1
|
Gao Y, Li J, Gan L, Cai M, Lei X, Yu J. SCN10A gene polymorphism is associated with pain sensitivity and postoperative analgesic effects in patients undergoing gynecological laparoscopy. Eur J Med Res 2025; 30:36. [PMID: 39825384 PMCID: PMC11742538 DOI: 10.1186/s40001-025-02284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons. OBJECTIVES This study aims to investigate the relationship between genetic mutations in the SCN10A gene (rs6795970) and postoperative analgesic effects following gynecological laparoscopic surgery. METHODS Two hundred female patients undergoing gynecological laparoscopic surgery under general anesthesia were included. pain sensitivity was evaluated using the catastrophizing scale and pain sensitivity questionnaire (PSQ). Patients received patient-controlled intravenous analgesia with sufentanil and dexmedetomidine for 48 h post-surgery. Postoperative pain indicators, such as visual analog scale (VAS) scores, Ramsay scores, and side effects were recorded. SCN10A rs6795970 mutations were identified using MassARRAY SNP typing technology, and patients were categoried into homozygous mutant (AA), wild type (GG), and heterozygous mutation (GA) groups for analysis. RESULTS Patients in the AA group had higher scores on the pain Catastrophizing Scale, PSQ-total, PSQ-minor, and PSQ-moderate compared to GA and GG groups (P < 0.05). VAS scores at 4, 6, and 12 h post-operation were higher in the AA group than the GG group (P < 0.05). Ramsay scores were lower in AA patients at 2 and 4 h post-operation compared to GA and GG groups (P < 0.05). The AA group exhibited more self-control analgesic pump compressions within the first 24 h post-surgery, quicker depletion of analgesics in the pump, and lower patient satisfaction with pain relief compared to GA and GG groups (P < 0.05). CONCLUSIONS Female patients with homozygous SCN10A mutations may experience higher preoperative pain scores and increased sensitivity to postoperative pain following gynecological laparoscopic surgery with intravenous patient-controlled analgesia. TRIAL REGISTRATION www.chictr.org.cn , registration number: ChiCTR2200062425.
Collapse
Affiliation(s)
- Yang Gao
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China
| | - Jing Li
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China
| | - Lin Gan
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China
| | - Meng Cai
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China
| | - Xiaofeng Lei
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China
| | - Jin Yu
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
2
|
Goette A, Corradi D, Dobrev D, Aguinaga L, Cabrera JA, Chugh SS, de Groot JR, Soulat-Dufour L, Fenelon G, Hatem SN, Jalife J, Lin YJ, Lip GYH, Marcus GM, Murray KT, Pak HN, Schotten U, Takahashi N, Yamaguchi T, Zoghbi WA, Nattel S. Atrial cardiomyopathy revisited-evolution of a concept: a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace 2024; 26:euae204. [PMID: 39077825 PMCID: PMC11431804 DOI: 10.1093/europace/euae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS The concept of "atrial cardiomyopathy" (AtCM) had been percolating through the literature since its first mention in 1972. Since then, publications using the term were sporadic until the decision was made to convene an expert working group with representation from four multinational arrhythmia organizations to prepare a consensus document on atrial cardiomyopathy in 2016 (EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication). Subsequently, publications on AtCM have increased progressively. METHODS AND RESULTS The present consensus document elaborates the 2016 AtCM document further to implement a simple AtCM staging system (AtCM stages 1-3) by integrating biomarkers, atrial geometry, and electrophysiological changes. However, the proposed AtCM staging needs clinical validation. Importantly, it is clearly stated that the presence of AtCM might serve as a substrate for the development of atrial fibrillation (AF) and AF may accelerates AtCM substantially, but AtCM per se needs to be viewed as a separate entity. CONCLUSION Thus, the present document serves as a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS) to contribute to the evolution of the AtCM concept.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
- MAESTRIA Consortium at AFNET, Münster, Germany
- Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology; Center of Excellence for Toxicological Research (CERT), University of Parma, Parma, Italy
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Montréal Heart Institute, Université de Montréal, 5000 Belanger St. E., Montréal, Québec H1T1C8, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Luis Aguinaga
- Director Centro Integral de Arritmias Tucumán, Presidente Sociedad de Cardiología de Tucumàn, Ex-PRESIDENTE DE SOLAECE (LAHRS), Sociedad Latinoamericana de EstimulaciónCardíaca y Electrofisiología, Argentina
| | - Jose-Angel Cabrera
- Hospital Universitario QuirónSalud, Madrid, Spain
- European University of Madrid, Madrid, Spain
| | - Sumeet S Chugh
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Health System, Los Angeles, CA, USA
| | - Joris R de Groot
- Department of Cardiology; Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, The Netherlands
| | - Laurie Soulat-Dufour
- Department of Cardiology, Saint Antoine and Tenon Hospital, AP-HP, Unité INSERM UMRS 1166 Unité de recherche sur les maladies cardiovasculaires et métaboliques, Institut Hospitalo-Universitaire, Institut de Cardiométabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | | | - Stephane N Hatem
- Department of Cardiology, Assistance Publique—Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Sorbonne University; INSERM UMR_S1166; Institute of Cardiometabolism and Nutrition-ICAN, Paris, France
| | - Jose Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Yenn-Jiang Lin
- Cardiovascular Center, Taipei Veterans General Hospital, and Faculty of Medicine National Yang-Ming University Taipei, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregory M Marcus
- Electrophysiology Section, Division of Cardiology, University of California, San Francisco, USA
| | - Katherine T Murray
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Ulrich Schotten
- MAESTRIA Consortium at AFNET, Münster, Germany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Takanori Yamaguchi
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - William A Zoghbi
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Stanley Nattel
- McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G1Y6, Canada
- West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg, Essen, Germany
| |
Collapse
|
3
|
Kukendrarajah K, Farmaki AE, Lambiase PD, Schilling R, Finan C, Floriaan Schmidt A, Providencia R. Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies. EBioMedicine 2024; 105:105194. [PMID: 38941956 PMCID: PMC11260865 DOI: 10.1016/j.ebiom.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development. METHODS Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF. FINDINGS 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development. INTERPRETATION Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF. FUNDING KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.
Collapse
Affiliation(s)
- Kishore Kukendrarajah
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom.
| | - Aliki-Eleni Farmaki
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom; Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom
| | - Richard Schilling
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Amand Floriaan Schmidt
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, the Netherlands
| | - Rui Providencia
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| |
Collapse
|
4
|
Broman MT, Nadadur RD, Perez-Cervantes C, Burnicka-Turek O, Lazarevic S, Gams A, Laforest B, Steimle JD, Iddir S, Wang Z, Smith L, Mazurek SR, Olivey HE, Zhou P, Gadek M, Shen KM, Khan Z, Theisen JW, Yang XH, Ikegami K, Efimov IR, Pu WT, Weber CR, McNally EM, Svensson EC, Moskowitz IP. A Genomic Link From Heart Failure to Atrial Fibrillation Risk: FOG2 Modulates a TBX5/GATA4-Dependent Atrial Gene Regulatory Network. Circulation 2024; 149:1205-1230. [PMID: 38189150 PMCID: PMC11152454 DOI: 10.1161/circulationaha.123.066804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.
Collapse
Affiliation(s)
- Michael T. Broman
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Rangarajan D. Nadadur
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Carlos Perez-Cervantes
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Ozanna Burnicka-Turek
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Sonja Lazarevic
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Anna Gams
- Department of Biomedical Engineering, George Washington University
| | - Brigitte Laforest
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Jeffrey D. Steimle
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Sabrina Iddir
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Zhezhen Wang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Linsin Smith
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Stefan R. Mazurek
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
| | - Harold E. Olivey
- Department of Biology, Indiana University Northwest, Gary, IN 46408
| | | | - Margaret Gadek
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Kaitlyn M. Shen
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Zoheb Khan
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Joshua W.M. Theisen
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Xinan H. Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Igor R. Efimov
- Department of Biomedical Engineering, George Washington University
| | - William T. Pu
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, 02115
| | | | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, 303 E. Superior, SQ5-516, Chicago, IL 60611
| | | | - Ivan P. Moskowitz
- Department of Pediatrics, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
- Department of Human Genetics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
5
|
Ali ZS, Bhuiyan A, Vyas P, Miranda-Arboleda AF, Tse G, Bazoukis G, Burak C, Abuzeid W, Lee S, Gupta S, Meghdadi A, Baranchuk A. PR prolongation as a predictor of atrial fibrillation onset: A state-of-the-art review. Curr Probl Cardiol 2024; 49:102469. [PMID: 38369207 DOI: 10.1016/j.cpcardiol.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
First-degree atrioventricular block (1-AVB), characterized by a PR interval exceeding 200 milliseconds, has traditionally been perceived as a benign cardiac condition. Recently, this perception has been challenged by investigations that indicate a potential association between PR prolongation and an elevated risk of atrial fibrillation (AF). To consolidate these findings, we performed a comprehensive review to assess the available evidence indicating a relationship between these two conditions. We searched MEDLINE and EMBASE databases as well as manually searched references of retrieved articles. We selected 18 cohort studies/meta-analyses involving general and special populations. Consistent findings across expansive cohort studies reveal that incremental increases in the PR interval may serve as an independent risk factor for AF. However, our analyses underscore the need for further research into the association between 1-AVB, defined by a specified PR interval cutoff, and the risk of AF.
Collapse
Affiliation(s)
- Zain S Ali
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Abdullah Bhuiyan
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Purav Vyas
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Cengiz Burak
- Department of Medicine, Kingston Health Sciences Center, Queen's University, Kingston, Ontario, Canada
| | - Wael Abuzeid
- Department of Medicine, Kingston Health Sciences Center, Queen's University, Kingston, Ontario, Canada
| | - Sharen Lee
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region
| | - Shyla Gupta
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Amin Meghdadi
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Medicine, Kingston Health Sciences Center, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
6
|
Zarębski Ł, Futyma P, Sethia Y, Futyma M, Kułakowski P. Improvement in Atrioventricular Conduction Using Cardioneuroablation Performed Immediately after Pulmonary Vein Isolation. Healthcare (Basel) 2024; 12:728. [PMID: 38610150 PMCID: PMC11011453 DOI: 10.3390/healthcare12070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
In patients with atrial fibrillation (AF) recurrences after pulmonary vein isolation (PVI), concomitant treatment using anti arrhythmic drugs (AADs) can lead to clinical success. However, patients with atrioventricular (AV) block may not be good candidates for concomitant AAD therapy due to the risk of further worsening of conduction abnormalities. Cardioneuroablation (CNA), as an adjunct to PVI, may offer a solution to this problem. We present a case of a 74-year-old male with paroxysmal AF and first degree AV block in whom CNA following PVI led to PR normalization. The presented case describes an example of CNA utilization in patients with AF undergoing PVI who have concomitant problems with AV conduction and shows that CNA can be sometimes useful in older patients with functional AV block.
Collapse
Affiliation(s)
- Łukasz Zarębski
- Medical College, University of Rzeszów, 35-959 Rzeszów, Poland; (Ł.Z.); (Y.S.)
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
| | - Piotr Futyma
- Medical College, University of Rzeszów, 35-959 Rzeszów, Poland; (Ł.Z.); (Y.S.)
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
| | - Yashvi Sethia
- Medical College, University of Rzeszów, 35-959 Rzeszów, Poland; (Ł.Z.); (Y.S.)
| | - Marian Futyma
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
| | - Piotr Kułakowski
- St. Joseph’s Heart Rhythm Center, 35-623 Rzeszów, Poland; (M.F.); (P.K.)
- Department of Cardiology, Postgraduate Medical School, Grochowski Hospital, 04-073 Warsaw, Poland
| |
Collapse
|
7
|
van der Maarel LE, Christoffels VM. Development of the Cardiac Conduction System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:185-200. [PMID: 38884712 DOI: 10.1007/978-3-031-44087-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.
Collapse
Affiliation(s)
- Lieve E van der Maarel
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Luo L, Li Y, Bao Z, Zhu D, Chen G, Li W, Xiao Y, Wang Z, Zhang Y, Liu H, Chen Y, Liao Y, Cheng K, Li Z. Pericardial Delivery of SDF-1α Puerarin Hydrogel Promotes Heart Repair and Electrical Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302686. [PMID: 37665792 DOI: 10.1002/adma.202302686] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Indexed: 09/06/2023]
Abstract
The stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity. It is highly desirable to selectively recruit the stem cells but block the inflammation. In this work, SDF-1α-encapsulated Puerarin (PUE) hydrogel (SDF-1α@PUE) is capable of enhancing endogenous stem cell homing and simultaneously polarizing the recruited monocyte/macrophages into a repairing phenotype. Flow cytometry analysis of the treated heart tissue shows that endogenous bone marrow mesenchymal stem cells, hemopoietic stem cells, and immune cells are recruited while SDF-1α@PUE efficiently polarizes the recruited monocytes/macrophages into the M2 type. These macrophages influence the preservation of connexin 43 (Cx43) expression which modulates intercellular coupling and improves electrical conduction. Furthermore, by taking advantage of the improved "soil", the recruited stem cells mediate an improved cardiac function by preventing deterioration, promoting neovascular architecture, and reducing infarct size. These findings demonstrate a promising therapeutic platform for MI that not only facilitates heart regeneration but also reduces the risk of cardiac arrhythmias.
Collapse
Affiliation(s)
- Li Luo
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yuetong Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Ziwei Bao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Guoqin Chen
- Cardiology Department of Panyu Central Hospital and Cardiovascular Disease Institute of Panyu District, Guangzhou, 511400, P. R. China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yixin Zhang
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yanmei Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| |
Collapse
|
9
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
10
|
Lopera-Maya EA, Li S, de Brouwer R, Nolte IM, van Breen J, Jongbloed JDH, Swertz MA, Snieder H, Franke L, Wijmenga C, de Boer RA, Deelen P, van der Zwaag PA, Sanna S. Phenotypic and Genetic Factors Associated with Absence of Cardiomyopathy Symptoms in PLN:c.40_42delAGA Carriers. J Cardiovasc Transl Res 2023; 16:1251-1266. [PMID: 36622581 PMCID: PMC10721704 DOI: 10.1007/s12265-022-10347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
The c.40_42delAGA variant in the phospholamban gene (PLN) has been associated with dilated and arrhythmogenic cardiomyopathy, with up to 70% of carriers experiencing a major cardiac event by age 70. However, there are carriers who remain asymptomatic at older ages. To understand the mechanisms behind this incomplete penetrance, we evaluated potential phenotypic and genetic modifiers in 74 PLN:c.40_42delAGA carriers identified in 36,339 participants of the Lifelines population cohort. Asymptomatic carriers (N = 48) showed shorter QRS duration (- 5.73 ms, q value = 0.001) compared to asymptomatic non-carriers, an effect we could replicate in two different independent cohorts. Furthermore, symptomatic carriers showed a higher correlation (rPearson = 0.17) between polygenic predisposition to higher QRS (PGSQRS) and QRS (p value = 1.98 × 10-8), suggesting that the effect of the genetic variation on cardiac rhythm might be increased in symptomatic carriers. Our results allow for improved clinical interpretation for asymptomatic carriers, while our approach could guide future studies on genetic diseases with incomplete penetrance.
Collapse
Affiliation(s)
- Esteban A Lopera-Maya
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shuang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Remco de Brouwer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Justin van Breen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Serena Sanna
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy.
| |
Collapse
|
11
|
van de Vegte YJ, Eppinga RN, van der Ende MY, Hagemeijer YP, Mahendran Y, Salfati E, Smith AV, Tan VY, Arking DE, Ntalla I, Appel EV, Schurmann C, Brody JA, Rueedi R, Polasek O, Sveinbjornsson G, Lecoeur C, Ladenvall C, Zhao JH, Isaacs A, Wang L, Luan J, Hwang SJ, Mononen N, Auro K, Jackson AU, Bielak LF, Zeng L, Shah N, Nethander M, Campbell A, Rankinen T, Pechlivanis S, Qi L, Zhao W, Rizzi F, Tanaka T, Robino A, Cocca M, Lange L, Müller-Nurasyid M, Roselli C, Zhang W, Kleber ME, Guo X, Lin HJ, Pavani F, Galesloot TE, Noordam R, Milaneschi Y, Schraut KE, den Hoed M, Degenhardt F, Trompet S, van den Berg ME, Pistis G, Tham YC, Weiss S, Sim XS, Li HL, van der Most PJ, Nolte IM, Lyytikäinen LP, Said MA, Witte DR, Iribarren C, Launer L, Ring SM, de Vries PS, Sever P, Linneberg A, Bottinger EP, Padmanabhan S, Psaty BM, Sotoodehnia N, Kolcic I, Arnar DO, Gudbjartsson DF, Holm H, Balkau B, Silva CT, Newton-Cheh CH, Nikus K, Salo P, Mohlke KL, Peyser PA, Schunkert H, Lorentzon M, Lahti J, Rao DC, Cornelis MC, Faul JD, Smith JA, Stolarz-Skrzypek K, Bandinelli S, Concas MP, Sinagra G, Meitinger T, Waldenberger M, Sinner MF, et alvan de Vegte YJ, Eppinga RN, van der Ende MY, Hagemeijer YP, Mahendran Y, Salfati E, Smith AV, Tan VY, Arking DE, Ntalla I, Appel EV, Schurmann C, Brody JA, Rueedi R, Polasek O, Sveinbjornsson G, Lecoeur C, Ladenvall C, Zhao JH, Isaacs A, Wang L, Luan J, Hwang SJ, Mononen N, Auro K, Jackson AU, Bielak LF, Zeng L, Shah N, Nethander M, Campbell A, Rankinen T, Pechlivanis S, Qi L, Zhao W, Rizzi F, Tanaka T, Robino A, Cocca M, Lange L, Müller-Nurasyid M, Roselli C, Zhang W, Kleber ME, Guo X, Lin HJ, Pavani F, Galesloot TE, Noordam R, Milaneschi Y, Schraut KE, den Hoed M, Degenhardt F, Trompet S, van den Berg ME, Pistis G, Tham YC, Weiss S, Sim XS, Li HL, van der Most PJ, Nolte IM, Lyytikäinen LP, Said MA, Witte DR, Iribarren C, Launer L, Ring SM, de Vries PS, Sever P, Linneberg A, Bottinger EP, Padmanabhan S, Psaty BM, Sotoodehnia N, Kolcic I, Arnar DO, Gudbjartsson DF, Holm H, Balkau B, Silva CT, Newton-Cheh CH, Nikus K, Salo P, Mohlke KL, Peyser PA, Schunkert H, Lorentzon M, Lahti J, Rao DC, Cornelis MC, Faul JD, Smith JA, Stolarz-Skrzypek K, Bandinelli S, Concas MP, Sinagra G, Meitinger T, Waldenberger M, Sinner MF, Strauch K, Delgado GE, Taylor KD, Yao J, Foco L, Melander O, de Graaf J, de Mutsert R, de Geus EJC, Johansson Å, Joshi PK, Lind L, Franke A, Macfarlane PW, Tarasov KV, Tan N, Felix SB, Tai ES, Quek DQ, Snieder H, Ormel J, Ingelsson M, Lindgren C, Morris AP, Raitakari OT, Hansen T, Assimes T, Gudnason V, Timpson NJ, Morrison AC, Munroe PB, Strachan DP, Grarup N, Loos RJF, Heckbert SR, Vollenweider P, Hayward C, Stefansson K, Froguel P, Groop L, Wareham NJ, van Duijn CM, Feitosa MF, O'Donnell CJ, Kähönen M, Perola M, Boehnke M, Kardia SLR, Erdmann J, Palmer CNA, Ohlsson C, Porteous DJ, Eriksson JG, Bouchard C, Moebus S, Kraft P, Weir DR, Cusi D, Ferrucci L, Ulivi S, Girotto G, Correa A, Kääb S, Peters A, Chambers JC, Kooner JS, März W, Rotter JI, Hicks AA, Smith JG, Kiemeney LALM, Mook-Kanamori DO, Penninx BWJH, Gyllensten U, Wilson JF, Burgess S, Sundström J, Lieb W, Jukema JW, Eijgelsheim M, Lakatta ELM, Cheng CY, Dörr M, Wong TY, Sabanayagam C, Oldehinkel AJ, Riese H, Lehtimäki T, Verweij N, van der Harst P. Genetic insights into resting heart rate and its role in cardiovascular disease. Nat Commun 2023; 14:4646. [PMID: 37532724 PMCID: PMC10397318 DOI: 10.1038/s41467-023-39521-2] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
Collapse
Affiliation(s)
- Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Ruben N Eppinga
- Department of Cardiology, Isala Zwolle ziekenhuis, Zwolle, 8025 AB, the Netherlands
| | - M Yldau van der Ende
- Department of Cardiology, University medical Center Utrecht, Utrecht, 3584 Cx, the Netherlands
| | - Yanick P Hagemeijer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
- Analytical Biochemistry, University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Yuvaraj Mahendran
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Elias Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, 94305, USA
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI48109, USA
| | - Vanessa Y Tan
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, BS82BN, UK
- MRC Integrative Epidemiology, University of Bristol, Bristol, BS82BN, UK
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21215, USA
| | - Ioanna Ntalla
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Emil V Appel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | | | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, 21000, Croatia
- Algebra LAB, Algebra University College, Zagreb, 10000, Croatia
| | | | - Cecile Lecoeur
- UMR 8199, University of Lille Nord de France, Lille, 59000, France
| | - Claes Ladenvall
- Clinial Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 75185, Sweden
- Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, 20502, Sweden
| | - Jing Hua Zhao
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, CB2 0BB, UK
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), Department of Physiology, Maastricht University, Maastricht, 6229ER, Netherlands
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108-2212, Campus Box 8506, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Shih-Jen Hwang
- Division of Intramural Research, National Heart Lung and Blood Institute, NIH, USA, Framingham, 1702, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, FI-33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
| | - Kirsi Auro
- Department of Health, unit of genetics and biomarkers, , National Institute for Health and Welfare, Finland, Helsinki, FI-00290, Finland
- Department of molecular medicine, University of Helsinki, Helsinki, FI-00290, Finland
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Linyao Zeng
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, 80636, Germany
| | - Nabi Shah
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Maria Nethander
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Usher Institute for Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, 45122, Germany
| | - Lu Qi
- Department of Epidemiology, Tulane University, New Orleans, LA, 70112, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Federica Rizzi
- Unit of Biomedicine, Bio4Dreams-Business Nursery for Life Sciences, Milano, 20121, Italy
| | - Toshiko Tanaka
- Longitudinal Study Section, National Institute on Aging, Baltimore, 21224, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Leslie Lange
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045, USA
| | - Martina Müller-Nurasyid
- IBE, Ludwig-Maximilians-University Munich, LMU Munich, Munich, 81377, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, 55101, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Carolina Roselli
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, 68163, Germany
| | - Xiuqing Guo
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Henry J Lin
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Francesca Pavani
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | | | - Raymond Noordam
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, 1081 HL, the Netherlands
| | - Katharina E Schraut
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Marcel den Hoed
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, 75237, Sweden
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, 24105, Germany
| | - Stella Trompet
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, ZA, 2333, the Netherlands
| | - Marten E van den Berg
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, 3015GD, the Netherlands
| | - Giorgio Pistis
- Institute of Genetics and Biomedic Research (IRGB), Italian National Research Council (CNR), Monserrato, (CA), 9042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, USA
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, 17475, Germany
| | - Xueling S Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Hengtong L Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, FI-33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 0SL, UK
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus C, 8000, Denmark
| | - Carlos Iribarren
- Division of Research, Kaiser Permenente of Northern California, Oakland, 94612, USA
- The Scripps Research Institute, La Jolla, 10550, USA
| | | | - Susan M Ring
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, BS82BN, UK
- MRC Integrative Epidemiology, University of Bristol, Bristol, BS82BN, UK
| | - Paul S de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, 77030, USA
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, 2400, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
- Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Bruce M Psaty
- Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, 98195, USA
| | - Nona Sotoodehnia
- Medicine and Epidemiology, University of Washington, Seattle, 98195, USA
| | - Ivana Kolcic
- Department of Public Health, University of Split School of Medicine, Split, 21000, Croatia
- Algebra LAB, Algebra University College, Zagreb, 10000, Croatia
| | - David O Arnar
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, 101, Iceland
- Department of Medicine, Landspitali-The National University Hospital of Iceland, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Hilma Holm
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
| | - Beverley Balkau
- Centre for Research in Epidemiology and Population Health, Institut national de la santé et de la recherche médicale, Villejuif, 94800, France
- UMRS 1018, University Versailles Saint-Quentin-en-Yvelines, Versailles, 78035, France
- UMRS 1018, University Paris Sud, Villejuif, 94807, France
| | - Claudia T Silva
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, Rotterdam, 3000CA, Netherlands
| | | | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, FI-33521, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
| | - Perttu Salo
- Department of Health, unit of genetics and biomarkers, , National Institute for Health and Welfare, Finland, Helsinki, FI-00290, Finland
- Department of molecular medicine, University of Helsinki, Helsinki, FI-00290, Finland
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, 80636, Germany
- Deutsches Zentrum für Herz- und Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, Munich, 80636, Germany
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
- Region Västra Götaland, Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Mölndal, 43180, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, 3000, Australia
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, 00014, Finland
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | | | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Katarzyna Stolarz-Skrzypek
- Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Kraków, 31-008, Poland
| | - Stefania Bandinelli
- Geriatric Unit, Unità sanitaria locale Toscana Centro, Florence, 50142, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, "Ospedali Riuniti and University of Trieste", Trieste, 34149, Italy
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, München, 81675, Germany
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
| | - Moritz F Sinner
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Department of Cardiology, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, 55101, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
| | - Kent D Taylor
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Jie Yao
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | - Olle Melander
- Department of Internal Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Malmo, 221 85, Sweden
- Lund University Diabetes Center, Lund University, Malmö, 221 85, Sweden
| | | | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Eco J C de Geus
- Biological Psychology, EMGO+ Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University, Amsterdam, 1081 BT, the Netherlands
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75108, Sweden
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, Scotland, UK
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University Hospital, Uppsala, 75237, Sweden
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, 24105, Germany
| | - Peter W Macfarlane
- Institute of Health and Wellbeing, Faculty of Medicine, University of Glasgow, Glasgow, G12 0XH, UK
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nicholas Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Stephan B Felix
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, 17475, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
| | - E-Shyong Tai
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Debra Q Quek
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Johan Ormel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, 75237, Sweden
| | - Cecilia Lindgren
- Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew P Morris
- Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, FI-20521, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, FI-20521, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, FI-20521, Finland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Themistocles Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, 94305, USA
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Icelandic Heart Association, Kopavogur, 201, Iceland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School,, University of Bristol, Bristol, BS8 2BN, UK
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, 77030, USA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Biomedical Research Centre, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
| | - Ruth J F Loos
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medicine Science, University of Copenhagen, Copenhagen Ø, 2100, Denmark
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, 98195, USA
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University hospital, Lausanne, 1015, Switzerland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, Scotland, UK
| | - Kari Stefansson
- deCODE genetics / Amgen Inc., Reykjavik, 102, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Philippe Froguel
- Department of Metabolism, Imperial College London, London, W12 0HS, UK
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, Lille University Hospital, EGID, Lille, 59000, France
- University of Lille, Lille, 59000, France
| | - Leif Groop
- Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, 20502, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, 00290, Finland
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, Rotterdam, 3000CA, Netherlands
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63108-2212, Campus Box 8506, USA
| | - Christopher J O'Donnell
- Cardiology Section, VA Boston Healthcare System, Harvard Medical School, Boston, MA, 02132, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, FI-33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33521, Finland
| | - Markus Perola
- Department of Health, unit of genetics and biomarkers, , National Institute for Health and Welfare, Finland, Helsinki, FI-00290, Finland
- Department of molecular medicine, University of Helsinki, Helsinki, FI-00290, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, 23562, Germany
| | - Colin N A Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, 41345, Sweden
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Johan G Eriksson
- Department of General practice and primary care, University of Helsinki, Helsinki, 00014, Finland
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, 119228, Singapore
- Public health Research Program, Folkhalsan Research Center, Helsinki, 000250, Finland
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, 45122, Germany
- Centre for Urban Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, 45122, Germany
| | - Peter Kraft
- Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02112, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Daniele Cusi
- Unit of Biomedicine, Bio4Dreams-Business Nursery for Life Sciences, Milano, 20121, Italy
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, (MI), 20090, Italy
| | - Luigi Ferrucci
- Longitudinal Study Section, National Institute on Aging, Baltimore, 21224, USA
| | - Sheila Ulivi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34149, Italy
| | - Adolfo Correa
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, 39216, USA
| | - Stefan Kääb
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Department of Cardiology, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, 68161, Germany
| | - Jerome I Rotter
- Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, 90502, USA
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, 221 85, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, 221 84, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, 413 45, Sweden
| | | | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, Amsterdam, 1081 HL, the Netherlands
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75108, Sweden
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, Scotland, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, Scotland, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University Hospital, Uppsala, 75237, Sweden
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Kiel University, Kiel, 24105, Germany
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, ZA, 2333, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, ZA, 2333, the Netherlands
- Netherlands Heart Institute, Utrecht, 3511 EP, the Netherlands
| | - Mark Eijgelsheim
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, 3015GD, the Netherlands
- Department of Nephrology, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Edward L M Lakatta
- Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, 17475, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Harriette Riese
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, FI-33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands.
- Department of Cardiology, University medical Center Utrecht, Utrecht, 3584 Cx, the Netherlands.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, the Netherlands.
| |
Collapse
|
12
|
Ciochetti NP, Lugli-Moraes B, da Silva BS, Rovaris DL. Genome-wide association studies: utility and limitations for research in physiology. J Physiol 2023; 601:2771-2799. [PMID: 37208942 PMCID: PMC10527550 DOI: 10.1113/jp284241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Physiological systems are subject to interindividual variation encoded by genetics. Genome-wide association studies (GWAS) operate by surveying thousands of genetic variants from a substantial number of individuals and assessing their association to a trait of interest, be it a physiological variable, a molecular phenotype (e.g. gene expression), or even a disease or condition. Through a myriad of methods, GWAS downstream analyses then explore the functional consequences of each variant and attempt to ascertain a causal relationship to the phenotype of interest, as well as to delve into its links to other traits. This type of investigation allows mechanistic insights into physiological functions, pathological disturbances and shared biological processes between traits (i.e. pleiotropy). An exciting example is the discovery of a new thyroid hormone transporter (SLC17A4) and hormone metabolising enzyme (AADAT) from a GWAS on free thyroxine levels. Therefore, GWAS have substantially contributed with insights into physiology and have been shown to be useful in unveiling the genetic control underlying complex traits and pathological conditions; they will continue to do so with global collaborations and advances in genotyping technology. Finally, the increasing number of trans-ancestry GWAS and initiatives to include ancestry diversity in genomics will boost the power for discoveries, making them also applicable to non-European populations.
Collapse
Affiliation(s)
- Nicolas Pereira Ciochetti
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Lugli-Moraes
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| | - Bruna Santos da Silva
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diego Luiz Rovaris
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Scarpa JR, Elemento O. Multi-omic molecular profiling and network biology for precision anaesthesiology: a narrative review. Br J Anaesth 2023:S0007-0912(23)00125-3. [PMID: 37055274 DOI: 10.1016/j.bja.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 04/15/2023] Open
Abstract
Technological advancement, data democratisation, and decreasing costs have led to a revolution in molecular biology in which the entire set of DNA, RNA, proteins, and various other molecules - the 'multi-omic' profile - can be measured in humans. Sequencing 1 million bases of human DNA now costs US$0.01, and emerging technologies soon promise to reduce the cost of sequencing the whole genome to US$100. These trends have made it feasible to sample the multi-omic profile of millions of people, much of which is publicly available for medical research. Can anaesthesiologists use these data to improve patient care? This narrative review brings together a rapidly growing literature in multi-omic profiling across numerous fields that points to the future of precision anaesthesiology. Here, we discuss how DNA, RNA, proteins, and other molecules interact in molecular networks that can be used for preoperative risk stratification, intraoperative optimisation, and postoperative monitoring. This literature provides evidence for four fundamental insights: (1) Clinically similar patients have different molecular profiles and, as a consequence, different outcomes. (2) Vast, publicly available, and rapidly growing molecular datasets have been generated in chronic disease patients and can be repurposed to estimate perioperative risk. (3) Multi-omic networks are altered in the perioperative period and influence postoperative outcomes. (4) Multi-omic networks can serve as empirical, molecular measurements of a successful postoperative course. With this burgeoning universe of molecular data, the anaesthesiologist-of-the-future will tailor their clinical management to an individual's multi-omic profile to optimise postoperative outcomes and long-term health.
Collapse
Affiliation(s)
- Joseph R Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
14
|
Wilson C, Zi M, Smith M, Hussain M, D’Souza A, Dobrzynski H, Boyett MR. Atrioventricular node dysfunction in pressure overload-induced heart failure—Involvement of the immune system and transcriptomic remodelling. Front Pharmacol 2023; 14:1083910. [PMID: 37081960 PMCID: PMC10110994 DOI: 10.3389/fphar.2023.1083910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Heart failure is associated with atrioventricular (AV) node dysfunction, and AV node dysfunction in the setting of heart failure is associated with an increased risk of mortality and heart failure hospitalisation. This study aims to understand the causes of AV node dysfunction in heart failure by studying changes in the whole nodal transcriptome. The mouse transverse aortic constriction model of pressure overload-induced heart failure was studied; functional changes were assessed using electrocardiography and echocardiography and the transcriptome of the AV node was quantified using RNAseq. Heart failure was associated with a significant increase in the PR interval, indicating a slowing of AV node conduction and AV node dysfunction, and significant changes in 3,077 transcripts (5.6% of the transcriptome). Many systems were affected: transcripts supporting AV node conduction were downregulated and there were changes in transcripts identified by GWAS as determinants of the PR interval. In addition, there was evidence of remodelling of the sarcomere, a shift from fatty acid to glucose metabolism, remodelling of the extracellular matrix, and remodelling of the transcription and translation machinery. There was evidence of the causes of this widespread remodelling of the AV node: evidence of dysregulation of multiple intracellular signalling pathways, dysregulation of 109 protein kinases and 148 transcription factors, and an immune response with a proliferation of neutrophils, monocytes, macrophages and B lymphocytes and a dysregulation of 40 cytokines. In conclusion, inflammation and a widespread transcriptional remodelling of the AV node underlies AV node dysfunction in heart failure.
Collapse
Affiliation(s)
- Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Matthew Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Munir Hussain
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Alicia D’Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| | - Mark R. Boyett
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Halina Dobrzynski, ; Mark R. Boyett,
| |
Collapse
|
15
|
D'Antonio M, Nguyen JP, Arthur TD, Matsui H, D'Antonio-Chronowska A, Frazer KA. Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease. Nat Commun 2023; 14:1132. [PMID: 36854752 PMCID: PMC9975214 DOI: 10.1038/s41467-023-36638-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
The causal variants and genes underlying thousands of cardiac GWAS signals have yet to be identified. Here, we leverage spatiotemporal information on 966 RNA-seq cardiac samples and perform an expression quantitative trait locus (eQTL) analysis detecting eQTLs considering both eGenes and eIsoforms. We identify 2,578 eQTLs associated with a specific developmental stage-, tissue- and/or cell type. Colocalization between eQTL and GWAS signals of five cardiac traits identified variants with high posterior probabilities for being causal in 210 GWAS loci. Pulse pressure GWAS loci are enriched for colocalization with fetal- and smooth muscle- eQTLs; pulse rate with adult- and cardiac muscle- eQTLs; and atrial fibrillation with cardiac muscle- eQTLs. Fine mapping identifies 79 credible sets with five or fewer SNPs, of which 15 were associated with spatiotemporal eQTLs. Our study shows that many cardiac GWAS variants impact traits and disease in a developmental stage-, tissue- and/or cell type-specific fashion.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Jennifer P Nguyen
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy D Arthur
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | | | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Giudicessi JR. Unraveling the influence of genomic context on pleiotropy in SCN5A-mediated cardiac channelopathies: Insights from the Worm Study. Heart Rhythm 2023; 20:728-729. [PMID: 36858161 DOI: 10.1016/j.hrthm.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Affiliation(s)
- John R Giudicessi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
17
|
Chen GX, Barajas-Martínez H, Ciconte G, Wu CI, Monasky MM, Xia H, Li B, Capra JA, Guo K, Zhang ZH, Chen X, Yang B, Jiang H, Tse G, Mak CM, Aizawa Y, Gollob MH, Antzelevitch C, Wilde AAM, Pappone C, Hu D. Clinical characteristics and electrophysiologic properties of SCN5A variants in fever-induced Brugada syndrome. EBioMedicine 2023; 87:104388. [PMID: 36516610 PMCID: PMC9768239 DOI: 10.1016/j.ebiom.2022.104388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is a severe inherited arrhythmia syndrome that can be unmasked by fever. METHODS A multicentre clinical analysis was performed in 261 patients diagnosed with fever-induced BrS, including 198 (75.9%) and 27 (10.3%) patients who received next-generation genetic sequencing and epicardial arrhythmogenic substrate (AS) mapping, respectively. FINDINGS In fever-induced BrS patients, pathogenic or likely pathogenic (P/LP) SCN5A variant carriers developed fever-induced BrS at a younger age, and more often in females and those of Caucasian descent. They exhibited significant electrophysical abnormalities, including a larger epicardial AS area, and more prolonged abnormal epicardial electrograms. During a median follow-up of 50.5 months (quartiles 32.5-81.5 months) after the diagnosis, major cardiac events (MCE) occurred in 27 (14.4%) patients. Patients with P/LP SCN5A variants had a higher ratio of MCE compared with the rest. Additionally, history of syncope, QRS duration, and Tpe interval could also predict an increased risk for future MCE according to univariate analysis. Multivariate analysis indicated that only P/LP SCN5A variants were independent significant predictors of MCE. Computational structural modelling showed that most variants are destabilizing, suggesting that Nav1.5 structure destabilization caused by SCN5A missense variants may contribute to fever-induced BrS. INTERPRETATION In our cohort, P/LP SCN5A variant carriers with fever-induced BrS are more prevalent among patients of Caucasian descent, females, and younger patients. These patients exhibit aggressive electrophysiological abnormalities and worse outcome, which warrants closer monitoring and more urgent management of fever. FUNDING The current work was supported by the National Natural Science Foundation Project of China (Nos. 82270332 & 81670304), The Fundamental Research Funds for the Central Universities of China - Independent Research Project of Wuhan University (No. 2042022kf1217) from China; the National Institutes of Health of USA [NIH R56 (HL47678), NIH R01 (HL138103), and NIH R01 (HL152201)], the W. W. Smith Charitable Trust and the Wistar and Martha Morris Fund, Sharpe-Strumia Research Foundation, the American Heart Association Postdoctoral Fellowship (20POST35220002) from United States; the Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences (PREDICT2) from the Netherlands.
Collapse
Affiliation(s)
- Gan-Xiao Chen
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Hector Barajas-Martínez
- Lankenau Institute for Medical Research and Lankenau Heart Institute, Wynnwood, PA, USA; Jefferson Medical College, Philadelphia, PA, USA
| | - Giuseppe Ciconte
- Arrhythmia and Electrophysiology Center, IRCCS Policlinico San Donato, San Donato Milanese, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, Italy
| | - Cheng-I Wu
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Michelle M Monasky
- Arrhythmia and Electrophysiology Center, IRCCS Policlinico San Donato, San Donato Milanese, Milano, Italy
| | - Hao Xia
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bian Li
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong-He Zhang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiu Chen
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bo Yang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Hong Jiang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China; Kent and Medway Medical School, Canterbury, Kent, United Kingdom; School of Nursing and Health Studies, Metropolitan University, Hong Kong, China
| | - Chloe Miu Mak
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong, China
| | - Yoshiyasu Aizawa
- Department of Cardiovascular Medicine, International University of Health and Welfare, School of Medicine, 4-3, Kozunomori, Narita, Chiba, Japan
| | - Michael H Gollob
- Department of Physiology and Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research and Lankenau Heart Institute, Wynnwood, PA, USA; Jefferson Medical College, Philadelphia, PA, USA
| | - Arthur A M Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Carlo Pappone
- Arrhythmia and Electrophysiology Center, IRCCS Policlinico San Donato, San Donato Milanese, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, Italy
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Saha S, Spinelli L, Castro Mondragon JA, Kervadec A, Lynott M, Kremmer L, Roder L, Krifa S, Torres M, Brun C, Vogler G, Bodmer R, Colas AR, Ocorr K, Perrin L. Genetic architecture of natural variation of cardiac performance from flies to humans. eLife 2022; 11:82459. [DOI: 10.7554/elife.82459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Deciphering the genetic architecture of human cardiac disorders is of fundamental importance but their underlying complexity is a major hurdle. We investigated the natural variation of cardiac performance in the sequenced inbred lines of the Drosophila Genetic Reference Panel (DGRP). Genome-wide associations studies (GWAS) identified genetic networks associated with natural variation of cardiac traits which were used to gain insights as to the molecular and cellular processes affected. Non-coding variants that we identified were used to map potential regulatory non-coding regions, which in turn were employed to predict transcription factors (TFs) binding sites. Cognate TFs, many of which themselves bear polymorphisms associated with variations of cardiac performance, were also validated by heart-specific knockdown. Additionally, we showed that the natural variations associated with variability in cardiac performance affect a set of genes overlapping those associated with average traits but through different variants in the same genes. Furthermore, we showed that phenotypic variability was also associated with natural variation of gene regulatory networks. More importantly, we documented correlations between genes associated with cardiac phenotypes in both flies and humans, which supports a conserved genetic architecture regulating adult cardiac function from arthropods to mammals. Specifically, roles for PAX9 and EGR2 in the regulation of the cardiac rhythm were established in both models, illustrating that the characteristics of natural variations in cardiac function identified in Drosophila can accelerate discovery in humans.
Collapse
Affiliation(s)
- Saswati Saha
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Lionel Spinelli
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | | | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Kremmer
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Laurence Roder
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Sallouha Krifa
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Magali Torres
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Christine Brun
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Perrin
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| |
Collapse
|
19
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
20
|
Barefield DY, Yamakawa S, Tahtah I, Sell JJ, Broman M, Laforest B, Harris S, Alvarez AA, Araujo KN, Puckelwartz MJ, Wasserstrom JA, Fishman GI, McNally EM. Partial and complete loss of myosin binding protein H-like cause cardiac conduction defects. J Mol Cell Cardiol 2022; 169:28-40. [PMID: 35533732 PMCID: PMC9329245 DOI: 10.1016/j.yjmcc.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
A premature truncation of MYBPHL in humans and a loss of Mybphl in mice is associated with dilated cardiomyopathy, atrial and ventricular arrhythmias, and atrial enlargement. MYBPHL encodes myosin binding protein H-like (MyBP-HL). Prior work in mice indirectly identified Mybphl expression in the atria and in small puncta throughout the ventricle. Because of its genetic association with human and mouse cardiac conduction system disease, we evaluated the anatomical localization of MyBP-HL and the consequences of loss of MyBP-HL on conduction system function. Immunofluorescence microscopy of normal adult mouse ventricles identified MyBP-HL-positive ventricular cardiomyocytes that co-localized with the ventricular conduction system marker contactin-2 near the atrioventricular node and in a subset of Purkinje fibers. Mybphl heterozygous ventricles had a marked reduction of MyBP-HL-positive cells compared to controls. Lightsheet microscopy of normal perinatal day 5 mouse hearts showed enrichment of MyBP-HL-positive cells within and immediately adjacent to the contactin-2-positive ventricular conduction system, but this association was not apparent in Mybphl heterozygous hearts. Surface telemetry of Mybphl-null mice revealed atrioventricular block and atrial bigeminy, while intracardiac pacing revealed a shorter atrial relative refractory period and atrial tachycardia. Calcium transient analysis of isolated Mybphl-null atrial cardiomyocytes demonstrated an increased heterogeneity of calcium release and faster rates of calcium release compared to wild type controls. Super-resolution microscopy of Mybphl heterozygous and homozygous null atrial cardiomyocytes showed ryanodine receptor disorganization compared to wild type controls. Abnormal calcium release, shorter atrial refractory period, and atrial dilation seen in Mybphl null, but not wild type control hearts, agree with the observed atrial arrhythmias, bigeminy, and atrial tachycardia, whereas the proximity of MyBP-HL-positive cells with the ventricular conduction system provides insight into how a predominantly atrial expressed gene contributes to ventricular arrhythmias and ventricular dysfunction.
Collapse
Affiliation(s)
- David Y. Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL;,Correspondence to: David Y. Barefield, PhD, Department of Cell and Molecular Physiology Loyola University Chicago, 2160 S. 1st Ave. Maywood, IL 60153,
| | - Sean Yamakawa
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jordan J. Sell
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Broman
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Brigitte Laforest
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Sloane Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alejandro A. Alvarez
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Kelly N. Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - J. Andrew Wasserstrom
- Department of Medicine and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Glenn I. Fishman
- Division of Cardiology, NYU Grossman School of Medicine, New York, New York
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Correspondence to: Elizabeth McNally, MD, PhD, Center for Genetic Medicine, Northwestern University, 303 E. Superior St. Chicago, IL 60611,
| |
Collapse
|
21
|
McLendon JM, Zhang X, Matasic DS, Kumar M, Koval OM, Grumbach IM, Sadayappan S, London B, Boudreau RL. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc 2022; 11:e025687. [PMID: 35730644 PMCID: PMC9333371 DOI: 10.1161/jaha.122.025687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult‐onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte‐specific knockout mice (Sorbs2‐cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult‐onset cardiomyopathies and in heart failure models. We generated Sorbs2‐cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2‐cKO mice begin to show atrial enlargement and P‐wave anomalies, without dysregulation of action potential–associated ion channel and gap junction protein expressions. After 6 months, Sorbs2‐cKO mice exhibit impaired contractility in dobutamine‐treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2‐cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2‐cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross‐link sites.
Collapse
Affiliation(s)
- Jared M McLendon
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Xiaoming Zhang
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Daniel S Matasic
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Department of Molecular Physiology and Biophysics University of Iowa Carver College of Medicine Iowa City IA
| | - Mohit Kumar
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Olha M Koval
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Isabella M Grumbach
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Sakthivel Sadayappan
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Barry London
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Ryan L Boudreau
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| |
Collapse
|
22
|
Dyssekilde JR, Christiansen MK, Johansen JB, Nielsen JC, Bundgaard H, Jensen HK. Familial risk of atrioventricular block in first-degree relatives. BRITISH HEART JOURNAL 2022; 108:1194-1199. [PMID: 35246466 PMCID: PMC9279841 DOI: 10.1136/heartjnl-2021-320411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Objective Rare cases of genetically inherited atrioventricular block (AVB) have been reported; however, the heredity of AVB remains unknown. We aimed to assess the heredity of AVB. Design, setting and participants Using data from the Danish Civil Registration Registry, we established a nationwide cohort of individuals with parental links. Data were merged with information from the Danish Pacemaker and Implantable Cardioverter Defibrillator Registry, containing information on all pacemaker implantations performed in Denmark during the study period, to identify patients who received a first-time pacemaker because of AVB. Results A total of 4 648 204 individuals had parental links and a total of 26 880 consecutive patients received a first-time pacemaker due to AVB. Overall, the adjusted rate ratio (RR) of pacemaker implantation due to AVB was 2.1 (95% CI 1.8 to 2.5) if a father, mother or sibling had AVB compared with the risk in the general population. The adjusted RR was 2.2 (1.7–2.9) for offspring of mothers with AVB, 1.9 (1.5–2.4) for offspring of fathers with AVB and 3.5 (2.3–5.4) for siblings to a patient with AVB. The risk increased inversely proportionally with the age of the index case at the time of pacemaker implantation. The corresponding adjusted RRs were 15.8 (4.8–52.3) and 10.0 (3.3–30.4) if a mother or father, respectively, had a pacemaker implantation before 50 years. Conclusion and relevance First-degree relatives to a patient with AVB carry an increased risk of AVB with the risk being strongly inversely associated with the age of the index case at pacemaker implantation. These findings indicate a genetic component in the development of AVB in families with an early-onset disease.
Collapse
Affiliation(s)
| | | | | | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Kjaerulf Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark .,Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy F, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, et alBarc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy F, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, Loeys B, Leenhardt A, Guicheney P, Maury P, Schulze-Bahr E, Robyns T, Breckpot J, Babuty D, Priori SG, Napolitano C, de Asmundis C, Brugada P, Brugada R, Arbelo E, Brugada J, Mabo P, Behar N, Giustetto C, Molina MS, Gimeno JR, Hasdemir C, Schwartz PJ, Crotti L, McKeown PP, Sharma S, Behr ER, Haissaguerre M, Sacher F, Rooryck C, Tan HL, Remme CA, Postema PG, Delmar M, Ellinor PT, Lubitz SA, Gourraud JB, Tanck MW, George AL, MacRae CA, Burridge PW, Dina C, Probst V, Wilde AA, Schott JJ, Redon R, Bezzina CR. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet 2022; 54:232-239. [PMID: 35210625 PMCID: PMC9376964 DOI: 10.1038/s41588-021-01007-6] [Show More Authors] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
Collapse
Affiliation(s)
- Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
| | - Rafik Tadros
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David Y Chiang
- Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Floriane Simonet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Sean J Jurgens
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manon Baudic
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Michele Nicastro
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franck Potet
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joost A Offerhaus
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Yuka Mizusawa
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Soraya Anys
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Damien Minois
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Marine Arnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Yanushi D Wijeyeratne
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Alison Muir
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Michael Papadakis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Silvia Castelletti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Margherita Torchio
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Cristina Gil Ortuño
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Javier Lacunza
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Daniela F Giachino
- Clinical and Biological Sciences, Medical Genetics, University of Torino, Orbassano, Italy
- Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Natascia Cerrato
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Raphaël P Martins
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Medical Science Department, University of Girona, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Sonia Van Dooren
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Centre for Medical Genetics, research group Reproduction and Genetics, research cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Aurélie Thollet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Florence Kyndt
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Andrea Mazzanti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Anniek Corveleyn
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Birgit Stallmeyer
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Sven Dittmann
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Johan Saenen
- Cardiology, Electrophysiology - Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Noël
- Department of Cardiology, University Hospital of Brest, Brest, France
| | | | - Boris Rudic
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Halim Marzak
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
| | - Matthew K Rowe
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Claire Federspiel
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | | | - Leslie Placide
- Department of Cardiology, CHU Montpellier, Montpellier, France
| | - Antoine Milhem
- Department of Cardiology, CH La Rochelle, La Rochelle, France
| | | | - Britt-Maria Beckmann
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- University Hospital of the Johann Wolfgang Goethe University Frankfurt, Institute of Legal Medicine, Frankfurt, Germany
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
| | - Bo Gregers Winkel
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Reza Jabbari
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Moore B Shoemaker
- Medicine, Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hennie Bikker
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Genome Diagnostics Laboratory, Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Federico Manevy
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- IBE, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philip Van Damme
- Neurology Department University Hospital Leuven, Neuroscience Department KU Leuven, Center for Brain & Disease Research VIB, Leuven, Belgium
| | - Daniele Cusi
- Scientific Unit, Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy
| | - Chiara Lanzani
- Nephrology, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Milan, Italy
| | - Sidwell Rigade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Eric Charpentier
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Estelle Baron
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Bonnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Simon Lecointe
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Audrey Donnart
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Hervé Le Marec
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Chatel
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Matilde Karakachoff
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphane Bézieau
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Barry London
- Department of Internal Medicine, Division of Cardiovascular Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jacob Tfelt-Hansen
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dan Roden
- Medicine, Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Medicine, Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Medicine, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
- Department of Cardiology, Translational Cardiology, University Hospital Bern, Bern, Switzerland
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Larry A Chinitz
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Paul G Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maarten P van de Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriel Laurent
- Cardiology Department, ImVia lab team IFTIM, University Hospital Dijon, Dijon, France
| | | | | | - Stefan Kääb
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Munich, Munich, Germany
| | | | | | - Jean-Luc Pasquie
- Department of Cardiology, CNRS UMR9214 - Inserm U1046 - PHYMEDEXP, Université de Montpellier et CHU Montpellier, Montpellier, France
| | - Olivier Billon
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | - Jason D Roberts
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Laurence Jesel
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
- INSERM 1260 - Regenerative Nanomedecine, University of Strasbourg, Strasbourg, France
| | - Martin Borggrefe
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Pier D Lambiase
- Cardiology, Medicine, Barts Heart Centre, London, UK
- Institute of Cardiovasculr Science, UCL, Population Health, UCL, London, UK
| | | | - Bart Loeys
- Center for Medical Genetics, Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Leenhardt
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Cardiology, Hopital Bichat, Paris, France
| | - Pascale Guicheney
- Sorbonne Université, Paris, France
- UMR_S1166, Faculté de médecine, Sorbonne Université, INSERM, Paris, France
| | - Philippe Maury
- Service de cardiologie, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Tomas Robyns
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
- Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | - Silvia G Priori
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo de Asmundis
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis, Brussel-Vrije Universiteit Brussel, ERN Heart Guard Center, Brussels, Belgium
- IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Brugada
- Heart Rhythm Management Center, UZ Brussel-VUB, Brussels, Belgium
| | - Ramon Brugada
- Hospital Trueta, CiberCV, University of Girona, IDIBGI, Girona, Spain, Barcelona, Spain
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Philippe Mabo
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Nathalie Behar
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Carla Giustetto
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Maria Sabater Molina
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Juan R Gimeno
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Bornova, Turkey
| | - Peter J Schwartz
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Lia Crotti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Pascal P McKeown
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Sanjay Sharma
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Michel Haissaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France
- Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Caroline Rooryck
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France
- Université de Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, France
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carol A Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Delmar
- Medicine, Cardiology, New York University School of Medicine, New York, NY, USA
| | - Patrick T Ellinor
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jean-Baptiste Gourraud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Michael W Tanck
- Clinical Epidemiology, Biostatistics and Bioinformatics, Clinical Methods and Public Health, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calum A MacRae
- Medicine, Cardiovascular Medicine, Genetics and Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christian Dina
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Arthur A Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Jacques Schott
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Richard Redon
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Connie R Bezzina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
25
|
Huang Y, Chen XM, Barajas-Martinez H, Jiang H, Antzelevitch C, Hu D. Common variants in SCN10A gene associated with Brugada syndrome. Hum Mol Genet 2021; 31:157-165. [PMID: 34312669 PMCID: PMC8743002 DOI: 10.1093/hmg/ddab217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies indicate that SCN10A plays an important role in cardiac electrophysiology. Common and rare SCN10A variants are suggested to contribute to Brugada Syndrome (BrS), an inherited channelopathy resulting from genetic-determined loss-of-function in cardiac sodium channel. This study sought to characterize the role of SCN10A common variants in BrS. Clinical and genetic analyses were performed in 197 patients diagnosed with BrS. Baseline ECG parameters were evaluated in patients carrying each of four common variants associated with BrS. Cellular electrophysiological study was performed in SCN5A-SCN10A co-transfected TSA201 cells to investigate the possible electrophysiological characteristics of the allele of rs6795970, which displayed the most significant association with BrS. Four SCN10A common variants (rs7630989, rs57326399, rs6795970, rs12632942) displayed significant association with BrS susceptibility. There were no evident associations between baseline ECG parameters in BrS patients and the different genotypes of the four variants. Rs6795970 (V1073) was strongly associated with a risk for BrS, which suggests the different electrophysiological characters between these two alleles. Functional study showed a positive shift in steady-state activation (V1/2: -62.2 ± 2.6 vs. -53.5 ± 1.6 for A1073 and V1073 group, respectively; P < 0.05) and slower recovery from inactivation in mutant SCN5A-SCN10A co-transfected cells with, which contribute to the slow conduction in BrS patients with rs6795970. In conclusion, SCN10A common variants are associated with increased susceptibility to BrS. An allele rs6795970 (V1073) increases the risk for BrS. The electrophysiological changes in a positive shift in steady-state activation and slower recovery from inactivation by SCN10A-V1073 contribute to this variant associated BrS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Xiao-Meng Chen
- Department of Cardiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania and Jefferson Medical College, Philadelphia, PA 19096, USA
| | - Hong Jiang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania and Jefferson Medical College, Philadelphia, PA 19096, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| |
Collapse
|
26
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
27
|
Mapping gene and gene pathways associated with coronary artery disease: a CARDIoGRAM exome and multi-ancestry UK biobank analysis. Sci Rep 2021; 11:16461. [PMID: 34385509 PMCID: PMC8361107 DOI: 10.1038/s41598-021-95637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) genome-wide association studies typically focus on single nucleotide variants (SNVs), and many potentially associated SNVs fail to reach the GWAS significance threshold. We performed gene and pathway-based association (GBA) tests on publicly available Coronary ARtery DIsease Genome wide Replication and Meta-analysis consortium Exome (n = 120,575) and multi ancestry pan UK Biobank study (n = 442,574) summary data using versatile gene-based association study (VEGAS2) and Multi-marker analysis of genomic annotation (MAGMA) to identify novel genes and pathways associated with CAD. We included only exonic SNVs and excluded regulatory regions. VEGAS2 and MAGMA ranked genes and pathways based on aggregated SNV test statistics. We used Bonferroni corrected gene and pathway significance threshold at 3.0 × 10-6 and 1.0 × 10-5, respectively. We also report the top one percent of ranked genes and pathways. We identified 17 top enriched genes with four genes (PCSK9, FAM177, LPL, ARGEF26), reaching statistical significance (p ≤ 3.0 × 10-6) using both GBA tests in two GWAS studies. In addition, our analyses identified ten genes (DUSP13, KCNJ11, CD300LF/RAB37, SLCO1B1, LRRFIP1, QSER1, UBR2, MOB3C, MST1R, and ABCC8) with previously unreported associations with CAD, although none of the single SNV associations within the genes were genome-wide significant. Among the top 1% non-lipid pathways, we detected pathways regulating coagulation, inflammation, neuronal aging, and wound healing.
Collapse
|
28
|
Choi SH, Jurgens SJ, Haggerty CM, Hall AW, Halford JL, Morrill VN, Weng LC, Lagerman B, Mirshahi T, Pettinger M, Guo X, Lin HJ, Alonso A, Soliman EZ, Kornej J, Lin H, Moscati A, Nadkarni GN, Brody JA, Wiggins KL, Cade BE, Lee J, Austin-Tse C, Blackwell T, Chaffin MD, Lee CJY, Rehm HL, Roselli C, Redline S, Mitchell BD, Sotoodehnia N, Psaty BM, Heckbert SR, Loos RJ, Vasan RS, Benjamin EJ, Correa A, Boerwinkle E, Arking DE, Rotter JI, Rich SS, Whitsel EA, Perez M, Kooperberg C, Fornwalt BK, Lunetta KL, Ellinor PT, Lubitz SA, Lubitz SA. Rare Coding Variants Associated With Electrocardiographic Intervals Identify Monogenic Arrhythmia Susceptibility Genes: A Multi-Ancestry Analysis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003300. [PMID: 34319147 PMCID: PMC8373440 DOI: 10.1161/circgen.120.003300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood. METHODS Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval). RESULTS We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes (KCNQ1, KCNH2, and SCN5A), a controversial monogenic SCD gene (KCNE1), and novel genes (PAM and MFGE8) involved in cardiac conduction. Loss-of-function and pathogenic SCN5A variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (P=8.4×10-5). Similar variants in KCNQ1 and KCNH2 (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation (P=4×10-25), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals. CONCLUSIONS Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.
Collapse
Affiliation(s)
- Seung Hoan Choi
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Sean J. Jurgens
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Christopher M. Haggerty
- Department of Translational Data Science and Informatics (C.M.H., B.K.F.), Geisinger, Danville, PA.,Heart Institute (C.M.H., B.K.F.), Geisinger, Danville, PA
| | - Amelia W. Hall
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA
| | - Jennifer L. Halford
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Harvard Medical School (J.L.H., C.A.-T., H.L.R.), Boston, MA
| | - Valerie N. Morrill
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA
| | - Lu-Chen Weng
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA
| | - Braxton Lagerman
- Phenomic Analytics and Clinical Data Core (B.L.), Geisinger, Danville, PA
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics (T.M.), Geisinger, Danville, PA
| | - Mary Pettinger
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (M.P., C.K.)
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Insti for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (X.G., H.J.L., J.I.R.)
| | - Henry J. Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Insti for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (X.G., H.J.L., J.I.R.)
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (A.A.)
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center, Wake Forest School of Medicine, Winston Salem, NC (E.Z.S.)
| | - Jelena Kornej
- NHLBI and Boston University’s Framingham Heart Study (J.K., E.J.B., R.S.V).,Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center (J.K., R.S.V), Boston University School of Medicine, MA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine (H.L.), Boston University School of Medicine, MA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N., R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N., R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY.,Division of Nephrology, Department of Medicine (G.N.), Icahn School of Medicine, Mount Sinai, New York, NY
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle
| | - Brian E. Cade
- Massachusetts General Hospital. Division of Sleep Medicine, Department of Medicine (B.E.C.), Boston, MA.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology (B.E.C.), Harvard Medical School, Brigham and Women’s Hospital, Boston
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders (J.L.), Harvard Medical School, Brigham and Women’s Hospital, Boston
| | - Christina Austin-Tse
- Center for Genomic Medicine (C.A.-T., H.L.R.), Boston, MA.,Harvard Medical School (J.L.H., C.A.-T., H.L.R.), Boston, MA.,Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA (C.A.-T.)
| | - Tom Blackwell
- Department of Biostatistics, University of Michigan, Ann Arbor (T.B.)
| | - Mark D. Chaffin
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Christina J.-Y. Lee
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Heidi L. Rehm
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Center for Genomic Medicine (C.A.-T., H.L.R.), Boston, MA.,Harvard Medical School (J.L.H., C.A.-T., H.L.R.), Boston, MA
| | - Carolina Roselli
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.)
| | - Susan Redline
- Regeneron Genetics Center, Tarrytown, NY. Departments of Medicine, Brigham and Women’s Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.R.)
| | - Braxton D. Mitchell
- University of Maryland School of Medicine (B.D.M.).,Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, MD (B.D.M.)
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle.,Division of Cardiology, Department of Epidemiology (N.S.), University of Washington, Seattle
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle.,Department of Epidemiology (B.M.P., S.R.H.), University of Washington, Seattle.,Department of Health Services (B.M.P.), University of Washington, Seattle.,Kaiser Permanente Washington Health Research Institute, Seattle (B.M.P.)
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Medicine (J.A.B., K.L.W., N.S., B.M.P., S.R.H.), University of Washington, Seattle.,Department of Epidemiology (B.M.P., S.R.H.), University of Washington, Seattle
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine (A.M., G.N., R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute (R.J.F.L.), Icahn School of Medicine, Mount Sinai, New York, NY
| | - Ramachandran S. Vasan
- NHLBI and Boston University’s Framingham Heart Study (J.K., E.J.B., R.S.V).,Sections of Cardiovascular Medicine and Preventive Medicine, Boston Medical Center (J.K., R.S.V), Boston University School of Medicine, MA.,Department of Medicine (E.J.B., R.S.V), Boston University School of Medicine, MA
| | - Emelia J. Benjamin
- NHLBI and Boston University’s Framingham Heart Study (J.K., E.J.B., R.S.V).,Department of Medicine (E.J.B., R.S.V), Boston University School of Medicine, MA.,Department of Epidemiology (E.J.B.), Boston University School of Public Health, MA
| | - Adolfo Correa
- Departments of Medicine, Pediatrics, and Population Health Science, University of Mississippi Medical Center, Jackson (A.C.)
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston (E.B.)
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A.)
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Insti for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (X.G., H.J.L., J.I.R.)
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville (S.S.R.)
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill.,Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill
| | - Marco Perez
- Division of Cardiovascular Medicine, Stanford University, CA (M.P.). Dr Sotoodehnia is supported by NIH grant R01HL141989, by AHA grant 19SFRN34830063, and by the Laughlin Family
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (M.P., C.K.)
| | - Brandon K. Fornwalt
- Department of Translational Data Science and Informatics (C.M.H., B.K.F.), Geisinger, Danville, PA.,Heart Institute (C.M.H., B.K.F.), Geisinger, Danville, PA.,Department of Radiology (B.K.F.), Geisinger, Danville, PA
| | - Kathryn L. Lunetta
- Department of Biostatistics (K.L.L.), Boston University School of Public Health, MA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA.,Cardiac Arrhythmia Service (P.T.E., S.A.L.), Boston, MA
| | - Steven A. Lubitz
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA.,Cardiac Arrhythmia Service (P.T.E., S.A.L.), Boston, MA
| | - Steven A Lubitz
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.H.C., S.J.J., A.W.H., J.L.H., V.N.M., L.-C.W., M.D.C., C.J.-Y.L., H.L.R., C.R., P.T.E., S.A.L.).,Cardiovascular Research Center (A.W.H., V.N.M., L.-C.W., P.T.E., S.A.L.), Boston, MA.,Cardiac Arrhythmia Service (P.T.E., S.A.L.), Boston, MA
| | | |
Collapse
|
29
|
A Mendelian randomization analysis of the relationship between cardioembolic risk factors and ischemic stroke. Sci Rep 2021; 11:14583. [PMID: 34272412 PMCID: PMC8285403 DOI: 10.1038/s41598-021-93979-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Observational studies have shown that several risk factors are associated with cardioembolic stroke. However, whether such associations reflect causality remains unknown. We aimed to determine whether established and provisional cardioembolic risk factors are causally associated with cardioembolic stroke. Genetic instruments for atrial fibrillation (AF), myocardial infarction (MI), electrocardiogram (ECG) indices and N-terminal pro-brain natriuretic peptide (NT-pro BNP) were obtained from large genetic consortiums. Summarized data of ischemic stroke and its subtypes were extracted from the MEGASTROKE consortium. Causal estimates were calculated by applying inverse-variance weighted analysis, weighted median analysis, simple median analysis and Mendelian randomization (MR)-Egger regression. Genetically predicted AF was significantly associated with higher odds of ischemic stroke (odds ratio (OR): 1.20, 95% confidence intervals (CI): 1.16-1.24, P = 6.53 × 10-30) and cardioembolic stroke (OR: 1.95, 95% CI: 1.85-2.06, P = 8.81 × 10-125). Suggestive associations were found between genetically determined resting heart rate and higher odds of ischemic stroke (OR: 1.01, 95% CI: 1.00-1.02, P = 0.005), large-artery atherosclerotic stroke (OR: 1.02, 95% CI: 1.00-1.04, P = 0.026) and cardioembolic stroke (OR: 1.02, 95% CI: 1.00-1.04, P = 0.028). There was no causal association of P-wave terminal force in the precordial lead V1 (PTFVI), P-wave duration (PWD), NT-pro BNP or PR interval with ischemic stroke or any subtype.
Collapse
|
30
|
Liu Y, Zhang X, Lee J, Smelser D, Cade B, Chen H, Zhou H, Kirchner HL, Lin X, Mukherjee S, Hillman D, Liu CT, Redline S, Sofer T. Genome-wide association study of neck circumference identifies sex-specific loci independent of generalized adiposity. Int J Obes (Lond) 2021; 45:1532-1541. [PMID: 33907307 PMCID: PMC8236408 DOI: 10.1038/s41366-021-00817-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/06/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND/OBJECTIVES Neck circumference, an index of upper airway fat, has been suggested to be an important measure of body-fat distribution with unique associations with health outcomes such as obstructive sleep apnea and metabolic disease. This study aims to study the genetic bases of neck circumference. METHODS We conducted a multi-ethnic genome-wide association study of neck circumference, adjusted and unadjusted for BMI, in up to 15,090 European Ancestry (EA) and African American (AA) individuals. Because sexually dimorphic associations have been observed for anthropometric traits, we conducted both sex-combined and sex-specific analysis. RESULTS We identified rs227724 near the Noggin (NOG) gene as a possible quantitative locus for neck circumference in men (N = 8831, P = 1.74 × 10-9) but not in women (P = 0.08). The association was replicated in men (N = 1554, P = 0.045) in an independent dataset. This locus was previously reported to be associated with human height and with self-reported snoring. We also identified rs13087058 on chromosome 3 as a suggestive locus in sex-combined analysis (N = 15090, P = 2.94 × 10-7; replication P =0.049). This locus was also associated with electrocardiogram-assessed PR interval and is a cis-expression quantitative locus for the PDZ Domain-containing ring finger 2 (PDZRN3) gene. Both NOG and PDZRN3 interact with members of transforming growth factor-beta superfamily signaling proteins. CONCLUSIONS Our study suggests that neck circumference may have unique genetic basis independent of BMI.
Collapse
Affiliation(s)
- Yaowu Liu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaoyu Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Diane Smelser
- Department of Molecular and Functional Genomics, Geisinger Clinic, Danville, PA, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H Lester Kirchner
- Department of Population Health Sciences, Geisinger Clinic, Danville, PA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, SA, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David Hillman
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tamar Sofer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Degtyareva AO, Antontseva EV, Merkulova TI. Regulatory SNPs: Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases. Int J Mol Sci 2021; 22:6454. [PMID: 34208629 PMCID: PMC8235176 DOI: 10.3390/ijms22126454] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The vast majority of the genetic variants (mainly SNPs) associated with various human traits and diseases map to a noncoding part of the genome and are enriched in its regulatory compartment, suggesting that many causal variants may affect gene expression. The leading mechanism of action of these SNPs consists in the alterations in the transcription factor binding via creation or disruption of transcription factor binding sites (TFBSs) or some change in the affinity of these regulatory proteins to their cognate sites. In this review, we first focus on the history of the discovery of regulatory SNPs (rSNPs) and systematized description of the existing methodical approaches to their study. Then, we brief the recent comprehensive examples of rSNPs studied from the discovery of the changes in the TFBS sequence as a result of a nucleotide substitution to identification of its effect on the target gene expression and, eventually, to phenotype. We also describe state-of-the-art genome-wide approaches to identification of regulatory variants, including both making molecular sense of genome-wide association studies (GWAS) and the alternative approaches the primary goal of which is to determine the functionality of genetic variants. Among these approaches, special attention is paid to expression quantitative trait loci (eQTLs) analysis and the search for allele-specific events in RNA-seq (ASE events) as well as in ChIP-seq, DNase-seq, and ATAC-seq (ASB events) data.
Collapse
Affiliation(s)
- Arina O. Degtyareva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Elena V. Antontseva
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
| | - Tatiana I. Merkulova
- Department of Molecular Genetic, Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.O.D.); (E.V.A.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
32
|
Ahmadmehrabi S, Li B, Park J, Devkota B, Vujkovic M, Ko YA, Van Wagoner D, Tang WHW, Krantz I, Ritchie M, Brant J, Ruckenstein MJ, Epstein DJ, Rader DJ. Genome-first approach to rare EYA4 variants and cardio-auditory phenotypes in adults. Hum Genet 2021; 140:957-967. [PMID: 33745059 DOI: 10.1007/s00439-021-02263-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
While newborns and children with hearing loss are routinely offered genetic testing, adults are rarely clinically tested for a genetic etiology. One clinically actionable result from genetic testing in children is the discovery of variants in syndromic hearing loss genes. EYA4 is a known hearing loss gene which is also involved in important pathways in cardiac tissue. The pleiotropic effects of rare EYA4 variants are poorly understood and their prevalence in a large cohort has not been previously reported. We investigated cardio-auditory phenotypes in 11,451 individuals in a large biobank using a rare variant, genome-first approach to EYA4. We filtered 256 EYA4 variants carried by 6737 participants to 26 rare and predicted deleterious variants carried by 42 heterozygotes. We aggregated predicted deleterious EYA4 gene variants into a combined variable (i.e. "gene burden") and performed association studies across phenotypes compared to wildtype controls. We validated findings with replication in three independent cohorts and human tissue expression data. EYA4 gene burden was significantly associated with audiometric-proven HL (p = [Formula: see text], Mobitz Type II AV block (p = [Formula: see text]) and the syndromic presentation of HL and primary cardiomyopathy (p = 0.0194). Analyses on audiogram, echocardiogram, and electrocardiogram data validated these associations. Prior reports have focused on identifying variants in families with severe or syndromic phenotypes. In contrast, we found, using a genotype-first approach, that gene burden in EYA4 is associated with more subtle cardio-auditory phenotypes in an adult medical biobank population, including cardiac conduction disorders which have not been previously reported. We show the value of using a focused approach to uncover human disease related to pleiotropic gene variants and suggest a role for genetic testing in adults presenting with hearing loss.
Collapse
Affiliation(s)
- Shadi Ahmadmehrabi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Binglan Li
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Batsal Devkota
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Yi-An Ko
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - W H Wilson Tang
- Cleveland Clinic, Heart and Vascular Institute, Cleveland, OH, USA
| | - Ian Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marylyn Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Brant
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Gajendragadkar PR, Von Ende A, Ibrahim M, Valdes-Marquez E, Camm CF, Murgia F, Stiby A, Casadei B, Hopewell JC. Assessment of the causal relevance of ECG parameters for risk of atrial fibrillation: A mendelian randomisation study. PLoS Med 2021; 18:e1003572. [PMID: 33983917 PMCID: PMC8118296 DOI: 10.1371/journal.pmed.1003572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Atrial electrical and structural remodelling in older individuals with cardiovascular risk factors has been associated with changes in surface electrocardiographic (ECG) parameters (e.g., prolongation of the PR interval) and higher risks of atrial fibrillation (AF). However, it has been difficult to establish whether altered ECG parameters are the cause or a consequence of the myocardial substrate leading to AF. This study aimed to examine the potential causal relevance of ECG parameters on risk of AF using mendelian randomisation (MR). METHODS AND FINDINGS Weighted genetic scores explaining lifelong differences in P-wave duration, PR interval, and QT interval were constructed, and associations between these ECG scores and risk of AF were estimated among 278,792 UK Biobank participants (mean age: 57 years at recruitment; 19,132 AF cases). The independent genetic variants contributing to each of the separate ECG scores, and their corresponding weights, were based on published genome-wide association studies. In UK Biobank, genetic scores representing a 5 ms longer P-wave duration or PR interval were significantly associated with lower risks of AF (odds ratio [OR] 0.91; 95% confidence interval [CI]: 0.87-0.96, P = 2 × 10-4 and OR 0.94; 95% CI: 0.93-0.96, P = 2 × 10-19, respectively), while longer QT interval was not significantly associated with AF. These effects were independently replicated among a further 17,931 AF cases from the AFGen Consortium. Investigation of potential mechanistic pathways showed that differences in ECG parameters associated with specific ion channel genes had effects on risk of AF consistent with the overall scores, while the overall scores were not associated with changes in left atrial size. Limitations of the study included the inherent assumptions of MR, restriction to individuals of European ancestry, and possible restriction of results to the normal ECG ranges represented in UK Biobank. CONCLUSIONS In UK Biobank, we observed evidence suggesting a causal relationship between lifelong differences in ECG parameters (particularly PR interval) that reflect longer atrial conduction times and a lower risk of AF. These findings, which appear to be independent of atrial size and concomitant cardiovascular comorbidity, support the relevance of varying mechanisms underpinning AF and indicate that more individualised treatment strategies warrant consideration.
Collapse
Affiliation(s)
- Parag Ravindra Gajendragadkar
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Adam Von Ende
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Maysson Ibrahim
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Elsa Valdes-Marquez
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Christian Fielder Camm
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Federico Murgia
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Alexander Stiby
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Barbara Casadei
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Jemma C. Hopewell
- CTSU, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Man JCK, Bosada FM, Scholman KT, Offerhaus JA, Walsh R, van Duijvenboden K, van Eif VWW, Bezzina CR, Verkerk AO, Boukens BJ, Barnett P, Christoffels VM. Variant Intronic Enhancer Controls SCN10A-short Expression and Heart Conduction. Circulation 2021; 144:229-242. [PMID: 33910361 DOI: 10.1161/circulationaha.121.054083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Roddy Walsh
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent W W van Eif
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Department of Experimental Cardiology (J.A.O., R.W., C.R.B., A.O.V., B.J.B.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Phil Barnett
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development (J.C.K.M., F.M.B., K.T.S., K.v.D., V.W.W.v.E., A.O.V., B.J.B., P.B., V.M.C.), Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
35
|
Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194702. [PMID: 33706013 DOI: 10.1016/j.bbagrm.2021.194702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.
Collapse
|
36
|
A genome-wide association and polygenic risk score study on abnormal electrocardiogram in a Chinese population. Sci Rep 2021; 11:4669. [PMID: 33633301 PMCID: PMC7907205 DOI: 10.1038/s41598-021-84135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Electrocardiography is a common and widely-performed medical examination based on the measurement and evaluation of electrocardiogram (ECG) to assess the up-to-date cardiac rhythms and thus suggest the health conditions of cardiovascular system and on a larger level the individual’s wellness. Abnormal ECG assessment from the detection of abnormal heart rhythms may have clinical implications including blood clots in formation, ongoing heart attack, coronary artery blockage, etc. Past genetic-phenotypic research focused primarily on the physical parameters of ECG but not the medical evaluation. To unbiasedly uncover the underlying links of genetic variants with normal vs. abnormal ECG assessment, a genome-wide association study (GWAS) is carried out in a 1006-participant cohort of Chinese population effectively genotyped for 243487 single nucleotide polymorphisms (SNPs). Both age and sex are influential factors, and six novel SNPs are identified for potential association with abnormal ECG. With the selected SNPs, a polygenic risk score (PRS) differentiates the case–control subgroups, and correlates well with increased risk of abnormal ECG. The findings are reproduced in an independent validation cohort. The derived PRS may function as a potential biomarker for prospectively screening the high-risk subgroup of heart issues in the Chinese population.
Collapse
|
37
|
Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, Cámara-Checa A, Rubio-Alarcón M, Dago M, Alfayate S, Filgueiras D, Peinado R, López-Sendón JL, Jalife J, Tamargo J, Bernal JA, Caballero R, Delpón E. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovasc Res 2021; 118:1046-1060. [PMID: 33576403 DOI: 10.1093/cvr/cvab045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS The transcription factor Tbx5 controls cardiogenesis and drives Scn5a expression in mice. We have identified two variants in TBX5 encoding p.D111Y and p.F206L Tbx5, respectively, in two unrelated patients with structurally normal hearts diagnosed with Long QT (LQTS) and Brugada (BrS) Syndrome. Here we characterized the consequences of each variant to unravel the underlying disease mechanisms. METHODS AND RESULTS We combined clinical analysis with in vivo and in vitro electrophysiological and molecular techniques in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), HL-1 cells, and cardiomyocytes from mice trans-expressing human wildtype (WT) or mutant proteins. Tbx5 increased transcription of SCN5A encoding cardiac Nav1.5 channels, while repressing CAMK2D and SPTBN4 genes encoding Ca-calmodulin kinase IIδ (CaMKIIδ) and βIV-spectrin, respectively. These effects significantly increased Na current (INa) in hiPSC-CMs and in cardiomyocytes from mice trans-expressing Tbx5. Consequently, action potential (AP) amplitudes increased and QRS interval narrowed in the mouse electrocardiogram. p.F206L Tbx5 bound to the SCN5A promoter failed to transactivate it, thus precluding the pro-transcriptional effect of WT Tbx5. Therefore, p.F206L markedly decreased INa in hiPSC-CM, HL-1 cells, and mouse cardiomyocytes. The INa decrease in p.F206L trans-expressing mice translated into QRS widening and increased flecainide sensitivity. p.D111Y Tbx5 increased SCN5A expression but failed to repress CAMK2D and SPTBN4. The increased CaMKIIδ and βIV-spectrin significantly augmented the late component of INa (INaL) which, in turn, significantly prolonged AP duration in both hiPSC-CMs and mouse cardiomyocytes. Ranolazine, a selective INaL inhibitor, eliminated the QT and QTc intervals prolongation seen in p.D111Y trans-expressing mice. CONCLUSIONS In addition to peak INa, Tbx5 critically regulates INaL and the duration of repolarization in human cardiomyocytes. Our original results suggest that TBX5 variants associate with and modulate the intensity of the electrical phenotype in LQTS and BrS patients.
Collapse
Affiliation(s)
- Paloma Nieto-Marín
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Tinaquero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | | - Teresa Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Silvia Alfayate
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Filgueiras
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Rafael Peinado
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Luis López-Sendón
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Jalife
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain.,Departments of Internal Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Juan Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Juan Antonio Bernal
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | |
Collapse
|
38
|
Abstract
The sinus node (SAN) is the primary pacemaker of the human heart, and abnormalities in its structure or function cause sick sinus syndrome, the most common reason for electronic pacemaker implantation. Here we report that transcription factor GATA6, whose mutations in humans are linked to arrhythmia, is highly expressed in the SAN and its haploinsufficiency in mice results in hypoplastic SANs and rhythm abnormalities. Cell-specific deletion reveals a requirement for GATA6 in various SAN lineages. Mechanistically, GATA6 directly activates key regulators of the SAN genetic program in conduction and nonconduction cells, such as TBX3 and EDN1, respectively. The data identify GATA6 as an important regulator of the SAN and provide a molecular basis for understanding the conduction abnormalities associated with GATA6 mutations in humans. They also suggest that GATA6 may be a potential modifier of the cardiac pacemaker.
Collapse
|
39
|
van Eif VW, Protze S, Bosada FM, Yuan X, Sinha T, van Duijvenboden K, Ernault AC, Mohan RA, Wakker V, de Gier-de Vries C, Hooijkaas IB, Wilson MD, Verkerk AO, Bakkers J, Boukens BJ, Black BL, Scott IC, Christoffels VM. Genome-Wide Analysis Identifies an Essential Human TBX3 Pacemaker Enhancer. Circ Res 2020; 127:1522-1535. [PMID: 33040635 PMCID: PMC8153223 DOI: 10.1161/circresaha.120.317054] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE The development and function of the pacemaker cardiomyocytes of the sinoatrial node (SAN), the leading pacemaker of the heart, are tightly controlled by a conserved network of transcription factors, including TBX3 (T-box transcription factor 3), ISL1 (ISL LIM homeobox 1), and SHOX2 (short stature homeobox 2). Yet, the regulatory DNA elements (REs) controlling target gene expression in the SAN pacemaker cells have remained undefined. OBJECTIVE Identification of the regulatory landscape of human SAN-like pacemaker cells and functional assessment of SAN-specific REs potentially involved in pacemaker cell gene regulation. METHODS AND RESULTS We performed Assay for Transposase-Accessible Chromatin using sequencing on human pluripotent stem cell-derived SAN-like pacemaker cells and ventricle-like cells and identified thousands of putative REs specific for either human cell type. We validated pacemaker cell-specific elements in the SHOX2 and TBX3 loci. CRISPR-mediated homozygous deletion of the mouse ortholog of a noncoding region with candidate pacemaker-specific REs in the SHOX2 locus resulted in selective loss of Shox2 expression from the developing SAN and embryonic lethality. Putative pacemaker-specific REs were identified up to 1 Mbp upstream of TBX3 in a region close to MED13L harboring variants associated with heart rate recovery after exercise. The orthologous region was deleted in mice, which resulted in selective loss of expression of Tbx3 from the SAN and (cardiac) ganglia and in neonatal lethality. Expression of Tbx3 was maintained in other tissues including the atrioventricular conduction system, lungs, and liver. Heterozygous adult mice showed increased SAN recovery times after pacing. The human REs harboring the associated variants robustly drove expression in the SAN of transgenic mouse embryos. CONCLUSIONS We provided a genome-wide collection of candidate human pacemaker-specific REs, including the loci of SHOX2, TBX3, and ISL1, and identified a link between human genetic variants influencing heart rate recovery after exercise and a variant RE with highly conserved function, driving SAN expression of TBX3.
Collapse
Affiliation(s)
- Vincent W.W. van Eif
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Xuefei Yuan
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Tanvi Sinha
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Auriane C. Ernault
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Aix-Marseille Université, INSERM, MMG - U1251, Marseille, France
| | - Rajiv A. Mohan
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg B. Hooijkaas
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael D. Wilson
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Bastiaan J. Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Brian L. Black
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Ian C. Scott
- The Hospital for Sick Children; and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Canada
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Miao X, Liu W, Fan B, Lin H. Transcriptomic Heterogeneity of Alzheimer's Disease Associated with Lipid Genetic Risk. Neuromolecular Med 2020; 22:534-541. [PMID: 32862331 DOI: 10.1007/s12017-020-08610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease that affects more than 5 million Americans. Multiple pathways might be involved in the AD pathogenesis. The implication of lipid genetic susceptibility on brain gene expression is yet to be investigated. The current study included 192 brain samples from AD patients who were enrolled in the ROSMAP study. The samples were genotyped and imputed to the HRC Reference Panel. Lipid polygenetic risk score was constructed from the weighted sum of genetic variants associated with low-density lipoprotein cholesterol (LDL-C). The gene expression was profiled by RNA sequencing, and the association of gene expression with lipid polygenetic risk scores was tested by linear regression models adjusted for age, sex and APOE e4 alleles. Three genes were found to associate with lipid polygenetic risk scores, including HMCN2 (P = 3.6 × 10-7), PDLIM5 (P = 1.2 × 10-6), and FHL5 (P = 2.0 × 10-6). Network analysis revealed multiple related pathways, including dopaminergic synapse (P = 4.5 × 10-5), circadian entrainment (P = 1.1 × 10-4), and cholinergic synapse (P = 2.3 × 10-4). Our study underscores the importance of lipid regulation and metabolism to AD heterogeneity.
Collapse
Affiliation(s)
- Xiao Miao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifeng Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Fan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, E-632, Boston, MA, 02118, USA.
| |
Collapse
|
41
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
42
|
Tadros R, Tan HL, El Mathari S, Kors JA, Postema PG, Lahrouchi N, Beekman L, Radivojkov-Blagojevic M, Amin AS, Meitinger T, Tanck MW, Wilde AA, Bezzina CR. Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. Eur Heart J 2020; 40:3097-3107. [PMID: 31504448 PMCID: PMC6769824 DOI: 10.1093/eurheartj/ehz435] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Aims Sodium-channel blockers (SCBs) are associated with arrhythmia, but variability of cardiac electrical response remains unexplained. We sought to identify predictors of ajmaline-induced PR and QRS changes and Type I Brugada syndrome (BrS) electrocardiogram (ECG). Methods and results In 1368 patients that underwent ajmaline infusion for suspected BrS, we performed measurements of 26 721 ECGs, dose–response mixed modelling and genotyping. We calculated polygenic risk scores (PRS) for PR interval (PRSPR), QRS duration (PRSQRS), and Brugada syndrome (PRSBrS) derived from published genome-wide association studies and used regression analysis to identify predictors of ajmaline dose related PR change (slope) and QRS slope. We derived and validated using bootstrapping a predictive model for ajmaline-induced Type I BrS ECG. Higher PRSPR, baseline PR, and female sex are associated with more pronounced PR slope, while PRSQRS and age are positively associated with QRS slope (P < 0.01 for all). PRSBrS, baseline QRS duration, presence of Type II or III BrS ECG at baseline, and family history of BrS are independently associated with the occurrence of a Type I BrS ECG, with good predictive accuracy (optimism-corrected C-statistic 0.74). Conclusion We show for the first time that genetic factors underlie the variability of cardiac electrical response to SCB. PRSBrS, family history, and a baseline ECG can predict the development of a diagnostic drug-induced Type I BrS ECG with clinically relevant accuracy. These findings could lead to the use of PRS in the diagnosis of BrS and, if confirmed in population studies, to identify patients at risk for toxicity when given SCB. ![]()
Collapse
Affiliation(s)
- Rafik Tadros
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands.,Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, 5000 Belanger, Montreal, QC, Canada
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | | | - Sulayman El Mathari
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, GD Rotterdam, The Netherlands
| | - Pieter G Postema
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Leander Beekman
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | | | - Ahmad S Amin
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Trogerstraße 32, Munich, Germany
| | - Michael W Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Arthur A Wilde
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, 7393 Al-Malae'b St, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ Amsterdam, The Netherlands
| |
Collapse
|
43
|
Weng LC, Hall AW, Choi SH, Jurgens SJ, Haessler J, Bihlmeyer NA, Grarup N, Lin H, Teumer A, Li-Gao R, Yao J, Guo X, Brody JA, Müller-Nurasyid M, Schramm K, Verweij N, van den Berg ME, van Setten J, Isaacs A, Ramírez J, Warren HR, Padmanabhan S, Kors JA, de Boer RA, van der Meer P, Sinner MF, Waldenberger M, Psaty BM, Taylor KD, Völker U, Kanters JK, Li M, Alonso A, Perez MV, Vaartjes I, Bots ML, Huang PL, Heckbert SR, Lin HJ, Kornej J, Munroe PB, van Duijn CM, Asselbergs FW, Stricker BH, van der Harst P, Kääb S, Peters A, Sotoodehnia N, Rotter JI, Mook-Kanamori DO, Dörr M, Felix SB, Linneberg A, Hansen T, Arking DE, Kooperberg C, Benjamin EJ, Lunetta KL, Ellinor PT, Lubitz SA. Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:387-395. [PMID: 32822252 PMCID: PMC7578098 DOI: 10.1161/circgen.119.002874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. METHODS Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. RESULTS We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. CONCLUSIONS Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF.
Collapse
Affiliation(s)
- Lu-Chen Weng
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Amelia Weber Hall
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Sean J. Jurgens
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
| | - Jeffrey Haessler
- Fred Hutchinson Cancer Rsrch Ctr, Division of Public Health Sciences, Seattle WA
| | - Nathan A. Bihlmeyer
- McKusick-Nathans Dept of Genetic Medicine, Johns Hopkins Univ School of Med, Baltimore, MD
| | - Niels Grarup
- Novo Nordisk Foundation Ctr for Basic Metabolic Rsrch, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Honghuang Lin
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
- Section of Computational Biomedicine, Dept of Med, Boston Univ School of Med, Boston, MA
| | - Alexander Teumer
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Inst for Community Med, Univ Medicine Greifswald, Greifswald, Germany
| | - Ruifang Li-Gao
- Dept of Clinical Epidemiology, Leiden Univ Medical Ctr, the Netherlands
| | - Jie Yao
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
| | - Xiuqing Guo
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Dept of Pediatrics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Jennifer A. Brody
- Cardiovascular Health Rsrch Unit, Dept of Med, Dept of Epidemiology, Univ of Washington
| | - Martina Müller-Nurasyid
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- Inst of Genetic Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
| | - Katharina Schramm
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- Inst of Genetic Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
| | - Niek Verweij
- Genomics plc, Oxford, UK
- Dept of Cardiology, Univ of Groningen & Univ Medical Ctr, Groningen
| | - Marten E. van den Berg
- Dept of Epidemiology, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
| | - Jessica van Setten
- Dept of Cardiology, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Univ, Maastricht, the Netherlands
- Dept of Physiology, Maastricht Univ, Maastricht, the Netherlands
| | - Julia Ramírez
- Nat Inst for Health Rsrch, Barts Cardiovascular Biomedical Rsrch Ctr, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
- William Harvey Rsrch Inst, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
| | - Helen R. Warren
- Nat Inst for Health Rsrch, Barts Cardiovascular Biomedical Rsrch Ctr, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
- William Harvey Rsrch Inst, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
| | - Sandosh Padmanabhan
- Inst of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, Univ of Glasgow, Glasgow, UK
| | - Jan A. Kors
- Dept of Med Informatics, Erasmus Univ Medical Ctr, Rotterdam, the Netherlands
| | | | | | - Moritz F. Sinner
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Melanie Waldenberger
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
- Inst of Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
- Rsrch unit of Molecular Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
| | - Bruce M. Psaty
- Cardiovascular Health Rsrch Unit, Depts of Med, Epidemiology & Health Services, Dept of Epidemiology, Univ of Washington
- Kaiser Permanente Washington Health Rsrch Inst, Seattle, WA
| | - Kent D. Taylor
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Dept of Pediatrics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Uwe Völker
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Interfaculty Inst for Genetics & Functional Genomics, Univ Medicine Greifswald, Greifswald, Germany
| | - Jørgen K. Kanters
- Lab of Experimental Cardiology, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Man Li
- Division of Nephrology & Hypertensions, Dept of Internal Med, Univ of Utah School of Med, Salt Lake City, UT
| | - Alvaro Alonso
- Dept of Epidemiology, Rollins School of Public Health, Emory Univ, Atlanta, GA
| | | | - Ilonca Vaartjes
- Julius Ctr for Health Sciences & Primary Care, Univ Medical Ctr Utrecht, Utrecht Univ, the Netherlands
| | - Michiel L. Bots
- Julius Ctr for Health Sciences & Primary Care, Univ Medical Ctr Utrecht, Utrecht Univ, the Netherlands
| | | | - Susan R. Heckbert
- Cardiovascular Health Rsrch Unit, Dept of Epidemiology, Univ of Washington
| | - Henry J. Lin
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Dept of Pediatrics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Jelena Kornej
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
| | - Patricia B. Munroe
- Nat Inst for Health Rsrch, Barts Cardiovascular Biomedical Rsrch Ctr, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
- William Harvey Rsrch Inst, Barts & The London School of Med & Dentistry, Queen Mary Univ of London, London
| | - Cornelia M. van Duijn
- Dept of Epidemiology, Erasmus Univ Medical Ctr, Rotterdam, the Netherlands
- Nuffield Dept of Population Health, Medical Sciences Division, St. Cross College, Oxford Univ, Oxford
| | - Folkert W. Asselbergs
- Dept of Cardiology, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
- Health Data Rsrch UK & Inst of Health Informatics, Faculty of Population Health Sciences, Univ College London, London, UK
- Inst of Cardiovascular Science, Faculty of Population Health Sciences, Univ College London, London, UK
| | - Bruno H. Stricker
- Dept of Internal Medicine, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
- Dept of Med Informatics, Erasmus MC, Medical Ctr Rotterdam, Division of Heart & Lungs, Univ of Utrecht, Univ Medical Ctr Utrecht
- Inspectorate of Health Care
| | - Pim van der Harst
- Dept of Cardiology, Univ of Groningen & Univ Medical Ctr, Groningen
- Durrer Ctr for Cardiogenetic Rsrch, ICIN-Netherlands Heart Inst, Utrecht, the Netherlands
- Dept of Genetics, Univ of Groningen & Univ Medical Ctr, Groningen
| | - Stefan Kääb
- Dept of Internal Med I (Cardiology), Hospital of the Ludwig-Maximilians-Univ (LMU) Munich, Munich
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
| | - Annette Peters
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Munich Heart Alliance, Munich
- Inst of Epidemiology, Helmholtz Zentrum München - German Rsrch Ctr for Environmental Health, Neuherberg, Germany
- German Ctr for Diabetes Rsrch, Neuherberg, Germany
| | - Nona Sotoodehnia
- Cardiovascular Health Rsrch Unit, Dept of Med, Dept of Epidemiology, Univ of Washington
| | - Jerome I. Rotter
- The Inst for Translational Genomics & Population Sciences at Harbor-UCLA Medical Ctr, Torrance
- Depts of Pediatrics & Human Genetics, David Geffen School of Med at UCLA, Los Angeles, CA
| | - Dennis O. Mook-Kanamori
- Dept of Clinical Epidemiology, Leiden Univ Medical Ctr, the Netherlands
- Dept of Public Health & Primary Care, Leiden Univ Medical Ctr, the Netherlands
| | - Marcus Dörr
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Dept of Internal Med B, Univ Medicine Greifswald, Greifswald, Germany
| | - Stephan B. Felix
- DZHK (German Ctr for Cardiovascular Rsrch), partner site Greifswald
- Dept of Internal Med B, Univ Medicine Greifswald, Greifswald, Germany
| | - Allan Linneberg
- Ctr for Clinical Rsrch & Prevention, Bispebjerg & Frederiksberg Hospital, Copenhagen, Denamrk
- Dept of Clinical Med, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Ctr for Basic Metabolic Rsrch, Faculty of Health & Med Sciences, Univ of Copenhagen, Copenhagen, Denmark
| | - Dan E. Arking
- McKusick-Nathans Dept of Genetic Medicine, Johns Hopkins Univ School of Med, Baltimore, MD
| | - Charles Kooperberg
- Fred Hutchinson Cancer Rsrch Ctr, Division of Public Health Sciences, Seattle WA
| | - Emelia J. Benjamin
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
- Dept of Epidemiology, Boston Univ School of Public Health, Boston, MA
- Dept of Med, Boston Univ School of Med, Boston, MA
| | - Kathryn L. Lunetta
- Boston Univ & NHLBI’s Framingham Heart Study, Framingham
- Dept of Biostatistics, Boston Univ School of Public Health, Boston, MA
| | - Patrick T. Ellinor
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
- Cardiac Arrhythmia Service, MGH, Boston
| | - Steven A. Lubitz
- Cardiovascular Rsrch Ctr, MGH, Boston
- Cardiovascular Disease Initiative, The Broad Inst of MIT & Harvard, Cambridge, MA
- Cardiac Arrhythmia Service, MGH, Boston
| |
Collapse
|
44
|
Verweij N, Benjamins JW, Morley MP, van de Vegte YJ, Teumer A, Trenkwalder T, Reinhard W, Cappola TP, van der Harst P. The Genetic Makeup of the Electrocardiogram. Cell Syst 2020; 11:229-238.e5. [PMID: 32916098 DOI: 10.1016/j.cels.2020.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
The electrocardiogram (ECG) is one of the most useful non-invasive diagnostic tests for a wide array of cardiac disorders. Traditional approaches to analyzing ECGs focus on individual segments. Here, we performed comprehensive deep phenotyping of 77,190 ECGs in the UK Biobank across the complete cycle of cardiac conduction, resulting in 500 spatial-temporal datapoints, across 10 million genetic variants. In addition to characterizing polygenic risk scores for the traditional ECG segments, we identified over 300 genetic loci that are statistically associated with the high-dimensional representation of the ECG. We established the genetic ECG signature for dilated cardiomyopathy, associated the BAG3, HSPB7/CLCNKA, PRKCA, TMEM43, and OBSCN loci with disease risk and confirmed this association in an independent cohort. In total, our work demonstrates that a high-dimensional analysis of the entire ECG provides unique opportunities for studying cardiac biology and disease and furthering drug development. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands; Genomics plc, Oxford, UK.
| | - Jan-Walter Benjamins
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Michael P Morley
- Cardiovascular Institute, Perelman School of Medicine , University of Pennsylvania, Philadelphia, USA
| | - Yordi J van de Vegte
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Teresa Trenkwalder
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wibke Reinhard
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Thomas P Cappola
- Division of Cardiovascular Medicine at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands; Department of Cardiology, Heart and Lung Division, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
45
|
Mohan RA, Bosada FM, van Weerd JH, van Duijvenboden K, Wang J, Mommersteeg MTM, Hooijkaas IB, Wakker V, de Gier-de Vries C, Coronel R, Boink GJJ, Bakkers J, Barnett P, Boukens BJ, Christoffels VM. T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proc Natl Acad Sci U S A 2020; 117:18617-18626. [PMID: 32675240 PMCID: PMC7414162 DOI: 10.1073/pnas.1919379117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/-) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/- mutants. Notably, Tbx3+/- atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.
Collapse
Affiliation(s)
- Rajiv A Mohan
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan H van Weerd
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jianan Wang
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ingeborg B Hooijkaas
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
46
|
Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC, Akkad AD, Herndon CN, Arduini A, Papangeli I, Roselli C, Aguet F, Choi SH, Ardlie KG, Babadi M, Margulies KB, Stegmann CM, Ellinor PT. Transcriptional and Cellular Diversity of the Human Heart. Circulation 2020; 142:466-482. [PMID: 32403949 PMCID: PMC7666104 DOI: 10.1161/circulationaha.119.045401] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The human heart requires a complex ensemble of specialized cell types to perform its essential function. A greater knowledge of the intricate cellular milieu of the heart is critical to increase our understanding of cardiac homeostasis and pathology. As recent advances in low-input RNA sequencing have allowed definitions of cellular transcriptomes at single-cell resolution at scale, we have applied these approaches to assess the cellular and transcriptional diversity of the nonfailing human heart. METHODS Microfluidic encapsulation and barcoding was used to perform single nuclear RNA sequencing with samples from 7 human donors, selected for their absence of overt cardiac disease. Individual nuclear transcriptomes were then clustered based on transcriptional profiles of highly variable genes. These clusters were used as the basis for between-chamber and between-sex differential gene expression analyses and intersection with genetic and pharmacologic data. RESULTS We sequenced the transcriptomes of 287 269 single cardiac nuclei, revealing 9 major cell types and 20 subclusters of cell types within the human heart. Cellular subclasses include 2 distinct groups of resident macrophages, 4 endothelial subtypes, and 2 fibroblast subsets. Comparisons of cellular transcriptomes by cardiac chamber or sex reveal diversity not only in cardiomyocyte transcriptional programs but also in subtypes involved in extracellular matrix remodeling and vascularization. Using genetic association data, we identified strong enrichment for the role of cell subtypes in cardiac traits and diseases. Intersection of our data set with genes on cardiac clinical testing panels and the druggable genome reveals striking patterns of cellular specificity. CONCLUSIONS Using large-scale single nuclei RNA sequencing, we defined the transcriptional and cellular diversity in the normal human heart. Our identification of discrete cell subtypes and differentially expressed genes within the heart will ultimately facilitate the development of new therapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Nathan R. Tucker
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
- Masonic Medical Research Institute, Utica, NY, USA 13501
| | - Mark Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Stephen J. Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Amelia W. Hall
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Victoria A. Parsons
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Kenneth C. Bedi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Caroline N. Herndon
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Irinna Papangeli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Carolina Roselli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- University Medical Center Groningen, University of Groningen, 9712 CP, Groningen, NL
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Seung Hoan Choi
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | | | - Mehrtash Babadi
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104
| | - Christian M. Stegmann
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Patrick T. Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| |
Collapse
|
47
|
Baldassari AR, Sitlani CM, Highland HM, Arking DE, Buyske S, Darbar D, Gondalia R, Graff M, Guo X, Heckbert SR, Hindorff LA, Hodonsky CJ, Ida Chen YD, Kaplan RC, Peters U, Post W, Reiner AP, Rotter JI, Shohet RV, Seyerle AA, Sotoodehnia N, Tao R, Taylor KD, Wojcik GL, Yao J, Kenny EE, Lin HJ, Soliman EZ, Whitsel EA, North KE, Kooperberg C, Avery CL. Multi-Ethnic Genome-Wide Association Study of Decomposed Cardioelectric Phenotypes Illustrates Strategies to Identify and Characterize Evidence of Shared Genetic Effects for Complex Traits. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e002680. [PMID: 32602732 PMCID: PMC7520945 DOI: 10.1161/circgen.119.002680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND We examined how expanding electrocardiographic trait genome-wide association studies to include ancestrally diverse populations, prioritize more precise phenotypic measures, and evaluate evidence for shared genetic effects enabled the detection and characterization of loci. METHODS We decomposed 10 seconds, 12-lead electrocardiograms from 34 668 multi-ethnic participants (15% Black; 30% Hispanic/Latino) into 6 contiguous, physiologically distinct (P wave, PR segment, QRS interval, ST segment, T wave, and TP segment) and 2 composite, conventional (PR interval and QT interval) interval scale traits and conducted multivariable-adjusted, trait-specific univariate genome-wide association studies using 1000-G imputed single-nucleotide polymorphisms. Evidence of shared genetic effects was evaluated by aggregating meta-analyzed univariate results across the 6 continuous electrocardiographic traits using the combined phenotype adaptive sum of powered scores test. RESULTS We identified 6 novels (CD36, PITX2, EMB, ZNF592, YPEL2, and BC043580) and 87 known loci (adaptive sum of powered score test P<5×10-9). Lead single-nucleotide polymorphism rs3211938 at CD36 was common in Blacks (minor allele frequency=10%), near monomorphic in European Americans, and had effects on the QT interval and TP segment that ranked among the largest reported to date for common variants. The other 5 novel loci were observed when evaluating the contiguous but not the composite electrocardiographic traits. Combined phenotype testing did not identify novel electrocardiographic loci unapparent using traditional univariate approaches, although this approach did assist with the characterization of known loci. CONCLUSIONS Despite including one-third as many participants as published electrocardiographic trait genome-wide association studies, our study identified 6 novel loci, emphasizing the importance of ancestral diversity and phenotype resolution in this era of ever-growing genome-wide association studies.
Collapse
Affiliation(s)
- Antoine R Baldassari
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine (C.M.S.), University of Washington, Seattle.xs
| | - Heather M Highland
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A.)
| | - Steve Buyske
- Department of Statistics and Biostatistics, Rutgers University, New Brunswick, NJ (S.B.)
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago (D.D.)
| | - Rahul Gondalia
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| | - Misa Graff
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine (S.R.H., N.S.), University of Washington, Seattle
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (L.A.H.)
| | - Chani J Hodonsky
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
| | | | - Ulrike Peters
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA (U.P., A.P.R., C.K.)
| | - Wendy Post
- Departments of Medicine and Epidemiology, Johns Hopkins University, Baltimore, MD (W.P.)
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA (U.P., A.P.R., C.K.)
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
| | - Ralph V Shohet
- Center for Cardiovascular Research, John A. Burns School of Medicine, Honolulu, HI (R.V.S.)
| | - Amanda A Seyerle
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine (S.R.H., N.S.), University of Washington, Seattle
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University, Nashville, TN (R.T.)
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (G.L.W.)
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
| | - Eimear E Kenny
- Center for Genomic Health (E.E.K.), Icahn School of Medicine at Mount Sinai, New York, NY
- Charles Bronfman Institute of Personalized Medicine (E.E.K.), Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences (E.E.K.), Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine (E.E.K.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA (X.G., Y.-D.I.C., J.I.R., K.D.T., J.Y., H.J.L.)
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston-Salem, NC (E.Z.S.)
| | - Eric A Whitsel
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| | - Kari E North
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
- Carolina Center for Genome Sciences (K.E.N.), University of North Carolina at Chapel Hill
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA (U.P., A.P.R., C.K.)
| | - Christy L Avery
- Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill
| |
Collapse
|
48
|
Lahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L, Walsh R, Hasegawa K, Barc J, Ernsting M, Turkowski KL, Mazzanti A, Beckmann BM, Shimamoto K, Diamant UB, Wijeyeratne YD, Kucho Y, Robyns T, Ishikawa T, Arbelo E, Christiansen M, Winbo A, Jabbari R, Lubitz SA, Steinfurt J, Rudic B, Loeys B, Shoemaker MB, Weeke PE, Pfeiffer R, Davies B, Andorin A, Hofman N, Dagradi F, Pedrazzini M, Tester DJ, Bos JM, Sarquella-Brugada G, Campuzano Ó, Platonov PG, Stallmeyer B, Zumhagen S, Nannenberg EA, Veldink JH, van den Berg LH, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Andersen PM, Müller-Nurasyid M, Cusi D, Barlassina C, Galan P, Lathrop M, Munter M, Werge T, Ribasés M, Aung T, Khor CC, Ozaki M, Lichtner P, Meitinger T, van Tintelen JP, Hoedemaekers Y, Denjoy I, Leenhardt A, Napolitano C, Shimizu W, Schott JJ, Gourraud JB, Makiyama T, Ohno S, Itoh H, Krahn AD, Antzelevitch C, Roden DM, Saenen J, Borggrefe M, Odening KE, Ellinor PT, Tfelt-Hansen J, Skinner JR, van den Berg MP, Olesen MS, Brugada J, Brugada R, Makita N, Breckpot J, Yoshinaga M, Behr ER, Rydberg A, Aiba T, Kääb S, Priori SG, Guicheney P, Tan HL, Newton-Cheh C, Ackerman MJ, Schwartz PJ, et alLahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L, Walsh R, Hasegawa K, Barc J, Ernsting M, Turkowski KL, Mazzanti A, Beckmann BM, Shimamoto K, Diamant UB, Wijeyeratne YD, Kucho Y, Robyns T, Ishikawa T, Arbelo E, Christiansen M, Winbo A, Jabbari R, Lubitz SA, Steinfurt J, Rudic B, Loeys B, Shoemaker MB, Weeke PE, Pfeiffer R, Davies B, Andorin A, Hofman N, Dagradi F, Pedrazzini M, Tester DJ, Bos JM, Sarquella-Brugada G, Campuzano Ó, Platonov PG, Stallmeyer B, Zumhagen S, Nannenberg EA, Veldink JH, van den Berg LH, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Andersen PM, Müller-Nurasyid M, Cusi D, Barlassina C, Galan P, Lathrop M, Munter M, Werge T, Ribasés M, Aung T, Khor CC, Ozaki M, Lichtner P, Meitinger T, van Tintelen JP, Hoedemaekers Y, Denjoy I, Leenhardt A, Napolitano C, Shimizu W, Schott JJ, Gourraud JB, Makiyama T, Ohno S, Itoh H, Krahn AD, Antzelevitch C, Roden DM, Saenen J, Borggrefe M, Odening KE, Ellinor PT, Tfelt-Hansen J, Skinner JR, van den Berg MP, Olesen MS, Brugada J, Brugada R, Makita N, Breckpot J, Yoshinaga M, Behr ER, Rydberg A, Aiba T, Kääb S, Priori SG, Guicheney P, Tan HL, Newton-Cheh C, Ackerman MJ, Schwartz PJ, Schulze-Bahr E, Probst V, Horie M, Wilde AA, Tanck MW, Bezzina CR. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation 2020; 142:324-338. [PMID: 32429735 PMCID: PMC7382531 DOI: 10.1161/circulationaha.120.045956] [Show More Authors] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
Collapse
Affiliation(s)
- Najim Lahrouchi
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Rafik Tadros
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Canada (R.T.)
| | - Lia Crotti
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., F.D., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics (L.C., M.P., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital (L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Yuka Mizusawa
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Pieter G. Postema
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Leander Beekman
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Roddy Walsh
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Kanae Hasegawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan (K.H.)
| | - Julien Barc
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
| | - Marko Ernsting
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Kari L. Turkowski
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - Andrea Mazzanti
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Italy (A.M., C.N., S.G.P.)
| | - Britt M. Beckmann
- Department of Internal Medicine I, University Hospital of the Ludwig Maximilians University, Munich, Germany (B.M.B., M.M.-N., S.K.)
| | - Keiko Shimamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (K.S., W.S., T.A.)
| | - Ulla-Britt Diamant
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Department of Clinical Sciences, Unit of Paediatrics, Umeå University, Sweden (U.-B.D., A.R.)
| | - Yanushi D. Wijeyeratne
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular and Clinical Sciences Research Institute, St George’s University of London and Cardiology Clinical Academic Group, St George’s University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., A.A., E.R.B.)
| | - Yu Kucho
- National Hospital Organization Kagoshima Medical Center, Japan (Y.K., M.Y.)
| | - Tomas Robyns
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, Belgium (T.R.)
- Department of Cardiovascular Sciences, KU Leuven, Belgium (T.R.)
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan (T.I.)
| | - Elena Arbelo
- Cardiovascular Institute, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d’Investigació August Pi i Sunyer (IDIBAPS), and Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (E.A.)
| | - Michael Christiansen
- Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark (M.C.)
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark (M.C.)
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Denmark (M.C.)
| | - Annika Winbo
- Department of Physiology, The University of Auckland, New Zealand (A.W.)
| | - Reza Jabbari
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (R.J., P.E.W., J.T.-H.)
| | - Steven A. Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S.A.L., P.T.E.)
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Germany (J.S., K.E.O.)
| | - Boris Rudic
- Department of Medicine, University Medical Center Mannheim, and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany (B.R., M.B.)
| | - Bart Loeys
- Department of Clinical Genetics, Antwerp University Hospital, Belgium (B.L.)
| | - M. Ben Shoemaker
- Department of Medicine (M.B.S., P.E.W., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Peter E. Weeke
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (R.J., P.E.W., J.T.-H.)
- Department of Medicine (M.B.S., P.E.W., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Ryan Pfeiffer
- Masonic Medical Research Institute, Utica, NY (R.P.)
| | - Brianna Davies
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (B.D., A.D.K.)
| | - Antoine Andorin
- Molecular and Clinical Sciences Research Institute, St George’s University of London and Cardiology Clinical Academic Group, St George’s University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., A.A., E.R.B.)
- L’Institut du Thorax, CHU Nantes, Service de Cardiologie, France (A.A., J.-J.S., J.-B.G.)
| | - Nynke Hofman
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Federica Dagradi
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., F.D., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Matteo Pedrazzini
- Laboratory of Cardiovascular Genetics (L.C., M.P., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - David J. Tester
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - J. Martijn Bos
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - Georgia Sarquella-Brugada
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Arrhythmia, Inherited Heart Disease and Sudden Death Unit, Hospital Sant Joan de Déu, European Reference Center at the ERN GUARD-Heart Reference Network for Rare Cardiac Diseases, Barcelona, Spain (G.S.-B.)
- Medical Science Department, School of Medicine, University of Girona, Spain (G.S.-B.)
- Cardiovascular Program, Research Institute of Sant Joan de Déu (IRSJD), Barcelona, Spain (G.S.-B., O.C.)
| | - Óscar Campuzano
- Cardiovascular Program, Research Institute of Sant Joan de Déu (IRSJD), Barcelona, Spain (G.S.-B., O.C.)
- Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, Universitat de Barcelona; Institut d’Investigació August Pi i Sunyer (IDIBAPS); Cardiovascular Genetics Center, University of Girona-IDIBGI; and Medical Science Department, School of Medicine, University of Girona, Spain (O.C., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (O.C.)
| | - Pyotr G. Platonov
- Center for Integrative Electrocardiology (CIEL), Department of Cardiology, Clinical Sciences, Lund University, Sweden (P.G.P.)
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Sven Zumhagen
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Eline A. Nannenberg
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, The Netherlands (E.A.N., J.P.v.T.)
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Ammar Al-Chalabi
- King’s College Hospital, Bessemer Road, London, United Kingdom (A.A.-C.)
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, United Kingdom (A.A.-C., C.E.S.)
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, United Kingdom (A.A.-C., C.E.S.)
- UK Dementia Research Institute, King’s College London, United Kingdom (C.E.S.)
| | - Pamela J. Shaw
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., F.D., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics (L.C., M.P., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (P.J.S.)
| | - Karen E. Morrison
- Faculty of Medicine, University of Southampton, University Hospital Southampton, United Kingdom (K.E.M.)
| | - Peter M. Andersen
- Department of Neurology, Ulm University, Germany (P.M.A.)
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden (P.M.A.)
| | - Martina Müller-Nurasyid
- Department of Internal Medicine I, University Hospital of the Ludwig Maximilians University, Munich, Germany (B.M.B., M.M.-N., S.K.)
- Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (M.M.-N.)
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany (M.M.-N.)
| | - Daniele Cusi
- Department of Health Sciences, University of Milan, Italy (D.C., C.B.)
- Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy (D.C., C.B.)
| | - Cristina Barlassina
- Department of Health Sciences, University of Milan, Italy (D.C., C.B.)
- Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy (D.C., C.B.)
| | - Pilar Galan
- Equipe de Recherche en Epidémiologie Nutritionnelle, Centre d’Epidémiologie et Statistiques Paris Cité, Université Paris 13, Inserm (U1153), Inra (U1125), COMUE Sorbonne-Paris-Cité, Bobigny, France (P.G.)
| | - Mark Lathrop
- McGill University and Génome Québec Innovation Centre, Montréal, Canada (M.L., M.M.)
| | - Markus Munter
- McGill University and Génome Québec Innovation Centre, Montréal, Canada (M.L., M.M.)
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark (T.W.)
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Copenhagen University Hospital, Roskilde, Denmark (T.W.)
- Department of Clinical Medicine, University of Copenhagen, Denmark (T.W.)
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d’Hebron Research (VHIR), Universitat Autònoma de Barcelona, Spain (M.R.)
| | - Tin Aung
- Singapore Eye Research Institute (T.A.)
| | | | | | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (P.L., T.M.)
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (P.L., T.M.)
| | - J. Peter van Tintelen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, The Netherlands (E.A.N., J.P.v.T.)
- Department of Clinical Genetics, University Medical Centre Groningen, The Netherlands (J.P.v.T., Y.H.)
- Department of Clinical Genetics, University Medical Centre Utrecht, University of Utrecht, The Netherlands (J.P.v.T.)
| | - Yvonne Hoedemaekers
- Department of Clinical Genetics, University Medical Centre Groningen, The Netherlands (J.P.v.T., Y.H.)
| | - Isabelle Denjoy
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- AP-HP, Hôpital Bichat, Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, F-75018 Paris, France, Université de Paris INSERM U1166, F-75013 France (I.D., A.L.)
| | - Antoine Leenhardt
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- AP-HP, Hôpital Bichat, Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, F-75018 Paris, France, Université de Paris INSERM U1166, F-75013 France (I.D., A.L.)
| | - Carlo Napolitano
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Italy (A.M., C.N., S.G.P.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (K.S., W.S., T.A.)
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan (W.S., V.P.)
| | - Jean-Jacques Schott
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
- L’Institut du Thorax, CHU Nantes, Service de Cardiologie, France (A.A., J.-J.S., J.-B.G.)
| | - Jean-Baptiste Gourraud
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
- L’Institut du Thorax, CHU Nantes, Service de Cardiologie, France (A.A., J.-J.S., J.-B.G.)
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan (T.M.)
| | - Seiko Ohno
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan (S.O., H.I., M.H.)
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan (S.O.)
| | - Hideki Itoh
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan (S.O., H.I., M.H.)
| | - Andrew D. Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (B.D., A.D.K.)
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research and Lankenau Heart Institute, Wynnewood, PA (C.A.)
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (C.A.)
| | - Dan M. Roden
- Department of Biomedical Informatics (D.M.R.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (M.B.S., P.E.W., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology (D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Johan Saenen
- Department of Cardiology, Antwerp University Hospital, Belgium (J.S.)
| | - Martin Borggrefe
- Department of Medicine, University Medical Center Mannheim, and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany (B.R., M.B.)
| | - Katja E. Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Germany (J.S., K.E.O.)
| | - Patrick T. Ellinor
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S.A.L., P.T.E.)
| | - Jacob Tfelt-Hansen
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (R.J., P.E.W., J.T.-H.)
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark (J.T.-H.)
| | - Jonathan R. Skinner
- Cardiac Inherited Disease Group, Starship Children’s Hospital, Auckland, New Zealand (J.R.S.)
| | - Maarten P. van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands (M.P.v.d.B.)
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet (Copenhagen University Hospital), Denmark (M.S.O.)
- Department of Biomedical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Josep Brugada
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Arrhythmia Unit, Hospital Sant Joan de Déu, Institut d’Investigació August Pi i Sunyer (IDIBAPS), Cardiovascular Institute, and Hospital Clinic de Barcelona, Universitat de Barcelona, Spain (J.B.)
| | - Ramón Brugada
- Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, Universitat de Barcelona; Institut d’Investigació August Pi i Sunyer (IDIBAPS); Cardiovascular Genetics Center, University of Girona-IDIBGI; and Medical Science Department, School of Medicine, University of Girona, Spain (O.C., R.B.)
- Cardiovascular Genetics Center, University of Girona-IDIBGI, and Medical Science Department, School of Medicine, University of Girona, Spain (R.B.)
- Cardiology Service, Hospital Josep Trueta, Girona, Spain (R.B.)
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (N.M.)
| | - Jeroen Breckpot
- Centre for Human Genetics, University Hospitals Leuven, Belgium (J.B.)
| | - Masao Yoshinaga
- National Hospital Organization Kagoshima Medical Center, Japan (Y.K., M.Y.)
| | - Elijah R. Behr
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular and Clinical Sciences Research Institute, St George’s University of London and Cardiology Clinical Academic Group, St George’s University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., A.A., E.R.B.)
| | - Annika Rydberg
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Department of Clinical Sciences, Unit of Paediatrics, Umeå University, Sweden (U.-B.D., A.R.)
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (K.S., W.S., T.A.)
| | - Stefan Kääb
- Department of Internal Medicine I, University Hospital of the Ludwig Maximilians University, Munich, Germany (B.M.B., M.M.-N., S.K.)
| | - Silvia G. Priori
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Italy (A.M., C.N., S.G.P.)
| | - Pascale Guicheney
- INSERM, Sorbonne University, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France (P.G.)
| | - Hanno L. Tan
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Netherlands Heart Institute, Utrecht (H.L.T.)
| | - Christopher Newton-Cheh
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston (C.N.-C.)
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - Peter J. Schwartz
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Eric Schulze-Bahr
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Vincent Probst
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan (W.S., V.P.)
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan (S.O., H.I., M.H.)
| | - Arthur A. Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Michael W.T. Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, The Netherlands (M.W.T.T.)
| | - Connie R. Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| |
Collapse
|
49
|
van Weerd JH, Mohan RA, van Duijvenboden K, Hooijkaas IB, Wakker V, Boukens BJ, Barnett P, Christoffels VM. Trait-associated noncoding variant regions affect TBX3 regulation and cardiac conduction. eLife 2020; 9:56697. [PMID: 32672536 PMCID: PMC7365664 DOI: 10.7554/elife.56697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/28/2020] [Indexed: 11/21/2022] Open
Abstract
Genome-wide association studies have implicated common genomic variants in the gene desert upstream of TBX3 in cardiac conduction velocity. Whether these noncoding variants affect expression of TBX3 or neighboring genes and how they affect cardiac conduction is not understood. Here, we use high-throughput STARR-seq to test the entire 1.3 Mb human and mouse TBX3 locus, including two cardiac conduction-associated variant regions, for regulatory function. We identified multiple accessible and functional regulatory DNA elements that harbor variants affecting their activity. Both variant regions drove gene expression in the cardiac conduction tissue in transgenic reporter mice. Genomic deletion from the mouse genome of one of the regions caused increased cardiac expression of only Tbx3, PR interval shortening and increased QRS duration. Combined, our findings address the mechanistic link between trait-associated variants in the gene desert, TBX3 regulation and cardiac conduction.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Rajiv A Mohan
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ingeborg B Hooijkaas
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|