1
|
Hamelin D, Scicluna M, Saadie I, Mostefai F, Grenier J, Baron C, Caron E, Hussin J. Predicting pathogen evolution and immune evasion in the age of artificial intelligence. Comput Struct Biotechnol J 2025; 27:1370-1382. [PMID: 40235636 PMCID: PMC11999473 DOI: 10.1016/j.csbj.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
The genomic diversification of viral pathogens during viral epidemics and pandemics represents a major adaptive route for infectious agents to circumvent therapeutic and public health initiatives. Historically, strategies to address viral evolution have relied on responding to emerging variants after their detection, leading to delays in effective public health responses. Because of this, a long-standing yet challenging objective has been to forecast viral evolution by predicting potentially harmful viral mutations prior to their emergence. The promises of artificial intelligence (AI) coupled with the exponential growth of viral data collection infrastructures spurred by the COVID-19 pandemic, have resulted in a research ecosystem highly conducive to this objective. Due to the COVID-19 pandemic accelerating the development of pandemic mitigation and preparedness strategies, many of the methods discussed here were designed in the context of SARS-CoV-2 evolution. However, most of these pipelines were intentionally designed to be adaptable across RNA viruses, with several strategies already applied to multiple viral species. In this review, we explore recent breakthroughs that have facilitated the forecasting of viral evolution in the context of an ongoing pandemic, with particular emphasis on deep learning architectures, including the promising potential of language models (LM). The approaches discussed here employ strategies that leverage genomic, epidemiologic, immunologic and biological information.
Collapse
Affiliation(s)
- D.J. Hamelin
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - M. Scicluna
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - I. Saadie
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - F. Mostefai
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - J.C. Grenier
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
| | - C. Baron
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - E. Caron
- CHU Sainte-Justine Research Center, Université de Montréal, Montréal, Quebec, Canada
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - J.G. Hussin
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Liu S, Lin M, Zhou X. T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection. Vaccines (Basel) 2025; 13:70. [PMID: 39852849 PMCID: PMC11769387 DOI: 10.3390/vaccines13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. METHODS In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (Soc-Hoc-T4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. RESULTS The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. CONCLUSIONS In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza.
Collapse
Affiliation(s)
- Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Mengzhou Lin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
3
|
Powell JD, Thomas MN, Anderson TK, Zeller MA, Gauger PC, Vincent Baker AL. 2018-2019 human seasonal H3N2 influenza A virus spillovers into swine with demonstrated virus transmission in pigs were not sustained in the pig population. J Virol 2024; 98:e0008724. [PMID: 39526773 DOI: 10.1128/jvi.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Human seasonal H3 clade 3C3a influenza A viruses (IAV) were detected four times in U.S. pigs from commercial swine farms in Michigan, Illinois, and Virginia in 2019. To evaluate the relative risk of this spillover to the pig population, whole genome sequencing and phylogenetic characterization were conducted, and the results revealed that all eight viral gene segments were closely related to 2018-2019 H3N2 human seasonal IAV. Next, a series of in vitro viral kinetics, receptor binding, and antigenic characterization studies were performed using a representative A/swine/Virginia/A02478738/2018(H3N2) (SW/VA/19) isolate. Viral replication kinetic studies of SW/VA/19 demonstrated less efficient replication curves than all 10 swine H3N2 viruses tested but higher than three human H3N2 strains. Serial passaging experiments of SW/VA/19 in swine cells did not increase virus replication, but changes at HA amino acid positions 9 and 159 occurred. In swine transmission studies, wild-type SW/VA/19 was shed in nasal secretions and transmitted to all indirect contact pigs, whereas the human seasonal strain A/Switzerland/9715293/2013(H3N2) from the same 3C3a clade failed to transmit. SW/VA/19 induced minimal macroscopic and microscopic lung lesions. Collectively, these findings demonstrate that these human seasonal H3N2 3C3a-like viruses did not require reassortment with endemic swine IAV gene segments for virus shedding and transmission in pigs. Limited detections in the U.S. pig population in the subsequent period of time suggest a yet-unknown restriction factor likely limiting the spread of these viruses in the U.S. pig population.IMPORTANCEInterspecies human-to-swine IAV transmission occurs globally and contributes to increased IAV diversity in pig populations. We present data that a swine isolate from a 2018-2019 human-to-swine transmission event was shed for multiple days in challenged and contact pigs. By characterizing this introduction through bioinformatic, molecular, and animal experimental approaches, these findings better inform animal health practices and vaccine decision-making. Since wholly human seasonal H3N2 viruses in the United States were not previously identified as being transmissible in pigs (i.e., reverse zoonosis), these findings reveal that the interspecies barriers for transmission to pigs may not require significant changes to all human seasonal H3N2, although additional changes may be required for sustained transmission in swine populations.
Collapse
Affiliation(s)
- Joshua D Powell
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| | - Megan N Thomas
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| | - Michael A Zeller
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, USA
| |
Collapse
|
4
|
Sun Y, Zhu Y, Zhang P, Sheng S, Guan Z, Cong Y. Hemagglutinin glycosylation pattern-specific effects: implications for the fitness of H9.4.2.5-branched H9N2 avian influenza viruses. Emerg Microbes Infect 2024; 13:2364736. [PMID: 38847071 PMCID: PMC11182062 DOI: 10.1080/22221751.2024.2364736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Since 2007, h9.4.2.5 has emerged as the most predominant branch of H9N2 avian influenza viruses (AIVs) that affects the majority of the global poultry population. The spread of this viral branch in vaccinated chicken flocks has not been considerably curbed despite numerous efforts. The evolutionary fitness of h9.4.2.5-branched AIVs must consequently be taken into consideration. The glycosylation modifications of hemagglutinin (HA) play a pivotal role in regulating the balance between receptor affinity and immune evasion for influenza viruses. Sequence alignment showed that five major HA glycosylation patterns have evolved over time in h9.4.2.5-branched AIVs. Here, we compared the adaptive phenotypes of five virus mutants with different HA glycosylation patterns. According to the results, the mutant with 6 N-linked glycans displayed the best acid and thermal stability and a better capacity for multiplication, although having a relatively lower receptor affinity than 7 glycans. The antigenic profile between the five mutants revealed a distinct antigenic distance, indicating that variations in glycosylation level have an impact on antigenic drift. These findings suggest that changes in the number of glycans on HA can not only modulate the receptor affinity and antigenicity of H9N2 AIVs, but also affect their stability and multiplication. These adaptive phenotypes may underlie the biological basis for the dominant strain switchover of h9.4.2.5-branched AIVs. Overall, our study provides a systematic insight into how changes in HA glycosylation patterns regulate the evolutionary fitness and epidemiological dominance drift of h9.4.2.5-branched H9N2 AIVs, which will be of great benefit for the glycosylation-dependent vaccine design.
Collapse
Affiliation(s)
- Yixue Sun
- Department of Policies and Regulations, Changchun University, Changchun, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanting Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shouzhi Sheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhenhong Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanlong Cong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Liang R, Peccati F, Ponse NLD, Uslu E, Boons GJ, Unione L, de Vries RP. Epistasis in the receptor binding domain of contemporary H3N2 viruses that reverted to bind sialylated diLacNAc repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625384. [PMID: 39651261 PMCID: PMC11623580 DOI: 10.1101/2024.11.26.625384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Since the introduction of H3N2 influenza A viruses in the human population, these viruses have continuously evolved to escape human immunity, with mutations occurring in and around the receptor binding site. This process, called antigenic drift, recently resulted in viruses that recognize elongated glycans that are not abundantly displayed in the human respiratory tract. Such receptor specificities hampered our ability to pick and propagate vaccine strains. Using ELISA, glycan array, tissue staining, flow cytometry, and hemagglutinin assays, this study revealed that the most recent H3N2 viruses have expanded receptor specificity by regaining effective recognition to shorter glycans. In recent H3 strains, Y159 and T160 are responsible for restricted binding to elongated glycans; in contemporary strains, however, Y159N and T160I dominate with a consequent loss of strength in receptor binding. Yet, effective receptor interaction is rescued by a remote mutation in the 190-helix, Y195F. The results demonstrate epistasis of critical residues in three of the four structural elements composing the HA receptor-binding site (the 130-loop, 150-loop, and 190-helix), which synergistically contribute to shape receptor binding specificity. Interestingly, a positive correlation exists between binding to an asymmetrical N-glycan containing an α2,6 sialylated tri-LacNAc arm and binding to human and ferret respiratory tract tissues. Together, these results elucidate the epistatic nature of receptor binding specificity during influenza A virus H3N2 evolution.
Collapse
|
6
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Vincent Baker AL, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol 2024; 22:e3002916. [PMID: 39531474 PMCID: PMC11584116 DOI: 10.1371/journal.pbio.3002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Jenny J Ahn
- Department of Microbiology, University of Washington, Seattle, Washington, DC, United States of America
| | - Jordan T Ort
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jin Yu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Colleen Furey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - William W Hannon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, United States of America
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, United Kingdom
| | - Louise H Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, DC, United States of America
| |
Collapse
|
7
|
Cueno ME, Kamio N, Imai K. Avian influenza A H5N1 hemagglutinin protein models have distinct structural patterns re-occurring across the 1959-2023 strains. Biosystems 2024; 246:105347. [PMID: 39349133 DOI: 10.1016/j.biosystems.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Influenza A H5N1 hemagglutinin (HA) plays a crucial role in viral pathogenesis and changes in the HA receptor binding domain (RBD) have been attributed to alterations in viral pathogenesis. Mutations often occur within the HA which in-turn results in HA structural changes that consequently contribute to protein evolution. However, the possible occurrence of mutations that results to reversion of the HA protein (going back to an ancestral protein conformation) which in-turn creates distinct HA structural patterns across the 1959-2023 H5N1 viral evolution has never been investigated. Here, we generated and verified the quality of the HA models, identified similar HA structural patterns, and elucidated the possible variations in HA RBD structural dynamics. Our results show that there are 7 distinct structural patterns occurring among the 1959-2023 H5N1 HA models which suggests that reversion of the HA protein putatively occurs during viral evolution. Similarly, we found that the HA RBD structural dynamics vary among the 7 distinct structural patterns possibly affecting viral pathogenesis.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| | - Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| |
Collapse
|
8
|
Debski-Antoniak O, Flynn A, Klebl DP, Rojas Rechy MH, Tiede C, Wilson IA, Muench SP, Tomlinson D, Fontana J. Exploiting the Affimer platform against influenza A virus. mBio 2024; 15:e0180424. [PMID: 39037231 PMCID: PMC11323568 DOI: 10.1128/mbio.01804-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Influenza A virus (IAV) is well known for its pandemic potential. While current surveillance and vaccination strategies are highly effective, therapeutic approaches are often short-lived due to the high mutation rates of IAV. Recently, monoclonal antibodies (mAbs) have emerged as a promising therapeutic approach, both against current strains and future IAV pandemics. In addition to mAbs, several antibody-like alternatives exist, which aim to improve upon mAbs. Among these, Affimers stand out for their short development time, high expression levels in Escherichia coli, and animal-free production. In this study, we utilized the Affimer platform to isolate and produce specific and potent inhibitors of IAV. Using a monomeric version of the IAV trimeric hemagglutinin (HA) fusion protein, we isolated 12 Affimers that inhibit IAV infection in vitro. Two of these Affimers were characterized in detail and exhibited nanomolar-binding affinities to the target H3 HA protein, specifically binding to the HA1 head domain. Cryo-electron microscopy (cryo-EM), employing a novel spray approach to prepare cryo-grids, allowed us to image HA-Affimer complexes. Combined with functional assays, we determined that these Affimers inhibit IAV by blocking the interaction of HA with the host-cell receptor, sialic acid. Furthermore, these Affimers inhibited IAV strains closely related to the one used for their isolation. Overall, our results support the use of Affimers as a viable alternative to existing targeted therapies for IAV and highlight their potential as diagnostic reagents. IMPORTANCE Influenza A virus is one of the few viruses that can cause devastating pandemics. Due to the high mutation rates of this virus, annual vaccination is required, and antivirals are short-lived. Monoclonal antibodies present a promising approach to tackle influenza virus infections but are associated with some limitations. To improve on this strategy, we explored the Affimer platform, which are antibody-like proteins made in bacteria. By performing phage-display against a monomeric version of influenza virus fusion protein, an established viral target, we were able to isolate Affimers that inhibit influenza virus infection in vitro. We characterized the mechanism of inhibition of the Affimers by using assays targeting different stages of the viral replication cycle. We additionally characterized HA-Affimer complex structure, using a novel approach to prepare samples for cryo-electron microscopy. Overall, these results show that Affimers are a promising tool against influenza virus infection.
Collapse
Affiliation(s)
- Oliver Debski-Antoniak
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex Flynn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David P. Klebl
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Moisés H. Rojas Rechy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Stephen P. Muench
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Baker AV, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595634. [PMID: 38826368 PMCID: PMC11142178 DOI: 10.1101/2024.05.23.595634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
H5 influenza is a potential pandemic threat. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic risk, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. Here we use pseudovirus deep mutational scanning to measure how all mutations to a clade 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind a2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also identify recent viral strains with reduced neutralization to sera elicited by candidate vaccine virus. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive characterization of mutations to inform surveillance of H5 influenza.
Collapse
|
10
|
Lei R, Liang W, Ouyang WO, Hernandez Garcia A, Kikuchi C, Wang S, McBride R, Tan TJC, Sun Y, Chen C, Graham CS, Rodriguez LA, Shen IR, Choi D, Bruzzone R, Paulson JC, Nair SK, Mok CKP, Wu NC. Epistasis mediates the evolution of the receptor binding mode in recent human H3N2 hemagglutinin. Nat Commun 2024; 15:5175. [PMID: 38890325 PMCID: PMC11189414 DOI: 10.1038/s41467-024-49487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
The receptor-binding site of influenza A virus hemagglutinin partially overlaps with major antigenic sites and constantly evolves. In this study, we observe that mutations G186D and D190N in the hemagglutinin receptor-binding site have coevolved in two recent human H3N2 clades. X-ray crystallography results show that these mutations coordinately drive the evolution of the hemagglutinin receptor binding mode. Epistasis between G186D and D190N is further demonstrated by glycan binding and thermostability analyses. Immunization and neutralization experiments using mouse and human samples indicate that the evolution of receptor binding mode is accompanied by a change in antigenicity. Besides, combinatorial mutagenesis reveals that G186D and D190N, along with other natural mutations in recent H3N2 strains, alter the compatibility with a common egg-adaptive mutation in seasonal influenza vaccines. Overall, our findings elucidate the role of epistasis in shaping the recent evolution of human H3N2 hemagglutinin and substantiate the high evolvability of its receptor-binding mode.
Collapse
MESH Headings
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Epistasis, Genetic
- Animals
- Evolution, Molecular
- Mice
- Binding Sites
- Influenza, Human/virology
- Mutation
- Crystallography, X-Ray
- Influenza Vaccines
- Protein Binding
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/chemistry
- Female
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Chika Kikuchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shengyang Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunke Chen
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claire S Graham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lucia A Rodriguez
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ivana R Shen
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Cell Biology and Infection, Institut Pasteur, Paris, Cedex, 75015, France
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Unione L, Ammerlaan ANA, Bosman GP, Uslu E, Liang R, Broszeit F, van der Woude R, Liu Y, Ma S, Liu L, Gómez-Redondo M, Bermejo IA, Valverde P, Diercks T, Ardá A, de Vries RP, Boons GJ. Probing altered receptor specificities of antigenically drifting human H3N2 viruses by chemoenzymatic synthesis, NMR, and modeling. Nat Commun 2024; 15:2979. [PMID: 38582892 PMCID: PMC10998905 DOI: 10.1038/s41467-024-47344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin's (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding.
Collapse
Affiliation(s)
- Luca Unione
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Bizkaia, Spain.
| | - Augustinus N A Ammerlaan
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Gerlof P Bosman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Elif Uslu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ruonan Liang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Frederik Broszeit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Yanyan Liu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Shengzhou Ma
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Marcos Gómez-Redondo
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Iris A Bermejo
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Pablo Valverde
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Tammo Diercks
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Bizkaia, Spain
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Ma S, Liu L, Eggink D, Herfst S, Fouchier RAM, de Vries RP, Boons GJ. Asymmetrical Biantennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses. JACS AU 2024; 4:607-618. [PMID: 38425896 PMCID: PMC10900492 DOI: 10.1021/jacsau.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biologically relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical biantennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae, which temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of the evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans are critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses again agglutinate erythrocytes, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicate that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.
Collapse
Affiliation(s)
- Shengzhou Ma
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lin Liu
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Dirk Eggink
- Amsterdam
UMC Location University of Amsterdam, Department
of Medical Microbiology and Infection prevention, Laboratory of Applied
Evolutionary Biology, 1105
AZ Amsterdam, The
Netherlands
- Center
for Infectious Disease Control, National
Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sander Herfst
- Department
of Viroscience, Erasmus University Medical
Center, 3015 CD Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department
of Viroscience, Erasmus University Medical
Center, 3015 CD Rotterdam, The Netherlands
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
13
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
14
|
Ma S, Liu L, Eggink D, Herfst S, Fouchier RAM, de Vries RP, Boons GJ. Asymmetrical Bi-antennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566285. [PMID: 37986780 PMCID: PMC10659364 DOI: 10.1101/2023.11.08.566285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biological relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical bi-antennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae that temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans is critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses agglutinate erythrocytes again, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicates that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.
Collapse
Affiliation(s)
- Shengzhou Ma
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Dirk Eggink
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Applied Evolutionary Biology, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, GA, USA
| |
Collapse
|
15
|
Manoussopoulos Y, Anastassopoulou C, Ioannidis JPA, Tsakris A. Paired associated SARS-CoV-2 spike variable positions: a network analysis approach to emerging variants. mSystems 2023; 8:e0044023. [PMID: 37432011 PMCID: PMC10469592 DOI: 10.1128/msystems.00440-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/12/2023] Open
Abstract
Amino acids in variable positions of proteins may be correlated, with potential structural and functional implications. Here, we apply exact tests of independence in R × C contingency tables to examine noise-free associations between variable positions of the SARS-CoV-2 spike protein, using as a paradigm sequences from Greece deposited in GISAID (N = 6,683/1,078 full length) for the period 29 February 2020 to 26 April 2021 that essentially covers the first three pandemic waves. We examine the fate and complexity of these associations by network analysis, using associated positions (exact P ≤ 0.001 and Average Product Correction ≥ 2) as links and the corresponding positions as nodes. We found a temporal linear increase of positional differences and a gradual expansion of the number of position associations over time, represented by a temporally evolving intricate web, resulting in a non-random complex network of 69 nodes and 252 links. Overconnected nodes corresponded to the most adapted variant positions in the population, suggesting a direct relation between network degree and position functional importance. Modular analysis revealed 25 k-cliques comprising 3 to 11 nodes. At different k-clique resolutions, one to four communities were formed, capturing epistatic associations of circulating variants (Alpha, Beta, B.1.1.318), but also Delta, which dominated the evolutionary landscape later in the pandemic. Cliques of aminoacidic positional associations tended to occur in single sequences, enabling the recognition of epistatic positions in real-world virus populations. Our findings provide a novel way of understanding epistatic relationships in viral proteins with potential applications in the design of virus control procedures. IMPORTANCE Paired positional associations of adapted amino acids in virus proteins may provide new insights for understanding virus evolution and variant formation. We investigated potential intramolecular relationships between variable SARS-CoV-2 spike positions by exact tests of independence in R × C contingency tables, having applied Average Product Correction (APC) to eliminate background noise. Associated positions (exact P ≤ 0.001 and APC ≥ 2) formed a non-random, epistatic network of 25 cliques and 1-4 communities at different clique resolutions, revealing evolutionary ties between variable positions of circulating variants and a predictive potential of previously unknown network positions. Cliques of different sizes represented theoretical combinations of changing residues in sequence space, allowing the identification of significant aminoacidic combinations in single sequences of real-world populations. Our analytic approach that links network structural aspects to mutational aminoacidic combinations in the spike sequence population offers a novel way to understand virus epidemiology and evolution.
Collapse
Affiliation(s)
- Yiannis Manoussopoulos
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- ELGO-Demeter, Plant Protection Division of Patras, Laboratory of Virology, Patras, Greece
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - John P. A. Ioannidis
- Department of Medicine, Stanford University, Stanford, California, USA
- Departments of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Kolosova NP, Ilyicheva TN, Unguryan VV, Danilenko AV, Svyatchenko SV, Onhonova GS, Goncharova NI, Kosenko MN, Gudymo AS, Marchenko VY, Shvalov AN, Susloparov IM, Tregubchak TV, Gavrilova EV, Maksyutov RA, Ryzhikov AB. Re-Emergence of Circulation of Seasonal Influenza during COVID-19 Pandemic in Russia and Receptor Specificity of New and Dominant Clade 3C.2a1b.2a.2 A(H3N2) Viruses in 2021-2022. Pathogens 2022; 11:1388. [PMID: 36422639 PMCID: PMC9698969 DOI: 10.3390/pathogens11111388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2023] Open
Abstract
The circulation of seasonal influenza in 2020-2021 around the world was drastically reduced after the start of the COVID-19 pandemic and the implementation of mitigation strategies. The influenza virus circulation reemerged in 2021-2022 with the global spread of the new genetic clade 3C.2a1b.2a.2 of A(H3N2) viruses. The purpose of this study was to characterize influenza viruses in the 2021-2022 season in Russia and to analyze the receptor specificity properties of the 3C.2a1b.2a.2 A(H3N2) viruses. Clinical influenza samples were collected at the local Sanitary-and-Epidemiological Centers of Rospotrebnadzor. Whole genome sequencing was performed using NGS. The receptor specificity of hemagglutinin was evaluated using molecular modeling and bio-layer interferometry. Clinical samples from 854 cases of influenza A and B were studied; A(H3N2) viruses were in the majority of the samples. All genetically studied A(H3N2) viruses belonged to the new genetic clade 3C.2a1b.2a.2. Molecular modeling analysis suggested a higher affinity of hemagglutinin of 3C.2a1b.2a.2. A(H3N2) viruses to the α2,6 human receptor. In vitro analysis using a trisaccharide 6'-Sialyl-N-acetyllactosamine receptor analog did not resolve the differences in the receptor specificity of 3C.2a1b.2a.2 clade viruses from viruses belonging to the 3C.2a1b.2a.1 clade. Further investigation of the A(H3N2) viruses is required for the evaluation of their possible adaptive advantages. Constant monitoring and characterization of influenza are critical for epidemiological analysis.
Collapse
Affiliation(s)
- Natalia P. Kolosova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Tatiana N. Ilyicheva
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Vasily V. Unguryan
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey V. Danilenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Svetlana V. Svyatchenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Galina S. Onhonova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Natalia I. Goncharova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Maksim N. Kosenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Andrey S. Gudymo
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Vasiliy Y. Marchenko
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Alexander N. Shvalov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Ivan M. Susloparov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Tatiana V. Tregubchak
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Elena V. Gavrilova
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Rinat A. Maksyutov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Alexander B. Ryzhikov
- State Research Centre of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| |
Collapse
|
17
|
Prevalence and mechanisms of evolutionary contingency in human influenza H3N2 neuraminidase. Nat Commun 2022; 13:6443. [PMID: 36307418 PMCID: PMC9616408 DOI: 10.1038/s41467-022-34060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase (NA) of human influenza H3N2 virus has evolved rapidly and been accumulating mutations for more than half-century. However, biophysical constraints that govern the evolutionary trajectories of NA remain largely elusive. Here, we show that among 70 natural mutations that are present in the NA of a recent human H3N2 strain, >10% are deleterious for an ancestral strain. By mapping the permissive mutations using combinatorial mutagenesis and next-generation sequencing, an extensive epistatic network is revealed. Biophysical and structural analyses further demonstrate that certain epistatic interactions can be explained by non-additive stability effect, which in turn modulates membrane trafficking and enzymatic activity of NA. Additionally, our results suggest that other biophysical mechanisms also contribute to epistasis in NA evolution. Overall, these findings not only provide mechanistic insights into the evolution of human influenza NA and elucidate its sequence-structure-function relationship, but also have important implications for the development of next-generation influenza vaccines.
Collapse
|
18
|
Liu T, Wang Y, Tan TJC, Wu NC, Brooke CB. The evolutionary potential of influenza A virus hemagglutinin is highly constrained by epistatic interactions with neuraminidase. Cell Host Microbe 2022; 30:1363-1369.e4. [PMID: 36150395 PMCID: PMC9588755 DOI: 10.1016/j.chom.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Antigenic evolution of the influenza A virus (IAV) hemagglutinin (HA) gene limits efforts to effectively control the spread of the virus in the population. Efforts to understand the mechanisms governing HA antigenic evolution typically examine the HA gene in isolation. This can ignore the importance of balancing HA receptor binding activities with the receptor-destroying activities of the viral neuraminidase (NA) to maintain viral fitness. We hypothesize that the need to maintain functional balance with NA significantly constrains the evolutionary potential of the HA. We use deep mutational scanning and show that variation in NA activity significantly reshapes the HA fitness landscape by modulating the overall mutational robustness of HA. Consistent with this, we observe that different NA backgrounds support the emergence of distinct repertoires of HA escape variants under neutralizing antibody pressure. Our results reveal a critical role for intersegment epistasis in influencing the evolutionary potential of the HA gene.
Collapse
Affiliation(s)
- Tongyu Liu
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Liang W, Tan TJC, Wang Y, Lv H, Sun Y, Bruzzone R, Mok CKP, Wu NC. Egg-adaptive mutations of human influenza H3N2 virus are contingent on natural evolution. PLoS Pathog 2022; 18:e1010875. [PMID: 36155668 PMCID: PMC9536752 DOI: 10.1371/journal.ppat.1010875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/06/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Egg-adaptive mutations in influenza hemagglutinin (HA) often emerge during the production of egg-based seasonal influenza vaccines, which contribute to the largest share in the global influenza vaccine market. While some egg-adaptive mutations have minimal impact on the HA antigenicity (e.g. G186V), others can alter it (e.g. L194P). Here, we show that the preference of egg-adaptive mutation in human H3N2 HA is strain-dependent. In particular, Thr160 and Asn190, which are found in many recent H3N2 strains, restrict the emergence of L194P but not G186V. Our results further suggest that natural amino acid variants at other HA residues also play a role in determining the preference of egg-adaptive mutation. Consistently, recent human H3N2 strains from different clades acquire different mutations during egg passaging. Overall, these results demonstrate that natural mutations in human H3N2 HA can influence the preference of egg-adaptation mutation, which has important implications in seed strain selection for egg-based influenza vaccine.
Collapse
Affiliation(s)
- Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Istituto Pasteur Italia, Rome, Italy
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (CKPM); (NCW)
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (CKPM); (NCW)
| |
Collapse
|
20
|
Liu Y, Chen H, Duan W, Zhang X, He X, Nielsen R, Ma L, Zhai W. Predicting Egg Passage Adaptations to Design Better Vaccines for the H3N2 Influenza Virus. Viruses 2022; 14:v14092065. [PMID: 36146872 PMCID: PMC9501976 DOI: 10.3390/v14092065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Seasonal H3N2 influenza evolves rapidly, leading to an extremely poor vaccine efficacy. Substitutions employed during vaccine production using embryonated eggs (i.e., egg passage adaptation) contribute to the poor vaccine efficacy (VE), but the evolutionary mechanism remains elusive. Using an unprecedented number of hemagglutinin sequences (n = 89,853), we found that the fitness landscape of passage adaptation is dominated by pervasive epistasis between two leading residues (186 and 194) and multiple other positions. Convergent evolutionary paths driven by strong epistasis explain most of the variation in VE, which has resulted in extremely poor vaccines for the past decade. Leveraging the unique fitness landscape, we developed a novel machine learning model that can predict egg passage substitutions for any candidate vaccine strain before the passage experiment, providing a unique opportunity for the selection of optimal vaccine viruses. Our study presents one of the most comprehensive characterizations of the fitness landscape of a virus and demonstrates that evolutionary trajectories can be harnessed for improved influenza vaccines.
Collapse
Affiliation(s)
- Yunsong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Wenyuan Duan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94707, USA
- Department of Statistics, University of California-Berkeley, Berkeley, CA 94707, USA
- Globe Institute, University of Copenhagen, 1350 København, Copenhagen, Denmark
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Correspondence:
| |
Collapse
|
21
|
Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022; 13:e0105522. [PMID: 35699372 PMCID: PMC9426523 DOI: 10.1128/mbio.01055-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics.
Collapse
|
22
|
Christensen SR, Martin ET, Petrie JG, Monto AS, Hensley SE. The 2009 Pandemic H1N1 Hemagglutinin Stalk Remained Antigenically Stable after Circulating in Humans for a Decade. J Virol 2022; 96:e0220021. [PMID: 35588275 PMCID: PMC9175623 DOI: 10.1128/jvi.02200-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
An H1N1 influenza virus caused a pandemic in 2009, and descendants of this virus continue to circulate seasonally in humans. Upon infection with the 2009 H1N1 pandemic strain (pH1N1), many humans produced antibodies against epitopes in the hemagglutinin (HA) stalk. HA stalk-focused antibody responses were common among pH1N1-infected individuals because HA stalk epitopes were conserved between the pH1N1 strain and previously circulating H1N1 strains. Here, we completed a series of experiments to determine if the pH1N1 HA stalk has acquired substitutions since 2009 that prevent the binding of human antibodies. We identified several amino acid substitutions that accrued in the pH1N1 HA stalk from 2009 to 2019. We completed enzyme-linked immunosorbent assays, absorption-based binding assays, and surface plasmon resonance experiments to determine if these substitutions affect antibody binding. Using sera collected from 230 humans (aged 21 to 80 years), we found that pH1N1 HA stalk substitutions that have emerged since 2009 do not affect antibody binding. Our data suggest that the HA stalk domain of pH1N1 viruses remained antigenically stable after circulating in humans for a decade. IMPORTANCE In 2009, a new pandemic H1N1 (pH1N1) virus began circulating in humans. Many individuals mounted hemagglutinin (HA) stalk-focused antibody responses upon infection with the 2009 pH1N1 strain, since the HA stalk of this virus was relatively conserved with other seasonal H1N1 strains. Here, we completed a series of studies to determine if the 2009 pH1N1 strain has undergone antigenic drift in the HA stalk domain over the past decade. We found that serum antibodies from 230 humans could not antigenically distinguish the 2009 and 2019 HA stalk. These data suggest that the HA stalk of pH1N1 has remained antigenically stable, despite the presence of high levels of HA stalk antibodies within the human population.
Collapse
Affiliation(s)
- Shannon R. Christensen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Joshua G. Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Arnold S. Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Miller NL, Subramanian V, Clark T, Raman R, Sasisekharan R. Conserved topology of virus glycoepitopes presents novel targets for repurposing HIV antibody 2G12. Sci Rep 2022; 12:2594. [PMID: 35173180 PMCID: PMC8850445 DOI: 10.1038/s41598-022-06157-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vidya Subramanian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance in Research and Technology (SMART), Singapore, 138602, Singapore.
| |
Collapse
|
24
|
Doelger J, Kardar M, Chakraborty AK. Inferring the intrinsic mutational fitness landscape of influenzalike evolving antigens from temporally ordered sequence data. Phys Rev E 2022; 105:024401. [PMID: 35291059 DOI: 10.1103/physreve.105.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
There still are no effective long-term protective vaccines against viruses that continuously evolve under immune pressure such as seasonal influenza, which has caused, and can cause, devastating epidemics in the human population. To find such a broadly protective immunization strategy, it is useful to know how easily the virus can escape via mutation from specific antibody responses. This information is encoded in the fitness landscape of the viral proteins (i.e., knowledge of the viral fitness as a function of sequence). Here we present a computational method to infer the intrinsic mutational fitness landscape of influenzalike evolving antigens from yearly sequence data. We test inference performance with computer-generated sequence data that are based on stochastic simulations mimicking basic features of immune-driven viral evolution. Although the numerically simulated model does create a phylogeny based on the allowed mutations, the inference scheme does not use this information. This provides a contrast to other methods that rely on reconstruction of phylogenetic trees. Our method just needs a sufficient number of samples over multiple years. With our method, we are able to infer single as well as pairwise mutational fitness effects from the simulated sequence time series for short antigenic proteins. Our fitness inference approach may have potential future use for the design of immunization protocols by identifying intrinsically vulnerable immune target combinations on antigens that evolve under immune-driven selection. In the future, this approach may be applied to influenza and other novel viruses such as SARS-CoV-2, which evolves and, like influenza, might continue to escape the natural and vaccine-mediated immune pressures.
Collapse
Affiliation(s)
- Julia Doelger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Lusvarghi S, Wang W, Herrup R, Neerukonda SN, Vassell R, Bentley L, Eakin AE, Erlandson KJ, Weiss CD. Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects. J Virol 2022; 96:e0111021. [PMID: 34668774 PMCID: PMC8754225 DOI: 10.1128/jvi.01110-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Mutations in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can compromise the effectiveness of therapeutic antibodies. Most clinical-stage therapeutic antibodies target the spike receptor binding domain (RBD), but variants often have multiple mutations in several spike regions. To help predict antibody potency against emerging variants, we evaluated 25 clinical-stage therapeutic antibodies for neutralization activity against 60 pseudoviruses bearing spikes with single or multiple substitutions in several spike domains, including the full set of substitutions in B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.429 (epsilon), B.1.526 (iota), A.23.1, and R.1 variants. We found that 14 of 15 single antibodies were vulnerable to at least one RBD substitution, but most combination and polyclonal therapeutic antibodies remained potent. Key substitutions in variants with multiple spike substitutions predicted resistance, but the degree of resistance could be modified in unpredictable ways by other spike substitutions that may reside outside the RBD. These findings highlight the importance of assessing antibody potency in the context of all substitutions in a variant and show that epistatic interactions in spike can modify virus susceptibility to therapeutic antibodies. IMPORTANCE Therapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection (COVID-19), but their effectiveness may be reduced by virus variants with mutations affecting the spike protein. To help predict resistance to therapeutic antibodies in emerging variants, we profiled resistance patterns of 25 antibody products in late stages of clinical development against a large panel of variants that include single and multiple substitutions found in the spike protein. We found that the presence of a key substitution in variants with multiple spike substitutions can predict resistance against a variant but that other substitutions can affect the degree of resistance in unpredictable ways. These findings highlight complex interactions among substitutions in the spike protein affecting virus neutralization and, potentially, virus entry into cells.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Division of Viral Product, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wei Wang
- Division of Viral Product, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rachel Herrup
- Division of Viral Product, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabari Nath Neerukonda
- Division of Viral Product, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Russell Vassell
- Division of Viral Product, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lisa Bentley
- Office of the Assistant Secretary for Preparedness and Response, U.S. Department of Human Health and Services, Washington, DC, USA
| | - Ann E. Eakin
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Karl J. Erlandson
- Influenza and Emerging Infectious Diseases Division, Biomedical Advanced Research and Development Authority, U.S. Department of Health and Human Services, Washington, DC, United States of America
| | - Carol D. Weiss
- Division of Viral Product, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
26
|
Wang Y, Lei R, Nourmohammad A, Wu NC. Antigenic evolution of human influenza H3N2 neuraminidase is constrained by charge balancing. eLife 2021; 10:e72516. [PMID: 34878407 PMCID: PMC8683081 DOI: 10.7554/elife.72516] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
As one of the main influenza antigens, neuraminidase (NA) in H3N2 virus has evolved extensively for more than 50 years due to continuous immune pressure. While NA has recently emerged as an effective vaccine target, biophysical constraints on the antigenic evolution of NA remain largely elusive. Here, we apply combinatorial mutagenesis and next-generation sequencing to characterize the local fitness landscape in an antigenic region of NA in six different human H3N2 strains that were isolated around 10 years apart. The local fitness landscape correlates well among strains and the pairwise epistasis is highly conserved. Our analysis further demonstrates that local net charge governs the pairwise epistasis in this antigenic region. In addition, we show that residue coevolution in this antigenic region is correlated with the pairwise epistasis between charge states. Overall, this study demonstrates the importance of quantifying epistasis and the underlying biophysical constraint for building a model of influenza evolution.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Armita Nourmohammad
- Department of Physics, University of WashingtonSeattleUnited States
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carle Illinois College of Medicine, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
27
|
Broszeit F, van Beek RJ, Unione L, Bestebroer TM, Chapla D, Yang JY, Moremen KW, Herfst S, Fouchier RAM, de Vries RP, Boons GJ. Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses. Nat Commun 2021; 12:5449. [PMID: 34521834 PMCID: PMC8440751 DOI: 10.1038/s41467-021-25713-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
During circulation in humans and natural selection to escape antibody recognition for decades, A/H3N2 influenza viruses emerged with altered receptor specificities. These viruses lost the ability to agglutinate erythrocytes critical for antigenic characterization and give low yields and acquire adaptive mutations when cultured in eggs and cells, contributing to recent vaccine challenges. Examination of receptor specificities of A/H3N2 viruses reveals that recent viruses compensated for decreased binding of the prototypic human receptor by recognizing α2,6-sialosides on extended LacNAc moieties. Erythrocyte glycomics shows an absence of extended glycans providing a rationale for lack of agglutination by recent A/H3N2 viruses. A glycan remodeling approach installing functional receptors on erythrocytes, allows antigenic characterization of recent A/H3N2 viruses confirming the cocirculation of antigenically different viruses in humans. Computational analysis of HAs in complex with sialosides having extended LacNAc moieties reveals that mutations distal to the RBD reoriented the Y159 side chain resulting in an extended receptor binding site.
Collapse
MESH Headings
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Binding Sites
- Carbohydrate Sequence
- Erythrocytes/metabolism
- Erythrocytes/virology
- Glycomics/methods
- Glycosides/chemistry
- Glycosides/metabolism
- Hemagglutination Inhibition Tests
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza, Human/virology
- Microarray Analysis/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sialic Acids/chemistry
- Sialic Acids/metabolism
Collapse
Affiliation(s)
- Frederik Broszeit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Rosanne J van Beek
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Luca Unione
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus MC, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands.
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
28
|
Pedruzzi G, Rouzine IM. An evolution-based high-fidelity method of epistasis measurement: Theory and application to influenza. PLoS Pathog 2021; 17:e1009669. [PMID: 34153082 PMCID: PMC8248644 DOI: 10.1371/journal.ppat.1009669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/01/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Linkage effects in a multi-locus population strongly influence its evolution. The models based on the traveling wave approach enable us to predict the average speed of evolution and the statistics of phylogeny. However, predicting statistically the evolution of specific sites and pairs of sites in the multi-locus context remains a mathematical challenge. In particular, the effects of epistasis, the interaction of gene regions contributing to phenotype, is difficult to predict theoretically and detect experimentally in sequence data. A large number of false-positive interactions arises from stochastic linkage effects and indirect interactions, which mask true epistatic interactions. Here we develop a proof-of-principle method to filter out false-positive interactions. We start by demonstrating that the averaging of haplotype frequencies over multiple independent populations is necessary but not sufficient for epistatic detection, because it still leaves high numbers of false-positive interactions. To compensate for the residual stochastic noise, we develop a three-way haplotype method isolating true interactions. The fidelity of the method is confirmed analytically and on simulated genetic sequences evolved with a known epistatic network. The method is then applied to a large sequence database of neurominidase protein of influenza A H1N1 obtained from various geographic locations to infer the epistatic network responsible for the difference between the pre-pandemic virus and the pandemic strain of 2009. These results present a simple and reliable technique to measure epistatic interactions of any sign from sequence data. Interactions between genomic sites create a fitness landscape. The knowledge of topology and strength of interactions is vital for predicting the escape of viruses from drugs and immune response and their passing through fitness valleys. Many efforts have been invested into measuring these interactions from DNA sequence sets. Unfortunately, reproducibility of the results remains low due partly to a very small fraction of interaction pairs and partly to stochastic linkage noise masking true interactions. Here we propose a method to separate stochastic linkage and indirect interactions from epistatic interactions and apply it to influenza virus sequence data.
Collapse
Affiliation(s)
- Gabriele Pedruzzi
- Sorbonne Université, Institute de Biologie Paris-Seine, Laboratoire de Biologie Computationelle et Quantitative LCQB, Paris, France
| | - Igor M. Rouzine
- Sorbonne Université, Institute de Biologie Paris-Seine, Laboratoire de Biologie Computationelle et Quantitative LCQB, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
30
|
Xie VC, Pu J, Metzger BP, Thornton JW, Dickinson BC. Contingency and chance erase necessity in the experimental evolution of ancestral proteins. eLife 2021; 10:67336. [PMID: 34061027 PMCID: PMC8282340 DOI: 10.7554/elife.67336] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
The roles of chance, contingency, and necessity in evolution are unresolved because they have never been assessed in a single system or on timescales relevant to historical evolution. We combined ancestral protein reconstruction and a new continuous evolution technology to mutate and select proteins in the B-cell lymphoma-2 (BCL-2) family to acquire protein–protein interaction specificities that occurred during animal evolution. By replicating evolutionary trajectories from multiple ancestral proteins, we found that contingency generated over long historical timescales steadily erased necessity and overwhelmed chance as the primary cause of acquired sequence variation; trajectories launched from phylogenetically distant proteins yielded virtually no common mutations, even under strong and identical selection pressures. Chance arose because many sets of mutations could alter specificity at any timepoint; contingency arose because historical substitutions changed these sets. Our results suggest that patterns of variation in BCL-2 sequences – and likely other proteins, too – are idiosyncratic products of a particular and unpredictable course of historical events. One of the most fundamental and unresolved questions in evolutionary biology is whether the outcomes of evolution are predictable. Is the diversity of life we see today the expected result of organisms adapting to their environment throughout history (also known as natural selection) or the product of random chance? Or did chance events early in history shape the paths that evolution could take next, determining the biological forms that emerged under natural selection much later? These questions are hard to study because evolution happened only once, long ago. To overcome this barrier, Xie, Pu, Metzger et al. developed an experimental approach that can evolve reconstructed ancestral proteins that existed deep in the past. Using this method, it is possible to replay evolution multiple times, from various historical starting points, under conditions similar to those that existed long ago. The end products of the evolutionary trajectories can then be compared to determine how predictable evolution actually is. Xie, Pu, Metzger et al. studied proteins belonging to the BCL-2 family, which originated some 800 million years ago. These proteins have diversified greatly over time in both their genetic sequences and their ability to bind to specific partner proteins called co-regulators. Xie, Pu, Metzger et al. synthesized BCL-2 proteins that existed at various times in the past. Each ancestral protein was then allowed to evolve repeatedly under natural selection to acquire the same co-regulator binding functions that evolved during history. At the end of each evolutionary trajectory, the genetic sequence of the resulting BCL-2 proteins was recorded. This revealed that the outcomes of evolution were almost completely unpredictable: trajectories initiated from the same ancestral protein produced proteins with very different sequences, and proteins launched from different ancestral starting points were even more dissimilar. Further experiments identified the mutations in each trajectory that caused changes in coregulator binding. When these mutations were introduced into other ancestral proteins, they did not yield the same change in function. This suggests that early chance events influenced each protein’s evolution in an unpredictable way by opening and closing the paths available to it in the future. This research expands our understanding of evolution on a molecular level whilst providing a new experimental approach for studying evolutionary drivers in more detail. The results suggest that BCL-2 proteins, in all their various forms, are unique products of a particular, unpredictable course of history set in motion by ancient chance events.
Collapse
Affiliation(s)
| | - Jinyue Pu
- Department of Chemistry, University of Chicago, Chicago, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, United States
| |
Collapse
|
31
|
Burton TD, Eyre NS. Applications of Deep Mutational Scanning in Virology. Viruses 2021; 13:1020. [PMID: 34071591 PMCID: PMC8227372 DOI: 10.3390/v13061020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Several recently developed high-throughput techniques have changed the field of molecular virology. For example, proteomics studies reveal complete interactomes of a viral protein, genome-wide CRISPR knockout and activation screens probe the importance of every single human gene in aiding or fighting a virus, and ChIP-seq experiments reveal genome-wide epigenetic changes in response to infection. Deep mutational scanning is a relatively novel form of protein science which allows the in-depth functional analysis of every nucleotide within a viral gene or genome, revealing regions of importance, flexibility, and mutational potential. In this review, we discuss the application of this technique to RNA viruses including members of the Flaviviridae family, Influenza A Virus and Severe Acute Respiratory Syndrome Coronavirus 2. We also briefly discuss the reverse genetics systems which allow for analysis of viral replication cycles, next-generation sequencing technologies and the bioinformatics tools that facilitate this research.
Collapse
Affiliation(s)
| | - Nicholas S. Eyre
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
32
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
33
|
Site-Specific Evolutionary Rate Shifts in HIV-1 and SIV. Viruses 2020; 12:v12111312. [PMID: 33207801 PMCID: PMC7696578 DOI: 10.3390/v12111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Site-specific evolutionary rate shifts are defined as protein sites, where the rate of substitution has changed dramatically across the phylogeny. With respect to a given clade, sites may either undergo a rate acceleration or a rate deceleration, reflecting a site that was conserved and became variable, or vice-versa, respectively. Sites displaying such a dramatic evolutionary change may point to a loss or gain of function at the protein site, reflecting adaptation, or they may indicate epistatic interactions among sites. Here, we analyzed full genomes of HIV and SIV-1 and identified 271 rate-shifting sites along the HIV-1/SIV phylogeny. The majority of rate shifts occurred at long branches, often corresponding to cross-species transmission branches. We noted that in most proteins, the number of rate accelerations and decelerations was equal, and we suggest that this reflects epistatic interactions among sites. However, several accessory proteins were enriched for either accelerations or decelerations, and we suggest that this may be a signature of adaptation to new hosts. Interestingly, the non-pandemic HIV-1 group O clade exhibited a substantially higher number of rate-shift events than the pandemic group M clade. We propose that this may be a reflection of the height of the species barrier between gorillas and humans versus chimpanzees and humans. Our results provide a genome-wide view of the constraints operating on proteins of HIV-1 and SIV.
Collapse
|
34
|
Sriwilaijaroen N, Suzuki Y. Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition. Vaccines (Basel) 2020; 8:E587. [PMID: 33036202 PMCID: PMC7712180 DOI: 10.3390/vaccines8040587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Among the four genera of influenza viruses (IVs) and the four genera of coronaviruses (CoVs), zoonotic αIV and βCoV have occasionally caused airborne epidemic outbreaks in humans, who are immunologically naïve, and the outbreaks have resulted in high fatality rates as well as social and economic disruption and losses. The most devasting influenza A virus (IAV) in αIV, pandemic H1N1 in 1918, which caused at least 40 million deaths from about 500 million cases of infection, was the first recorded emergence of IAVs in humans. Usually, a novel human-adapted virus replaces the preexisting human-adapted virus. Interestingly, two IAV subtypes, A/H3N2/1968 and A/H1N1/2009 variants, and two lineages of influenza B viruses (IBV) in βIV, B/Yamagata and B/Victoria lineage-like viruses, remain seasonally detectable in humans. Both influenza C viruses (ICVs) in γIV and four human CoVs, HCoV-229E and HCoV-NL63 in αCoV and HCoV-OC43 and HCoV-HKU1 in βCoV, usually cause mild respiratory infections. Much attention has been given to CoVs since the global epidemic outbreaks of βSARS-CoV in 2002-2004 and βMERS-CoV from 2012 to present. βSARS-CoV-2, which is causing the ongoing COVID-19 pandemic that has resulted in 890,392 deaths from about 27 million cases of infection as of 8 September 2020, has provoked worldwide investigations of CoVs. With the aim of developing efficient strategies for controlling virus outbreaks and recurrences of seasonal virus variants, here we overview the structures, diversities, host ranges and host receptors of all IVs and CoVs and critically review current knowledge of receptor binding specificity of spike glycoproteins, which mediates infection, of IVs and of zoonotic, pandemic and seasonal CoVs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yasuo Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
35
|
Sevy AM, Gilchuk IM, Brown BP, Bozhanova NG, Nargi R, Jensen M, Meiler J, Crowe JE. Computationally Designed Cyclic Peptides Derived from an Antibody Loop Increase Breadth of Binding for Influenza Variants. Structure 2020; 28:1114-1123.e4. [PMID: 32610044 PMCID: PMC7544621 DOI: 10.1016/j.str.2020.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
The influenza hemagglutinin (HA) glycoprotein is the target of many broadly neutralizing antibodies. However, influenza viruses can rapidly escape antibody recognition by mutation of hypervariable regions of HA that overlap with the binding epitope. We hypothesized that by designing peptides to mimic antibody loops, we could enhance breadth of binding to HA antigenic variants by reducing contact with hypervariable residues on HA that mediate escape. We designed cyclic peptides that mimic the heavy-chain complementarity-determining region 3 (CDRH3) of anti-influenza broadly neutralizing antibody C05 and show that these peptides bound to HA molecules with <100 nM affinity, comparable with that of the full-length parental C05 IgG. In addition, these peptides exhibited increased breadth of recognition to influenza H4 and H7 subtypes by eliminating clashes between the hypervariable antigenic regions and the antibody CDRH1 loop. This approach can be used to generate antibody-derived peptides against a wide variety of targets.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Binding Sites, Antibody
- Complementarity Determining Regions/chemistry
- Dogs
- Drug Design
- Epitopes/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H1N1 Subtype/chemistry
- Madin Darby Canine Kidney Cells
- Molecular Dynamics Simulation
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/immunology
- Peptides, Cyclic/metabolism
- Proof of Concept Study
- Protein Conformation
- Protein Engineering/methods
- Workload
Collapse
Affiliation(s)
- Alexander M Sevy
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Iuliia M Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Benjamin P Brown
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Nina G Bozhanova
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mattie Jensen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jens Meiler
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - James E Crowe
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses 2020; 12:v12091053. [PMID: 32971825 PMCID: PMC7551194 DOI: 10.3390/v12091053] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Hemagglutinin (HA) glycoprotein is an important focus of influenza research due to its role in antigenic drift and shift, as well as its receptor binding and membrane fusion functions, which are indispensable for viral entry. Over the past four decades, X-ray crystallography has greatly facilitated our understanding of HA receptor binding, membrane fusion, and antigenicity. The recent advances in cryo-EM have further deepened our comprehension of HA biology. Since influenza HA constantly evolves in natural circulating strains, there are always new questions to be answered. The incessant accumulation of knowledge on the structural biology of HA over several decades has also facilitated the design and development of novel therapeutics and vaccines. This review describes the current status of the field of HA structural biology, how we got here, and what the next steps might be.
Collapse
|
37
|
Wu NC, Wilson IA. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038778. [PMID: 31871236 DOI: 10.1101/cshperspect.a038778] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemagglutinin (HA) is most abundant glycoprotein on the influenza virus surface. Influenza HA promotes viral entry by engaging the receptor and mediating virus-host membrane fusion. At the same time, HA is the major antigen of the influenza virus. HA antigenic shift can result in pandemics, whereas antigenic drift allows human circulating strains to escape herd immunity. Most antibody responses against HA are strain-specific. However, antibodies that have neutralizing activities against multiple strains or even subtypes have now been discovered and characterized. These broadly neutralizing antibodies (bnAbs) target conserved regions on HA, such as the receptor-binding site and the stem domain. Structural studies of such bnAbs have provided important insight into universal influenza vaccine and therapeutic design. This review discusses the HA functions as well as HA-antibody interactions from a structural perspective.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
38
|
Zost SJ, Wu NC, Hensley SE, Wilson IA. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis 2020; 219:S38-S45. [PMID: 30535315 DOI: 10.1093/infdis/jiy696] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza viruses routinely acquire mutations in their hemagglutinin (HA) and neuraminidase (NA) glycoproteins that abrogate binding of pre-existing antibodies in a process known as antigenic drift. Most human antibodies against HA and NA are directed against epitopes that are hypervariable and not against epitopes that are conserved among different influenza virus strains. Universal influenza vaccines are currently being developed to elicit protective responses against functionally conserved sites on influenza proteins where viral escape mutations can result in large fitness costs [1]. Universal vaccine targets include the highly conserved HA stem domain [2-12], the less conserved HA receptor-binding site (RBS) [13-16], as well as conserved sites on NA [17-19]. One central challenge of universal vaccine efforts is to steer human antibody responses away from immunodominant, variable epitopes and towards subdominant, functionally conserved sites. Overcoming this challenge will require further understanding of the structural basis of broadly neutralizing HA and NA antibody binding epitopes and factors that influence immunodominance hierarchies of human antibody responses.
Collapse
Affiliation(s)
- Seth J Zost
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
39
|
Wu NC, Otwinowski J, Thompson AJ, Nycholat CM, Nourmohammad A, Wilson IA. Major antigenic site B of human influenza H3N2 viruses has an evolving local fitness landscape. Nat Commun 2020; 11:1233. [PMID: 32144244 PMCID: PMC7060233 DOI: 10.1038/s41467-020-15102-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/15/2020] [Indexed: 01/07/2023] Open
Abstract
Antigenic drift of influenza virus hemagglutinin (HA) is enabled by facile evolvability. However, HA antigenic site B, which has become immunodominant in recent human H3N2 influenza viruses, is also evolutionarily constrained by its involvement in receptor binding. Here, we employ deep mutational scanning to probe the local fitness landscape of HA antigenic site B in six different human H3N2 strains spanning from 1968 to 2016. We observe that the fitness landscape of HA antigenic site B can be very different between strains. Sequence variants that exhibit high fitness in one strain can be deleterious in another, indicating that the evolutionary constraints of antigenic site B have changed over time. Structural analysis suggests that the local fitness landscape of antigenic site B can be reshaped by natural mutations via modulation of the receptor-binding mode. Overall, these findings elucidate how influenza virus continues to explore new antigenic space despite strong functional constraints.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Binding Sites/genetics
- Crystallography, X-Ray
- DNA Mutational Analysis
- Dogs
- Evolution, Molecular
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/metabolism
- Madin Darby Canine Kidney Cells
- Mutation
- Protein Domains/genetics
- Protein Domains/immunology
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jakub Otwinowski
- Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
| | - Andrew J Thompson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
40
|
de Vries E, Du W, Guo H, de Haan CA. Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility. Trends Microbiol 2020; 28:57-67. [PMID: 31629602 PMCID: PMC7172302 DOI: 10.1016/j.tim.2019.08.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAVs) occasionally cross the species barrier and adapt to novel host species. This requires readjustment of the functional balance of the sialic acid receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) to the sialoglycan-receptor repertoire of the new host. Novel techniques have revealed mechanistic details of this HA-NA-receptor balance, emphasizing a previously underappreciated crucial role for NA in driving the motility of receptor-associated IAV particles. Motility enables virion penetration of the sialylated mucus layer as well as attachment to, and uptake into, underlying epithelial cells. As IAVs are essentially irreversibly bound in the absence of NA activity, the fine-tuning of the HA-NA-receptor balance rather than the binding avidity of IAV particles per se is an important factor in determining host species tropism.
Collapse
Affiliation(s)
- Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | - Wenjuan Du
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Hongbo Guo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Cornelis A.M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands,Correspondence:
| |
Collapse
|
41
|
Ben-David M, Soskine M, Dubovetskyi A, Cherukuri KP, Dym O, Sussman JL, Liao Q, Szeler K, Kamerlin SCL, Tawfik DS. Enzyme Evolution: An Epistatic Ratchet versus a Smooth Reversible Transition. Mol Biol Evol 2019; 37:1133-1147. [DOI: 10.1093/molbev/msz298] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described. The structural and mechanistic causes of reversion compatibility versus incompatibility therefore remain unclear. We examined two laboratory evolution trajectories of mammalian paraoxonase-1, a lactonase with promiscuous organophosphate hydrolase (OPH) activity. Both trajectories began with the same active-site mutant, His115Trp, which lost the native lactonase activity and acquired higher OPH activity. A neo-functionalization trajectory amplified the promiscuous OPH activity, whereas the re-functionalization trajectory restored the native activity, thus generating a new lactonase that lacks His115. The His115 revertants of these trajectories indicated opposite trends. Revertants of the neo-functionalization trajectory lost both the evolved OPH and the original lactonase activity. Revertants of the trajectory that restored the original lactonase function were, however, fully active. Crystal structures and molecular simulations show that in the newly diverged OPH, the reverted His115 and other catalytic residues are displaced, thus causing loss of both the original and the new activity. In contrast, in the re-functionalization trajectory, reversion compatibility of the original lactonase activity derives from mechanistic versatility whereby multiple residues can fulfill the same task. This versatility enables unique sequence-reversible compositions that are inaccessible when the active site was repurposed toward a new function.
Collapse
Affiliation(s)
- Moshe Ben-David
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Misha Soskine
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Artem Dubovetskyi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Orly Dym
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Joel L Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Qinghua Liao
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Klaudia Szeler
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | | | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Chang D, Zaia J. Why Glycosylation Matters in Building a Better Flu Vaccine. Mol Cell Proteomics 2019; 18:2348-2358. [PMID: 31604803 PMCID: PMC6885707 DOI: 10.1074/mcp.r119.001491] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Low vaccine efficacy against seasonal influenza A virus (IAV) stems from the ability of the virus to evade existing immunity while maintaining fitness. Although most potent neutralizing antibodies bind antigenic sites on the globular head domain of the IAV envelope glycoprotein hemagglutinin (HA), the error-prone IAV polymerase enables rapid evolution of key antigenic sites, resulting in immune escape. Significantly, the appearance of new N-glycosylation consensus sequences (sequons, NXT/NXS, rarely NXC) on the HA globular domain occurs among the more prevalent mutations as an IAV strain undergoes antigenic drift. The appearance of new glycosylation shields underlying amino acid residues from antibody contact, tunes receptor specificity, and balances receptor avidity with virion escape, all of which help maintain viral propagation through seasonal mutations. The World Health Organization selects seasonal vaccine strains based on information from surveillance, laboratory, and clinical observations. Although the genetic sequences are known, mature glycosylated structures of circulating strains are not defined. In this review, we summarize mass spectrometric methods for quantifying site-specific glycosylation in IAV strains and compare the evolution of IAV glycosylation to that of human immunodeficiency virus. We argue that the determination of site-specific glycosylation of IAV glycoproteins would enable development of vaccines that take advantage of glycosylation-dependent mechanisms whereby virus glycoproteins are processed by antigen presenting cells.
Collapse
Affiliation(s)
- Deborah Chang
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Joseph Zaia
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118.
| |
Collapse
|
43
|
Crowe JE. Influenza Virus-Specific Human Antibody Repertoire Studies. THE JOURNAL OF IMMUNOLOGY 2019; 202:368-373. [PMID: 30617118 DOI: 10.4049/jimmunol.1801459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The diversity of Ag-specific adaptive receptors on the surface of B cells and in the population of secreted Abs is enormous, but increasingly, we are acquiring the technical capability to interrogate Ab repertoires in great detail. These Ab technologies have been especially pointed at understanding the complex issues of immunity to infection and disease caused by influenza virus, one of the most common and vexing medical problems in man. Influenza immunity is particularly interesting as a model system because the antigenic diversity of influenza strains and proteins is high and constantly evolving. Discovery of canonical features in the subset of the influenza repertoire response that is broadly reactive for diverse influenza strains has spurred the recent optimism for creating universal influenza vaccines. Using new technologies for sequencing Ab repertoires at great depth is helping us to understand the central features of influenza immunity.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232; .,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and .,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
44
|
Le KP, Do PC, Amaro RE, Le L. Molecular Docking of Broad-Spectrum Antibodies on Hemagglutinins of Influenza A Virus. Evol Bioinform Online 2019; 15:1176934319876938. [PMID: 31555044 PMCID: PMC6747855 DOI: 10.1177/1176934319876938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/01/2023] Open
Abstract
Influenza A has caused several deadly pandemics throughout human history. The virus is often resistant to developed treatments because of its genetic drift or shift property. Broad-spectrum antibodies show a promising potential to overcome the resistance of influenza viruses. In silico studies on broad-reactive antibodies and their interactions with hemagglutinins might shed light on the rational design of a universal vaccine. In this study, 11 broad-spectrum antibodies (or antigen-binding fragments) and 14 hemagglutinins of H3N2 and H5N1 strains were docked and analyzed to provide information about the construction of the scaffold for using universal antibodies against the influenza A virus. Antigen-binding fragments that have high number of appearances in the top 3 within each H3 and H5 subtypes were chosen for protein-protein interaction analysis. The results show that while the hydrogen bond is important for Ab/Fab binding to H3, the H5-Ab/Fab system may need cation-pi interaction for a strong interaction.
Collapse
Affiliation(s)
- Khanh Pb Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc-Chau Do
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam.,Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
45
|
Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC, Bedford T, Stevens-Ayers T, Boeckh M, Hurt AC, Lakdawala SS, Hensley SE, Bloom JD. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 2019; 8:e49324. [PMID: 31452511 PMCID: PMC6711711 DOI: 10.7554/elife.49324] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
A longstanding question is how influenza virus evolves to escape human immunity, which is polyclonal and can target many distinct epitopes. Here, we map how all amino-acid mutations to influenza's major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations is not present among ferrets that have been infected just once with a defined viral strain. Our results show how different single mutations help influenza virus escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.
Collapse
Affiliation(s)
- Juhye M Lee
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Rachel Eguia
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Seth J Zost
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Saket Choudhary
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUnited States
| | - Patrick C Wilson
- Department of MedicineSection of Rheumatology, University of ChicagoChicagoUnited States
| | - Trevor Bedford
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Michael Boeckh
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Seema S Lakdawala
- Department of Microbiology and Molecular GeneticsSchool of Medicine, University of PittsburghPittsburghUnited States
| | - Scott E Hensley
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jesse D Bloom
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
46
|
Wu NC, Lv H, Thompson AJ, Wu DC, Ng WWS, Kadam RU, Lin CW, Nycholat CM, McBride R, Liang W, Paulson JC, Mok CKP, Wilson IA. Preventing an Antigenically Disruptive Mutation in Egg-Based H3N2 Seasonal Influenza Vaccines by Mutational Incompatibility. Cell Host Microbe 2019; 25:836-844.e5. [PMID: 31151913 PMCID: PMC6579542 DOI: 10.1016/j.chom.2019.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022]
Abstract
Egg-based seasonal influenza vaccines are the major preventive countermeasure against influenza virus. However, their effectiveness can be compromised when antigenic changes arise from egg-adaptive mutations on influenza hemagglutinin (HA). The L194P mutation is commonly observed in egg-based H3N2 vaccine seed strains and significantly alters HA antigenicity. An approach to prevent L194P would therefore be beneficial. We show that emergence of L194P during egg passaging can be impeded by preexistence of a G186V mutation, revealing strong incompatibility between these mutations. X-ray structures illustrate that individual G186V and L194P mutations have opposing effects on the HA receptor-binding site (RBS), and when both G186V and L194P are present, the RBS is severely disrupted. Importantly, wild-type HA antigenicity is maintained with G186V, but not L194P. Our results demonstrate that these epistatic interactions can be used to prevent the emergence of mutations that adversely alter antigenicity during egg adaptation. Most H3N2 egg isolates carry hemagglutinin mutation G186V or L194P, but not both Hemagglutinin double mutation G186V/L194P is highly deleterious to the virus Hemagglutinin double mutation G186V/L194P disrupts the receptor-binding site Wild-type hemagglutinin antigenicity is maintained in G186V, but not in L194P
Collapse
MESH Headings
- Adaptation, Biological
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Binding Sites
- Chick Embryo
- Crystallography, X-Ray
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/growth & development
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mutation, Missense
- Protein Conformation
- Technology, Pharmaceutical/methods
- Virus Cultivation/methods
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Andrew J Thompson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Douglas C Wu
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wilson W S Ng
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corwin M Nycholat
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Weiwen Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - James C Paulson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chris K P Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Koel BF, Burke DF, van der Vliet S, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME, Smith DJ, Fouchier RAM. Epistatic interactions can moderate the antigenic effect of substitutions in haemagglutinin of influenza H3N2 virus. J Gen Virol 2019; 100:773-777. [PMID: 31017567 DOI: 10.1099/jgv.0.001263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously showed that single amino acid substitutions at seven positions in haemagglutinin determined major antigenic change of influenza H3N2 virus. Here, the impact of two such substitutions was tested in 11 representative H3 haemagglutinins to investigate context-dependence effects. The antigenic effect of substitutions introduced at haemagglutinin position 145 was fully independent of the amino acid context of the representative haemagglutinins. Antigenic change caused by substitutions introduced at haemagglutinin position 155 was variable and context-dependent. Our results suggest that epistatic interactions with contextual amino acids in the haemagglutinin can moderate the magnitude of antigenic change.
Collapse
Affiliation(s)
- Björn F Koel
- 1 Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - David F Burke
- 2 Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Derek J Smith
- 1 Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
- 2 Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ron A M Fouchier
- 1 Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Abstract
Understanding antigenic variation in influenza virus strains and how the human immune system recognizes strains are central challenges for vaccinologists. Antibodies directed to the 2 major viral surface membrane proteins, hemagglutinin (HA) and neuraminidase (NA), mediate protection against reinfection following natural infection or vaccination, but HA and NA protein sequences in field strains are highly variable. The central questions are how to achieve protective antibody responses in a higher proportion of individuals and how to induce responses with more breadth and durability. Studies using isolation of human monoclonal antibodies followed by structural and functional characterization revealed conserved antigenic sites recognized by broadly cross-reactive antibodies. The antigenic landscape on HA and NA proteins is coming into focus to inform studies of the correlates and mechanisms of immunity. Understanding the antibody determinants of influenza immunity points the way toward development and testing of next-generation vaccines with potential to confer broadly protective immunity.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- Cross Reactions/immunology
- Genetic Drift
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunologic Memory
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Neuraminidase/genetics
- Neuraminidase/immunology
- Point Mutation
- Vaccination
- Vaccines, Inactivated
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
50
|
Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Nat Microbiol 2019; 4:734-747. [PMID: 30886356 PMCID: PMC6818971 DOI: 10.1038/s41564-019-0392-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells and interfering with processes essential to the viral lifecycle, chiefly entry into the host cell. For individuals that successfully control infection, virus-elicited antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of the antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this review, we compare the adaptive humoral immune responses to HIV, influenza, and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza an acute infection with multiple exposures during a lifetime and annual vaccination; and filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses and important lessons to guide future development of vaccines and immunotherapeutics.
Collapse
|