yue Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
4
|
Chen J, Ding J, Li Y, Feng F, Xu Y, Wang T, He J, Cang J, Luo L. Epidermal growth factor-like domain 7 drives brain lymphatic endothelial cell development through integrin αvβ3. Nat Commun 2024; 15:5986. [PMID: 39013903 PMCID: PMC11252342 DOI: 10.1038/s41467-024-50389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
In zebrafish, brain lymphatic endothelial cells (BLECs) are essential for meningeal angiogenesis and cerebrovascular regeneration. Although epidermal growth factor-like domain 7 (Egfl7) has been reported to act as a pro-angiogenic factor, its roles in lymphangiogenesis remain unclear. Here, we show that Egfl7 is expressed in both blood and lymphatic endothelial cells. We generate an egfl7 cq180 mutant with a 13-bp-deletion in exon 3 leading to reduced expression of Egfl7. The egfl7 cq180 mutant zebrafish exhibit defective formation of BLEC bilateral loop-like structures, although trunk and facial lymphatic development remains unaffected. Moreover, while the egfl7 cq180 mutant displays normal BLEC lineage specification, the migration and proliferation of these cells are impaired. Additionally, we identify integrin αvβ3 as the receptor for Egfl7. αvβ3 is expressed in the CVP and sprouting BLECs, and blocking this integrin inhibits the formation of BLEC bilateral loop-like structures. Thus, this study identifies a role for Egfl7 in BLEC development that is mediated through the integrin αvβ3.
Collapse
Affiliation(s)
- Jingying Chen
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
| | - Jing Ding
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Yongyu Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Fujuan Feng
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Yuhang Xu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Tao Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China
| | - Jing Cang
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China
| | - Lingfei Luo
- School of Life Sciences, Department of Anaesthesia of Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
5
|
Zhao Y, Chen C, Xiao X, Fang L, Cheng X, Chang Y, Peng F, Wang J, Shen S, Wu S, Huang Y, Cai W, Zhou L, Qiu W. Teriflunomide Promotes Blood-Brain Barrier Integrity by Upregulating Claudin-1 via the Wnt/β-catenin Signaling Pathway in Multiple Sclerosis. Mol Neurobiol 2024; 61:1936-1952. [PMID: 37819429 DOI: 10.1007/s12035-023-03655-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The blood-brain barrier (BBB) and tight junction (TJ) proteins maintain the homeostasis of the central nervous system (CNS). The dysfunction of BBB allows peripheral T cells infiltration into CNS and contributes to the pathophysiology of multiple sclerosis (MS). Teriflunomide is an approved drug for the treatment of MS by suppressing lymphocytes proliferation. However, whether teriflunomide has a protective effect on BBB in MS is not understood. We found that teriflunomide restored the injured BBB in the EAE model. Furthermore, teriflunomide treatment over 6 months improved BBB permeability and reduced peripheral leakage of CNS proteins in MS patients. Teriflunomide increased human brain microvascular endothelial cell (HBMEC) viability and promoted BBB integrity in an in vitro cell model. The TJ protein claudin-1 was upregulated by teriflunomide and responsible for the protective effect on BBB. Furthermore, RNA sequencing revealed that the Wnt signaling pathway was affected by teriflunomide. The activation of Wnt signaling pathway increased claudin-1 expression and reduced BBB damage in cell model and EAE rats. Our study demonstrated that teriflunomide upregulated the expression of the tight junction protein claudin-1 in endothelial cells and promoted the integrity of BBB through Wnt signaling pathway.
Collapse
Affiliation(s)
- Yipeng Zhao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiuqing Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Ling Fang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shishi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shilin Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yiying Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Linli Zhou
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
6
|
Zhou M, Feng Y, Zhang X, Chen J, Yao N, Fu S, Ni T, Chen Y, Xie F, Roy S, Liu J, Yang Y, He Y, Zhao Y, Yang N. Platelet-derived microparticles adoptively transfer integrin β3 to promote antitumor effect of tumor-infiltrating T cells. Oncoimmunology 2024; 13:2304963. [PMID: 38235317 PMCID: PMC10793703 DOI: 10.1080/2162402x.2024.2304963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Approximately two-thirds of hepatocellular carcinoma (HCC) is considered a "cold tumor" characterized by few tumor-infiltrating T cells and an abundance of immunosuppressive cells. Cilengitide, an integrin αvβ3 inhibitor, has failed in clinical trials as a potential anticancer drug. This failure implies that integrin αvβ3 may play an important role in immune cells. However, the expression and potential role of integrin αvβ3 in T cells of HCC patients remain unknown. Here, we established two HCC models and found that cilengitide had a dual effect on the HCC microenvironment by exerting both antitumor effect and immunosuppressive effect on T cells. This may partly explain the failure of cilengitide in clinical trials. In clinical specimens, HCC-infiltrating T cells exhibited deficient expression and activation of integrin β3, which was associated with poor T-cell infiltration into tumors. Additionally, integrin β3 functioned as a positive immunomodulatory molecule to facilitate T-cell infiltration and T helper 1-type immune response in vitro. Furthermore, T cells and platelet-derived microparticles (PMPs) co-culture assay revealed that PMPs adoptively transferred integrin β3 to T cells and positively regulated T cell immune response. This process was mediated by clathrin-dependent endocytosis and macropinocytosis. Our data demonstrate that integrin β3 deficiency on HCC-infiltrating T cells may be involved in shaping the immunosuppressive tumor microenvironment. PMPs transfer integrin β3 to T cells and positively regulate T cell immune response, which may provide a new insight into immune therapy of HCC.
Collapse
Affiliation(s)
- Mimi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yali Feng
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaoli Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianguo Chen
- School of Software Engineering, Sun Yat-Sen University, Zhuhai, China
| | - Naijuan Yao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shan Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tianzhi Ni
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fei Xie
- Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sahasrabda Roy
- School of International Education, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jinfeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yingren Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institution of Hepatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Clinical Research Center for Infectious Diseases, Xi’an, Shaanxi, China
- Clinical Research Center for Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Jamann H, Desu HL, Cui QL, Halaweh A, Tastet O, Klement W, Zandee S, Pernin F, Mamane VH, Ouédraogo O, Daigneault A, Sidibé H, Millette F, Peelen E, Dhaeze T, Hoornaert C, Rébillard RM, Thai K, Grasmuck C, Vande Velde C, Prat A, Arbour N, Stratton JA, Antel J, Larochelle C. ALCAM on human oligodendrocytes mediates CD4 T cell adhesion. Brain 2024; 147:147-162. [PMID: 37640028 PMCID: PMC10766241 DOI: 10.1093/brain/awad286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.
Collapse
Affiliation(s)
- Hélène Jamann
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Haritha L Desu
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Alexandre Halaweh
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Microbiology, Immunology and Infectiology, Université de Montréal, Montreal, H2X 3E4, Canada
| | - Olivier Tastet
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Wendy Klement
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Stephanie Zandee
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Victoria H Mamane
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Oumarou Ouédraogo
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Microbiology, Immunology and Infectiology, Université de Montréal, Montreal, H2X 3E4, Canada
| | - Audrey Daigneault
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
| | - Hadjara Sidibé
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Florence Millette
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Evelyn Peelen
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Tessa Dhaeze
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Chloé Hoornaert
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Rose-Marie Rébillard
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Karine Thai
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Camille Grasmuck
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Christine Vande Velde
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Alexandre Prat
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Nathalie Arbour
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Catherine Larochelle
- Neuroimmunology unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, H3T 1J4, Canada
| |
Collapse
|
8
|
Zierfuss B, Larochelle C, Prat A. Blood-brain barrier dysfunction in multiple sclerosis: causes, consequences, and potential effects of therapies. Lancet Neurol 2024; 23:95-109. [PMID: 38101906 DOI: 10.1016/s1474-4422(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 12/17/2023]
Abstract
Established by brain endothelial cells, the blood-brain barrier (BBB) regulates the trafficking of molecules, restricts immune cell entry into the CNS, and has an active role in neurovascular coupling (the regulation of cerebral blood flow to support neuronal activity). In the early stages of multiple sclerosis, around the time of symptom onset, inflammatory BBB damage is accompanied by pathogenic immune cell infiltration into the CNS. In the later stages of multiple sclerosis, dysregulation of neurovascular coupling is associated with grey matter atrophy. Genetic and environmental factors associated with multiple sclerosis, including dietary habits, the gut microbiome, and vitamin D concentrations, might contribute directly and indirectly to brain endothelial cell dysfunction. Damage to brain endothelial cells leads to an influx of deleterious molecules into the CNS, accelerating leakage across the BBB. Potential future therapeutic approaches might help to prevent BBB damage (eg, monoclonal antibodies targeting cell adhesion molecules and fibrinogen) and help to repair BBB dysfunction (eg, mesenchymal stromal cells) in people with multiple sclerosis.
Collapse
Affiliation(s)
- Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| |
Collapse
|
9
|
Park E, Barclay WE, Barrera A, Liao TC, Salzler HR, Reddy TE, Shinohara ML, Ciofani M. Integrin α3 promotes T H17 cell polarization and extravasation during autoimmune neuroinflammation. Sci Immunol 2023; 8:eadg7597. [PMID: 37831759 PMCID: PMC10821720 DOI: 10.1126/sciimmunol.adg7597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) caused by CNS-infiltrating leukocytes, including TH17 cells that are critical mediators of disease pathogenesis. Although targeting leukocyte trafficking is effective in treating autoimmunity, there are currently no therapeutic interventions that specifically block encephalitogenic TH17 cell migration. Here, we report integrin α3 as a TH17 cell-selective determinant of pathogenicity in experimental autoimmune encephalomyelitis. CNS-infiltrating TH17 cells express high integrin α3, and its deletion in CD4+ T cells or Il17a fate-mapped cells attenuated disease severity. Mechanistically, integrin α3 enhanced the immunological synapse formation to promote the polarization and proliferation of TH17 cells. Moreover, the transmigration of TH17 cells into the CNS was dependent on integrin α3, and integrin α3 deficiency enhanced the retention of CD4+ T cells in the perivascular space of the blood-brain barrier. Integrin α3-dependent interactions continuously maintain TH17 cell identity and effector function. The requirement of integrin α3 in TH17 cell pathogenicity suggests integrin α3 as a therapeutic target for MS treatment.
Collapse
Affiliation(s)
- Eunchong Park
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - William E. Barclay
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Harmony R. Salzler
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Timothy E. Reddy
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Mari L. Shinohara
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Ouédraogo O, Balthazard R, Mamane VH, Jamann H, Millette F, Daigneault A, Arbour N, Larochelle C. Investigating anti-inflammatory and immunomodulatory properties of brivaracetam and lacosamide in experimental autoimmune encephalomyelitis (EAE). Epilepsy Res 2023; 192:107125. [PMID: 36963302 DOI: 10.1016/j.eplepsyres.2023.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Inflammation plays a role in drug-resistant epilepsy (DRE). We have previously reported an increased proportion of CD4 T cells displaying a pro-inflammatory profile in the peripheral blood of adults with DRE. Specific anti-epileptic drugs (AEDs) exhibit immunomodulatory properties that could increase the risk of infections but also contribute to their beneficial impact on DRE and other neurological diseases. The impact of novel generation AEDs on the profile of immune cells and on neuroinflammatory processes remains unclear. METHODS We compared the influence of brivaracetam and lacosamide on the activation of human and murine peripheral immune cells in vitro and in vivo in active experimental autoimmune encephalomyelitis (EAE), a common mouse model of central nervous system inflammation. RESULTS We found that brivaracetam and lacosamide at 2.5 μg/ml did not impair the survival and activation of human immune cells, but a higher dose of 25 μg/ml decreased mitogen-induced proliferation of CD8 T cells in vitro. Exposure to high doses of brivaracetam, and to a lesser extent lacosamide, reduced the proportion of CD25+ and CD107a+ CD8+ human T cells in vitro, and the frequency of CNS-infiltrating CD8+ T cells at EAE onset and CD11b+ myeloid cells at peak in vivo. Prophylactic administration of brivaracetam or lacosamide did not delay EAE onset but significantly improved the clinical course in the chronic phase of EAE compared to control. CONCLUSION Novel generation AEDs do not impair the response to immunization with MOG peptide but improve the course of EAE, possibly through a reduction of neuroaxonal damage.
Collapse
Affiliation(s)
- Oumarou Ouédraogo
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Hélène Jamann
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Florence Millette
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Audrey Daigneault
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada.
| |
Collapse
|
11
|
Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M, Brooks PC. Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 2023; 49:44. [PMID: 36633146 PMCID: PMC9868893 DOI: 10.3892/or.2023.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 01/13/2023] Open
Abstract
Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro‑ and anti‑tumorigenic functions in a cell type‑dependent manner. Therefore, designing strategies that block pro‑tumorigenic signaling, without impeding anti‑tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which β3‑integrin‑mediated binding to a secreted RGDKGE‑containing collagen fragment stimulates an autocrine‑like signaling pathway that differentially governs the activity of both YAP and (protein kinase‑A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD‑L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine‑like signaling pathway that may provide tumor cells with the ability to regulate PD‑L1, but our findings may also help in the development of more effective strategies to control pro‑tumorigenic β3‑integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.
Collapse
Affiliation(s)
- Jennifer M. Caron
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Xianghua Han
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Christine W. Lary
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Pradeep Sathyanarayana
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Scot C. Remick
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Marc S. Ernstoff
- Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Peter C. Brooks
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| |
Collapse
|
12
|
Barth K, Vasić V, McDonald B, Heinig N, Wagner MC, Schumann U, Röhlecke C, Bicker F, Schumann L, Radyushkin K, Baumgart J, Tenzer S, Zipp F, Meinhardt M, Alitalo K, Tegeder I, Schmidt MHH. EGFL7 loss correlates with increased VEGF-D expression, upregulating hippocampal adult neurogenesis and improving spatial learning and memory. Cell Mol Life Sci 2023; 80:54. [PMID: 36715759 PMCID: PMC9886625 DOI: 10.1007/s00018-023-04685-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.
Collapse
Affiliation(s)
- Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Verica Vasić
- Institute of Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany ,Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Marc-Christoph Wagner
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany ,Institute of Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Ulrike Schumann
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Cora Röhlecke
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| | - Frank Bicker
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lana Schumann
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt Am Main, Frankfurt, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Mouse Behavior Outcome Unit, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Focus Program Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany ,Department of Neurology, Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kari Alitalo
- Translational Cancer Medicine Program and iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt Am Main, Frankfurt, Germany
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
13
|
Feleke M, Feng W, Song D, Li H, Rothzerg E, Wei Q, Kõks S, Wood D, Liu Y, Xu J. Single-cell RNA sequencing reveals differential expression of EGFL7 and VEGF in giant-cell tumor of bone and osteosarcoma. Exp Biol Med (Maywood) 2022; 247:1214-1227. [PMID: 35695550 PMCID: PMC9379604 DOI: 10.1177/15353702221088238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dysregulation of angiogenesis is associated with tumor development and is accompanied by altered expression of pro-angiogenic factors. EGFL7 is a newly identified antigenic factor that plays a role in various cancers such as breast cancer, lung cancer, and acute myeloid leukemia. We have recently found that EGFL7 is expressed in the bone microenvironment, but its role in giant-cell tumor of bone (GCTB) and osteosarcoma (OS) is unknown. The aims of this study are to examine the gene expression profile of EGFL7 in GCTB and OS and compare with that of VEGF-A-D and TNFSF11 using single-cell RNA sequencing data. In-depth differential expression analyses were employed to characterize their expression in the constituent cell types of GCTB and OS. Notably, EGFL7 in GCTB was expressed at highest levels in the endothelial cell (EC) cluster followed by osteoblasts, myeloid cells, and chondrocytes, respectively. In OS, EGFL7 exhibited highest expression in EC cell cluster followed by osteoblastic OS cells, myeloid cells 1, and carcinoma associated fibroblasts (CAFs), respectively. In comparison, VEGF-A is expressed at highest levels in myeloid cells followed by OCs in GCTB, and in myeloid cells, and OCs in OS. VEGF-B is expressed at highest levels in chondrocytes in GCTB and in OCs in OS. VEGF-C is strongly enriched in ECs and VEGF-D is expressed at weak levels in all cell types in both GCTB and OS. TNFSF11 (or RANKL) shows high expression in CAFs and osteoblastic OS cells in OS, and osteoblasts in GCTB. This study investigates pro-angiogenic genes in GCTB and OS and suggests that these genes and their expression patterns are cell-type specific and could provide potential prognostic biomarkers and cell type target treatment for GCTB and OS.
Collapse
Affiliation(s)
- Mesalie Feleke
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Wenyu Feng
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dezhi Song
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning 530021, China
| | - Hengyuan Li
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Orthopedics, Centre for Orthopedic Research, Second Affiliated Hospital, School of Medicine, Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Emel Rothzerg
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Qingjun Wei
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| | - David Wood
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Orthopaedics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
- Jiake Xu.
| |
Collapse
|
14
|
Li L, Zhao Y, Hu Y, Wang X, Jin Q, Zhao Y. Recombinant EGFL7 Mitigated Pressure Overload-Induced Cardiac Remodeling by Blocking PI3K γ /AKT/ NFκB Signaling in Macrophages. Front Pharmacol 2022; 13:858118. [PMID: 35721105 PMCID: PMC9200063 DOI: 10.3389/fphar.2022.858118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation and endothelial dysfunction play an essential role in heart failure (HF). Epidermal growth factor-like protein 7 (EGFL7) is upregulated during pathological hypoxia and exerts a protective role. However, it is unclear whether there is a link between abnormal EGFL7 expression and inflammation in overload stress-induced heart failure. Our results showed that EGFL7 transiently increased during the early 4 weeks of TAC and in hypertensive patients without heart failure. However, it decreased to the basal line in the heart tissue 8 weeks post-transverse aortic constriction (TAC) or hypertensive patients with heart failure. Knockdown of EGFL7 with siRNA in vivo accelerated cardiac dysfunction, fibrosis, and macrophage infiltration 4 weeks after TAC. Deletion of macrophages in siRNA-EGFL7-TAC mice rescued that pathological phenotype. In vitro research revealed the mechanism. PI3K γ /AKT/N FκB signaling in macrophages was activated by the supernatant from endothelial cells stimulated by siRNA-EGFL7+phenylephrine. More macrophages adhered to endothelial cells, but pretreatment of macrophages with PI3Kγ inhibitors decreased the adhesion of macrophages to endothelial cells. Ultimately, treatment with recombinant rmEGFL7 rescued cardiac dysfunction and macrophage infiltration in siRNA-EGFL7-TAC mice. In conclusion, EGFL7 is a potential inhibitor of macrophage adhesion to mouse aortic endothelial cells. The downregulation of EGFL7 combined with increased macrophage infiltration further promoted cardiac dysfunction under pressure overload stress. Mechanistically, EGFL7 reduced endothelial cell adhesion molecule expression and inhibited the PI3K γ /AKT/NF κ B signaling pathway in macrophages.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhao
- Department of Geriatrics, 960 Hospital of PLA(The General Hospital of Jinan Command), Jinan, China
| | - Ying Hu
- Department of Cardiology, Liao Cheng People’s Hospital, Liao Cheng, China
| | - Xiaohui Wang
- Department of Medical Records, Heze Municipal Hospital, Heze, China
| | - Qun Jin
- Department of Geriatrics, 960 Hospital of PLA(The General Hospital of Jinan Command), Jinan, China
| | - Ying Zhao
- Department of Geriatrics, 960 Hospital of PLA(The General Hospital of Jinan Command), Jinan, China
| |
Collapse
|
15
|
Endothelial ETS1 inhibition exacerbate blood-brain barrier dysfunction in multiple sclerosis through inducing endothelial-to-mesenchymal transition. Cell Death Dis 2022; 13:462. [PMID: 35568723 PMCID: PMC9107459 DOI: 10.1038/s41419-022-04888-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Blood-brain barrier (BBB) dysfunction has been recognized as an early pathological feature and contributing factor in multiple sclerosis. Endothelial-to-mesenchymal transition is a process associated with endothelial dysfunction leading to the disruption of vessel stability and barrier function, yet its functional consequence in multiple sclerosis remains unclear. Here, we demonstrated that endothelial-to-mesenchymal transition accompanied the blood-brain barrier dysfunction in several neurological disorders, especially in multiple sclerosis. The activity of transcription factor ETS1, which is highly expressed in endothelial cells (ECs) and responded to an inflammatory condition, is suppressed in the central nervous system (CNS) ECs in MS and its animal model experimental autoimmune encephalomyelitis. We identify ETS1 as a central regulator of endothelial-to-mesenchymal transition (EndMT) associated with the compromise of barrier integrity. These phenotypical and functional alterations can further induce high permeability, immune infiltration, and organ fibrosis in multiple sclerosis, thus promoting disease progression. Together, these results demonstrate a functional role of EndMT in blood-brain barrier dysfunction and propose ETS1 as a potential transcriptional switch of EndMT to target the development of multiple sclerosis.
Collapse
|
16
|
Jamann H, Cui QL, Desu HL, Pernin F, Tastet O, Halaweh A, Farzam-kia N, Mamane VH, Ouédraogo O, Cleret-Buhot A, Daigneault A, Balthazard R, Klement W, Lemaître F, Arbour N, Antel J, Stratton JA, Larochelle C. Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Front Immunol 2022; 13:850616. [PMID: 35479072 PMCID: PMC9035748 DOI: 10.3389/fimmu.2022.850616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by the loss of myelin and of myelin-producing oligodendrocytes (OLs) in the central nervous system (CNS). Pro-inflammatory CD4+ Th17 cells are considered pathogenic in MS and are harmful to OLs. We investigated the mechanisms driving human CD4+ T cell-mediated OL cell death. Using fluorescent and brightfield in vitro live imaging, we found that compared to Th2-polarized cells, Th17-polarized cells show greater interactions with primary human OLs and human oligodendrocytic cell line MO3.13, displaying longer duration of contact, lower mean speed, and higher rate of vesicle-like structure formation at the sites of contact. Using single-cell RNA sequencing, we assessed the transcriptomic profile of primary human OLs and Th17-polarized cells in direct contact or separated by an insert. We showed that upon close interaction, OLs upregulate the expression of mRNA coding for chemokines and antioxidant/anti-apoptotic molecules, while Th17-polarized cells upregulate the expression of mRNA coding for chemokines and pro-inflammatory cytokines such as IL-17A, IFN-γ, and granzyme B. We found that secretion of CCL3, CXCL10, IFN-γ, TNFα, and granzyme B is induced upon direct contact in cocultures of human Th17-polarized cells with human OLs. In addition, we validated by flow cytometry and immunofluorescence that granzyme B levels are upregulated in Th17-polarized compared to Th2-polarized cells and are even higher in Th17-polarized cells upon direct contact with OLs or MO3.13 cells compared to Th17-polarized cells separated from OLs by an insert. Moreover, granzyme B is detected in OLs and MO3.13 cells following direct contact with Th17-polarized cells, suggesting the release of granzyme B from Th17-polarized cells into OLs/MO3.13 cells. To confirm granzyme B–mediated cytotoxicity toward OLs, we showed that recombinant human granzyme B can induce OLs and MO3.13 cell death. Furthermore, pretreatment of Th17-polarized cells with a reversible granzyme B blocker (Ac-IEPD-CHO) or a natural granzyme B blocker (serpina3N) improved survival of MO3.13 cells upon coculture with Th17 cells. In conclusion, we showed that human Th17-polarized cells form biologically significant contacts with human OLs and exert direct toxicity by releasing granzyme B.
Collapse
Affiliation(s)
- Hélène Jamann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Haritha L. Desu
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Alexandre Halaweh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Negar Farzam-kia
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Oumarou Ouédraogo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Immunology and Infectiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Renaud Balthazard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Florent Lemaître
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Catherine Larochelle
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Catherine Larochelle,
| |
Collapse
|
17
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
18
|
Charabati M, Grasmuck C, Ghannam S, Bourbonnière L, Fournier AP, Lécuyer MA, Tastet O, Kebir H, Rébillard RM, Hoornaert C, Gowing E, Larouche S, Fortin O, Pittet C, Filali-Mouhim A, Lahav B, Moumdjian R, Bouthillier A, Girard M, Duquette P, Cayrol R, Peelen E, Quintana FJ, Antel JP, Flügel A, Larochelle C, Arbour N, Zandee S, Prat A. DICAM promotes T H17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Sci Transl Med 2022; 14:eabj0473. [PMID: 34985970 DOI: 10.1126/scitranslmed.abj0473] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marc Charabati
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Camille Grasmuck
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Soufiane Ghannam
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Antoine P Fournier
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Marc-André Lécuyer
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen D-37073, Germany
| | - Olivier Tastet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Hania Kebir
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Rose-Marie Rébillard
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Chloé Hoornaert
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Elizabeth Gowing
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sandra Larouche
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Olivier Fortin
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Camille Pittet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Ali Filali-Mouhim
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Boaz Lahav
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Robert Moumdjian
- Division of Neurosurgery, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Marc Girard
- Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Pierre Duquette
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Romain Cayrol
- Department of Pathology, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Evelyn Peelen
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Francisco J Quintana
- Ann Romney Carter for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen D-37073, Germany
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Nathalie Arbour
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Stephanie Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| |
Collapse
|
19
|
Haider AS, Palmisciano P, Sagoo NS, Bin Alamer O, El Ahmadieh TY, Pan E, Garzon-Muvdi T. Primary Central Nervous System Sarcomas in Adults: A Systematic Review. Clin Neurol Neurosurg 2022; 214:107127. [DOI: 10.1016/j.clineuro.2022.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
|
20
|
Modulating endothelial cells with EGFL7 to diminish aGVHD after allogeneic bone marrow transplantation in mice. Blood Adv 2021; 6:2403-2408. [PMID: 34654057 PMCID: PMC9006300 DOI: 10.1182/bloodadvances.2021005498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment of GVHD with EGFL7 protein results in decreased disease severity and prolonged survival. EGFL7 treatment improved immune reconstitution and did not inhibit graft-versus-leukemia effect.
Acute graft-versus-host disease (aGVHD) is the second most common cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT), underscoring the need for novel therapies. Based on previous work that endothelial cell dysfunction is present in aGVHD and that epidermal growth factor-like domain 7 (EGFL7) plays a significant role in decreasing inflammation by repressing endothelial cell activation and T-cell migration, we hypothesized that increasing EGFL7 levels after allo-HSCT will diminish the severity of aGVHD. Here, we show that treatment with recombinant EGFL7 (rEGFL7) in 2 different murine models of aGVHD decreases aGVHD severity and improves survival in recipient mice after allogeneic transplantation with respect to controls without affecting graft-versus-leukemia effect. Furthermore, we showed that rEGFL7 treatment results in higher thymocytes, T, B, and dendritic cell counts in recipient mice after allo-HSCT. This study constitutes a proof of concept of the ability of rEGFL7 therapy to reduce GHVD severity and mortality after allo-HSCT.
Collapse
|
21
|
Ouédraogo O, Rébillard RM, Jamann H, Mamane VH, Clénet ML, Daigneault A, Lahav B, Uphaus T, Steffen F, Bittner S, Zipp F, Bérubé A, Lapalme-Remis S, Cossette P, Nguyen DK, Arbour N, Keezer MR, Larochelle C. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia 2021; 62:176-189. [PMID: 33140401 DOI: 10.1111/epi.16742] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Adult drug-resistant epilepsy (DRE) is associated with significant morbidity. Infiltration of immune cells is observed in DRE epileptic foci; however, the relation between DRE and the peripheral immune cell compartment remains only partially understood. We aimed to investigate differences in immune cell populations, cytokines, and neurodegenerative biomarkers in the peripheral blood of subjects with epilepsy versus healthy controls, and in DRE compared to well-controlled epilepsy (WCE). METHODS Peripheral blood mononuclear cells and serum from >120 age- and sex-matched adults suffering from focal onset epilepsy and controls were analyzed by multipanel flow cytometry, multiplex immunoassays, and ultrasensitive single molecule array. RESULTS Using a data-driven analytical approach, we identified that CD4 T cells in the peripheral blood are present in a higher proportion in DRE patients. Moreover, we observed that the frequency of CD4 T cells expressing proinflammatory cytokines interleukin (IL)-17A, IL-22, tumor necrosis factor, interferon-γ, and granulocyte-macrophage colony-stimulating factor, but not anti-inflammatory cytokines IL-10 and IL-4, is elevated in the peripheral blood of DRE subjects compared to WCE. In parallel, we found that Th17-related circulating proinflammatory cytokines are elevated, but Th2-related cytokine IL-4 is reduced, in the serum of epilepsy and DRE subjects. As Th17 cells can exert neurotoxicity, we measured levels of serum neurofilament light chain (sNfL), a marker of neuronal injury. We found significantly elevated levels of sNfL in DRE compared to controls, especially among older individuals. SIGNIFICANCE Our data support that DRE is associated with an expansion of the CD4 Tcell subset in the peripheral blood and with a shift toward a proinflammatory Th17/Th1 CD4 Tcell immune profile. Our results further show that pathological levels of sNfL are more frequent in DRE, supporting a potential neurodegenerative component in adult DRE. With this work, we provide evidence for novel potential inflammatory and degenerative biomarkers in DRE.
Collapse
Affiliation(s)
- Oumarou Ouédraogo
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Microbiology, Immunology, and Infectiology, University of Montreal, Montreal, QC, Canada
| | - Rose-Marie Rébillard
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Hélène Jamann
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Victoria Hannah Mamane
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Marie-Laure Clénet
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Microbiology, Immunology, and Infectiology, University of Montreal, Montreal, QC, Canada
| | - Audrey Daigneault
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
| | - Boaz Lahav
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arline Bérubé
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Samuel Lapalme-Remis
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Patrick Cossette
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| | - Nathalie Arbour
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Mark R Keezer
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Catherine Larochelle
- Research Center of the University of Montreal Hospital Center, Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Center, Montreal, QC, Canada
| |
Collapse
|
22
|
CD146/sCD146 in the Pathogenesis and Monitoring of Angiogenic and Inflammatory Diseases. Biomedicines 2020; 8:biomedicines8120592. [PMID: 33321883 PMCID: PMC7764286 DOI: 10.3390/biomedicines8120592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
CD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis. In this review, we will focus on how CD146 and sCD146 contribute to the pathogenesis of the aforementioned autoimmune diseases and discuss the relevance of considering it as a biomarker in these pathologies.
Collapse
|
23
|
Loos J, Schmaul S, Noll TM, Paterka M, Schillner M, Löffel JT, Zipp F, Bittner S. Functional characteristics of Th1, Th17, and ex-Th17 cells in EAE revealed by intravital two-photon microscopy. J Neuroinflammation 2020; 17:357. [PMID: 33243290 PMCID: PMC7694901 DOI: 10.1186/s12974-020-02021-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background T helper (Th) 17 cells are a highly plastic subset of T cells, which in the context of neuroinflammation, are able to acquire pathogenic features originally attributed to Th1 cells (resulting in so called ex-Th17 cells). Thus, a strict separation between the two T cell subsets in the context of experimental autoimmune encephalomyelitis (EAE) is difficult. High variability in culture and EAE induction protocols contributed to previous conflicting results concerning the differential contribution of Th1 and Th17 cells in EAE. Here, we systematically evaluate the role of different T cell differentiation and transfer protocols for EAE disease development and investigate the functional dynamics of encephalitogenic T cells directly within the inflamed central nervous system (CNS) tissue. Methods We compiled the currently used EAE induction protocols reported in literature and investigated the influence of the different Th1 and Th17 differentiation protocols as well as EAE induction protocols on the EAE disease course. Moreover, we assessed the cytokine profile and functional dynamics of both encephalitogenic Th1 and Th17 cells in the inflamed CNS using flow cytometry and intravital two-photon laser scanning microscopy. Lastly, we used astrocyte culture and adoptive transfer EAE to evaluate the impact of Th1 and Th17 cells on astrocyte adhesion molecule expression in vitro and in vivo. Results We show that EAE courses are highly dependent on in vitro differentiation and transfer protocols. Moreover, using genetically encoded reporter mice (B6.IL17A-EGFP.acRFP x 2d2/2d2.RFP), we show that the motility of interferon (IFN)γ-producing ex-Th17 cells more closely resembles Th1 cells than Th17 cells in transfer EAE. Mechanistically, IFNγ-producing Th1 cells selectively induce the expression of cellular adhesion molecules I-CAM1 while Th1 as well as ex-Th17 induce V-CAM1 on astrocytes. Conclusions The behavior of ex-Th17 cells in EAE lesions in vivo resembles Th1 rather than Th17 cells, underlining that their change in cytokine production is associated with functional phenotype alterations of these cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02021-x.
Collapse
Affiliation(s)
- Julia Loos
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Theresa Marie Noll
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Magdalena Paterka
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Miriam Schillner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Julian T Löffel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
| |
Collapse
|
24
|
Salama Y, Heida AH, Yokoyama K, Takahashi S, Hattori K, Heissig B. The EGFL7-ITGB3-KLF2 axis enhances survival of multiple myeloma in preclinical models. Blood Adv 2020; 4:1021-1037. [PMID: 32191808 PMCID: PMC7094020 DOI: 10.1182/bloodadvances.2019001002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenic factors play a key role in multiple myeloma (MM) growth, relapse, and drug resistance. Here we show that malignant plasma cells (cell lines and patient-derived MM cells) express angiocrine factor EGF like-7 (EGFL7) mRNA and protein. MM cells both produced EGFL7 and expressed the functional EGFL7 receptor integrin β 3 (ITGB3), resulting in ITGB3 phosphorylation and focal adhesion kinase activation. Overexpression of ITGB3 or EGFL7 enhanced MM cell adhesion and proliferation. Intriguingly, ITGB3 overexpression upregulated the transcription factor Krüppel-like factor 2 (KLF2), which further enhanced EGFL7 transcription in MM cells, thereby establishing an EGFL7-ITGB3-KLF2-EGFL7 amplification loop that supports MM cell survival and proliferation. EGFL7 expression was found in certain plasma cells of patients with refractory MM and of patients at primary diagnosis. NOD.CB17-Prkdc/J mice transplanted with MM cells showed elevated human plasma EGFL7 levels. EGFL7 knockdown in patient-derived MM cells and treatment with neutralizing antibodies against EGFL7 inhibited MM cell growth in vitro and in vivo. We demonstrate that the standard-of-care MM drug bortezomib upregulates EGFL7, ITGB3, and KLF2 expression in MM cells. Inhibition of EGFL7 signaling in synergy with BTZ may provide a novel strategy for inhibiting MM cell proliferation.
Collapse
Affiliation(s)
- Yousef Salama
- Division of Stem Cell Dynamics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Andries Hendrik Heida
- Division of Stem Cell Dynamics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Satoshi Takahashi
- Department of Hematology and Oncology, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; and
| | | | - Beate Heissig
- Division of Stem Cell Dynamics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunological Diagnosis, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Chuva de Sousa Lopes SM, Alexdottir MS, Valdimarsdottir G. The TGFβ Family in Human Placental Development at the Fetal-Maternal Interface. Biomolecules 2020; 10:biom10030453. [PMID: 32183218 PMCID: PMC7175362 DOI: 10.3390/biom10030453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.
Collapse
Affiliation(s)
- Susana M. Chuva de Sousa Lopes
- Dept. Anatomy and Embryology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- Dept. Reproductive Medicine Anatomy and Embryology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta S. Alexdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
| | - Gudrun Valdimarsdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
- Correspondence: ; Tel.: +354-5254797
| |
Collapse
|
26
|
Liu Q, He H, Yuan Y, Zeng H, Wang Z, Luo W. Novel Expression of EGFL7 in Osteosarcoma and Sensitivity to Cisplatin. Front Oncol 2020; 10:74. [PMID: 32117731 PMCID: PMC7016045 DOI: 10.3389/fonc.2020.00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor-like domain 7 (EGFL7) is a protein specifically secreted by blood vessel endothelial cells, which plays an important role in angiogenesis. Considering the aberrant secretion of EGFL7 in osteosarcoma (OS) has not yet been elucidated, this study investigated the secretion of EGFL7 in OS and the changes in its secretion after chemotherapy. We observed increased varying secretion of EGFL7 in OS tissues compared with chondrosarcoma (CS) tissues. OS cell lines and HUVECs showed higher EGFL7 mRNA and protein expression than SW1353, with OS cells expressing the highest levels. In patient samples, EGFL7 was highly expressed in the cytoplasm of OS tumor cells and vascular endothelium cells. This overexpression was abolished in OS cell and tumor tissues when treated with chemotherapy. This study is a pioneering study to investigate EGFL7 expression and localization in human OS tissues and cell. Overexpression of EGFL-7 in response to chemotherapy suggests that it can be used as a therapeutic target for OS.
Collapse
Affiliation(s)
- Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Roy DG, Chen J, Mamane V, Ma EH, Muhire BM, Sheldon RD, Shorstova T, Koning R, Johnson RM, Esaulova E, Williams KS, Hayes S, Steadman M, Samborska B, Swain A, Daigneault A, Chubukov V, Roddy TP, Foulkes W, Pospisilik JA, Bourgeois-Daigneault MC, Artyomov MN, Witcher M, Krawczyk CM, Larochelle C, Jones RG. Methionine Metabolism Shapes T Helper Cell Responses through Regulation of Epigenetic Reprogramming. Cell Metab 2020; 31:250-266.e9. [PMID: 32023446 DOI: 10.1016/j.cmet.2020.01.006] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/26/2019] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.
Collapse
Affiliation(s)
- Dominic G Roy
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jocelyn Chen
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Victoria Mamane
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Eric H Ma
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Brejnev M Muhire
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ryan D Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Tatiana Shorstova
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Rutger Koning
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Radia M Johnson
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ekaterina Esaulova
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Kelsey S Williams
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | - Bozena Samborska
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Amanda Swain
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Audrey Daigneault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | | | - William Foulkes
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - J Andrew Pospisilik
- Metabolic and Nutritional Programming, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie-Claude Bourgeois-Daigneault
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Maxim N Artyomov
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Connie M Krawczyk
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Catherine Larochelle
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Russell G Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
28
|
Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC, Jones DTW, Joyce JA, Kearns P, Kieran MW, Mellinghoff IK, Merchant M, Pfister SM, Pollard SM, Ramaswamy V, Rich JN, Robinson GW, Rowitch DH, Sampson JH, Taylor MD, Workman P, Gilbertson RJ. Challenges to curing primary brain tumours. Nat Rev Clin Oncol 2019; 16:509-520. [PMID: 30733593 PMCID: PMC6650350 DOI: 10.1038/s41571-019-0177-5] [Citation(s) in RCA: 571] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite decades of research, brain tumours remain among the deadliest of all forms of cancer. The ability of these tumours to resist almost all conventional and novel treatments relates, in part, to the unique cell-intrinsic and microenvironmental properties of neural tissues. In an attempt to encourage progress in our understanding and ability to successfully treat patients with brain tumours, Cancer Research UK convened an international panel of clinicians and laboratory-based scientists to identify challenges that must be overcome if we are to cure all patients with a brain tumour. The seven key challenges summarized in this Position Paper are intended to serve as foci for future research and investment.
Collapse
Affiliation(s)
- Kenneth Aldape
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | | | | | | | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark R Gilbert
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David T W Jones
- Pediatric Glioma Research Group, Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Pamela Kearns
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Mark W Kieran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program and Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Stefan M Pfister
- Division of Pediatric Oncology, Hopp Children's Cancer Center at the NCT Heidelberg, Heidelberg, Germany
| | - Steven M Pollard
- Cancer Research UK Edinburgh Centre and Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Vijay Ramaswamy
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David H Rowitch
- Department of Paediatrics, University of Cambridge and Wellcome Trust-MRC Stem Cell Institute, Cambridge, UK
| | - John H Sampson
- The Preston Robert Tisch Brain Tumor Center, Duke Cancer Center, Durham, NC, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Richard J Gilbertson
- CRUK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
- CRUK Cambridge Institute and Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
29
|
Han JJ, Li X, Ye ZQ, Lu XY, Yang T, Tian J, Wang YQ, Zhu L, Wang ZZ, Zhang Y. Treatment with 6-Gingerol Regulates Dendritic Cell Activity and Ameliorates the Severity of Experimental Autoimmune Encephalomyelitis. Mol Nutr Food Res 2019; 63:e1801356. [PMID: 31313461 DOI: 10.1002/mnfr.201801356] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/10/2019] [Indexed: 12/16/2022]
Abstract
SCOPE Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disorder, with increasing incidence worldwide but unknown etiology. 6-Gingerol (6-GIN), a major dietary compound found in ginger rhizome, has immunomodulatory activity. However, its role in autoimmune diseases, as well as the underlying mechanisms, are unclear. In this study, it is evaluated if 6-GIN can effectively ameliorate the clinical disease severity of experimental autoimmune encephalomyelitis, an animal model of MS. METHODS AND RESULTS Clinical scores of experimental autoimmune encephalomyelitis (EAE) mice are recorded daily. Inflammation of periphery and neuroinflammation of EAE mice are determined by flow cytometry analysis, ELISA, and histopathological analysis, and results show that 6-GIN significantly inhibits inflammatory cell infiltration from the periphery into the central nervous system and reduces neuroinflammation and demyelination. Flow cytometry analysis, ELISA, and quantitative PCR show that 6-GIN could suppress lipolysaccharide-induced dendritic cell (DC) activation and induce the tolerogenic DCs. Immunoblot analysis reveals that the phosphorylation of nuclear factor-κB and mitogen-activated protein kinase, two critical regulators of inflammatory signaling, are significantly inhibited in 6-GIN-treated DCs. CONCLUSION The results of this study demonstrate that 6-GIN has significant potential as a novel anti-inflammatory agent for the treatment of autoimmune diseases such as MS via direct modulatory effects on DCs.
Collapse
Affiliation(s)
- Juan-Juan Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Ze-Qing Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Xin-Yu Lu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Ting Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Jing Tian
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Yu-Qian Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
30
|
Dudvarski Stanković N, Bicker F, Keller S, Jones DT, Harter PN, Kienzle A, Gillmann C, Arnold P, Golebiewska A, Keunen O, Giese A, von Deimling A, Bäuerle T, Niclou SP, Mittelbronn M, Ye W, Pfister SM, Schmidt MH. EGFL7 enhances surface expression of integrin α 5β 1 to promote angiogenesis in malignant brain tumors. EMBO Mol Med 2019; 10:emmm.201708420. [PMID: 30065025 PMCID: PMC6127886 DOI: 10.15252/emmm.201708420] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a typically lethal type of brain tumor with a median survival of 15 months postdiagnosis. This negative prognosis prompted the exploration of alternative treatment options. In particular, the reliance of GBM on angiogenesis triggered the development of anti-VEGF (vascular endothelial growth factor) blocking antibodies such as bevacizumab. Although its application in human GBM only increased progression-free periods but did not improve overall survival, physicians and researchers still utilize this treatment option due to the lack of adequate alternatives. In an attempt to improve the efficacy of anti-VEGF treatment, we explored the role of the egfl7 gene in malignant glioma. We found that the encoded extracellular matrix protein epidermal growth factor-like protein 7 (EGFL7) was secreted by glioma blood vessels but not glioma cells themselves, while no major role could be assigned to the parasitic miRNAs miR-126/126*. EGFL7 expression promoted glioma growth in experimental glioma models in vivo and stimulated tumor vascularization. Mechanistically, this was mediated by an upregulation of integrin α5β1 on the cellular surface of endothelial cells, which enhanced fibronectin-induced angiogenic sprouting. Glioma blood vessels that formed in vivo were more mature as determined by pericyte and smooth muscle cell coverage. Furthermore, these vessels were less leaky as measured by magnetic resonance imaging of extravasating contrast agent. EGFL7-inhibition using a specific blocking antibody reduced the vascularization of experimental gliomas and increased the life span of treated animals, in particular in combination with anti-VEGF and the chemotherapeutic agent temozolomide. Data allow for the conclusion that this combinatorial regimen may serve as a novel treatment option for GBM.
Collapse
Affiliation(s)
- Nevenka Dudvarski Stanković
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Bicker
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Keller
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Tw Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Arne Kienzle
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarissa Gillmann
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | | | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Olivier Keunen
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Alf Giese
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas von Deimling
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Department of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Michel Mittelbronn
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Laboratoire National de Santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Weilan Ye
- Vascular Biology Program, Molecular Oncology Division, Genentech, San Francisco, CA, USA
| | - Stefan M Pfister
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mirko H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Usuba R, Pauty J, Soncin F, Matsunaga YT. EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 2019; 197:305-316. [PMID: 30684886 DOI: 10.1016/j.biomaterials.2019.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/28/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Elucidating the mechanisms underlying sprouting angiogenesis and permeability should enable the development of more effective therapies for various diseases, including retinopathy, cancer, and other vascular disorders. We focused on epidermal growth factor-like domain 7 (EGFL7) which plays an important role in NOTCH signaling and in the organization of angiogenic sprouts. We developed an EGFL7-knockdown in vitro microvessel model and investigated the effect of EGFL7 at a tissue level. We found EGFL7 knockdown suppressed VEGF-A-induced sprouting angiogenesis accompanied by an overproduction of endothelial filopodia and reduced collagen IV deposition at the basal side of endothelial cells. We also observed impaired barrier function which reflected an inflammatory condition. Furthermore, our results showed that proper formation of adherens junctions and phosphorylation of VE-cadherin was disturbed. In conclusion, by using a 3D microvessel model we identified novel roles for EGFL7 in endothelial function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Ryo Usuba
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Joris Pauty
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Fabrice Soncin
- LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France; Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, F-59000 Lille, France.
| | - Yukiko T Matsunaga
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France.
| |
Collapse
|
32
|
Haqqani AS, Stanimirovic DB. Prioritization of Therapeutic Targets of Inflammation Using Proteomics, Bioinformatics, and In Silico Cell-Cell Interactomics. Methods Mol Biol 2019; 2024:309-325. [PMID: 31364059 DOI: 10.1007/978-1-4939-9597-4_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein-protein interactions play key roles in leukocyte extravasation process into the brain and have been attractive therapeutic targets for inhibiting brain inflammation using blocking (or neutralizing) antibodies. These targets include protein-protein interactions between cytokines (or chemokines) and their receptors on leukocytes and between adhesion molecules of leukocyte and brain endothelium. While a number of therapeutics against these targets are currently used in clinic for treatment of brain autoimmune and inflammatory disorders (e.g., multiple sclerosis), they are associated with side effects partly due to the off-target actions (i.e., nonspecific targets). There is a need for novel targets involved in the leukocyte extravasation process that are specific to leukocyte subsets or to individual inflammatory disorder and are amenable for drug development (i.e., druggable). We recently described the blood-brain barrier (BBB) Carta Project as a comprehensive collection of molecular "maps" consisting of multiple experimental omics (including RNA sequencing, proteomics, glycoproteomics, glycomics, metabolomics) and in silico informatics analyses on a number of mammalian species from hundreds of internal, publically available, or curated datasets. Utilizing the datasets and tools from the BBB Carta Project, we describe a methodology to identify novel "druggable" targets involving protein-protein interactions between activated leukocytes and brain endothelial cells using a combination of proteomics, bioinformatics, and in silico interactomics. The result is a prioritized list of protein-protein interactions in a network consisting of leukocyte-brain endothelial cell communication and contacts. These interactions can be further pursued for development of therapeutics such as neutralizing antibodies and their validation through preclinical testing. In addition to targeting brain inflammation, the method described here is applicable for peripheral inflammation and provides the opportunity to target important cell-cell interactions and communications that are more specific/selective for inflammatory disorders and improve currently available therapies.
Collapse
Affiliation(s)
- Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| |
Collapse
|
33
|
Uphaus T, Zipp F, Larochelle C. EGFL7 - a potential therapeutic target for multiple sclerosis? Expert Opin Ther Targets 2018; 22:899-902. [PMID: 30312112 DOI: 10.1080/14728222.2018.1535595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Timo Uphaus
- a Department of Neurology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Frauke Zipp
- a Department of Neurology , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Catherine Larochelle
- b Department of Neurosciences , Centre de recherche du centre hospitalier de l'Université de Montréal (CRCHUM) , Montréal (Québec) , Canada
| |
Collapse
|
34
|
Hong G, Kuek V, Shi J, Zhou L, Han X, He W, Tickner J, Qiu H, Wei Q, Xu J. EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol 2018; 233:8526-8537. [PMID: 29923200 DOI: 10.1002/jcp.26792] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Guoju Hong
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Vincent Kuek
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Jiaxi Shi
- First Clinical College Guangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Lin Zhou
- Department of Rheumatology The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Xiaorui Han
- Department of Radiography Guangzhou First People's Hospital The Second Affiliated Hospital of South China University of Technology Guangzhou Guangdong China
| | - Wei He
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Orthopedic Department The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Jennifer Tickner
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Heng Qiu
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Qiushi Wei
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Orthopedic Department The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Jiake Xu
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| |
Collapse
|
35
|
Kubick N, Brösamle D, Mickael ME. Molecular Evolution and Functional Divergence of the IgLON Family. Evol Bioinform Online 2018; 14:1176934318775081. [PMID: 29844654 PMCID: PMC5967153 DOI: 10.1177/1176934318775081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022] Open
Abstract
IgLON family is a subgroup of cell adhesion molecules which is known to have diverse roles in neuronal development. IgLONs are characterized by possessing 3 Ig-like C2 domains, which play a part in mediating various cellular interactions. Recently, IgLONs have been shown to be expressed at the blood-brain barrier (BBB). However, our understanding of the genetic divergence patterns and evolutionary rates of these proteins in relation to their functions, in general, and at the BBB, in particular, remains inadequate. In this study, 12 species were explored to shed more light on the phylogenetic origins, structure, functional specificity, and divergence of this family. A total of 40 IgLON genes were identified from vertebrates and invertebrates. The absence of IgLON family genes in Hydra vulgaris and Nematostella vectensis but not in Drosophila melanogaster suggests that this family appeared during the time of divergence of Arthropoda 455 Mya. In general, IgLON genes have been subject to strong positive selection in vertebrates. Our study, based on IgLONs’ structural similarity, suggests that they may play a role in the evolutionary changes in the brain anatomy towards complexity including regulating neural growth and BBB permeability. IgLONs’ functions seem to be performed through complex interactions on the level of motifs as well as single residues. We identified several IgLON motifs that could be influencing cellular migration and proliferation as well as BBB integrity through interactions with SH3 or integrin. Our motif analysis also revealed that NEGR1 might be involved in MAPK pathway as a form of a signal transmitting receptor through its motif (KKVRVVVNF). We found several residues that were both positively selected and with highly functional specificity. We also located functional divergent residues that could act as drug targets to regulate BBB permeability. Furthermore, we identified several putative metalloproteinase cleavage sites that support the ectodomain shedding hypothesis of the IgLONs. In conclusion, our results present a bridge between IgLONs’ molecular evolution and their functions.
Collapse
Affiliation(s)
- Norwin Kubick
- Institute of Biochemistry, Molecular Cell Biology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Brösamle
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Michel-Edwar Mickael
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Bittner S, Zipp F. Studying the blood-brain barrier will provide new insights into neurodegeneration - Commentary. Mult Scler 2018; 24:1026-1028. [PMID: 29504451 DOI: 10.1177/1352458518759430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Research Centre for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Research Centre for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|