1
|
Wang L, Zhang Y, Chen X. Analysis and prediction of carbon storage changes on the Qinghai-Tibet Plateau. PLoS One 2025; 20:e0320090. [PMID: 40193405 PMCID: PMC11975099 DOI: 10.1371/journal.pone.0320090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/13/2025] [Indexed: 04/09/2025] Open
Abstract
The Qinghai-Tibet Plateau, a crucial global carbon reservoir, plays an essential role in the carbon cycle. This study used the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to analyze land use and carbon storage changes from 2000 to 2020, and the Patch-generating Land Use Simulation (PLUS) model to predict land use trends and carbon storage for 2030 and 2040 under various scenarios, combining carbon density data. The impact of driving factors on carbon storage and spatial heterogeneity were assessed using the Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models. Results showed a fluctuating increase in carbon storage, mainly from grasslands and forests, with soil organic carbon as the largest pool. Positive factors included Digital Elevation Model (DEM), temperature, proximity to railways, roads, and Normalized Difference Vegetation Index (NDVI), while aridity was negative. Predictions suggest carbon storage will rise across all scenarios, with ecological protection showing the largest increase. This study comprehensively analyzes the impact of climate and land use changes on carbon storage in the Qinghai-Tibet Plateau, enhances understanding of the plateau's ecosystem sustainability, and supports policy-making.
Collapse
Affiliation(s)
- Lei Wang
- School of Information Science and Technology, Yunnan Normal University, Kunming, China
| | - Yaping Zhang
- School of Information Science and Technology, Yunnan Normal University, Kunming, China
| | - Xu Chen
- Faculty of Geography, Yunnan Normal University, Kunming, China
- The Engineering Research Center of Geographic Information System Technology in Western China, Ministry of Education, Yunnan Normal University, Kunming, China
| |
Collapse
|
2
|
Zhang A, Wang Y, Zou Y. Positive feedback to regional climate enhances African wildfires. iScience 2023; 26:108533. [PMID: 38125013 PMCID: PMC10730378 DOI: 10.1016/j.isci.2023.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Regional climate strongly regulates the occurrence of wildfires partly because drying of fuel load increases fires. The large amounts of aerosols released by wildfires can also strongly affect regional climate. Here we show positive feedback (a seasonal burned area enhancement of 7-17%) due to wildfire aerosol forcing in Africa found in the simulations using the interactive REgion-Specific ecosystem feedback Fire (RESFire) model in the Community Earth System Model (CESM). The positive feedback results partly from the transport of fire aerosols from burning (dry) to wet regions, reducing precipitation and drying fuel load to enhance fires toward the non-burning (wet) region. This internally self-enhanced burning is an important mechanism for the regulation of African ecosystems and for understanding African fire behaviors in a changing climate. A similar mechanism may also help sustain wildfires in other tropical regions.
Collapse
Affiliation(s)
- Aoxing Zhang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Now at State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yufei Zou
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Now at Our Kettle Inc, Kensington, CA, USA
| |
Collapse
|
3
|
Liu Q, Peng C, Schneider R, Cyr D, Liu Z, Zhou X, Du M, Li P, Jiang Z, McDowell NG, Kneeshaw D. Vegetation browning: global drivers, impacts, and feedbacks. TRENDS IN PLANT SCIENCE 2023; 28:1014-1032. [PMID: 37087358 DOI: 10.1016/j.tplants.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is critical that we understand vegetation dynamic alterations. Here, we review associative drivers, impacts, and feedbacks, revealing the complexity of browning. Concomitant increases in browning include the weakening of ecosystem services and functions and alterations to vegetation structure and species composition, as well as the development of potential positive climate change feedbacks. Also discussed are the current challenges in browning detection and understanding associated impacts and feedbacks. Finally, we outline recommended strategies.
Collapse
Affiliation(s)
- Qiuyu Liu
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changhui Peng
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; College of Geographic Science, Hunan Normal University, Changsha, 410081, China.
| | - Robert Schneider
- University of Quebec at Rimouski (UQAR), Rimouski, Quebec, G5L 3A1, Canada
| | - Dominic Cyr
- Science and Technology Branch, Environment and Climate Change Canada, 351 St-Joseph Blvd, Gatineau, Quebec, Canada
| | - Zelin Liu
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaolu Zhou
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Mingxi Du
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peng Li
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Zihan Jiang
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA 99352, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Daniel Kneeshaw
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; Centre for Forest Research, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada
| |
Collapse
|
4
|
Peñuelas J, Nogué S. Catastrophic climate change and the collapse of human societies. Natl Sci Rev 2023; 10:nwad082. [PMID: 37181096 PMCID: PMC10171636 DOI: 10.1093/nsr/nwad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Affiliation(s)
- Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Spain
| | - Sandra Nogué
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Spain
- Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
5
|
Liu L, Ciais P, Wu M, Padrón RS, Friedlingstein P, Schwaab J, Gudmundsson L, Seneviratne SI. Increasingly negative tropical water-interannual CO 2 growth rate coupling. Nature 2023; 618:755-760. [PMID: 37258674 PMCID: PMC10284699 DOI: 10.1038/s41586-023-06056-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO2 emissions in the past six decades1. Large uncertainties in terrestrial carbon-climate feedbacks, however, make it difficult to predict how the land carbon sink will respond to future climate change2. Interannual variations in the atmospheric CO2 growth rate (CGR) are dominated by land-atmosphere carbon fluxes in the tropics, providing an opportunity to explore land carbon-climate interactions3-6. It is thought that variations in CGR are largely controlled by temperature7-10 but there is also evidence for a tight coupling between water availability and CGR11. Here, we use a record of global atmospheric CO2, terrestrial water storage and precipitation data to investigate changes in the interannual relationship between tropical land climate conditions and CGR under a changing climate. We find that the interannual relationship between tropical water availability and CGR became increasingly negative during 1989-2018 compared to 1960-1989. This could be related to spatiotemporal changes in tropical water availability anomalies driven by shifts in El Niño/Southern Oscillation teleconnections, including declining spatial compensatory water effects9. We also demonstrate that most state-of-the-art coupled Earth System and Land Surface models do not reproduce the intensifying water-carbon coupling. Our results indicate that tropical water availability is increasingly controlling the interannual variability of the terrestrial carbon cycle and modulating tropical terrestrial carbon-climate feedbacks.
Collapse
Affiliation(s)
- Laibao Liu
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland.
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France
| | - Mengxi Wu
- Joint Institute for Regional Earth System Science and Engineering (JIFRESSE), University of California, Los Angeles, Los Angeles, CA, USA
| | - Ryan S Padrón
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Pierre Friedlingstein
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Jonas Schwaab
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Lukas Gudmundsson
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Sonia I Seneviratne
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Goll DS, Bauters M, Zhang H, Ciais P, Balkanski Y, Wang R, Verbeeck H. Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in Central Africa. THE NEW PHYTOLOGIST 2023; 237:2054-2068. [PMID: 36226674 DOI: 10.1111/nph.18535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Spatial redistribution of nutrients by atmospheric transport and deposition could theoretically act as a continental-scale mechanism which counteracts declines in soil fertility caused by nutrient lock-up in accumulating biomass in tropical forests in Central Africa. However, to what extent it affects carbon sinks in forests remains elusive. Here we use a terrestrial biosphere model to quantify the impact of changes in atmospheric nitrogen and phosphorus deposition on plant nutrition and biomass carbon sink at a typical lowland forest site in Central Africa. We find that the increase in nutrient deposition since the 1980s could have contributed to the carbon sink over the past four decades up to an extent which is similar to that from the combined effects of increasing atmospheric carbon dioxide and climate change. Furthermore, we find that the modelled carbon sink responds to changes in phosphorus deposition, but less so to nitrogen deposition. The pronounced response of ecosystem productivity to changes in nutrient deposition illustrates a potential mechanism that could control carbon sinks in Central Africa. Monitoring the quantity and quality of nutrient deposition is needed in this region, given the changes in nutrient deposition due to human land use.
Collapse
Affiliation(s)
- Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Université de Versailles Saint-Quentin, Université Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Marijn Bauters
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, 9000, Belgium
- Department of Environment, Computational and Applied Vegetation Ecology - CAVElab, Ghent University, Ghent, 9000, Belgium
| | - Haicheng Zhang
- Department Geoscience, Environment & Society, Université Libre de Bruxelles, Bruxelles, 1050, Belgium
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Université de Versailles Saint-Quentin, Université Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Yves Balkanski
- Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Université de Versailles Saint-Quentin, Université Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Rong Wang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai, 200438, China
- Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200438, China
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China
- Center for Urban Eco-Planning & Design, Fudan University, Shanghai, 200438, China
- Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University, Shanghai, 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hans Verbeeck
- Department of Environment, Computational and Applied Vegetation Ecology - CAVElab, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
7
|
Yao Y, Ciais P, Viovy N, Joetzjer E, Chave J. How drought events during the last century have impacted biomass carbon in Amazonian rainforests. GLOBAL CHANGE BIOLOGY 2023; 29:747-762. [PMID: 36285645 PMCID: PMC10100251 DOI: 10.1111/gcb.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2 -induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2 -induced higher foliage area.
Collapse
Affiliation(s)
- Yitong Yao
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Nicolas Viovy
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Emilie Joetzjer
- INRAE, Universite de Lorraine, AgroParisTech, UMR SilvaNancyFrance
| | - Jerome Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRDUniversité Paul SabatierToulouseFrance
| |
Collapse
|
8
|
Needham JF, Arellano G, Davies SJ, Fisher RA, Hammer V, Knox RG, Mitre D, Muller-Landau HC, Zuleta D, Koven CD. Tree crown damage and its effects on forest carbon cycling in a tropical forest. GLOBAL CHANGE BIOLOGY 2022; 28:5560-5574. [PMID: 35748712 DOI: 10.1111/gcb.16318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Crown damage can account for over 23% of canopy biomass turnover in tropical forests and is a strong predictor of tree mortality; yet, it is not typically represented in vegetation models. We incorporate crown damage into the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), to evaluate how lags between damage and tree recovery or death alter demographic rates and patterns of carbon turnover. We represent crown damage as a reduction in a tree's crown area and leaf and branch biomass, and allow associated variation in the ratio of aboveground to belowground plant tissue. We compare simulations with crown damage to simulations with equivalent instant increases in mortality and benchmark results against data from Barro Colorado Island (BCI), Panama. In FATES, crown damage causes decreases in growth rates that match observations from BCI. Crown damage leads to increases in carbon starvation mortality in FATES, but only in configurations with high root respiration and decreases in carbon storage following damage. Crown damage also alters competitive dynamics, as plant functional types that can recover from crown damage outcompete those that cannot. This is a first exploration of the trade-off between the additional complexity of the novel crown damage module and improved predictive capabilities. At BCI, a tropical forest that does not experience high levels of disturbance, both the crown damage simulations and simulations with equivalent increases in mortality does a reasonable job of capturing observations. The crown damage module provides functionality for exploring dynamics in forests with more extreme disturbances such as cyclones and for capturing the synergistic effects of disturbances that overlap in space and time.
Collapse
Affiliation(s)
- Jessica F Needham
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Gabriel Arellano
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Oikobit LLC, Albuquerque, New Mexico, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | - Rosie A Fisher
- CICERO Center for International Climate Research, Oslo, Norway
| | - Valerie Hammer
- University of California, Berkeley, Berkeley, California, USA
| | - Ryan G Knox
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David Mitre
- Smithsonian Tropical Research Institute, Apartado, Repu ́blica de Panamá
| | | | - Daniel Zuleta
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | - Charlie D Koven
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
9
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
10
|
Abstract
Prudent risk management requires consideration of bad-to-worst-case scenarios. Yet, for climate change, such potential futures are poorly understood. Could anthropogenic climate change result in worldwide societal collapse or even eventual human extinction? At present, this is a dangerously underexplored topic. Yet there are ample reasons to suspect that climate change could result in a global catastrophe. Analyzing the mechanisms for these extreme consequences could help galvanize action, improve resilience, and inform policy, including emergency responses. We outline current knowledge about the likelihood of extreme climate change, discuss why understanding bad-to-worst cases is vital, articulate reasons for concern about catastrophic outcomes, define key terms, and put forward a research agenda. The proposed agenda covers four main questions: 1) What is the potential for climate change to drive mass extinction events? 2) What are the mechanisms that could result in human mass mortality and morbidity? 3) What are human societies' vulnerabilities to climate-triggered risk cascades, such as from conflict, political instability, and systemic financial risk? 4) How can these multiple strands of evidence-together with other global dangers-be usefully synthesized into an "integrated catastrophe assessment"? It is time for the scientific community to grapple with the challenge of better understanding catastrophic climate change.
Collapse
|
11
|
Climatic and biotic factors influencing regional declines and recovery of tropical forest biomass from the 2015/16 El Niño. Proc Natl Acad Sci U S A 2022; 119:e2101388119. [PMID: 35733266 PMCID: PMC9245643 DOI: 10.1073/pnas.2101388119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 2015/16 El Niño brought severe drought and record-breaking temperatures in the tropics. Here, using satellite-based L-band microwave vegetation optical depth, we mapped changes of above-ground biomass (AGB) during the drought and in subsequent years up to 2019. Over more than 60% of drought-affected intact forests, AGB reduced during the drought, except in the wettest part of the central Amazon, where it declined 1 y later. By the end of 2019, only 40% of AGB reduced intact forests had fully recovered to the predrought level. Using random-forest models, we found that the magnitude of AGB losses during the drought was mainly associated with regionally distinct patterns of soil water deficits and soil clay content. For the AGB recovery, we found strong influences of AGB losses during the drought and of [Formula: see text]. [Formula: see text] is a parameter related to canopy structure and is defined as the ratio of two relative height (RH) metrics of Geoscience Laser Altimeter System (GLAS) waveform data-RH25 (25% energy return height) and RH100 (100% energy return height; i.e., top canopy height). A high [Formula: see text] may reflect forests with a tall understory, thick and closed canopy, and/or without degradation. Such forests with a high [Formula: see text] ([Formula: see text] ≥ 0.3) appear to have a stronger capacity to recover than low-[Formula: see text] ones. Our results highlight the importance of forest structure when predicting the consequences of future drought stress in the tropics.
Collapse
|
12
|
The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities? FORESTS 2022. [DOI: 10.3390/f13010082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Under the combined effect of climate variations and anthropogenic activities, the forest ecosystem in the Yangtze River Basin (YRB) has experienced dramatic changes in recent decades. Quantifying their relative contributions can provide a valuable reference for forest management and ecological sustainability. In this study, we selected net primary productivity (NPP) as an indicator to investigate forest variations. Meanwhile, we established eight scenarios based on the slope coefficients of the potential NPP (PNPP) and actual NPP (ANPP), and human-induced NPP (HNPP) to quantify the contributions of anthropogenic activities and climate variations to forest variations in the YRB from 2000 to 2015. The results revealed that in general, the total forest ANPP increased by 10.42 TgC in the YRB, and forest restoration occurred in 57.25% of the study area during the study period. The forest degradation was mainly observed in the Wujiang River basin, Dongting Lake basin, and Poyang Lake basin. On the whole, the contribution of anthropogenic activities was greater than climate variations on both forest restoration and degradation in the YRB. Their contribution to forest restoration and degradation varied in different tributaries. Among the five forest types, shrubs experienced the most severe degradation during the study period, which should arouse great attention. Ecological restoration programs implemented in YRB have effectively mitigated the adverse effect of climate variations and dominated forest restoration, while rapid urbanization in the mid-lower region has resulted in forest degradation. The forest degradation in Dongting Lake basin and Poyang Lake basin may be ascribed to the absence of the Natural Forest Conservation Program. Therefore, we recommend that the extent of the Natural Forest Conservation Program should expand to cover these two basins. The current research could improve the understanding of the driving mechanism of forest dynamics and promote the effectiveness of ecological restoration programs in the YRB.
Collapse
|
13
|
A Study on Sensitivities of Tropical Forest GPP Responding to the Characteristics of Drought—A Case Study in Xishuangbanna, China. WATER 2022. [DOI: 10.3390/w14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Droughts that occur in tropical forests (TF) are expected to significantly impact the gross primary production (GPP) and the capacity of carbon sinks. Therefore, it is crucial to evaluate and analyze the sensitivities of TF-GPP to the characteristics of drought events for understanding global climate change. In this study, the standardized precipitation index (SPI) was used to define the drought intensity. Then, the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) was utilized to simulate the dynamic process of GPP corresponding to multi-gradient drought scenarios—rain and dry seasons × 12 level durations × 4 level intensities. The results showed that drought events in the dry season have a significantly greater impact on TF-GPP than drought events in the rainy season, especially short-duration drought events. Furthermore, the impact of drought events in the rainy season is mainly manifested in long-duration droughts. Due to abundant rainfall in the rainy season, only extreme drought events caused a significant reduction in GPP, while the lack of water in the dry season caused significant impacts due to light drought. Effective precipitation and soil moisture stock in the rainy season are the most important support for the tropical forest dry season to resist extreme drought events in the study area. Further water deficit may render the tropical forest ecosystem more sensitive to drought events.
Collapse
|
14
|
Dorheim K, Gough CM, Haber LT, Mathes KC, Shiklomanov AN, Bond‐Lamberty B. Climate Drives Modeled Forest Carbon Cycling Resistance and Resilience in the Upper Great Lakes Region, USA. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:e2021JG006587. [PMID: 35865142 PMCID: PMC9287023 DOI: 10.1029/2021jg006587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Forests dominate the global terrestrial carbon budget, but their ability to continue doing so in the face of a changing climate is uncertain. A key uncertainty is how forests will respond to (resistance) and recover from (resilience) rising levels of disturbance of varying intensities. This knowledge gap can optimally be addressed by integrating manipulative field experiments with ecophysiological modeling. We used the Ecosystem Demography-2.2 (ED-2.2) model to project carbon fluxes for a northern temperate deciduous forest subjected to a real-world disturbance severity manipulation experiment. ED-2.2 was run for 150 years, starting from near bare ground in 1900 (approximating the clear-cut conditions at the time), and subjected to three disturbance treatments under an ensemble of climate conditions. Both disturbance severity and climate strongly affected carbon fluxes such as gross primary production (GPP), and interacted with one another. We then calculated resistance and resilience, two dimensions of ecosystem stability. Modeled GPP exhibited a two-fold decrease in mean resistance across disturbance severities of 45%, 65%, and 85% mortality; conversely, resilience increased by a factor of two with increasing disturbance severity. This pattern held for net primary production and net ecosystem production, indicating a trade-off in which greater initial declines were followed by faster recovery. Notably, however, heterotrophic respiration responded more slowly to disturbance, and it's highly variable response was affected by different drivers. This work provides insight into how future conditions might affect the functional stability of mature forests in this region under ongoing climate change and changing disturbance regimes.
Collapse
Affiliation(s)
- Kalyn Dorheim
- Joint Global Change Research InstitutePacific Northwest National LaboratoryCollege ParkMDUSA
| | | | - Lisa T. Haber
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Kayla C. Mathes
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | | | - Ben Bond‐Lamberty
- Joint Global Change Research InstitutePacific Northwest National LaboratoryCollege ParkMDUSA
| |
Collapse
|
15
|
Sun J, Ye C, Liu M, Wang Y, Chen J, Wang S, Lu X, Liu G, Xu M, Li R, Liu S, Zhou H, Du Z, Peng F, Tsunekawa A, Tsubo M. Response of net reduction rate in vegetation carbon uptake to climate change across a unique gradient zone on the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2022; 203:111894. [PMID: 34418448 DOI: 10.1016/j.envres.2021.111894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/22/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The Tibetan Plateau (TP) has a variety of vegetation types that range from alpine tundra to tropic evergreen forest, which play an important role in the global carbon (C) cycle and is extremely vulnerable to climate change. The vegetation C uptake is crucial to the ecosystem C sequestration. Moreover, net reduction in vegetation C uptake (NRVCU) will strongly affect the C balance of terrestrial ecosystem. Until now, there is limited knowledge on the recovery process of vegetation net C uptake and the spatial-temporal patterns of NRVCU after the disturbance that caused by climate change and human activities. Here, we used the MODIS-derived net primary production to characterize the spatial-temporal patterns of NRVCU. We further explored the influence factors of the net reduction rate in vegetation C uptake (NRRVCU) and recovery processes of vegetation net C uptake across a unique gradient zone on the TP. Results showed that the total net reduction amount of vegetation C uptake gradually decreased from 2000 to 2015 on the TP (Slope = -0.002, P < 0.05). Specifically, an increasing gradient zone of multi-year average of net reduction rate in vegetation carbon uptake (MYANRRVCU) from east to west was observed. In addition, we found that the recovery of vegetation net C uptake after the disturbance caused by climate change and anthropogenic disturbance in the gradient zone were primarily dominated by precipitation and temperature. The findings revealed that the effects of climate change on MYANRRVCU and vegetation net C uptake recovery differed significantly across geographical space and vegetation types. Our results highlight that the biogeographic characteristics of the TP should be considered for combating future climate change.
Collapse
Affiliation(s)
- Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chongchong Ye
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Miao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ji Chen
- Department of Agroecology, Aarhus University, 8830, Tjele, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark; CLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, 4000, Roskilde, Denmark.
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, China.
| | - Xuyang Lu
- Institute of Mountain Hazard and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China.
| | - Ming Xu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Renqiang Li
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shiliang Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Zhong Du
- College of Land and Resources, China West Normal University, Nanchong, 637009, China.
| | - Fei Peng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Atsushi Tsunekawa
- Arid Land Research Center, Tottori University, Tottori, 6800001, Japan.
| | - Mitsuru Tsubo
- Arid Land Research Center, Tottori University, Tottori, 6800001, Japan.
| |
Collapse
|
16
|
Lemaire C, Blackman CJ, Cochard H, Menezes-Silva PE, Torres-Ruiz JM, Herbette S. Acclimation of hydraulic and morphological traits to water deficit delays hydraulic failure during simulated drought in poplar. TREE PHYSIOLOGY 2021; 41:2008-2021. [PMID: 34259313 DOI: 10.1093/treephys/tpab086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions. The time for plants to dry-down to critical levels of water stress (90% loss of stem hydraulic conductance), as well as the relative contribution of drought acclimation in each trait to THF, was simulated using a soil-plant hydraulic model (SurEau). Compared with controls, water-limited plants exhibited significantly lower stem hydraulic vulnerability (P50stem), stomatal conductance and total canopy leaf area (LA). Taken together, adjustments in these and other traits resulted in longer modelled THF in water-limited (~160 h) compared with well-watered plants (~50 h), representing an increase of more than 200%. Sensitivity analysis revealed that adjustment in P50stem and LA contributed the most to longer THF in water-limited plants. We observed a high degree of trait plasticity in poplar saplings in response to water-deficit growth conditions, with decreases in stem hydraulic vulnerability and leaf area playing a key role in delaying the onset of hydraulic failure during a simulated drought event. These findings suggest that understanding the capacity of plants to acclimate to antecedent growth conditions will enable better predictions of plant survivorship during future drought.
Collapse
Affiliation(s)
- Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Chris J Blackman
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Paulo Eduardo Menezes-Silva
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
- Department of Biology, Goiano Federal Institute of Education, Science and Technology-IF Goiano, Rio Verde, Goiás, Brazil
| | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| |
Collapse
|
17
|
Bohner T, Diez J. Tree resistance and recovery from drought mediated by multiple abiotic and biotic processes across a large geographic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147744. [PMID: 34051506 DOI: 10.1016/j.scitotenv.2021.147744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, increasing severity of droughts threatens to change forest ecosystem functioning and community structure. Understanding how forest resilience is determined by its two underlying components, resistance and recovery, will help elucidate the mechanisms of drought responses and help inform management strategies. However, drought responses are shaped by complex processes across different scales, including species-specific drought strategies, tree size, competition, local environmental conditions, and the intensity of the drought event. Here, we quantified the reduction in tree growth during drought (an inverse measure of drought resistance) and post-drought recovery for three montane conifers (Abies concolor, Pinus jeffreyi, and Pinus lambertiana) in California. We used tree ring analysis to quantify responses to drought events of varying intensity between 1895 and 2018 across a geographic climatic gradient, to examine the roles of tree size (DBH) and competition (tree density) in mediating drought responses. We found that years of more intense drought corresponded with larger growth reductions and recovery rates were lower following drought years where trees suffered larger reductions. We found little variation among species in their growth reductions during drought events, but significant differences among species in their recovery post-drought. Across the geographic gradient, trees in the driest locations were susceptible to large growth reductions, signaling either strong sensitivity to drought intensity or exposure to the most extreme drought conditions. These growth reductions were not always compensated for by higher recovery rates. We also found that larger trees were more susceptible to drought due to a steeper negative relationship between recovery rates and the intensity of growth reduction during the drought. Contrary to expectations, recovery rates following the most detrimental drought years were higher in denser forests. Our results demonstrate the importance of considering how factors at various spatial and temporal scales affect the different components of drought responses.
Collapse
Affiliation(s)
- Teresa Bohner
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
18
|
Berenguer E, Lennox GD, Ferreira J, Malhi Y, Aragão LEOC, Barreto JR, Del Bon Espírito-Santo F, Figueiredo AES, França F, Gardner TA, Joly CA, Palmeira AF, Quesada CA, Rossi LC, de Seixas MMM, Smith CC, Withey K, Barlow J. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc Natl Acad Sci U S A 2021; 118:e2019377118. [PMID: 34282005 PMCID: PMC8325159 DOI: 10.1073/pnas.2019377118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With humanity facing an unprecedented climate crisis, the conservation of tropical forests has never been so important - their vast terrestrial carbon stocks can be turned into emissions by climatic and human disturbances. However, the duration of these effects is poorly understood, and it is unclear whether impacts are amplified in forests with a history of previous human disturbance. Here, we focus on the Amazonian epicenter of the 2015-16 El Niño, a region that encompasses 1.2% of the Brazilian Amazon. We quantify, at high temporal resolution, the impacts of an extreme El Niño (EN) drought and extensive forest fires on plant mortality and carbon loss in undisturbed and human-modified forests. Mortality remained higher than pre-El Niño levels for 36 mo in EN-drought-affected forests and for 30 mo in EN-fire-affected forests. In EN-fire-affected forests, human disturbance significantly increased plant mortality. Our investigation of the ecological and physiological predictors of tree mortality showed that trees with lower wood density, bark thickness and leaf nitrogen content, as well as those that experienced greater fire intensity, were more vulnerable. Across the region, the 2015-16 El Niño led to the death of an estimated 2.5 ± 0.3 billion stems, resulting in emissions of 495 ± 94 Tg CO2 Three years after the El Niño, plant growth and recruitment had offset only 37% of emissions. Our results show that limiting forest disturbance will not only help maintain carbon stocks, but will also maximize the resistance of Amazonian forests if fires do occur.
Collapse
Affiliation(s)
- Erika Berenguer
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, United Kingdom;
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Gareth D Lennox
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Joice Ferreira
- Embrapa Amazônia Oriental, Belém 66095-100, Brazil
- Programa de Pós-Graduação em Ecologia e Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal do Pará, Belém 66075-10, Brazil
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, United Kingdom
| | - Luiz E O C Aragão
- Remote Sensing Division, National Institute for Space Research, São José dos Campos 12227-010, Brazil
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, United Kingdom
| | - Julia Rodrigues Barreto
- Laboratório de Ecologia de Paisagens e Conservação, Departamento de Ecologia, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Fernando Del Bon Espírito-Santo
- Institute of Space and Earth Observation Science at Space Park Leicester, Centre for Landscape and Climate Research, School of Geography, Geology and Environment, University of Leicester, Leicester LE1 7RH, United Kingdom
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Axa Emanuelle S Figueiredo
- Coordination of Environmental Dynamics, National Institute for Amazonian Research, Manaus 69080-971, Brazil
| | - Filipe França
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | | | - Carlos A Joly
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Alessandro F Palmeira
- Programa de Pós-Graduação em Ecologia e Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal do Pará, Belém 66075-10, Brazil
- Centro de Previsão de Tempo e Estudos Climáticos, National Institute for Space Research, São José dos Campos 12227-010, Brazil
| | - Carlos Alberto Quesada
- Coordination of Environmental Dynamics, National Institute for Amazonian Research, Manaus 69080-971, Brazil
| | - Liana Chesini Rossi
- Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro 13506-900, Brazil
| | | | - Charlotte C Smith
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kieran Withey
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
- Setor de Ecologia e Conservação, Universidade Federal de Lavras, Lavras 37200-900, Brazil
| |
Collapse
|
19
|
Xu X, Konings AG, Longo M, Feldman A, Xu L, Saatchi S, Wu D, Wu J, Moorcroft P. Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content. THE NEW PHYTOLOGIST 2021; 231:122-136. [PMID: 33539544 DOI: 10.1111/nph.17254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 05/25/2023]
Abstract
Variation in canopy water content (CWC) that can be detected from microwave remote sensing of vegetation optical depth (VOD) has been proposed as an important measure of vegetation water stress. However, the contribution of leaf surface water (LWs ), arising from dew formation and rainfall interception, to CWC is largely unknown, particularly in tropical forests and other high-humidity ecosystems. We compared VOD data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and CWC predicted by a plant hydrodynamics model at four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs influenced the relationship between VOD and CWC. The analysis indicates that while CWC is strongly correlated with VOD (R2 = 0.62 across all sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being < 10% of CWC. Ignoring LWs weakens the near-linear relationship between CWC and VOD and reduces the consistency in diurnal variation. The contribution of LWs to CWC variation, however, decreases at longer, seasonal to inter-annual, time scales. Our results demonstrate that diurnal patterns of dew formation and rainfall interception can be an important driver of diurnal variation in CWC and VOD over tropical ecosystems and therefore should be accounted for when inferring plant diurnal water stress from VOD measurements.
Collapse
Affiliation(s)
- Xiangtao Xu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Marcos Longo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Andrew Feldman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liang Xu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Sassan Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
- Institute of Environment and Sustainability, University of California, Los Angeles, CA, 90024, USA
| | - Donghai Wu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Jin Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Paul Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
20
|
Rowland L, Oliveira RS, Bittencourt PRL, Giles AL, Coughlin I, Costa PDB, Domingues T, Ferreira LV, Vasconcelos SS, Junior JAS, Oliveira AAR, da Costa ACL, Meir P, Mencuccini M. Plant traits controlling growth change in response to a drier climate. THE NEW PHYTOLOGIST 2021; 229:1363-1374. [PMID: 32981040 DOI: 10.1111/nph.16972] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Plant traits are increasingly being used to improve prediction of plant function, including plant demography. However, the capability of plant traits to predict demographic rates remains uncertain, particularly in the context of trees experiencing a changing climate. Here we present data combining 17 plant traits associated with plant structure, metabolism and hydraulic status, with measurements of long-term mean, maximum and relative growth rates for 176 trees from the world's longest running tropical forest drought experiment. We demonstrate that plant traits can predict mean annual tree growth rates with moderate explanatory power. However, only combinations of traits associated more directly with plant functional processes, rather than more commonly employed traits like wood density or leaf mass per area, yield the power to predict growth. Critically, we observe a shift from growth being controlled by traits related to carbon cycling (assimilation and respiration) in well-watered trees, to traits relating to plant hydraulic stress in drought-stressed trees. We also demonstrate that even with a very comprehensive set of plant traits and growth data on large numbers of tropical trees, considerable uncertainty remains in directly interpreting the mechanisms through which traits influence performance in tropical forests.
Collapse
Affiliation(s)
- Lucy Rowland
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
| | - Rafael S Oliveira
- Instituto de Biologia, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brasil
- Biological Sciences, UWA, Perth, Crawle, WA, 6009, Australia
| | - Paulo R L Bittencourt
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
- Programa de Pós Graduação em Ecologia Institute of Biology, University of Campinas - UNICAMP 13083-970, PO Box 6109, Campinas, SP, Brazil
| | - Andre L Giles
- Programa de Pós Graduação em Ecologia Institute of Biology, University of Campinas - UNICAMP 13083-970, PO Box 6109, Campinas, SP, Brazil
| | - Ingrid Coughlin
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brasil
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Patricia de Britto Costa
- Biological Sciences, UWA, Perth, Crawle, WA, 6009, Australia
- Programa de Pós Graduação em Biologia Vegetal Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, Campinas, SP, 13083-970, Brazil
| | - Tomas Domingues
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900, Brasil
| | | | | | - João A S Junior
- Instituto de Geosciências, Universidade Federal do Pará, Belém, PA, 66075-110, Brasil
| | - Alex A R Oliveira
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Antonio C L da Costa
- Museu Paraense Emílio Goeldi, Belém, PA, 66040-170, Brasil
- EMBRAPA Amazônia Oriental, 14 Belém, PA, 66095-903, Brasil
| | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Maurizio Mencuccini
- CREAF, Campus UAB, Cerdanyola del Vallés, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| |
Collapse
|
21
|
Babić S, Čižmek L, Maršavelski A, Malev O, Pflieger M, Strunjak-Perović I, Popović NT, Čož-Rakovac R, Trebše P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci Rep 2021; 11:2527. [PMID: 33510260 PMCID: PMC7844006 DOI: 10.1038/s41598-021-81789-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Amazonian wildfires in 2019 have raised awareness about rainforest burning due to increased emissions of particulate matter and carbon. In the context of these emissions, by-products of lignin thermal degradation (i.e. methoxyphenols) are often neglected. Methoxyphenols entering the atmosphere may form intermediates with currently unknown reaction mechanisms and toxicity. This study for the first time provides a comprehensive insight into the impact of lignin degradation products [guaiacol, catechol], and their nitrated intermediates [4-nitrocatechol, 4,6-dinitroguaiacol, 5-nitroguaiacol] on zebrafish Danio rerio. Results revealed 4-nitrocatechol and catechol as the most toxic, followed by 4,6DNG > 5NG > GUA. The whole-organism bioassay integrated with molecular modeling emphasized the potential of methoxyphenols to inhibit tyrosinase, lipoxygenase, and carbonic anhydrase, consequently altering embryonic development (i.e. affected sensorial, skeletal, and physiological parameters, pigmentation formation failure, and non-hatching of larvae). The whole-organism bioassay integrated with in silico approach confirmed the harmful effects of lignin degradation products and their intermediates on aquatic organisms, emphasizing the need for their evaluation within ecotoxicity studies focused on aquatic compartments.
Collapse
Affiliation(s)
- Sanja Babić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Olga Malev
- Faculty of Science, Department of Biology, University of Zagreb, Roosevelt square 6, Zagreb, Croatia. .,Laboratory for Biological Diversity, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| | - Maryline Pflieger
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events. FORESTS 2020. [DOI: 10.3390/f12010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, droughts, deforestation and wildfires have become recurring phenomena that have heavily affected both human activities and natural ecosystems in Amazonia. The time needed for an ecosystem to recover from carbon losses is a crucial metric to evaluate disturbance impacts on forests. However, little is known about the impacts of these disturbances, alone and synergistically, on forest recovery time and the resulting spatiotemporal patterns at the regional scale. In this study, we combined the 3-PG forest growth model, remote sensing and field derived equations, to map the Amazonia-wide (3 km of spatial resolution) impact and recovery time of aboveground biomass (AGB) after drought, fire and a combination of logging and fire. Our results indicate that AGB decreases by 4%, 19% and 46% in forests affected by drought, fire and logging + fire, respectively, with an average AGB recovery time of 27 years for drought, 44 years for burned and 63 years for logged + burned areas and with maximum values reaching 184 years in areas of high fire intensity. Our findings provide two major insights in the spatial and temporal patterns of drought and wildfire in the Amazon: (1) the recovery time of the forests takes longer in the southeastern part of the basin, and, (2) as droughts and wildfires become more frequent—since the intervals between the disturbances are getting shorter than the rate of forest regeneration—the long lasting damage they cause potentially results in a permanent and increasing carbon losses from these fragile ecosystems.
Collapse
|
23
|
Discriminating Forest Successional Stages, Forest Degradation, and Land Use in Central Amazon Using ALOS/PALSAR-2 Full-Polarimetric Data. REMOTE SENSING 2020. [DOI: 10.3390/rs12213512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We discriminated different successional forest stages, forest degradation, and land use classes in the Tapajós National Forest (TNF), located in the Central Brazilian Amazon. We used full polarimetric images from ALOS/PALSAR-2 that have not yet been tested for land use and land cover (LULC) classification, neither for forest degradation classification in the TNF. Our specific objectives were: (1) to test the potential of ALOS/PALSAR-2 full polarimetric images to discriminate LULC classes and forest degradation; (2) to determine the optimum subset of attributes to be used in LULC classification and forest degradation studies; and (3) to evaluate the performance of Random Forest (RF) and Support Vector Machine (SVM) supervised classifications to discriminate LULC classes and forest degradation. PALSAR-2 images from 2015 and 2016 were processed to generate Radar Vegetation Index, Canopy Structure Index, Volume Scattering Index, Biomass Index, and Cloude–Pottier, van Zyl, Freeman–Durden, and Yamaguchi polarimetric decompositions. To determine the optimum subset, we used principal component analysis in order to select the best attributes to discriminate the LULC classes and forest degradation, which were classified by RF. Based on the variable importance score, we selected the four first attributes for 2015, alpha, anisotropy, volumetric scattering, and double-bounce, and for 2016, entropy, anisotropy, surface scattering, and biomass index, subsequently classified by SVM. Individual backscattering indexes and polarimetric decompositions were also considered in both RF and SVM classifiers. Yamaguchi decomposition performed by RF presented the best results, with an overall accuracy (OA) of 76.9% and 83.3%, and Kappa index of 0.70 and 0.80 for 2015 and 2016, respectively. The optimum subset classified by RF showed an OA of 75.4% and 79.9%, and Kappa index of 0.68 and 0.76 for 2015 and 2016, respectively. RF exhibited superior performance in relation to SVM in both years. Polarimetric attributes exhibited an adequate capability to discriminate forest degradation and classes of different ecological succession from the ones with less vegetation cover.
Collapse
|
24
|
Yáñez-Serrano AM, Bourtsoukidis E, Alves EG, Bauwens M, Stavrakou T, Llusià J, Filella I, Guenther A, Williams J, Artaxo P, Sindelarova K, Doubalova J, Kesselmeier J, Peñuelas J. Amazonian biogenic volatile organic compounds under global change. GLOBAL CHANGE BIOLOGY 2020; 26:4722-4751. [PMID: 32445424 DOI: 10.1111/gcb.15185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land-use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress-induced emissions due to climate change.
Collapse
Affiliation(s)
- Ana M Yáñez-Serrano
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Efstratios Bourtsoukidis
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Eliane G Alves
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Maite Bauwens
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | | | - Joan Llusià
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Iolanda Filella
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Jonathan Williams
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Paulo Artaxo
- Instituto de Física, Universidade de Sao Paulo, São Paulo, Brazil
| | - Katerina Sindelarova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
| | - Jana Doubalova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
- Modelling and Assessment Department, Czech Hydrometeorological Institute, Prague, Czechia
| | - Jürgen Kesselmeier
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
25
|
Powers JS, Vargas G G, Brodribb TJ, Schwartz NB, Pérez-Aviles D, Smith-Martin CM, Becknell JM, Aureli F, Blanco R, Calderón-Morales E, Calvo-Alvarado JC, Calvo-Obando AJ, Chavarría MM, Carvajal-Vanegas D, Jiménez-Rodríguez CD, Murillo Chacon E, Schaffner CM, Werden LK, Xu X, Medvigy D. A catastrophic tropical drought kills hydraulically vulnerable tree species. GLOBAL CHANGE BIOLOGY 2020; 26:3122-3133. [PMID: 32053250 DOI: 10.1111/gcb.15037] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.
Collapse
Affiliation(s)
- Jennifer S Powers
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tas., Australia
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pérez-Aviles
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Filippo Aureli
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
| | - Roger Blanco
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | - Erick Calderón-Morales
- Department of Ecology, Evolution, & Behavior, University of Minnesota, St. Paul, MN, USA
| | | | | | - María Marta Chavarría
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | | | - César D Jiménez-Rodríguez
- Escuela de Ingeniería Forestal, Tecnológico de Costa Rica, Cartago, Costa Rica
- Water Resources Section, Delft University of Technology, Delft, The Netherlands
| | - Evin Murillo Chacon
- Programa de Investigación, Área de Conservación Guanacaste, Sistema Nacional de Areas de Conservación, Ministerio de Ambiente y Energía, Liberia, Costa Rica
| | - Colleen M Schaffner
- Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, Mexico
- Psychology Department, Adams State University, Alamosa, CO, USA
| | - Leland K Werden
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Xiangtao Xu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - David Medvigy
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
26
|
Affiliation(s)
- Timothy J. Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jennifer Powers
- Departments of Ecology, Evolution and Behavior and Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN 55108, USA
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
27
|
Kong R, Zhang Z, Zhang F, Tian J, Chang J, Jiang S, Zhu B, Chen X. Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136163. [PMID: 31905558 DOI: 10.1016/j.scitotenv.2019.136163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Forest carbon stocks has an important role in the global carbon budget. Based on the satellite-observed and LPJ model simulated aboveground biomass carbon (ABC) data, the spatial and temporal changes of subtropical forest carbon storage in the Yangtze River basin and its relations to the climate variation and human activities were analyzed by using the methods of cumulative curve analysis and climate sensitivity analysis during 1993-2012. The results revealed that: (1) In general, the forest ABC increased obviously in the Yangtze River basin during the past 20 years, and the ABC rose from 2563.91 Tg C in 1993 to 2893.17 Tg C in 2012, with a growth rate of 12.84%. The higher ABC distribution was mainly concentrated in the Jialing River basin and Hanjiang River basin and the significantly increasing trends could be found in most area of the Yangtze River basin; (2) The forest ABC was sensitive to the changes of temperature and precipitation. When the temperature increases by 1 °C, the ABC in the Yangtze River basin will increase by 3.32%, while it will decrease by -6.12% when the precipitation increases by 10%; (3) The forest ABC growth rate had accelerated from 3.15% in 1993-2000 to 8.01% in 2001-2012. The cumulative curve of the forest ABC was generally higher than the temperature or the precipitation after 2000. The total areas induced by climate variation and human activities accounted for 30.5% and 52.59% with an increases in ABC by 67.52 Tg C and 188.74 Tg C from 1993 to 2012, respectively. The implementation of major forestry projects might be the main reason for the rapid increase of forest ABC in the Yangtze River basin. This study suggested human activities such as ecological projects might contribute to the accelerated greening trend and highlighted the pivotal role of subtropical forest ABC in the carbon budget in China.
Collapse
Affiliation(s)
- Rui Kong
- Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Zengxin Zhang
- Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, Hohai University, Nanjing 210098, China.
| | - Fengying Zhang
- Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiaxi Tian
- Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Juan Chang
- Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Shanshan Jiang
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Bin Zhu
- Joint Innovation Center for Modern Forestry Studies, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xi Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, Hohai University, Nanjing 210098, China; Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Recurrence Analysis of Vegetation Indices for Highlighting the Ecosystem Response to Drought Events: An Application to the Amazon Forest. REMOTE SENSING 2020. [DOI: 10.3390/rs12060907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Forests are important in sequestering CO2 and therefore play a significant role in climate change. However, the CO2 cycle is conditioned by drought events that alter the rate of photosynthesis, which is the principal physiological action of plants in transforming CO2 into biological energy. This study applied recurrence quantification analysis (RQA) to describe the evolution of photosynthesis-related indices to highlight disturbance alterations produced by the Atlantic Multidecadal Oscillation (AMO, years 2005 and 2010) and the El Niño-Southern Oscillation (ENSO, year 2015) in the Amazon forest. The analysis was carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) images to build time series of the enhanced vegetation index (EVI), the normalized difference water index (NDWI), and the land surface temperature (LST) covering the period 2001–2018. The results did not show significant variations produced by AMO throughout the study area, while a disruption due to the global warming phase linked to the extreme ENSO event occurred, and the forest was able to recover. In addition, spatial differences in the response of the forest to the ENSO event were found. These findings show that the application of RQA to the time series of vegetation indices supports the evaluation of the forest ecosystem response to disruptive events. This approach provides information on the capacity of the forest to recover after a disruptive event and, therefore is useful to estimate the resilience of this particular ecosystem.
Collapse
|
29
|
Kannenberg SA, Schwalm CR, Anderegg WRL. Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 2020; 23:891-901. [DOI: 10.1111/ele.13485] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023]
|
30
|
Wigneron JP, Fan L, Ciais P, Bastos A, Brandt M, Chave J, Saatchi S, Baccini A, Fensholt R. Tropical forests did not recover from the strong 2015-2016 El Niño event. SCIENCE ADVANCES 2020; 6:eaay4603. [PMID: 32076648 PMCID: PMC7002128 DOI: 10.1126/sciadv.aay4603] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/22/2019] [Indexed: 05/29/2023]
Abstract
Severe drought and extreme heat associated with the 2015-2016 El Niño event have led to large carbon emissions from the tropical vegetation to the atmosphere. With the return to normal climatic conditions in 2017, tropical forest aboveground carbon (AGC) stocks are expected to partly recover due to increased productivity, but the intensity and spatial distribution of this recovery are unknown. We used low-frequency microwave satellite data (L-VOD) to feature precise monitoring of AGC changes and show that the AGC recovery of tropical ecosystems was slow and that by the end of 2017, AGC had not reached predrought levels of 2014. From 2014 to 2017, tropical AGC stocks decreased by1.3 1.2 1.5 Pg C due to persistent AGC losses in Africa (- 0.9 - 1.1 - 0.8 Pg C) and America (- 0.5 - 0.6 - 0.4 Pg C). Pantropically, drylands recovered their carbon stocks to pre-El Niño levels, but African and American humid forests did not, suggesting carryover effects from enhanced forest mortality.
Collapse
Affiliation(s)
- Jean-Pierre Wigneron
- ISPA, UMR 1391, Inrae Nouvelle-Aquitaine, Université de Bordeaux, Grande Ferrade, Villenave d’Ornon, France
| | - Lei Fan
- ISPA, UMR 1391, Inrae Nouvelle-Aquitaine, Université de Bordeaux, Grande Ferrade, Villenave d’Ornon, France
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ana Bastos
- Department of Geography, Ludwig-Maximilians Universität, Luisenstr. 37, 80333 Munich, Germany
| | - Martin Brandt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Jérome Chave
- Laboratoire Evolution and Diversité Biologique, Bâtiment 4R3 Université Paul Sabatier, Toulouse, France
| | - Sassan Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alessandro Baccini
- Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540-1644, USA
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc Natl Acad Sci U S A 2020; 117:3015-3025. [PMID: 31988116 PMCID: PMC7022157 DOI: 10.1073/pnas.1913321117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
For decades, Amazon indigenous peoples and local communities (IPLCs) have impeded deforestation and associated greenhouse gas emissions. While emissions inside indigenous territories (ITs) and protected natural areas (PNAs) remain well below levels outside, unsustainable forest clearing is on the rise across the nine-nation region. In addition, Amazon ITs and PNAs are increasingly vulnerable to the less conspicuous (and often-neglected) processes of forest degradation and disturbance, which diminish carbon storage and ecological integrity. The trend toward weakening of environmental protections, indigenous land rights, and the rule of law thus poses an existential threat to IPLCs and their territories. Reversing this trend is critical for the future of climate-buffering Amazon forests and the success of the Paris Agreement. Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances—processes that occur without forest clearing but are increasingly important drivers of biomass loss. Here we provide a comprehensive accounting of aboveground carbon dynamics inside and outside Amazon protected lands. Using published data on changes in aboveground carbon density and forest cover, we track gains and losses in carbon density from forest conversion and degradation/disturbance. We find that ITs and PNAs stored more than one-half (58%; 41,991 MtC) of the region’s carbon in 2016 but were responsible for just 10% (−130 MtC) of the net change (−1,290 MtC). Nevertheless, nearly one-half billion tons of carbon were lost from both ITs and PNAs (−434 MtC and −423 MtC, respectively), with degradation/disturbance accounting for >75% of the losses in 7 countries. With deforestation increasing, and degradation/disturbance a neglected but significant source of region-wide emissions (47%), our results suggest that sustained support for IPLC stewardship of Amazon forests is critical. IPLCs provide a global environmental service that merits increased political protection and financial support, particularly if Amazon Basin countries are to achieve their commitments under the Paris Climate Agreement.
Collapse
|
32
|
Piao S, Wang X, Wang K, Li X, Bastos A, Canadell JG, Ciais P, Friedlingstein P, Sitch S. Interannual variation of terrestrial carbon cycle: Issues and perspectives. GLOBAL CHANGE BIOLOGY 2020; 26:300-318. [PMID: 31670435 DOI: 10.1111/gcb.14884] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
With accumulation of carbon cycle observations and model developments over the past decades, exploring interannual variation (IAV) of terrestrial carbon cycle offers the opportunity to better understand climate-carbon cycle relationships. However, despite growing research interest, uncertainties remain on some fundamental issues, such as the contributions of different regions, constituent fluxes and climatic factors to carbon cycle IAV. Here we overviewed the literature on carbon cycle IAV about current understanding of these issues. Observations and models of the carbon cycle unanimously show the dominance of tropical land ecosystems to the signal of global carbon cycle IAV, where tropical semiarid ecosystems contribute as much as the combination of all other tropical ecosystems. Vegetation photosynthesis contributes more than ecosystem respiration to IAV of the global net land carbon flux, but large uncertainties remain on the contribution of fires and other disturbance fluxes. Climatic variations are the major drivers to the IAV of net land carbon flux. Although debate remains on whether the dominant driver is temperature or moisture variability, their interaction,that is, the dependence of carbon cycle sensitivity to temperature on moisture conditions, is emerging as key regulators of the carbon cycle IAV. On timescales from the interannual to the centennial, global carbon cycle variability will be increasingly contributed by northern land ecosystems and oceans. Therefore, both improving Earth system models (ESMs) with the progressive understanding on the fast processes manifested at interannual timescale and expanding carbon cycle observations at broader spatial and longer temporal scales are critical to better prediction on evolution of the carbon-climate system.
Collapse
Affiliation(s)
- Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Kai Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiangyi Li
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ana Bastos
- Department of Geography, Ludwig-Maximilians Universität, Munchen, Germany
| | - Josep G Canadell
- Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT, Australia
| | - Philippe Ciais
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Pierre Friedlingstein
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
33
|
Csillik O, Kumar P, Mascaro J, O'Shea T, Asner GP. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci Rep 2019; 9:17831. [PMID: 31780757 PMCID: PMC6882785 DOI: 10.1038/s41598-019-54386-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022] Open
Abstract
Tropical forests are crucial for mitigating climate change, but many forests continue to be driven from carbon sinks to sources through human activities. To support more sustainable forest uses, we need to measure and monitor carbon stocks and emissions at high spatial and temporal resolution. We developed the first large-scale very high-resolution map of aboveground carbon stocks and emissions for the country of Peru by combining 6.7 million hectares of airborne LiDAR measurements of top-of-canopy height with thousands of Planet Dove satellite images into a random forest machine learning regression workflow, obtaining an R2 of 0.70 and RMSE of 25.38 Mg C ha−1 for the nationwide estimation of aboveground carbon density (ACD). The diverse ecosystems of Peru harbor 6.928 Pg C, of which only 2.9 Pg C are found in protected areas or their buffers. We found significant carbon emissions between 2012 and 2017 in areas aggressively affected by oil palm and cacao plantations, agricultural and urban expansions or illegal gold mining. Creating such a cost-effective and spatially explicit indicators of aboveground carbon stocks and emissions for tropical countries will serve as a transformative tool to quantify the climate change mitigation services that forests provide.
Collapse
Affiliation(s)
- Ovidiu Csillik
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA.
| | - Pramukta Kumar
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | | | | | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
34
|
Diversity, distribution and dynamics of large trees across an old-growth lowland tropical rain forest landscape. PLoS One 2019; 14:e0224896. [PMID: 31710643 PMCID: PMC6844552 DOI: 10.1371/journal.pone.0224896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/23/2019] [Indexed: 11/26/2022] Open
Abstract
Large trees, here defined as ≥60 cm trunk diameter, are the most massive organisms in tropical rain forest, and are important in forest structure, dynamics and carbon cycling. The status of large trees in tropical forest is unclear, with both increasing and decreasing trends reported. We sampled across an old-growth tropical rain forest landscape at the La Selva Biological Station in Costa Rica to study the distribution and performance of large trees and their contribution to forest structure and dynamics. We censused all large trees in 238 0.50 ha plots, and also identified and measured all stems ≥10 cm diameter in 18 0.50 ha plots annually for 20 years (1997–2017). We assessed abundance, species diversity, and crown conditions of large trees in relation to soil type and topography, measured the contribution of large trees to stand structure, productivity, and dynamics, and analyzed the decadal population trends of large trees. Large trees accounted for 2.5% of stems and ~25% of mean basal area and Estimated Above-Ground Biomass, and produced ~10% of the estimated wood production. Crown exposure increased with stem diameter but predictability was low. Large tree density was about twice as high on more-fertile flat sites compared to less fertile sites on slopes and plateaus. Density of large trees increased 27% over the study interval, but the increase was restricted to the flat more-fertile sites. Mortality and recruitment differed between large trees and smaller stems, and strongly suggested that large tree density was affected by past climatic disturbances such as large El Niño events. Our results generally do not support the hypothesis of increasing biomass and turnover rates in tropical forest. We suggest that additional landscape-scale studies of large trees are needed to determine the generality of disturbance legacies in tropical forest study sites.
Collapse
|
35
|
Barkhordarian A, Saatchi SS, Behrangi A, Loikith PC, Mechoso CR. A Recent Systematic Increase in Vapor Pressure Deficit over Tropical South America. Sci Rep 2019; 9:15331. [PMID: 31653952 PMCID: PMC6814800 DOI: 10.1038/s41598-019-51857-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/04/2019] [Indexed: 11/08/2022] Open
Abstract
We show a recent increasing trend in Vapor Pressure Deficit (VPD) over tropical South America in dry months with values well beyond the range of trends due to natural variability of the climate system defined in both the undisturbed Preindustrial climate and the climate over 850-1850 perturbed with natural external forcing. This trend is systematic in the southeast Amazon but driven by episodic droughts (2005, 2010, 2015) in the northwest, with the highest recoded VPD since 1979 for the 2015 drought. The univariant detection analysis shows that the observed increase in VPD cannot be explained by greenhouse-gas-induced (GHG) radiative warming alone. The bivariate attribution analysis demonstrates that forcing by elevated GHG levels and biomass burning aerosols are attributed as key causes for the observed VPD increase. We further show that There is a negative trend in evaporative fraction in the southeast Amazon, where lack of atmospheric moisture, reduced precipitation together with higher incoming solar radiation (~7% decade-1 cloud-cover reduction) influences the partitioning of surface energy fluxes towards less evapotranspiration. The VPD increase combined with the decrease in evaporative fraction are the first indications of positive climate feedback mechanisms, which we show that will continue and intensify in the course of unfolding anthropogenic climate change.
Collapse
Affiliation(s)
- Armineh Barkhordarian
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, USA.
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA.
| | - Sassan S Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
- Institute of Environment and Sustainability, University of California, Los Angeles, USA
| | - Ali Behrangi
- University of Arizona, Department of hydrology and atmospheric sciences, Tucson, USA
| | - Paul C Loikith
- Portland State University, Department of Geography, Portland Oregon, USA
| | - Carlos R Mechoso
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, USA
| |
Collapse
|
36
|
Fan L, Wigneron JP, Ciais P, Chave J, Brandt M, Fensholt R, Saatchi SS, Bastos A, Al-Yaari A, Hufkens K, Qin Y, Xiao X, Chen C, Myneni RB, Fernandez-Moran R, Mialon A, Rodriguez-Fernandez NJ, Kerr Y, Tian F, Peñuelas J. Satellite-observed pantropical carbon dynamics. NATURE PLANTS 2019; 5:944-951. [PMID: 31358958 DOI: 10.1038/s41477-019-0478-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Changes in terrestrial tropical carbon stocks have an important role in the global carbon budget. However, current observational tools do not allow accurate and large-scale monitoring of the spatial distribution and dynamics of carbon stocks1. Here, we used low-frequency L-band passive microwave observations to compute a direct and spatially explicit quantification of annual aboveground carbon (AGC) fluxes and show that the tropical net AGC budget was approximately in balance during 2010 to 2017, the net budget being composed of gross losses of -2.86 PgC yr-1 offset by gross gains of -2.97 PgC yr-1 between continents. Large interannual and spatial fluctuations of tropical AGC were quantified during the wet 2011 La Niña year and throughout the extreme dry and warm 2015-2016 El Niño episode. These interannual fluctuations, controlled predominantly by semiarid biomes, were shown to be closely related to independent global atmospheric CO2 growth-rate anomalies (Pearson's r = 0.86), highlighting the pivotal role of tropical AGC in the global carbon budget.
Collapse
Affiliation(s)
- Lei Fan
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China
- ISPA, UMR 1391, INRA Nouvelle-Aquitaine, Villenave d'Ornon, France
| | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette, France.
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Martin Brandt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Sassan S Saatchi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Ana Bastos
- Department of Geography, Ludwig-Maximilians Universität, Munich, Germany
| | - Amen Al-Yaari
- ISPA, UMR 1391, INRA Nouvelle-Aquitaine, Villenave d'Ornon, France
| | - Koen Hufkens
- ISPA, UMR 1391, INRA Nouvelle-Aquitaine, Villenave d'Ornon, France
- Department of Applied Ecology and Environmental Biology, Ghent University, Ghent, Belgium
| | - Yuanwei Qin
- Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK, USA
| | - Xiangming Xiao
- Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK, USA
| | - Chi Chen
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Ranga B Myneni
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | | | - Arnaud Mialon
- CESBIO, Université de Toulouse, CNES/CNRS/INRA/IRD/UPS, Toulouse, France
| | | | - Yann Kerr
- CESBIO, Université de Toulouse, CNES/CNRS/INRA/IRD/UPS, Toulouse, France
| | - Feng Tian
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Spain
| |
Collapse
|
37
|
Klarenberg G, Muñoz-Carpena R, Perz S, Baraloto C, Marsik M, Southworth J, Zhu L. A spatiotemporal natural-human database to evaluate road development impacts in an Amazon trinational frontier. Sci Data 2019; 6:93. [PMID: 31209221 PMCID: PMC6572834 DOI: 10.1038/s41597-019-0093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/10/2019] [Indexed: 11/19/2022] Open
Abstract
Road construction and paving bring socio-economic benefits to receiving regions but can also be drivers of deforestation and land cover change. Road infrastructure often increases migration and illegal economic activities, which in turn affect local hydrology, wildlife, vegetation structure and dynamics, and biodiversity. To evaluate the full breadth of impacts from a coupled natural-human systems perspective, information is needed over a sufficient timespan to include pre- and post-road paving conditions. In addition, the spatial scale should be appropriate to link local human activities and biophysical system components, while also allowing for upscaling to the regional scale. A database was developed for the tri-national frontier in the Southwestern Amazon, where the Inter-Oceanic Highway was constructed through an area of high biological value and cultural diversity. Extensive socio-economic surveys and botanical field work are combined with remote sensing and reanalysis data to provide a rich and unique database, suitable for coupled natural-human systems research.
Collapse
Affiliation(s)
- Geraldine Klarenberg
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Rafael Muñoz-Carpena
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA.
| | - Stephen Perz
- Department of Sociology and Criminology & Law, University of Florida, Gainesville, Florida, USA
| | - Christopher Baraloto
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | - Matthew Marsik
- Integrated Data Repository, Clinical and Translational Science Institute and UF Health, University of Florida, Gainesville, Florida, USA
| | - Jane Southworth
- Department of Geography, University of Florida, Gainesville, Florida, USA
| | - Likai Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation & Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| |
Collapse
|