1
|
Nesic K, Parker P, Swisher EM, Krais JJ. DNA repair and the contribution to chemotherapy resistance. Genome Med 2025; 17:62. [PMID: 40420317 PMCID: PMC12107761 DOI: 10.1186/s13073-025-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The DNA damage response comprises a set of imperfect pathways that maintain cell survival following exposure to DNA damaging agents. Cancers frequently exhibit DNA repair pathway alterations that contribute to their intrinsic genome instability. This, in part, facilitates a therapeutic window for many chemotherapeutic agents whose mechanisms of action often converge at the generation of a double-strand DNA break. The development of therapy resistance occurs through countless molecular mechanisms that promote tolerance to DNA damage, often by preventing break formation or increasing repair capacity. This review broadly discusses the DNA damaging mechanisms of action for different classes of chemotherapeutics, how avoidance and repair of double-strand breaks can promote resistance, and strategic directions for counteracting therapy resistance.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Phoebe Parker
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - John J Krais
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Sharma S, Thomas E, Dahal S, Das S, Kothari S, Roy U, Kumari N, Gopalakrishnan V, Raghavan S. Formation of multiple G-quadruplexes contributes toward BCR fragility associated with chronic myelogenous leukemia. Nucleic Acids Res 2025; 53:gkaf167. [PMID: 40114373 PMCID: PMC11925732 DOI: 10.1093/nar/gkaf167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
The Philadelphia chromosome, the translocation between BCR and ABL genes, is seen in 95% of chronic myeloid leukemia (CML) patients. Although discovered >60 years ago, the molecular mechanism of BCR fragility is unclear. Here, we have identified several G4 DNA motifs at the BCR fragile region of CML patients. Various lines of experimentation revealed that the breakpoint regions could fold into multiple intramolecular G-quadruplex structures. The sodium bisulfite modification assay revealed single strandedness in the fragile region when present on a plasmid and human genome. Circular dichroism spectroscopy revealed the parallel G4 DNA formation, leading to polymerase arrest at the BCR breakpoints. Intracellular recombination assay revealed that DNA breakage at the BCR fragile region could join with the break generated by ISceI endonuclease. Finally, purified AID could bind and deaminate cytosines when present on single-stranded DNA generated due to G4 DNA, both in vitro and inside the cells. Therefore, our results suggest that AID binds to G4 DNA present at the BCR fragile region, resulting in the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, which can later get converted into a double-strand break, leading to t(9;22) chromosomal translocation.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Elizabeth Thomas
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayak Das
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shefali Kothari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Department of Zoology, St. Joseph's College, Irinjalakuda, Kerala 680121, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Agrawal R, Agarwal H, Mukherjee C, Chakraborty B, Sharma V, Tripathi V, Kumar N, Priya S, Gupta N, Jhingan G, Bajaj A, Sengupta S. Phosphorylated BLM peptide acts as an agonist for DNA damage response. Nucleic Acids Res 2025; 53:gkaf106. [PMID: 39997217 PMCID: PMC11851105 DOI: 10.1093/nar/gkaf106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Upon exposure to ionizing irradiation, the MRE11-RAD50-NBS1 complex potentiates the recruitment of ATM (ataxia-telangiectasia mutated) kinase to the double-strand breaks. We show that the lack of BLM causes a decrease in the autophosphorylation of ATM in mice mammary glands, which have lost one or both copies of BLM. In isogenic human cells, the DNA damage response (DDR) pathway was dampened in the absence of BLM, which negatively affected the recruitment of DDR factors onto the chromatin, thereby indicating a direct role of BLM in augmenting DDR. Mechanistically, this was due to the BLM-dependent dissociation of inactive ATM dimers into active monomers. Fragmentation analysis of BLM followed by kinase assays revealed a 20-mer BLM peptide (91-110 aa), sufficient to enhance ATM-dependent p53 phosphorylation. ATM-mediated phosphorylation of BLM at Thr99 within BLM (91-110) peptide enhanced ATM kinase activity due to its interaction with NBS1 and causing ATM monomerization. Delivery of phosphomimetic T99E counterpart of BLM (91-110 aa) peptide led to ATM activation followed by restoration of the DDR even in the absence of ionizing irradiation (both in cells and in BLM knockout mice), indicating its role as a DDR agonist, which can be potentially used to prevent the initiation of neoplastic transformation.
Collapse
Affiliation(s)
- Ritu Agrawal
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
- Biotechnology Research and Innovation Council—National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal 741251, India
| | - Himanshi Agarwal
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Chetana Mukherjee
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Baishali Chakraborty
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Vandana Sharma
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Vivek Tripathi
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Nitin Kumar
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Swati Priya
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | | | - Avinash Bajaj
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Sagar Sengupta
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
- Biotechnology Research and Innovation Council—National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal 741251, India
| |
Collapse
|
4
|
Kumari N, Kaur E, Raghavan SC, Sengupta S. Regulation of pathway choice in DNA repair after double-strand breaks. Curr Opin Pharmacol 2025; 80:102496. [PMID: 39724838 DOI: 10.1016/j.coph.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
DNA damage signaling is a highly coordinated cellular process which is required for the removal of DNA lesions. Amongst the different types of DNA damage, double-strand breaks (DSBs) are the most harmful type of lesion that attenuates cellular proliferation. DSBs are repaired by two major pathways-homologous recombination (HR), and non-homologous end-joining (NHEJ) and in some cases by microhomology-mediated end-joining (MMEJ). Preference of the pathway depends on multiple parameters including site of the DNA damage, the cell cycle phase and topology of the DNA lesion. Deregulated repair response contributes to genomic instability resulting in a plethora of diseases including cancer. This review discusses the different molecular players of HR, NHEJ, and MMEJ pathways that control the switch among the different DSB repair pathways. We also highlight the various functions of chromatin modifications in modulating repair response and how deregulated DNA damage repair response may promote oncogenic transformation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ekjot Kaur
- Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Sagar Sengupta
- Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India; Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India.
| |
Collapse
|
5
|
Roy U, Sharma A, Sharma S, Dahal S, Kumari N, Desai SS, Kumari S, Dixit J, Sharma M A, Nujoom N, Choudhary B, Raghavan SC. Mutations at BCL11B Exon 4 Associated with T Cell Acute Lymphoblastic Leukemia Are Facilitated by AID and Formation of Non-B DNA Conformations. Mol Cell Biol 2024; 44:590-606. [PMID: 39511874 PMCID: PMC11583620 DOI: 10.1080/10985549.2024.2419661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
One of the primary reasons behind the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL) is the deregulation of the transcription factor BCL11B. The exon 4 of BCL11B harbors several driver mutations, which abolishes its DNA-binding ability. The high frequency of C > T or G > A conversion in close vicinity of AID (Activation-induced cytidine deaminase)-hotspot motifs in the deregulated gene prompted us to investigate the role of AID in BCL11B mutagenesis. Our results reveal that AID is expressed in T-ALL patient-derived cells, binds to BCL11B fragile region (FR) in exon 4 of T cells in vivo, and generates a signature mutation pattern in this region. The mutation frequency in BCL11B FR could be modulated upon overexpression of the AID gene in the knockout background, further suggesting the involvement of AID in BCL11B mutagenesis. Importantly, various lines of experimentation reveal that BCL11B FR could fold into parallel G-quadruplex, triplex, and hairpin structures, which could act as a replication/transcription block, causing mutagenesis. Thus, our results suggest that AID binds to BCL11B exon 4 due to non-B DNA formation, causing U:G mismatches or replication blocks, which, when repaired erroneously, generates deleterious mutations, resulting in loss of functionality of BCL11B, and thus becomes the cause of T-ALL.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Jyotika Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Arun Sharma M
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Najma Nujoom
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | | |
Collapse
|
6
|
Ma X, Tian F, Xiao Y, Huang M, Song D, Chen X, Xu H. Synergistic effects of bloom helicase (BLM) inhibitor AO/854 with cisplatin in prostate cancer. Sci Rep 2024; 14:24962. [PMID: 39438537 PMCID: PMC11496540 DOI: 10.1038/s41598-024-75938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
To determine the synergistic effect and mechanism of AO/854, a new Bloom syndrome protein (BLM) helicase inhibitor, and cisplatin (CDDP), a DNA-crosslinking agent, cell viability assays, neutral comet assays, and Western blotting (WB) were performed on prostate cancer (PCa) cells. According to our findings, combining AO/854 and CDDP enhanced the antiproliferative capabilities of PC3 cell lines. As evidenced by the upregulation of γH2AX, cleaved caspase-3/caspase-3, and BAX/Bcl-2, AO/854 dramatically increased PC3 apoptosis and DNA damage induced by CDDP. Furthermore, combining AO/854 and CDDP synergistically inhibited PC3 cell migration and invasion. In addition, AO/854 inhibited CDDP-induced S-phase cell-cycle arrest in PC3 cells while enhancing G2/M-phase cell-cycle arrest. In vivo, the antitumor efficacy of the combination therapy group was greater than that of the groups treated with AO/854 or CDDP alone. Our findings indicate that synergistic chemotherapy with AO/854 and CDDP may be a novel anticancer strategy for PCa.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Yuanpin Xiao
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Mengqiu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dandan Song
- Department of Brewing Engineering, Moutai Institute, Renhuai, 564500, China
| | - Xinlin Chen
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Constantinou M, Charidemou E, Shanlitourk I, Strati K, Kirmizis A. Yeast Nat4 regulates DNA damage checkpoint signaling through its N-terminal acetyltransferase activity on histone H4. PLoS Genet 2024; 20:e1011433. [PMID: 39356727 PMCID: PMC11472955 DOI: 10.1371/journal.pgen.1011433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The DNA damage response (DDR) constitutes a vital cellular process that safeguards genome integrity. This biological process involves substantial alterations in chromatin structure, commonly orchestrated by epigenetic enzymes. Here, we show that the epigenetic modifier N-terminal acetyltransferase 4 (Nat4), known to acetylate the alpha-amino group of serine 1 on histones H4 and H2A, is implicated in the response to DNA damage in S. cerevisiae. Initially, we demonstrate that yeast cells lacking Nat4 have an increased sensitivity to DNA damage and accumulate more DNA breaks than wild-type cells. Accordingly, upon DNA damage, NAT4 gene expression is elevated, and the enzyme is specifically recruited at double-strand breaks. Delving deeper into its effects on the DNA damage signaling cascade, nat4-deleted cells exhibit lower levels of the damage-induced modification H2AS129ph (γH2A), accompanied by diminished binding of the checkpoint control protein Rad9 surrounding the double-strand break. Consistently, Mec1 kinase recruitment at double-strand breaks, critical for H2AS129ph deposition and Rad9 retention, is significantly impaired in nat4Δ cells. Consequently, Mec1-dependent phosphorylation of downstream effector kinase Rad53, indicative of DNA damage checkpoint activation, is reduced. Importantly, we found that the effects of Nat4 in regulating the checkpoint signaling cascade are mediated by its N-terminal acetyltransferase activity targeted specifically towards histone H4. Overall, this study points towards a novel functional link between histone N-terminal acetyltransferase Nat4 and the DDR, associating a new histone-modifying activity in the maintenance of genome integrity.
Collapse
Affiliation(s)
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Izge Shanlitourk
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Lee S, Lee S, Choi N, Kim J, Kweon J, Miller K, Kim J. PCAF promotes R-loop resolution via histone acetylation. Nucleic Acids Res 2024; 52:8643-8660. [PMID: 38936834 PMCID: PMC11347145 DOI: 10.1093/nar/gkae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
R-loops cause genome instability, disrupting normal cellular functions. Histone acetylation, particularly by p300/CBP-associated factor (PCAF), is essential for maintaining genome stability and regulating cellular processes. Understanding how R-loop formation and resolution are regulated is important because dysregulation of these processes can lead to multiple diseases, including cancer. This study explores the role of PCAF in maintaining genome stability, specifically for R-loop resolution. We found that PCAF depletion promotes the generation of R-loop structures, especially during ongoing transcription, thereby compromising genome stability. Mechanistically, we found that PCAF facilitates histone H4K8 acetylation, leading to recruitment of the a double-strand break repair protein (MRE11) and exonuclease 1 (EXO1) to R-loop sites. These in turn recruit Fanconi anemia (FA) proteins, including FANCM and BLM, to resolve the R-loop structure. Our findings suggest that PCAF, histone acetylation, and FA proteins collaborate to resolve R-loops and ensure genome stability. This study therefore provides novel mechanistic insights into the dynamics of R-loops as well as the role of PCAF in preserving genome stability. These results may help develop therapeutic strategies to target diseases associated with genome instability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Soo Hyeon Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nak Hun Choi
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ja Young Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Hee Kweon
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jae Jin Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
9
|
Kaur E, Agrawal R, Arun R, Madhavan V, Srivastava V, Kumar D, Rath PP, Kumar N, Vedagopuram S, Pandey N, Priya S, Legembre P, Gourinath S, Bajaj A, Sengupta S. Small molecules that disrupt RAD54-BLM interaction hamper tumor proliferation in colon cancer chemoresistance models. J Clin Invest 2024; 134:e161941. [PMID: 38421735 PMCID: PMC11014671 DOI: 10.1172/jci161941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
RAD54 and BLM helicase play pivotal roles during homologous recombination repair (HRR) to ensure genome maintenance. BLM amino acids (aa 181-212) interact with RAD54 and enhance its chromatin remodeling activity. Functionally, this interaction heightens HRR, leading to a decrease in residual DNA damage in colon cancer cells. This contributes to chemoresistance in colon cancer cells against cisplatin, camptothecin, and oxaliplatin, eventually promoting tumorigenesis in preclinical colon cancer mouse models. ChIP-Seq analysis and validation revealed increased BLM and RAD54 corecruitment on the MRP2 promoter in camptothecin-resistant colon cancer cells, leading to BLM-dependent enhancement of RAD54-mediated chromatin remodeling. We screened the Prestwick small-molecule library, with the intent to revert camptothecin- and oxaliplatin-induced chemoresistance by disrupting the RAD54-BLM interaction. Three FDA/European Medicines Agency-approved candidates were identified that could disrupt this interaction. These drugs bound to RAD54, altered its conformation, and abrogated RAD54-BLM-dependent chromatin remodeling on G5E4 and MRP2 arrays. Notably, the small molecules also reduced HRR efficiency in resistant lines, diminished anchorage-independent growth, and hampered the proliferation of tumors generated using camptothecin- and oxaliplatin-resistant colon cancer cells in both xenograft and syngeneic mouse models in BLM-dependent manner. Therefore, the 3 identified small molecules can serve as possible viable candidates for adjunct therapy in colon cancer treatment.
Collapse
Affiliation(s)
- Ekjot Kaur
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
| | - Ritu Agrawal
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
| | - Rimpy Arun
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
| | - Vinoth Madhavan
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
| | - Vivek Srivastava
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
| | - Dilip Kumar
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Nitin Kumar
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
| | - Sreekanth Vedagopuram
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nishant Pandey
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Swati Priya
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
| | - Patrick Legembre
- UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, Limoges, France
| | | | - Avinash Bajaj
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sagar Sengupta
- Biotechnology Research Innovation Council—National Institute of Immunology (BRIC-NII), New Delhi, India
- Biotechnology Research Innovation Council—National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
| |
Collapse
|
10
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
11
|
Kumari N, Antil H, Kumari S, Raghavan SC. Deficiency of ligase IV leads to reduced NHEJ, accumulation of DNA damage, and can sensitize cells to cancer therapeutics. Genomics 2023; 115:110731. [PMID: 37871849 DOI: 10.1016/j.ygeno.2023.110731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Himanshu Antil
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
12
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
13
|
Petroni M, La Monica V, Fabretti F, Augusto M, Battaglini D, Polonara F, Di Giulio S, Giannini G. The Multiple Faces of the MRN Complex: Roles in Medulloblastoma and Beyond. Cancers (Basel) 2023; 15:3599. [PMID: 37509263 PMCID: PMC10377613 DOI: 10.3390/cancers15143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hypomorphic mutations in MRN complex genes are frequently found in cancer, supporting their role as oncosuppressors. However, unlike canonical oncosuppressors, MRN proteins are often overexpressed in tumor tissues, where they actively work to counteract DSBs induced by both oncogene-dependent RS and radio-chemotherapy. Moreover, at the same time, MRN genes are also essential genes, since the constitutive KO of each component leads to embryonic lethality. Therefore, even though it is paradoxical, MRN genes may work as oncosuppressive, oncopromoting, and essential genes. In this review, we discussed how alterations in the MRN complex impact the physiopathology of cancer, in light of our recent discoveries on the gene-dosage-dependent effect of NBS1 in Medulloblastoma. These updates aim to understand whether MRN complex can be realistically used as a prognostic/predictive marker and/or as a therapeutic target for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Marialaura Petroni
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Veronica La Monica
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Fabretti
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Mariaconcetta Augusto
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Damiana Battaglini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Francesca Polonara
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| |
Collapse
|
14
|
Ray U, Gopinatha VK, Sharma S, Goyary L, Choudhary B, Mantelingu K, Rangappa KS, Raghavan SC. Identification and characterization of mercaptopyrimidine-based small molecules as inhibitors of nonhomologous DNA end joining. FEBS J 2023; 290:796-820. [PMID: 36048168 DOI: 10.1111/febs.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023]
Abstract
Mercaptopyrimidine derivatives are heterocyclic compounds with potent biological activities including antiproliferative, antibacterial, and anti-inflammatory properties. The present study describes the synthesis and characterization of several mercaptopyrimidine derivatives through condensation of 5,6-diamino-2-mercaptopyrimidin-4-ol with various heterocyclic and aromatic aldehydes. Previous studies have shown that SCR7, synthesized from 5,6-diamino-2-mercaptopyrimidin-4-ol, induced cytotoxicity by targeting cancer cells by primarily inhibiting DNA Ligase IV involved in nonhomologous end joining, one of the major DNA double-strand break repair pathways. Inhibition of DNA repair pathways is considered as an important strategy for cancer therapy. Due to limitations of SCR7 in terms of IC50 in cancer cells, here we have designed, synthesized, and characterized potent derivatives of SCR7 using 5,6-diamino-2-mercaptopyrimidin-4-ol as the starting material. Several synthesized imine compounds exhibited significant improvement in inhibition of end joining and cytotoxicity up to 27-fold lower concentrations than SCR7. Among these, two compounds, SCR116 and SCR132, showed increased cancer cell death in a Ligase IV-dependent manner. Treatment with the compounds also led to reduction in V(D)J recombination efficiency, cell cycle arrest at G2/M phase, accumulation of double-strand breaks inside cells, and improved anti-cancer potential when combined with γ-radiation and radiomimetic drugs. Thus, we describe novel inhibitors of NHEJ with higher efficacy and potential, which can be developed as cancer therapeutics.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vindya K Gopinatha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Department of Studies in Chemistry, University of Mysore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | - Laijau Goyary
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
| | | | - Kanchugarakoppal S Rangappa
- Department of Studies in Chemistry, University of Mysore, India.,Institution of Excellence, Vijnana Bhavana, University of Mysore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
15
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
16
|
Soniat MM, Nguyen G, Kuo HC, Finkelstein IJ. The MRN complex and topoisomerase IIIa-RMI1/2 synchronize DNA resection motor proteins. J Biol Chem 2023; 299:102802. [PMID: 36529288 PMCID: PMC9971906 DOI: 10.1016/j.jbc.2022.102802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
DNA resection-the nucleolytic processing of broken DNA ends-is the first step of homologous recombination. Resection is catalyzed by the resectosome, a multienzyme complex that includes bloom syndrome helicase (BLM), DNA2 or exonuclease 1 nucleases, and additional DNA-binding proteins. Although the molecular players have been known for over a decade, how the individual proteins work together to regulate DNA resection remains unknown. Using single-molecule imaging, we characterized the roles of the MRE11-RAD50-NBS1 complex (MRN) and topoisomerase IIIa (TOP3A)-RMI1/2 during long-range DNA resection. BLM partners with TOP3A-RMI1/2 to form the BTRR (BLM-TOP3A-RMI1/2) complex (or BLM dissolvasome). We determined that TOP3A-RMI1/2 aids BLM in initiating DNA unwinding, and along with MRN, stimulates DNA2-mediated resection. Furthermore, we found that MRN promotes the association between BTRR and DNA and synchronizes BLM and DNA2 translocation to prevent BLM from pausing during resection. Together, this work provides direct observation of how MRN and DNA2 harness the BTRR complex to resect DNA efficiently and how TOP3A-RMI1/2 regulates the helicase activity of BLM to promote efficient DNA repair.
Collapse
Affiliation(s)
- Michael M Soniat
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.
| | - Giaochau Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
17
|
Tu JL, Wu BH, Wu HB, Wang JE, Zhang ZL, Gao KY, Zhang LX, Chen QR, Zhou YC, Tan JH, Huang ZS, Chen SB. Design, synthesis and evaluation of N3-substituted quinazolinone derivatives as potential Bloom's Syndrome protein (BLM) helicase inhibitor for sensitization treatment of colorectal cancer. Eur J Med Chem 2023; 246:114944. [PMID: 36459756 DOI: 10.1016/j.ejmech.2022.114944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
The homologous recombination repair (HRR) pathway is critical for repairing double-strand breaks (DSB). Inhibition of the HRR pathway is usually considered a promising strategy for anticancer therapy. The Bloom's Syndrome Protein (BLM), a DNA helicase, is essential for promoting the HRR pathway. Previously, we discovered quinazolinone derivative 9h as a potential BLM inhibitor, which suppressed the proliferation of colorectal cancer (CRC) cell HCT116. Herein, a new series of quinazolinone derivatives with N3-substitution was designed and synthesized to improve the anticancer activity and explore the structure-activity relationship (SAR). After evaluating their BLM inhibitory activity, the SAR was discussed, leading to identifying compound 21 as a promising BLM inhibitor. 21 exhibited the potent BLM-dependent cytotoxicity against the CRC cells but weak against normal cells. Further evaluation revealed that 21 could disrupt the HRR level while inhibiting BLM located on the DSB site and trigger DNA damage in the CRC cells. This compound effectively suppressed the proliferation and invasion of CRC cells, along with cell cycle arrest and apoptosis. Consequently, 21 might be a promising candidate for treating CRC, and the BLM might be a new potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jia-Li Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Heng-Bo Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kun-Yu Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu-Xuan Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qin-Rui Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying-Chen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
19
|
Discovery of a Novel Bloom's Syndrome Protein (BLM) Inhibitor Suppressing Growth and Metastasis of Prostate Cancer. Int J Mol Sci 2022; 23:ijms232314798. [PMID: 36499126 PMCID: PMC9736344 DOI: 10.3390/ijms232314798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Prostate cancer (PCa) is a common cancer and a major cause of cancer-related death worldwide in men, necessitating novel targets for cancer therapy. High expression of Bloom's syndrome protein (BLM) helicase is associated with the occurrence and development of PCa. Therefore, the identification and development of new BLM inhibitors may be a new direction for the treatment of PCa. Here, we identified a novel inhibitor by molecular docking and put it to systematic evaluation via various experiments, AO/854, which acted as a competitive inhibitor that blocked the BLM-DNA interaction. Cellular evaluation indicated that AO/854-suppressed tumor growth and metastasis in PC3 cells by enhancing DNA damage, phosphorylating Chk1/Chk2, and altering the p53 signaling pathway. Collectively, the study highlights the potential of BLM as a therapeutic target in PCa and reveals a distinct mechanism by which AO/854 competitively inhibits the function of BLM.
Collapse
|
20
|
Paranjape AM, Desai SS, Nishana M, Roy U, Nilavar NM, Mondal A, Kumari R, Radha G, Katapadi VK, Choudhary B, Raghavan SC. Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers. PLoS Genet 2022; 18:e1010421. [PMID: 36228010 PMCID: PMC9595545 DOI: 10.1371/journal.pgen.1010421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.
Collapse
Affiliation(s)
- Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar S. Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayilaadumveettil Nishana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- * E-mail: (BC); (SCR)
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (BC); (SCR)
| |
Collapse
|
21
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
22
|
MRNIP condensates promote DNA double-strand break sensing and end resection. Nat Commun 2022; 13:2638. [PMID: 35551189 PMCID: PMC9098523 DOI: 10.1038/s41467-022-30303-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
The rapid recognition of DNA double-strand breaks (DSBs) by the MRE11/RAD50/NBS1 (MRN) complex is critical for the initiation of DNA damage response and DSB end resection. Here, we show that MRN complex interacting protein (MRNIP) forms liquid-like condensates to promote homologous recombination-mediated DSB repair. The intrinsically disordered region is essential for MRNIP condensate formation. Mechanically, the MRN complex is compartmentalized and concentrated into MRNIP condensates in the nucleus. After DSB formation, MRNIP condensates move to the damaged DNA rapidly to accelerate the binding of DSB by the concentrated MRN complex, therefore inducing the autophosphorylation of ATM and subsequent activation of DNA damage response signaling. Meanwhile, MRNIP condensates-enhanced MRN complex loading further promotes DSB end resection. In addition, data from xenograft models and clinical samples confirm a correlation between MRNIP and radioresistance. Together, these results reveal an important role of MRNIP phase separation in DSB response and the MRN complex-mediated DSB end resection. The MRN complex is a critical sensor and processor of DNA double-strand breaks (DSBs). Here, the authors show that MRNIP forms liquid-like condensates to accelerate the MRN-mediated sensing and end resection of DSB, thereby promoting DSB repair.
Collapse
|
23
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
24
|
Yan Q, Zhang B, Ling X, Zhu B, Mei S, Yang H, Zhang D, Huo J, Zhao Z. CTLA-4 Facilitates DNA Damage–Induced Apoptosis by Interacting With PP2A. Front Cell Dev Biol 2022; 10:728771. [PMID: 35281086 PMCID: PMC8907142 DOI: 10.3389/fcell.2022.728771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) plays a pivotal role in regulating immune responses. It accumulates in intracellular compartments, translocates to the cell surface, and is rapidly internalized. However, the cytoplasmic function of CTLA-4 remains largely unknown. Here, we describe the role of CTLA-4 as an immunomodulator in the DNA damage response to genotoxic stress. Using isogenic models of murine T cells with either sufficient or deficient CTLA-4 expression and performing a variety of assays, including cell apoptosis, cell cycle, comet, western blotting, co-immunoprecipitation, and immunofluorescence staining analyses, we show that CTLA-4 activates ataxia–telangiectasia mutated (ATM) by binding to the ATM inhibitor protein phosphatase 2A into the cytoplasm of T cells following transient treatment with zeocin, exacerbating the DNA damage response and inducing apoptosis. These findings provide new insights into how T cells maintain their immune function under high-stress conditions, which is clinically important for patients with tumors undergoing immunotherapy combined with chemoradiotherapy.
Collapse
Affiliation(s)
- Qiongyu Yan
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xi Ling
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiping Huo
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Zhao,
| |
Collapse
|
25
|
Harami GM, Pálinkás J, Seol Y, Kovács ZJ, Gyimesi M, Harami-Papp H, Neuman KC, Kovács M. The toposiomerase IIIalpha-RMI1-RMI2 complex orients human Bloom's syndrome helicase for efficient disruption of D-loops. Nat Commun 2022; 13:654. [PMID: 35115525 PMCID: PMC8813930 DOI: 10.1038/s41467-022-28208-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/12/2022] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination (HR) is a ubiquitous and efficient process that serves the repair of severe forms of DNA damage and the generation of genetic diversity during meiosis. HR can proceed via multiple pathways with different outcomes that may aid or impair genome stability and faithful inheritance, underscoring the importance of HR quality control. Human Bloom's syndrome (BLM, RecQ family) helicase plays central roles in HR pathway selection and quality control via unexplored molecular mechanisms. Here we show that BLM's multi-domain structural architecture supports a balance between stabilization and disruption of displacement loops (D-loops), early HR intermediates that are key targets for HR regulation. We find that this balance is markedly shifted toward efficient D-loop disruption by the presence of BLM's interaction partners Topoisomerase IIIα-RMI1-RMI2, which have been shown to be involved in multiple steps of HR-based DNA repair. Our results point to a mechanism whereby BLM can differentially process D-loops and support HR control depending on cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - János Pálinkás
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Zoltán J Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Máté Gyimesi
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Hajnalka Harami-Papp
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.
| |
Collapse
|
26
|
Hu C, Bugbee T, Dacus D, Palinski R, Wallace N. Beta human papillomavirus 8 E6 allows colocalization of non-homologous end joining and homologous recombination repair factors. PLoS Pathog 2022; 18:e1010275. [PMID: 35148356 PMCID: PMC8836322 DOI: 10.1371/journal.ppat.1010275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Beta human papillomavirus (β-HPV) are hypothesized to make DNA damage more mutagenic and potentially more carcinogenic. Double strand breaks (DSBs) are the most deleterious DNA lesion. They are typically repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). HR occurs after DNA replication while NHEJ can occur at any point in the cell cycle. HR and NHEJ are not thought to occur in the same cell at the same time. HR is restricted to cells in phases of the cell cycle where homologous templates are available, while NHEJ occurs primarily during G1. β-HPV type 8 protein E6 (8E6) attenuates both repair pathways. We use a series of immunofluorescence microscopy and flow cytometry experiments to better define the impact of this attenuation. We found that 8E6 causes colocalization of HR factors (RPA70 and RAD51) with an NHEJ factor (activated DNA-PKcs or pDNA-PKcs) at persistent DSBs. 8E6 also causes RAD51 foci to form during G1. The initiation of NHEJ and HR at the same lesion could lead to antagonistic DNA end processing. Further, HR cannot be readily completed in an error-free manner during G1. Both aberrant repair events would cause deletions. To determine if these mutations were occurring, we used next generation sequencing of the 200kb surrounding a CAS9-induced DSB. 8E6 caused a 21-fold increase in deletions. Chemical and genetic inhibition of p300 as well as an 8E6 mutant that is incapable of destabilizing p300 demonstrates that 8E6 is acting via p300 destabilization. More specific chemical inhibitors of DNA repair provided mechanistic insight by mimicking 8E6-induced dysregulation of DNA repair in a virus-free system. Specifically, inhibition of NHEJ causes RAD51 foci to form in G1 and colocalization of RAD51 with pDNA-PKcs. Our previous work shows that a master transcription regulator, p300, facilitates two major DNA double strand break (DSB) repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). By degrading p300, beta genus human papillomavirus 8 protein E6 (8E6) hinders pDNA-PKcs resolution, an essential step during NHEJ. NHEJ and HR are known to compete, with only one pathway initiating repair of a DSB. NHEJ tends to be used in G1 and HR occurs in S/G2. Here, we show that 8E6 allows NHEJ and HR to initiate at the same break site. We show that 8E6 allows HR to initiate in G1, suggesting that NHEJ starts but fails before HR is initiated at the same DSB. Next generation sequencing of the region surrounding a CAS9-induced DSB supports our hypothesis that this dysregulation of DSB repair is mutagenic as 8E6 caused a 15- to 20-fold increase in mutations associated with a CAS9-induced DSB. These studies support the putative role of HPV8 infections in non-melanoma skin cancer development.
Collapse
Affiliation(s)
- Changkun Hu
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Taylor Bugbee
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dalton Dacus
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Rachel Palinski
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, United States of America
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, Luo L, Wu J, Wang S, Lin L, Wang X, Wang L, Aghamohammadi A, Li T, Zhang X, Hammarström L, Liu X. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol 2022; 42:375-393. [PMID: 34825286 PMCID: PMC8821531 DOI: 10.1007/s10875-021-01178-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.
Collapse
Affiliation(s)
- Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Hassan Abolhassani
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | | | | | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Liya Lin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tao Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, 518083, China.
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Aguilar-Morante D, Gómez-Cabello D, Quek H, Liu T, Hamerlik P, Lim YC. Therapeutic Opportunities of Disrupting Genome Integrity in Adult Diffuse Glioma. Biomedicines 2022; 10:biomedicines10020332. [PMID: 35203541 PMCID: PMC8869545 DOI: 10.3390/biomedicines10020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Adult diffuse glioma, particularly glioblastoma (GBM), is a devastating tumor of the central nervous system. The existential threat of this disease requires on-going treatment to counteract tumor progression. The present outcome is discouraging as most patients will succumb to this disease. The low cure rate is consistent with the failure of first-line therapy, radiation and temozolomide (TMZ). Even with their therapeutic mechanism of action to incur lethal DNA lesions, tumor growth remains undeterred. Delivering additional treatments only delays the inescapable development of therapeutic tolerance and disease recurrence. The urgency of establishing lifelong tumor control needs to be re-examined with a greater focus on eliminating resistance. Early genomic and transcriptome studies suggest each tumor subtype possesses a unique molecular network to safeguard genome integrity. Subsequent seminal work on post-therapy tumor progression sheds light on the involvement of DNA repair as the causative contributor for hypermutation and therapeutic failure. In this review, we will provide an overview of known molecular factors that influence the engagement of different DNA repair pathways, including targetable vulnerabilities, which can be exploited for clinical benefit with the use of specific inhibitors.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Daniel Gómez-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Tianqing Liu
- NICM Health Research Institute, Westmead, NSW 2145, Australia;
| | | | - Yi Chieh Lim
- Danish Cancer Society, 2100 København, Denmark;
- Correspondence: ; Tel.: +45-35-257-413
| |
Collapse
|
29
|
Rall-Scharpf M, Friedl TWP, Biechonski S, Denkinger M, Milyavsky M, Wiesmüller L. Sex-specific differences in DNA double-strand break repair of cycling human lymphocytes during aging. Aging (Albany NY) 2021; 13:21066-21089. [PMID: 34506302 PMCID: PMC8457596 DOI: 10.18632/aging.203519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.
Collapse
Affiliation(s)
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Michael Denkinger
- Institute for Geriatric Research Unit, Agaplesion Bethesda Hospital, Ulm University, Ulm, Germany
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
Priya S, Kaur E, Kulshrestha S, Pandit A, Gross I, Kumar N, Agarwal H, Khan A, Shyam R, Bhagat P, Prabhu JS, Nagarajan P, Deo SVS, Bajaj A, Freund JN, Mukhopadhyay A, Sengupta S. CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. J Cell Sci 2021; 134:jcs258601. [PMID: 34369561 DOI: 10.1242/jcs.258601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Meta-analysis of transcripts in colon adenocarcinoma patient tissues led to the identification of a DNA damage responsive miR signature called DNA damage sensitive miRs (DDSMs). DDSMs were experimentally validated in the cancerous colon tissues obtained from an independent cohort of colon cancer patients and in multiple cellular systems with high levels of endogenous DNA damage. All the tested DDSMs were transcriptionally upregulated by a common intestine-specific transcription factor, CDX2. Reciprocally, DDSMs were repressed via the recruitment of HDAC1/2-containing complexes onto the CDX2 promoter. These miRs downregulated multiple key targets in the DNA damage response (DDR) pathway, namely BRCA1, ATM, Chk1 (also known as CHEK1) and RNF8. CDX2 directly regulated the DDSMs, which led to increased tumor volume and metastasis in multiple preclinical models. In colon cancer patient tissues, the DDSMs negatively correlated with BRCA1 levels, were associated with decreased probability of survival and thereby could be used as a prognostic biomarker. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Swati Priya
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ekjot Kaur
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swati Kulshrestha
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Awadhesh Pandit
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Nitin Kumar
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Himanshi Agarwal
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aamir Khan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Radhey Shyam
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Bhagat
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bengaluru, Karnataka 560034, India
| | - Perumal Nagarajan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Arnab Mukhopadhyay
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sagar Sengupta
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
31
|
Ray U, Raghavan SC. Understanding the DNA double-strand break repair and its therapeutic implications. DNA Repair (Amst) 2021; 106:103177. [PMID: 34325086 DOI: 10.1016/j.dnarep.2021.103177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) and its regulation are tightly integrated inside cells. Homologous recombination, nonhomologous end joining and microhomology mediated end joining are three major DSB repair pathways in mammalian cells. Targeting proteins associated with these repair pathways using small molecule inhibitors can prove effective in tumors, especially those with deregulated repair. Sensitization of cancer to current age therapy including radio and chemotherapy, using small molecule inhibitors is promising and warrant further development. Although several are under clinical trial, till date no repair inhibitor is approved for commercial use in cancer patients, with the exception of PARP inhibitors targeting single-strand break repair. Based on molecular profiling of repair proteins, better prognostic and therapeutic output can be achieved in patients. In the present review, we highlight the different mechanisms of DSB repair, chromatin dynamics to provide repair accessibility and modulation of inhibitors in association with molecular profiling and current gold standard treatment modalities for cancer.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
32
|
Segura-Bayona S, Villamor-Payà M, Attolini CSO, Koenig LM, Sanchiz-Calvo M, Boulton SJ, Stracker TH. Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres. Cell Rep 2021; 32:107983. [PMID: 32755577 PMCID: PMC7408502 DOI: 10.1016/j.celrep.2020.107983] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The Tousled-like kinases 1 and 2 (TLK1/2) control histone deposition through the ASF1 histone chaperone and influence cell cycle progression and genome maintenance, yet the mechanisms underlying TLK-mediated genome stability remain uncertain. Here, we show that TLK loss results in severe chromatin decompaction and altered genome accessibility, particularly affecting heterochromatic regions. Failure to maintain heterochromatin increases spurious transcription of repetitive elements and induces features of alternative lengthening of telomeres (ALT). TLK depletion culminates in a cGAS-STING-TBK1-mediated innate immune response that is independent of replication-stress signaling and attenuated by the depletion of factors required to produce extra-telomeric DNA. Analysis of human cancers reveals that chromosomal instability correlates with high TLK2 and low STING levels in many cohorts. Based on these findings, we propose that high TLK levels contribute to immune evasion in chromosomally unstable and ALT+ cancers. TLK-deficient cells have increased accessibility at heterochromatin regions TLK1/2 suppress spurious transcription and telomere hyper-recombination Extra-telomeric DNA generated upon TLK loss promotes innate immune signaling cGAS-STING-TBK1 signaling in TLK-deficient cells is independent of replication stress
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Maria Sanchiz-Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| |
Collapse
|
33
|
Kara A, Özgür A, Nalbantoğlu S, Karadağ A. DNA repair pathways and their roles in drug resistance for lung adenocarcinoma. Mol Biol Rep 2021; 48:3813-3825. [PMID: 33856604 DOI: 10.1007/s11033-021-06314-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Lung cancer is the leading cancer type of death rate. The lung adenocarcinoma subtype is responsible for almost half of the total lung cancer deaths. Despite the improvements in cancer treatment in recent years, lung adenocarcinoma patients' overall survival rate remains poor. Immunetherapy and chemotherapy are two of the most widely used options for the treatment of cancer. Although many cancer types initially respond to these treatments, the development of resistance is inevitable. The rapid development of drug resistance mainly characterizes lung adenocarcinoma. Despite being the subject of many studies in recent years, the resistance initiation and progression mechanism is still unclear. In this review, we have examined the role of the primary DNA repair pathways (non-homologous end joining (NHEJ) pathway, homologous-recombinant repair (HR) pathway, base excision repair (BER) pathway, and nucleotide excision repair (NER) pathway and transactivation mechanisms of tumor protein 53 (TP53) in drug resistance development. This review suggests that mentioned pathways have essential roles in developing the resistance against chemotherapy and immunotherapy in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Altan Kara
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey.
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Sinem Nalbantoğlu
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Abdullah Karadağ
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey
| |
Collapse
|
34
|
Kaur E, Agrawal R, Sengupta S. Functions of BLM Helicase in Cells: Is It Acting Like a Double-Edged Sword? Front Genet 2021; 12:634789. [PMID: 33777104 PMCID: PMC7994599 DOI: 10.3389/fgene.2021.634789] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
DNA damage repair response is an important biological process involved in maintaining the fidelity of the genome in eukaryotes and prokaryotes. Several proteins that play a key role in this process have been identified. Alterations in these key proteins have been linked to different diseases including cancer. BLM is a 3′−5′ ATP-dependent RecQ DNA helicase that is one of the most essential genome stabilizers involved in the regulation of DNA replication, recombination, and both homologous and non-homologous pathways of double-strand break repair. BLM structure and functions are known to be conserved across many species like yeast, Drosophila, mouse, and human. Genetic mutations in the BLM gene cause a rare, autosomal recessive disorder, Bloom syndrome (BS). BS is a monogenic disease characterized by genomic instability, premature aging, predisposition to cancer, immunodeficiency, and pulmonary diseases. Hence, these characteristics point toward BLM being a tumor suppressor. However, in addition to mutations, BLM gene undergoes various types of alterations including increase in the copy number, transcript, and protein levels in multiple types of cancers. These results, along with the fact that the lack of wild-type BLM in these cancers has been associated with increased sensitivity to chemotherapeutic drugs, indicate that BLM also has a pro-oncogenic function. While a plethora of studies have reported the effect of BLM gene mutations in various model organisms, there is a dearth in the studies undertaken to investigate the effect of its oncogenic alterations. We propose to rationalize and integrate the dual functions of BLM both as a tumor suppressor and maybe as a proto-oncogene, and enlist the plausible mechanisms of its deregulation in cancers.
Collapse
Affiliation(s)
- Ekjot Kaur
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Ritu Agrawal
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| | - Sagar Sengupta
- Signal Transduction Laboratory-2, National Institute of Immunology, New Delhi, India
| |
Collapse
|
35
|
Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic Res 2021; 55:581-594. [PMID: 33455476 DOI: 10.1080/10715762.2021.1876853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular responses to DNA damage are fundamental to preserve genomic integrity during various endogenous and exogenous stresses. Following radiation therapy and chemotherapy, this DNA damage response (DDR) also determines development of carcinogenesis and therapeutic outcome. In humans, DNA damage activates a robust network of signal transduction cascades, driven primarily through phosphorylation events. These responses primarily involve two key non-redundant signal transducing proteins of phosphatidylinositol 3-kinase-like (PIKK) family - ATR and ATM, and their downstream kinases (hChk1 and hChk2). They further phosphorylate effectors proteins such as p53, Cdc25A and Cdc25C which function either to activate the DNA damage checkpoints and cell death mechanisms, or DNA repair pathways. Identification of molecular pathways that determine signaling after DNA damage and trigger DNA repair in response to differing types of DNA lesions allows for a far better understanding of the consequences of radiation and chemotherapy on normal and tumor cells. Here we highlight the network of DNA damage response pathways that are activated after treatment with different types of radiation. Further, we discuss regulation of cell cycle checkpoint and DNA repair processes in the context of DDR in response to radiation.
Collapse
|
36
|
Manjunath M, Choudhary B, Raghavan SC. SCR7, a potent cancer therapeutic agent and a biochemical inhibitor of nonhomologous DNA end-joining. Cancer Rep (Hoboken) 2021; 4:e1341. [PMID: 33496064 PMCID: PMC8222562 DOI: 10.1002/cnr2.1341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background DNA double‐strand breaks (DSBs) are harmful to the cell as it could lead to genomic instability and cell death when left unrepaired. Homologous recombination and nonhomologous end‐joining (NHEJ) are two major DSB repair pathways, responsible for ensuring genome integrity in mammals. There have been multiple efforts using small molecule inhibitors to target these DNA repair pathways in cancers. SCR7 is a very well‐studied anticancer molecule that blocks NHEJ by targeting one of the critical enzymes, Ligase IV. Recent findings In this review, we have highlighted the anticancer effects of SCR7 as a single agent and in combination with other chemotherapeutic agents and radiation. SCR7 blocked NHEJ effectively both in vitro and ex vivo. SCR7 has been used for biochemical studies like chromosomal territory resetting and in understanding the role of repair proteins in cell cycle phases. Various forms of SCR7 and its derivatives are discussed. SCR7 is also used as a potent biochemical inhibitor of NHEJ, which has found its application in improving genome editing using a CRISPR‐Cas system. Conclusion SCR7 is a potent NHEJ inhibitor with unique properties and wide applications as an anticancer agent. Most importantly, SCR7 has become a handy aid for improving genome editing across different model systems.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
37
|
Qiu S, Huang J. MRN complex is an essential effector of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:31-37. [PMID: 33448185 PMCID: PMC7818010 DOI: 10.1631/jzus.b2000289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Genome stability can be threatened by both endogenous and exogenous agents. Organisms have evolved numerous mechanisms to repair DNA damage, including homologous recombination (HR) and non-homologous end joining (NHEJ). Among the factors associated with DNA repair, the MRE11-RAD50-NBS1 (MRN) complex (MRE11-RAD50-XRS2 in Saccharomyces cerevisiae) plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair. Upon detecting DNA damage, the MRN complex activates signaling molecules, such as the protein kinase ataxia-telangiectasia mutated (ATM), to trigger a broad DNA damage response, including cell cycle arrest. The nuclease activity of the MRN complex is responsible for DNA end resection, which guides DNA repair to HR in the presence of sister chromatids. The MRN complex is also involved in NHEJ, and has a species-specific role in hairpin repair. This review focuses on the structure of the MRN complex and its function in DNA damage repair.
Collapse
Affiliation(s)
- Shan Qiu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Karamat U, Ejaz S. Overexpression of RAD50 is the Marker of Poor Prognosis and Drug Resistance in Breast Cancer Patients. Curr Cancer Drug Targets 2021; 21:163-176. [PMID: 33038913 DOI: 10.2174/1568009620666201009125507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of breast cancer is increasing at an alarming rate and thus demands exploration of the most relevant diagnostic biomarkers. RAD50 is a cancer susceptibility gene that encodes a DNA damage repairing protein. Its role in breast cancer as clinico-pathological specific biomarker has yet to be explored. OBJECTIVE This study was aimed to investigate the RAD50 expression and its promoter's methylation level variations in breast invasive carcinoma patients having different clinico-pathological features. This study further explored the mutational spectrum of RAD50 and the correlation of its expression with the survival of patients and the effectiveness of drugs used for treatment. METHODS Enrichment analysis of RAD50 was accomplished using the platform of GeneCards. The information regarding RAD50 expression, its promoter methylation and impact on survival of patient was retrieved from TCGA and CPTAC databases. However, the effect of RAD50 expression on tumor's response to various drugs was deduced through the analysis of CCLE and genomic of GDSC dataset. RESULTS The promoter hyper-methylation and elevated expression of RAD50 was documented in various subgroups of breast invasive carcinoma. The subjects having low/medium expression levels were observed to survive longer than patients exhibiting high expression of RAD50 except for post-menopausal subjects. The frequency of missense mutations was higher in RAD50 than truncating mutations. Most of the drugs were found to have a positive correlation with RAD50 expression. CONCLUSION The status of RAD50 promoter's methylation inversely correlates with the expression level of RAD50. While RAD50 is overexpressed in breast cancer patients and thus makes tumor resistant against many anti-cancer drugs.
Collapse
Affiliation(s)
- Uzma Karamat
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahwalpur, Bahwalpur, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahawalpur, Bahwalpur, Pakistan
| |
Collapse
|
39
|
Inhibitors of DNA double-strand break repair at the crossroads of cancer therapy and genome editing. Biochem Pharmacol 2020; 182:114195. [DOI: 10.1016/j.bcp.2020.114195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
|
40
|
Elucidation of DNA Repair Function of PfBlm and Potentiation of Artemisinin Action by a Small-Molecule Inhibitor of RecQ Helicase. mSphere 2020; 5:5/6/e00956-20. [PMID: 33239368 PMCID: PMC7690958 DOI: 10.1128/msphere.00956-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Malaria continues to be a serious threat to humankind not only because of the morbidity and mortality associated with the disease but also due to the huge economic burden that it imparts. Resistance to all available drugs and the unavailability of an effective vaccine cry for an urgent discovery of newer drug targets. Artemisinin (ART)-based combination therapies are recommended as first- and second-line treatments for Plasmodium falciparum malaria. Here, we investigated the impact of the RecQ inhibitor ML216 on the repair of ART-mediated damage in the genome of P. falciparum. PfBLM and PfWRN were identified as members of the RecQ helicase family in P. falciparum. However, the role of these RecQ helicases in DNA double-strand break (DSB) repair in this parasite has not been explored. Here, we provide several lines of evidence to establish the involvement of PfBlm in DSB repair in P. falciparum. First, we demonstrate that PfBlm interacts with two well-characterized DSB repair proteins of this parasite, namely, PfRad51 and PfalMre11. Second, we found that PfBLM expression was upregulated in response to DNA-damaging agents. Third, through yeast complementation studies, we demonstrated that PfBLM could complement the DNA damage sensitivity of a Δsgs1 mutant of Saccharomyces cerevisiae, in contrast to the helicase-dead mutant PfblmK83R. Finally, we observe that the overexpression of PfBLM induces resistance to DNA-damaging agents and offers a survival advantage to the parasites. Most importantly, we found that the RecQ inhibitor ML216 inhibits the repair of DSBs and thereby renders parasites more sensitive to ART. Such synergism between ART and ML216 actions was observed for both drug-sensitive and multidrug-resistant strains of P. falciparum. Taken together, these findings establish the implications of PfBlm in the Plasmodium DSB repair pathway and provide insights into the antiparasitic activity of the ART-ML216 combination. IMPORTANCE Malaria continues to be a serious threat to humankind not only because of the morbidity and mortality associated with the disease but also due to the huge economic burden that it imparts. Resistance to all available drugs and the unavailability of an effective vaccine cry for an urgent discovery of newer drug targets. Here, we uncovered a role of the PfBlm helicase in Plasmodium DNA double-strand break repair and established that the parasitic DNA repair mechanism can be targeted to curb malaria. The small-molecule inhibitor of PfBlm tested in this study acts synergistically with two first-line malaria drugs, artemisinin (ART) and chloroquine, in both drug-sensitive and multidrug-resistant strains of P. falciparum, thus qualifying this chemical as a potential partner in ART-based combination therapy. Additionally, the identification of this new specific inhibitor of the Plasmodium homologous recombination (HR) mechanism will now allow us to investigate the role of HR in Plasmodium biology.
Collapse
|
41
|
Mutations in conserved functional domains of human RecQ helicases are associated with diseases and cancer: A review. Biophys Chem 2020; 265:106433. [DOI: 10.1016/j.bpc.2020.106433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
|
42
|
Lodovichi S, Cervelli T, Pellicioli A, Galli A. Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. Int J Mol Sci 2020; 21:E6684. [PMID: 32932697 PMCID: PMC7554826 DOI: 10.3390/ijms21186684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| | - Achille Pellicioli
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| |
Collapse
|
43
|
Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene 2020; 39:6393-6405. [PMID: 32884115 DOI: 10.1038/s41388-020-01445-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
In the present day, it is possible to incorporate targeted mutations or replace a gene using genome editing techniques such as customisable CRISPR/Cas9 system. Although induction of DNA double-strand breaks (DSBs) by genome editing tools can be repaired by both non-homologous end joining (NHEJ) and homologous recombination (HR), the skewness of the former pathway in human and other mammals normally result in imprecise repair. Scientists working at the crossroads of DNA repair and genome editing have devised new strategies for using a specific pathway to their advantage. Refinement in the efficiency of precise gene editing was witnessed upon downregulation of NHEJ by knockdown or using small molecule inhibitors on one hand, and upregulation of HR proteins and addition of HR stimulators, other hand. The exploitation of cell cycle phase differences together with appropriate donor DNA length/sequence and small molecules has provided further improvement in precise genome editing. The present article reviews the mechanisms of improving the efficiency of precise genome editing in several model organisms and in clinics.
Collapse
|
44
|
Ray U, Vartak SV, Raghavan SC. NHEJ inhibitor SCR7 and its different forms: Promising CRISPR tools for genome engineering. Gene 2020; 763:144997. [PMID: 32783992 DOI: 10.1016/j.gene.2020.144997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
The CRISPR-Cas system currently stands as one of the best multifaceted tools for site-specific genome engineering in mammals. An important aspect of research in this field focusses on improving the specificity and efficacy of precise genome editing in multiple model systems. The cornerstone of this mini-review is one of the extensively investigated small molecule inhibitor, SCR7, which abrogates NHEJ, a Ligase IV-dependent DSB repair pathway, thus guiding integration of the foreign DNA fragment via the more precise homology directed repair during genome editing. One of our recent studies sheds light on properties of different forms of SCR7. Here, we give a succinct account on the use of SCR7 and its different forms in CRISPR-Cas system, highlighting their chemical properties and biological relevance as potent efficiency-enhancing CRISPR tools.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
45
|
Wang CX, Zhang ZL, Yin QK, Tu JL, Wang JE, Xu YH, Rao Y, Ou TM, Huang SL, Li D, Wang HG, Li QJ, Tan JH, Chen SB, Huang ZS. Design, Synthesis, and Evaluation of New Quinazolinone Derivatives that Inhibit Bloom Syndrome Protein (BLM) Helicase, Trigger DNA Damage at the Telomere Region, and Synergize with PARP Inhibitors. J Med Chem 2020; 63:9752-9772. [PMID: 32697083 DOI: 10.1021/acs.jmedchem.0c00917] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage response (DDR) pathways are crucial for the survival of cancer cells and are attractive targets for cancer therapy. Bloom syndrome protein (BLM) is a DNA helicase that performs important roles in DDR pathways. Our previous study discovered an effective new BLM inhibitor with a quinazolinone scaffold by a screening assay. Herein, to better understand the structure-activity relationship (SAR) and biological roles of the BLM inhibitor, a series of new derivatives were designed, synthesized, and evaluated based on this scaffold. Among them, compound 9h exhibited nanomolar inhibitory activity and binding affinity for BLM. 9h could effectively disrupt BLM recruitment to DNA in cells. Furthermore, 9h inhibited the proliferation of the colorectal cell line HCT116 by significantly triggering DNA damage in the telomere region and inducing apoptosis, especially in combination with a poly (ADP-ribose) polymerase (PARP) inhibitor. This result suggested a synthetic lethal effect between the BLM and PARP inhibitors in DDR pathways.
Collapse
Affiliation(s)
- Chen-Xi Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qi-Kun Yin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Li Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
46
|
Zhou X, Xu X, Tian Z, Xu WY, Cui Y. Mutational profiling of lung adenocarcinoma in China detected by next-generation sequencing. J Cancer Res Clin Oncol 2020; 146:2277-2287. [DOI: 10.1007/s00432-020-03284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
47
|
Geng Y, Guan R, Hong W, Huang B, Liu P, Guo X, Hu S, Yu M, Hou B. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:387. [PMID: 32355831 PMCID: PMC7186697 DOI: 10.21037/atm.2020.03.98] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification holds an important position in tumorigenesis and metastasis because it can change gene expression and even function in multiple levels including RNA splicing, stability, translocation and translation. In present study, we aim to conducted comprehensive investigation on m6A RNA methylation regulators and m6A-related genes in pancreatic cancer and their association with survival time. METHODS Based on Univariate Cox regression analysis, protein-protein interaction analysis, LASSO Cox regression, a risk prognostic model, STRING, Spearman and consensus clustering analysis, data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database was used to analyze 15 m6A RNA methylation regulators that were widely reported and 1,393 m6A-related genes in m6Avar. RESULTS We found that 283 candidate m6A RNA methylation-related genes and 4 m6A RNA methylation regulatory factors, including RNA binding motif protein 15 (RBM15), methyltransferase like 14 (METTL14), fat mass and obesity-associated protein (FTO), and α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5), differed significantly among different stages of the American Joint Committee on Cancer (AJCC) staging system. Protein-protein interaction analysis indicated epidermal growth factor receptor (EGFR), plectin-1 (PLEC), BLM RecQ like helicase (BLM), and polo like kinase 1 (PLK1) were closely related to other genes and could be considered as hub genes in the network. The results of LASSO Cox regression and the risk prognostic model indicated that AJCC stage, stage T and N, KRAS mutation status and x8q23.3 CNV fragment mutation differed significantly between the high-risk and the low-risk subgroups. The AUCs of 1 to 5 years after surgery were all more than 0.7 and increased year by year. Finally, we found KRAS mutation status and AJCC stage differed significantly among these groups after TCGA samples divided into subgroups with k=7. Moreover, we identified four m6A RNA methylation related genes expressed significantly differently among these seven subgroups, including collagen type VII alpha 1 chain (COL7A1), branched chain amino acid transaminase 1 (BCAT1), zinc finger protein 596 (ZNF596), and PLK1. CONCLUSIONS Our study systematically analyzed the m6A RNA methylation related genes, including expression, protein-protein interaction, potential function, and prognostic value and provides important clues to further research on the function of RNA m6A methylation and its related genes in pancreatic cancer.
Collapse
Affiliation(s)
- Yan Geng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Lunjiao, Shunde District, Foshan 528308, China
| | - Renguo Guan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Bowen Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Peizhen Liu
- Department of Nursing, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohua Guo
- Department of General Surgery, Yingde People’s Hospital, Qingyuan 513000, China
| | - Shixiong Hu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Baohua Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
48
|
Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst) 2019; 86:102748. [PMID: 31790874 DOI: 10.1016/j.dnarep.2019.102748] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022]
Abstract
Genomic integrity of the cell is crucial for the successful transmission of genetic information to the offspring and its survival. Persistent DNA damage induced by endogenous and exogenous agents leads to various metabolic manifestations. To combat this, eukaryotes have developed complex DNA damage response (DDR) pathway which senses the DNA damage and activates an arsenal of enzymes for the repair of damaged DNA. The active pathways for DNA repair are nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR) for single-strand break repair whereas homologous recombination (HR) and non-homologous end-joining (NHEJ) for double-strand break repair. OGG1 is a DNA glycosylase which initiates BER while Mre11-Rad50-Nbs1 (MRN) protein complex is the primary responder to DSBs which gets localized to damage sites. DNA damage response is meticulously executed by three related kinases: ATM, ATR, and DNA-PK. ATM- and ATR-dependent phosphorylation of p53, Chk1, and Chk2 regulate the G1/S, intra-S, or G2/M checkpoints of the cell cycle, respectively. Autophagy is an evolutionarily conserved process that plays a pivotal role in the regulation of DNA repair and maintains the cellular homeostasis. Genotoxic stress-induced altered autophagy occurs in a P53 dependent manner which is also the master regulator of genotoxic stress. A plethora of proteins involved in autophagy is regulated by p53 which involve DRAM, DAPK, and AMPK. As evident, the mtDNA is more prone to damage than nuclear DNA because of its close proximity to the site of ROS generation. Depending on the extent of damage either the repair mechanism or mitophagy gets triggered. SIRT1 is the master regulator which directs the stress response to mitophagy. Nix, a LC3 adapter also participates in Parkin mediated mitophagy. This review highlights the intricate crosstalks between DNA damage and cell cycle checkpoints activation. The DNA damage mediated regulation of autophagy and mitophagy is also reviewed in detail.
Collapse
|
49
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
50
|
Yin QK, Wang CX, Wang YQ, Guo QL, Zhang ZL, Ou TM, Huang SL, Li D, Wang HG, Tan JH, Chen SB, Huang ZS. Discovery of Isaindigotone Derivatives as Novel Bloom’s Syndrome Protein (BLM) Helicase Inhibitors That Disrupt the BLM/DNA Interactions and Regulate the Homologous Recombination Repair. J Med Chem 2019; 62:3147-3162. [DOI: 10.1021/acs.jmedchem.9b00083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qi-Kun Yin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen-Xi Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Qing Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|