1
|
Barua D, Płecha M, Muszewska A. Non-dikarya fungi share the TORC1 pathway with animals, not with Saccharomyces cerevisiae. Sci Rep 2025; 15:5926. [PMID: 39966606 PMCID: PMC11836306 DOI: 10.1038/s41598-025-89635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Target of rapamycin (TOR), discovered in Saccharomyces cerevisiae, is a highly conserved serine/threonine kinase acting as a regulatory hub between the cell and its environment. Like mammals, in fungi, the TOR complex 1 (TORC1) pathway is essential for coordinating cell growth in response to nutrient availability. The activation of TORC1 is similar in yeast and mammals, while its inhibition is more complex in mammals. This divergence of TORC1 regulation opens the question of how common are the yeast and mammalian variants in the fungal kingdom. In this work, we trace the evolutionary history of TORC1 components throughout the fungal kingdom. Our findings show that these fungi contain the mammalian-specific KICSTOR complex for TORC1 inhibition. They also possess orthologs of serine, arginine and methionine sensors of TORC1 pathway that orchestrate the response to nutrient starvation in mammals. The Rheb-TSC mediated activation of mammalian TORC1 that was lost in Saccharomycotina was also conserved in non-Dikarya. These findings indicate that the TORC1 pathway in non-Dikarya fungi resembles mammalian TORC1. Saccharomycotina lost many of the inhibitory components and evolved alternate regulatory mechanisms. Furthermore, our work highlights the limitations of using S. cerevisiae as a fungal model while putting forward other fungi as possible research models.
Collapse
Affiliation(s)
- Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw, 02-106, Poland.
| |
Collapse
|
2
|
Hanna M, Akabawy AMA, Khalifa MM, Elbaset MA, Imam RA, Seddiek H. Intracellular iron accumulation throughout the progression of sepsis influences the phenotype and function of activated macrophages in renal tissue damage. Front Physiol 2025; 16:1430946. [PMID: 39949667 PMCID: PMC11821637 DOI: 10.3389/fphys.2025.1430946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Sepsis, the most common cause of acute kidney injury, remains a major socioeconomic burden. A dysregulated immune response leads to progressive organ dysfunction. Although numerous inflammatory pathways were described, most are still vague and need to be studied in terms of the mechanisms to improve the therapeutic intervention. We tackled the relationship between intracellular iron overload and macrophage polarization within 6, 24, and 72 h of sepsis induction. In our study, sepsis-induced kidney injury was caused by using the cecal ligation and puncture (CLP) model. Our results indicated severe renal tissue damage with a progressive increase in serum BUN and creatinine with architectural tissue damage and positive PAS staining. There was increased expression of CD8+ CD68+ M1 macrophage markers with upregulation of iNOS and co-expression of CD163+. Alternatively, Arg1+ Fizz1+ M2 macrophage markers were downregulated with increased iNOS/Arg1 ratio. TFR1, cubilin, and DMT1, as iron transport systems, were increased compared to sham but were significant after 72 h, while ZIP8 showed no significant change. There was a correlation between iron overload and M1 macrophage polarization with CD163+ phenotype, together with fibrotic changes. The intracellular iron overload with downregulation of ferritin was strongly related to macrophage polarization that was exaggerated at 72 h. Finally, early introduced therapy to target free iron during sepsis is a proposed novel solution for protecting the renal tissue from acute injury due to macrophage activation that may end up with chronic kidney injury, if not mortality.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Hanan Seddiek
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Cartau T, Chantepie S, Thuillier-Lecouf A, Langlois B, Bonhomme J. Epidemiology, Clinical, Radiological and Biological Characteristics, and Outcomes of Mucormycosis: A Retrospective Study at a French University Hospital. J Fungi (Basel) 2024; 10:884. [PMID: 39728380 DOI: 10.3390/jof10120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
PURPOSE Mucormycosis is a rare but emerging and life-threatening infection caused by environmental mold, with a mortality rate of 30-70% despite progress in management. A better understanding could improve its management. METHOD We conducted a single-center retrospective study of all cases of mucormycosis observed over a decade at the University Hospital of Caen. RESULTS Between 2014 and 2024, 18 cases of mucormycosis were identified, predominantly in males (n = 11, 65%). Most patients had hematological malignancies (n = 16, 89%). Seven cases were proven, and eleven were classified as probable. The main locations of infection were pulmonary (n = 12, 67%). Since 2021, we have observed an increase in the number of cases, rising from three between 2014 and 2021 to fifteen between 2021 and 2024. Among the 12 patients with pulmonary mucormycosis, all presented with fever except 1, and 67% required oxygen therapy. Chest computed tomography scans revealed an inverse halo sign in one-third of the patients. The first-line treatment consisted of amphotericin B in seventeen patients, posaconazole in one patient, and isavuconazole in one patient. Surgery was performed on seven patients. In cases of cutaneous mucormycosis, all patients underwent surgery, and none died within three months after the diagnosis. Overall, the three-month mortality rate was 39%. Surgical management was associated with a reduction in mortality (0% vs. 64%, p = 0.013). CONCLUSIONS This study highlights the role of PCR for early diagnosis and the key role of surgery in improving clinical outcomes while underscoring the need for better-adapted therapeutic protocols for these rare infections.
Collapse
Affiliation(s)
- Tom Cartau
- Department of Parasitology-Mycology, CHU de CAEN Normandie, 14000 Caen, France
| | - Sylvain Chantepie
- Institute of Hematology of Basse-Normandie, CHU de CAEN Normandie, 14000 Caen, France
| | | | - Bénédicte Langlois
- Department of Parasitology-Mycology, CHU de CAEN Normandie, 14000 Caen, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1311 DYNAMICURE, Université de Normandie Unicaen, 14000 Caen, France
| | - Julie Bonhomme
- Department of Parasitology-Mycology, CHU de CAEN Normandie, 14000 Caen, France
- ToxEMAC-ABTE, Université de Normandie Unicaen, 14000 Caen, France
| |
Collapse
|
4
|
Pikoulas A, Morianos I, Nidris VN, Hamdy R, López-López A, Moran-Garrido M, Muthu V, Halabalaki M, Papadovasilaki M, Irene K, Gu Y, Aerts R, Mercier T, Vanbiervliet Y, Cho SY, Spallone A, Samonakis D, Kastritis E, Drakos E, Tzardi M, Eliopoulos A, Georgila K, Carvalho A, Kurzai O, Rudramurthy S, Lanternier F, Petratos K, Maertens J, Bruno V, Kontoyiannis D, Barbas C, Soliman S, Ibrahim A, Chamilos G. Albumin orchestrates a natural host defense mechanism against mucormycosis. RESEARCH SQUARE 2024:rs.3.rs-5441197. [PMID: 39678331 PMCID: PMC11643317 DOI: 10.21203/rs.3.rs-5441197/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Mucormycosis is an emerging, life-threatening human infection caused by fungi of the order Mucorales. Metabolic disorders uniquely predispose an ever-expanding group of patients to mucormycosis via poorly understood mechanisms. Therefore, it is highly likely that uncharacterized host metabolic effectors confer protective immunity against mucormycosis. Here, we uncover a master regulatory role of albumin in host defense against Mucorales through the modulation of the fungal pathogenicity program. Our initial studies identified severe hypoalbuminemia as a prominent metabolic abnormality and a biomarker of poor outcome in independent cohorts of mucormycosis patients. Strikingly, we found that purified albumin selectively inhibits Mucorales growth among a range of human pathogens, and albumin-deficient mice display susceptibility specifically to mucormycosis. The antifungal activity of albumin is mediated by the release of bound free fatty acids (FFAs). Importantly, albumin prevents FFA oxidation, which results in loss of their antifungal properties. A high degree of FFA oxidation is found in the sera of patients with mucormycosis. Physiologically, albumin-bound FFAs blocks the expression of the mycotoxin mucoricin and renders Mucorales avirulent in vivo. Overall, we discovered a novel host defense mechanism that directs the pathogen to suppress its growth and the expression of virulence factors in response to unfavorable metabolic cues regulated by albumin. These findings have major implications for the pathogenesis and management of mucormycosis.
Collapse
Affiliation(s)
| | - Ioannis Morianos
- IMBB, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete GREECE
| | | | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Angeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Ma
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Ma
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Yiyou Gu
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center
| | - Robina Aerts
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Toine Mercier
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Yuri Vanbiervliet
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Sung-Yeon Cho
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Efstathios Kastritis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Tzardi
- School of Medicine, University of Crete and University Hospital
| | - Aristides Eliopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Georgila
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, 97080, Würzburg, Germany
| | - Shivaprakash Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cite, France
| | | | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Universidad San Pablo-CEU
| | | | - Ashraf Ibrahim
- The Lundquist Institute at Harbor-University of California Los Angeles Medical Center
| | | |
Collapse
|
5
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Umadevi K, Sundeep D, Varadharaj EK, Sastry CC, Shankaralingappa A, Chary RN, Vighnesh AR. Precision Detection of Fungal Co-Infections for Enhanced COVID-19 Treatment Strategies Using FESEM Imaging. Indian J Microbiol 2024; 64:1084-1098. [PMID: 39282206 PMCID: PMC11399527 DOI: 10.1007/s12088-024-01246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
The treatment of fungal infections presents significant challenges due to the lack of standardized diagnostic procedures, a restricted range of antifungal treatments, and the risk of harmful interactions between antifungal medications and the immunosuppressive drugs used in anti-inflammatory treatment for critically ill patients with COVID-19. Mucormycosis and aspergillosis are the primary invasive fungal infections in patients with severe COVID-19, occurring singly or in combination. Histopathological examination is a vital diagnostic technique that details the presence and invasion of fungi within tissues and blood vessels, and the body's response to the infection. However, the pathology report omits information on the most common fungi associated with the observed morphology, as well as other potential fungi and parasites that ought to be included in the differential diagnosis. This research marks significance in diagnosing fungal infections, such as mucormycosis and aspergillosis associated to COVID-19 by field emission scanning electron microscopy (FESEM) imaging to examine unstained histopathology slides, allowing for a detailed morphological analysis of the fungus. FESEM provides an unprecedented resolution and detail, surpassing traditional Hematoxylin & Eosin (H&E) and Grocott's Methenamine Silver (GMS) staining methods in identifying and differentiating dual fungal infections and diverse fungal species. The findings underscore the critical need for individualized treatment plans for patients severely affected by COVID-19 and compounded by secondary fungal infections. The high-magnification micrographs reveal specific fungal morphology and reproductive patterns. Current treatment protocols largely depend on broad-spectrum antifungal therapies. However this FESEM guided diagnostic approach can help in targeted patient specific anti fungal therapies. Such precision could lead to more effective early interventions, addressing the complex management required for severe COVID-19 cases with coexisting fungal infections. This approach significantly advances disease management and patient recovery, advocating for personalized, precision medicine in tackling this multifaceted clinical challenge. Graphical Abstract
Collapse
Affiliation(s)
- Kovuri Umadevi
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Dola Sundeep
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Eswaramoorthy K Varadharaj
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Chebbiyam Chandrasekhara Sastry
- Biomedical Research Laboratory, Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | | | - Rajarikam Nagarjuna Chary
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Alluru Raghavendra Vighnesh
- Department of Mechanical Engineering, Indian Institute of Technology (IIT-BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
7
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
8
|
Marques MJAM, Alves F, Sousa MHS, Guimarães FEG, Kurachi C. Morphological aspects and the effectiveness of photodynamic inactivation against Rhizopus oryzae in different life cycles. Photochem Photobiol Sci 2024; 23:1323-1339. [PMID: 38806860 DOI: 10.1007/s43630-024-00597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Mucormycosis is an extremely aggressive fungal disease with a high mortality rate, especially in people with compromised immune systems. Most cases of mucormycosis are caused by the fungus Rhizopus oryzae. The treatments used are based on high doses of antifungals, associated with surgical resections, when it is possible. However, even with this aggressive treatment, the estimated attributable mortality rate is high. There is therefore a need to develop adjuvant treatments. Photodynamic Inactivation (PDI) may be an auxiliary therapeutic option for mucormycosis. Due to the lack of reports in the literature on the morphology and photodynamic inactivation of R. oryzae, characterization of the fungus using Confocal Microscopy and Transmission Electron Microscopy, and different protocols using Photodithazine® (PDZ), a chlorin e6 compound, as a photosensitizer, were performed. The fungus growth rate under different concentrations and incubation times of the photosensitizer and its association with the surfactant Sodium Dodecyl Sulphate (SDS) was evaluated. For the hyphae, both in the light and dark phases, in the protocols using only PDZ, no effective photodynamic response was observed. Meanwhile with the combination of SDS 0.05% and PDZ, inhibition growth rates of 98% and 72% were achieved for the white and black phase, respectively. In the conidia phase, only a 1.7 log10 reduction of the infective spores was observed. High concentration of melanin and the complex and resistant structures, especially at the black phase, results in a high limitation of the PDI inactivation response. The combined use of the SDS resulted in an improved response, when compared to the one obtained with the amphotericin B treatment.
Collapse
Affiliation(s)
- M J A M Marques
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - F Alves
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - M H S Sousa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - F E G Guimarães
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - C Kurachi
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
| |
Collapse
|
9
|
Tanwar M, Singh A, Singh TP, Sharma S, Sharma P. Comprehensive Review on the Virulence Factors and Therapeutic Strategies with the Aid of Artificial Intelligence against Mucormycosis. ACS Infect Dis 2024; 10:1431-1457. [PMID: 38682683 DOI: 10.1021/acsinfecdis.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Mucormycosis, a rare but deadly fungal infection, was an epidemic during the COVID-19 pandemic. The rise in cases (COVID-19-associated mucormycosis, CAM) is attributed to excessive steroid and antibiotic use, poor hospital hygiene, and crowded settings. Major contributing factors include diabetes and weakened immune systems. The main manifesting forms of CAM─cutaneous, pulmonary, and the deadliest, rhinocerebral─and disseminated infections elevated mortality rates to 85%. Recent focus lies on small-molecule inhibitors due to their advantages over standard treatments like surgery and liposomal amphotericin B (which carry several long-term adverse effects), offering potential central nervous system penetration, diverse targets, and simpler dosing owing to their small size, rendering the ability to traverse the blood-brain barrier via passive diffusion facilitated by the phospholipid membrane. Adaptation and versatility in mucormycosis are facilitated by a multitude of virulence factors, enabling the pathogen to dynamically respond to various environmental stressors. A comprehensive understanding of these virulence mechanisms is imperative for devising effective therapeutic interventions against this highly opportunistic pathogen that thrives in immunocompromised individuals through its angio-invasive nature. Hence, this Review delineates the principal virulence factors of mucormycosis, the mechanisms it employs to persist in challenging host environments, and the current progress in developing small-molecule inhibitors against them.
Collapse
Affiliation(s)
- Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
10
|
Barua D, Płecha M, Muszewska A. A minimal Fanconi Anemia complex in early diverging fungi. Sci Rep 2024; 14:9922. [PMID: 38688950 PMCID: PMC11061109 DOI: 10.1038/s41598-024-60318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.
Collapse
Affiliation(s)
- Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
11
|
Lax C, Nicolás FE, Navarro E, Garre V. Molecular mechanisms that govern infection and antifungal resistance in Mucorales. Microbiol Mol Biol Rev 2024; 88:e0018822. [PMID: 38445820 PMCID: PMC10966947 DOI: 10.1128/mmbr.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E. Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
12
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
13
|
Scheler J, Binder U. Alternative in-vivo models of mucormycosis. Front Cell Infect Microbiol 2024; 14:1343834. [PMID: 38362495 PMCID: PMC10867140 DOI: 10.3389/fcimb.2024.1343834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Mucormycosis is still regarded a rare fungal infection, but the high incidences of COVID-associated cases in India and other countries have shown its potential threat to large patient cohorts. In addition, infections by these fast-growing fungi are often fatal and cause disfigurement, badly affecting patients' lives. In advancing our understanding of pathogenicity factors involved in this disease, to enhance the diagnostic toolset and to evaluate novel treatment regimes, animal models are indispensable. As ethical and practical considerations typically favor the use of alternative model systems, this review provides an overview of alternative animal models employed for mucormycosis and discusses advantages and limitations of the respective model.
Collapse
Affiliation(s)
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Tirol, Austria
| |
Collapse
|
14
|
Ben-Ami R. Experimental Models to Study the Pathogenesis and Treatment of Mucormycosis. J Fungi (Basel) 2024; 10:85. [PMID: 38276032 PMCID: PMC10820959 DOI: 10.3390/jof10010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Mucormycosis presents a formidable challenge to clinicians and researchers. Animal models are an essential part of the effort to decipher the pathogenesis of mucormycosis and to develop novel pharmacotherapeutics against it. Diverse model systems have been established, using a range of animal hosts, immune and metabolic perturbations, and infection routes. An understanding of the characteristics, strengths, and drawbacks of these models is needed to optimize their use for specific research aims.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Department of Infectious Diseases, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| |
Collapse
|
15
|
Choudhury QJ, Ambati S, Link CD, Lin X, Lewis ZA, Meagher RB. Dectin-3-targeted antifungal liposomes efficiently bind and kill diverse fungal pathogens. Mol Microbiol 2023; 120:723-739. [PMID: 37800599 PMCID: PMC10823756 DOI: 10.1111/mmi.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.
Collapse
Affiliation(s)
| | - Suresh Ambati
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Collin D. Link
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Xiaorong Lin
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | | |
Collapse
|
16
|
Alselami A, Drummond RA. How metals fuel fungal virulence, yet promote anti-fungal immunity. Dis Model Mech 2023; 16:dmm050393. [PMID: 37905492 PMCID: PMC10629672 DOI: 10.1242/dmm.050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Invasive fungal infections represent a significant global health problem, and present several clinical challenges, including limited treatment options, increasing rates of antifungal drug resistance and compounding comorbidities in affected patients. Metals, such as copper, iron and zinc, are critical for various biological and cellular processes across phyla. In mammals, these metals are important determinants of immune responses, but pathogenic microbes, including fungi, also require access to these metals to fuel their own growth and drive expression of major virulence traits. Therefore, host immune cells have developed strategies to either restrict access to metals to induce starvation of invading pathogens or deploy toxic concentrations within phagosomes to cause metal poisoning. In this Review, we describe the mechanisms regulating fungal scavenging and detoxification of copper, iron and zinc and the importance of these mechanisms for virulence and infection. We also outline how these metals are involved in host immune responses and the consequences of metal deficiencies or overloads on how the host controls invasive fungal infections.
Collapse
Affiliation(s)
- Alanoud Alselami
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
17
|
Alqarihi A, Kontoyiannis DP, Ibrahim AS. Mucormycosis in 2023: an update on pathogenesis and management. Front Cell Infect Microbiol 2023; 13:1254919. [PMID: 37808914 PMCID: PMC10552646 DOI: 10.3389/fcimb.2023.1254919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mucormycosis (MCR) is an emerging and frequently lethal fungal infection caused by the Mucorales family, with Rhizopus, Mucor, and Lichtheimia, accounting for > 90% of all cases. MCR is seen in patients with severe immunosuppression such as those with hematologic malignancy or transplantation, Diabetes Mellitus (DM) and diabetic ketoacidosis (DKA) and immunocompetent patients with severe wounds. The recent SARS COV2 epidemy in India has resulted in a tremendous increase in MCR cases, typically seen in the setting of uncontrolled DM and corticosteroid use. In addition to the diversity of affected hosts, MCR has pleiotropic clinical presentations, with rhino-orbital/rhino-cerebral, sino-pulmonary and necrotizing cutaneous forms being the predominant manifestations. Major insights in MCR pathogenesis have brought into focus the host receptors (GRP78) and signaling pathways (EGFR activation cascade) as well as the adhesins used by Mucorales for invasion. Furthermore, studies have expanded on the importance of iron availability and the complex regulation of iron homeostasis, as well as the pivotal role of mycotoxins as key factors for tissue invasion. The molecular toolbox to study Mucorales pathogenesis remains underdeveloped, but promise is brought by RNAi and CRISPR/Cas9 approaches. Important recent advancements have been made in early, culture-independent molecular diagnosis of MCR. However, development of new potent antifungals against Mucorales remains an unmet need. Therapy of MCR is multidisciplinary and requires a high index of suspicion for initiation of early Mucorales-active antifungals. Reversal of underlying immunosuppression, if feasible, rapid DKA correction and in selected patients, surgical debulking are crucial for improved outcomes.
Collapse
Affiliation(s)
- Abdullah Alqarihi
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
18
|
Alonso MF, Bain JM, Erwig LP, Brown AJP, Gow NAR. Fungal spore swelling and germination are restricted by the macrophage phagolysosome. Fungal Biol 2023; 127:1291-1297. [PMID: 37821151 PMCID: PMC10849972 DOI: 10.1016/j.funbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023]
Abstract
Many species of medically important fungi are prolific in the formation of asexual spores. Spores undergo a process of active swelling and cell wall remodelling before a germ tube is formed and filamentous growth ensues. Highly elongated germ tubes are known to be difficult to phagocytose and pose particular challenges for immune phagocytes. However, the significance of the earliest stages of spore germination during immune cell interactions has not been investigated and yet this is likely to be important for defence against sporogenous fungal pathogens. We show here that macrophages restrict the early phases of the spore germination process of Aspergillus fumigatus and Mucor circinelloides including the initial phase of spore swelling, spore germination and early polarised growth. Macrophages are therefore adept at retarding germination as well as subsequent vegetative growth which is likely to be critical for immune surveillance and protection against sporulating fungi.
Collapse
Affiliation(s)
- María Fernanda Alonso
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Judith M Bain
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Lars P Erwig
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Alistair J P Brown
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
19
|
Mustakim KR, Eo MY, Kim MJ, Yoon HJ, Kim SM. Appropriate Total Rehabilitation in the Bilateral Maxillectomy Defected Diabetic Patient Secondary to Aggressive Aspergillosis. J Craniofac Surg 2023; 34:e517-e520. [PMID: 37253249 DOI: 10.1097/scs.0000000000009399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 06/01/2023] Open
Abstract
Aggressive aspergillosis is a life-threatening fungal infection with rapid progress, mainly affecting the maxillofacial area, especially the nose and paranasal sinuses, in patients with immunocompromised conditions such as diabetes mellitus. Aggressive aspergillosis infection should be differentiated from other invasive fungal sinusitis for early recognition with correct prompt treatment. The main treatment is aggressive surgical debridement such as maxillectomy. Although aggressive debridement should be performed, preservation of the palatal flap should be considered for better postoperative outcomes. In this manuscript, we report the case of a diabetic patient with aggressive aspergillosis affecting the maxilla and paranasal sinuses and describe the appropriate surgical management and prosthodontic rehabilitation.
Collapse
Affiliation(s)
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery
| | | | - Hye Jung Yoon
- Department of Oral Pathology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | | |
Collapse
|
20
|
Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol 2023; 23:433-452. [PMID: 36600071 PMCID: PMC9812358 DOI: 10.1038/s41577-022-00826-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic fungi have emerged as significant causes of infectious morbidity and death in patients with acquired immunodeficiency conditions such as HIV/AIDS and following receipt of chemotherapy, immunosuppressive agents or targeted biologics for neoplastic or autoimmune diseases, or transplants for end organ failure. Furthermore, in recent years, the spread of multidrug-resistant Candida auris has caused life-threatening outbreaks in health-care facilities worldwide and raised serious concerns for global public health. Rapid progress in the discovery and functional characterization of inborn errors of immunity that predispose to fungal disease and the development of clinically relevant animal models have enhanced our understanding of fungal recognition and effector pathways and adaptive immune responses. In this Review, we synthesize our current understanding of the cellular and molecular determinants of mammalian antifungal immunity, focusing on observations that show promise for informing risk stratification, prognosis, prophylaxis and therapies to combat life-threatening fungal infections in vulnerable patient populations.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca A Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Singh R, Malik P, Kumar M, Kumar R, Alam MS, Mukherjee TK. Secondary fungal infections in SARS-CoV-2 patients: pathological whereabouts, cautionary measures, and steadfast treatments. Pharmacol Rep 2023:10.1007/s43440-023-00506-z. [PMID: 37354313 DOI: 10.1007/s43440-023-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The earliest documented COVID-19 case caused by the SARS-CoV-2 coronavirus occurred in Wuhan, China, in December 2019. Since then, several SARS-CoV-2 mutants have rapidly disseminated as exemplified by the community spread of the recent omicron variant. The disease already attained a pandemic status with ever-dwindling mortality even after two and half years of identification and considerable vaccination. Aspergillosis, candidiasis, cryptococcosis and mucormycosis are the prominent fungal infections experienced by the majority of SARS-CoV-2 high-risk patients. In its entirety, COVID-19's nexus with these fungal infections may worsen the intricacies in the already beleaguered high-risk patients, making this a topic of substantial clinical concern. Thus, thorough knowledge of the subject is necessary. This article focuses on the concomitant fungal infection(s) in COVID-19 patients, taking into account their underlying causes, the screening methods, manifested drug resistance, and long-term effects. The information and knowledge shared herein could be crucial for the management of critically ill, aged, and immunocompromised SARS-CoV-2 patients who have had secondary fungal infections (SFIs).
Collapse
Affiliation(s)
- Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, PO Box 620, 130, Bosher-Muscat, Sultanate of Oman
| | - Tapan Kumar Mukherjee
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, UP, India.
- Department of Biotechnology, Amity University, Major Arterial Road, Action Area II, Rajarhat, New Town, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
22
|
Cánovas-Márquez JT, Lax C, Tahiri G, Navarro E, Nicolás FE, Garre V. Advances in understanding infections caused by the basal fungus Mucor. PLoS Pathog 2023; 19:e1011394. [PMID: 37262085 DOI: 10.1371/journal.ppat.1011394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Affiliation(s)
- José T Cánovas-Márquez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ghizlane Tahiri
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
23
|
Sinha BP, Mehta P, Hoque MA, Bandopadhyay P, Nandi A, Saha I, Nandi Mitra A, Mondal A, Bhattacharjee B, Chamilos G, Pandey R, Basu K, Ganguly D. Deficient Phagocytosis in Circulating Monocytes from Patients with COVID-19-Associated Mucormycosis. mBio 2023:e0059023. [PMID: 37052373 DOI: 10.1128/mbio.00590-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Cases of rhino-orbital mucormycosis in patients suffering from severe coronavirus disease 2019 (COVID-19) were reported in different parts of the world, especially in India. However, specific immune mechanisms that are linked to susceptibility to COVID-19-associated mucormycosis (CAM) remain largely unexplored. We aimed to explore whether the differential regulation of circulating cytokines in CAM patients had any potential pathogenic links with myeloid phagocyte function and susceptibility to mucormycosis. A small cohort of Indian patients suffering from CAM (N = 9) as well as COVID-19 patients with no evidence of mucormycosis (N = 5) were recruited in the study. Venous blood was collected from the patients as well as from healthy volunteers (N = 8). Peripheral blood mononuclear cells and plasma were isolated. Plasma samples were used to measure a panel of 48 cytokines. CD14+ monocytes were isolated and used for a flow cytometric phagocytosis assay as well as a global transcriptome analysis via RNA-sequencing. A multiplex cytokine analysis of the plasma samples revealed reduction in a subset of cytokines in CAM patients, which is known to potentiate the activation, migration, or phagocytic activity of myeloid cells, compared to the COVID-19 patients who did not contract mucormycosis. Compared to monocytes from healthy individuals, peripheral blood CD14+ monocytes from CAM patients were significantly deficient in phagocytic function. The monocyte transcriptome also revealed that pathways related to endocytic pathways, phagosome maturation, and the cytoskeletal regulation of phagocytosis were significantly downregulated in CAM patients. Thus, the study reports a significant deficiency in the phagocytic activity of monocytes, which is a critical effector mechanism for the antifungal host defense, in patients with CAM. This result is in concordance with results regarding the specific cytokine signature and monocyte transcriptome. IMPORTANCE A number of cases of mucormycosis, often fatal, were reported among severe COVID-19 patients from India as well as from some other parts of the world. However, specific immunocellular mechanisms that underlie susceptibility to this fungal infection in COVID-19 remain largely unexplored. Our study reports a deficiency in phagocytosis by monocytes in COVID-19 patients who are concomitantly afflicted with mucormycosis, with this deficiency being linked to a characteristic monocyte transcriptome as well as a circulating cytokine signature. The functional phenotype and cytokine signature of the monocytes may provide useful biomarkers for detecting potential susceptibility to mucormycosis in COVID-19 as well as in other viral infections.
Collapse
Affiliation(s)
- Bishnu Prasad Sinha
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Md Asmaul Hoque
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ayandip Nandi
- Department of Pathology, Medical College, Kolkata, India
| | - Ipsita Saha
- Department of Pathology, Medical College, Kolkata, India
| | | | - Asish Mondal
- Department of General Medicine, Medical College, Kolkata, India
| | | | - Georgios Chamilos
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology - Hellas (IMBB FoRTH), Heraklion, Greece
- Department of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kaushik Basu
- Department of General Medicine, Medical College, Kolkata, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
24
|
Kahveci F, Özen H, Gurbanov A, Gün E, Balaban B, Özakıncı H, Dizbay Sak S, Çobanoğlu N, Çiftçi E, Kendirli T. Fatal Invasive Aspergillosis in a Child with Idiopathic Pulmonary Hemosiderosis. Turk Arch Pediatr 2023; 58:226-228. [PMID: 36856362 PMCID: PMC10081066 DOI: 10.5152/turkarchpediatr.2023.22178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/06/2022] [Indexed: 03/02/2023]
Affiliation(s)
- Fevzi Kahveci
- Department of Pediatric Critical Care Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hasan Özen
- Department of Pediatric Critical Care Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Anar Gurbanov
- Department of Pediatric Critical Care Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Emrah Gün
- Department of Pediatric Critical Care Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Burak Balaban
- Department of Pediatric Critical Care Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hilal Özakıncı
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serpil Dizbay Sak
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nazan Çobanoğlu
- Department of Pediatric Pulmonology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ergin Çiftçi
- Department of Pediatric Infectious Disease, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Tanıl Kendirli
- Department of Pediatric Critical Care Medicine, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
25
|
Dao TH, Iverson A, Neville SL, Johnson MDL, McDevitt CA, Rosch JW. The role of CopA in Streptococcus pyogenes copper homeostasis and virulence. J Inorg Biochem 2023; 240:112122. [PMID: 36639322 PMCID: PMC10161136 DOI: 10.1016/j.jinorgbio.2023.112122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Maintenance of intracellular metal homeostasis during interaction with host niches is critical to the success of bacterial pathogens. To prevent infection, the mammalian innate immune response employs metal-withholding and metal-intoxication mechanisms to limit bacterial propagation. The first-row transition metal ion copper serves critical roles at the host-pathogen interface and has been associated with antimicrobial activity since antiquity. Despite lacking any known copper-utilizing proteins, streptococci have been reported to accumulate significant levels of copper. Here, we report that loss of CopA, a copper-specific exporter, confers increased sensitivity to copper in Streptococcus pyogenes strain HSC5, with prolonged exposure to physiological levels of copper resulting in reduced viability during stationary phase cultivation. This defect in stationary phase survival was rescued by supplementation with exogeneous amino acids, indicating the pathogen had altered nutritional requirements during exposure to copper stress. Furthermore, S. pyogenes HSC5 ΔcopA was substantially attenuated during murine soft-tissue infection, demonstrating the importance of copper efflux at the host-pathogen interface. Collectively, these data indicate that copper can severely reduce the viability of stationary phase S. pyogenes and that active efflux mechanisms are required to survive copper stress in vitro and during infection.
Collapse
Affiliation(s)
- Tina H Dao
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Amy Iverson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Michael D L Johnson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunobiology, BIO5 Institute, Valley Fever Center for Excellence, and Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jason W Rosch
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
26
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
27
|
Faherty L, Kenny S, Cloonan SM. Iron and mitochondria in the susceptibility, pathogenesis and progression of COPD. Clin Sci (Lond) 2023; 137:219-237. [PMID: 36729089 DOI: 10.1042/cs20210504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease characterised by airflow limitation, chronic bronchitis, emphysema and airway remodelling. Cigarette smoke is considered the primary risk factor for the development of COPD; however, genetic factors, host responses and infection also play an important role. Accumulating evidence highlights a role for iron dyshomeostasis and cellular iron accumulation in the lung as a key contributing factor in the development and pathogenesis of COPD. Recent studies have also shown that mitochondria, the central players in cellular iron utilisation, are dysfunctional in respiratory cells in individuals with COPD, with alterations in mitochondrial bioenergetics and dynamics driving disease progression. Understanding the molecular mechanisms underlying the dysfunction of mitochondria and cellular iron metabolism in the lung may unveil potential novel investigational avenues and therapeutic targets to aid in the treatment of COPD.
Collapse
Affiliation(s)
- Lynne Faherty
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suzanne M Cloonan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, U.S.A
| |
Collapse
|
28
|
Is the production of reactive oxygen and nitrogen species by macrophages associated with better infectious control in female mice with experimentally disseminated and pulmonary mucormycosis? PLoS One 2022; 17:e0270071. [PMID: 36520787 PMCID: PMC9754262 DOI: 10.1371/journal.pone.0270071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Different levels of resistance against Rhizopus oryzae infection have been observed between inbred (BALB/c) and outbred (Swiss) mice and are associated with the genetic background of each mouse strain. Considering that macrophages play an important role in host resistance to Rhizopus species, we used different infectious outcomes observed in experimental mucormycosis to identify the most efficient macrophage response pattern against R. oryzae in vitro and in vivo. For this, we compared BALB/c and Swiss macrophage activity before and after intravenous or intratracheal R. oryzae infections. The production of hydrogen peroxide (H2O2) and nitric oxide (NO) was determined in cultures of peritoneal (PMΦ) or alveolar macrophages (AMΦ) challenged with heat-killed spores of R. oryzae. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) were measured to confirm our findings. Naïve PMΦ from female BALB/c mice showed increased production of H2O2, TNF-α, and IL-10 in the presence of heat-killed spores of R. oryzae. Naïve PMΦ from female Swiss mice were less responsive. Naïve AMΦ from the two strains of female mice were less reactive to heat-killed spores of R. oryzae than PMΦ. After 30 days of R. oryzae intravenous infection, lower fungal load in spleen from BALB/c mice was accompanied by higher production of H2O2 by PMΦ compared with Swiss mice. In contrast, AMΦ from BALB/c mice showed higher production of NO, TNF-α, and IL-10 after 7 days of intratracheal infection. The collective findings reveal that, independent of the female mouse strain, PMΦ is more reactive against R. oryzae upon first contact than AMΦ. In addition, increased PMΦ production of H2O2 at the end of disseminated infection is accompanied by better fungal clearance in resistant (BALB/c) mice. Our findings further the understanding of the parasite-host relationship in mucormycosis.
Collapse
|
29
|
Tonmoy MIQ, Ahmed SF, Hami I, Shakil MSK, Verma AK, Hasan M, Reza HA, Bahadur NM, Rahaman MM, Hossain MS. Identification of novel inhibitors of high affinity iron permease (FTR1) through implementing pharmacokinetics index to fight against black fungus: An in silico approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105385. [PMID: 36368610 DOI: 10.1016/j.meegid.2022.105385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Mucormycosis is a life-threatening fungal infection, particularly in immunocompromised patients. Mucormycosis has been reported to show resistance to available antifungal drugs and was recently found in COVID-19 as a co-morbidity that demands new classes of drugs. In an attempt to find novel inhibitors against the high-affinity iron permease (FTR1), a novel target having fundamental importance on the pathogenesis of mucormycosis, 11,000 natural compounds were investigated in this study. Virtual screening and molecular docking identified two potent natural compounds [6',7,7,10',10',13'-hexamethylspiro[1,8-dihydropyrano[2,3-g]indole-3,11'-3,13-diazatetracyclo[5.5.2.01,9.03,7]tetradecane]-2,9,14'-trione and 5,7-dihydroxy-3-(2,2,8,8-tetramethylpyrano[2,3-f]chromen-6-yl)chromen-4-one] that effectively bind to the active cavity of FTR1 with a binding affinity of -9.9 kcal/mol. Multiple non-covalent interactions between the compounds and the active residues of this cavity were noticed, which is required for FTR1 inhibition. These compounds were found to have inhibitory nature and meet essential requirements to be drug-like compounds with a considerable absorption, distribution, metabolism, and excretion (ADME) profile with no toxicity probabilities. Molecular dynamics simulation confirms the structural compactness and less conformational variation of the drug-protein complexes maintaining structural stability and rigidity. MM-PBSA and post-simulation analysis predict binding stability of these compounds in the active cavity. This study hypothesizing that these compounds could be a potential inhibitor of FTR1 and will broaden the clinical prospects of mucormycosis.
Collapse
Affiliation(s)
- Mahafujul Islam Quadery Tonmoy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh; Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sk Faisal Ahmed
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh; Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahriar Kabir Shakil
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh; Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abhishek Kumar Verma
- Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh; Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Mizanur Rahaman
- Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh; Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh; Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
30
|
Acosta-España JD, Voigt K. An old confusion: Entomophthoromycosis versus mucormycosis and their main differences. Front Microbiol 2022; 13:1035100. [PMID: 36406416 PMCID: PMC9670544 DOI: 10.3389/fmicb.2022.1035100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fungal diseases were underestimated for many years. And the global burden of fungal infections is substantial and has increased in recent years. Invasive fungal infections have been linked to several risk factors in humans which basically depend on the individual homeostasis of the patients. However, many fungi can infect even apparently healthy people. Knowledge of these pathogens is critical in reducing or stopping morbidity and/or mortality statistics due to fungal pathogens. Successful therapeutic strategies rely on rapid diagnosis of the causative fungal agent and the underlying disease. However, the terminology of the diseases was updated to existing phylogenetic classifications and led to confusion in the definition of mucormycosis, conidiobolomycosis, and basidiobolomycosis, which were previously grouped under the now-uncommon term zygomycosis. Therefore, the ecological, taxonomic, clinical, and diagnostic differences are addressed to optimize the understanding and definition of these diseases. The term "coenocytic hyphomycosis" is proposed to summarize all fungal infections caused by Mucorales and species of Basidiobolus and Conidiobolus.
Collapse
Affiliation(s)
- Jaime David Acosta-España
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany,Postgraduate Program in Infectious Diseases, School of Medicine, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany,*Correspondence: Kerstin Voigt,
| |
Collapse
|
31
|
Montaño DE, Hartung S, Wich M, Ali R, Jungnickel B, von Lilienfeld-Toal M, Voigt K. The TLR-NF-kB axis contributes to the monocytic inflammatory response against a virulent strain of Lichtheimia corymbifera, a causative agent of invasive mucormycosis. Front Immunol 2022; 13:882921. [PMID: 36311802 PMCID: PMC9608459 DOI: 10.3389/fimmu.2022.882921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Invasive mucormycosis (IM) is a life-threatening infection caused by the fungal order Mucorales, its diagnosis is often delayed, and mortality rates range from 40-80% due to its rapid progression. Individuals suffering from hematological malignancies, diabetes mellitus, organ transplantations, and most recently COVID-19 are particularly susceptible to infection by Mucorales. Given the increase in the occurrence of these diseases, mucormycosis has emerged as one of the most common fungal infections in the last years. However, little is known about the host immune response to Mucorales. Therefore, we characterized the interaction among L. corymbifera—one of the most common causative agents of IM—and human monocytes, which are specialized phagocytes that play an instrumental role in the modulation of the inflammatory response against several pathogenic fungi. This study covered four relevant aspects of the host-pathogen interaction: i) The recognition of L. corymbifera by human monocytes. ii) The intracellular fate of L. corymbifera. iii) The inflammatory response by human monocytes against the most common causative agents of mucormycosis. iv) The main activated Pattern-Recognition Receptors (PRRs) inflammatory signaling cascades in response to L. corymbifera. Here, we demonstrate that L. corymbifera exhibits resistance to intracellular killing over 24 hours, does not germinate, and inflicts minimal damage to the host cell. Nonetheless, viable fungal spores of L. corymbifera induced early production of the pro-inflammatory cytokine IL-1β, and late release of TNF-α and IL-6 by human monocytes. Moreover, we revealed that IL-1β production predominantly depends on Toll-like receptors (TLRs) priming, especially via TLR4, while TNF-α is secreted via C-type lectin receptors (CTLs), and IL-6 is produced by synergistic activation of TLRs and CTLs. All these signaling pathways lead to the activation of NF-kB, a transcription factor that not only regulates the inflammatory response but also the apoptotic fate of monocytes during infection with L. corymbifera. Collectively, our findings provide new insights into the host-pathogen interactions, which may serve for future therapies to enhance the host inflammatory response to L. corymbifera.
Collapse
Affiliation(s)
- Dolly E. Montaño
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Susann Hartung
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Melissa Wich
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Rida Ali
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Berit Jungnickel
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Marie von Lilienfeld-Toal
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- *Correspondence: Kerstin Voigt,
| |
Collapse
|
32
|
Radotra B, Challa S. Pathogenesis and Pathology of COVID-Associated Mucormycosis: What Is New and Why. CURRENT FUNGAL INFECTION REPORTS 2022; 16:206-220. [PMID: 36193101 PMCID: PMC9520103 DOI: 10.1007/s12281-022-00443-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review There is global increase in the incidence of mucormycosis. However, a sudden increase in the COVID-associated mucormycosis (CAM) was noted, particularly in India, during the second wave of the COVID-19 pandemic. The interplay of factors involved in the pathogenesis is complex. In this review, the influence of pre-existing disease, exaggerated risk factors, altered milieu due to COVID-19 itself and the consequences of its treatment on the host pathogen interactions leading to the disease and morphology of the fungus will be highlighted. Recent Findings Hyperglycemia, acidosis, available free iron, lowered host defenses, and the fungal virulence factors promote the growth of Mucorales. There is a high background prevalence of diabetes mellitus (DM) in India. Uncontrolled or undiagnosed DM, COVID-19 itself, and inappropriate administration of corticosteroids in high doses and for prolonged periods result in hyperglycemia. Diabetic ketoacidosis (DKA) and metabolic acidosis due to hypoxia or renal failure contribute to acidic pH and dissociate bound iron from serum proteins. The host defenses are lowered due to COVID-19-induced immune dysregulation, hyperglycemia itself, and administration of corticosteroids and immune suppressants for the treatment of COVID-19. The altered metabolic milieu in the local microenvironment of nose and paranasal sinuses (PNS) promotes specific interaction of glucose-regulated protein-78 (GRP-78) on host cells with spore coat protein homologue (CotH 3) on Mucorales resulting in rhino-orbito-cerebral mucormycosis (ROCM) as the predominant clinical form in CAM. The pathology is extensive soft tissue involvement with angioinvasion and perineural invasion. Melanized hyphae and sporangia were seen on histopathology, which is unique to CAM. While many factors favor the growth of Mucorales in CAM, hyperglycemia, hyperferritinemia, and administration of hyperbaric oxygen result in reactive oxygen species (ROS) and inadequate humidification results in dehydration. Melanization is possibly the adaptive and protective mechanism of Mucorales to escape the unfavorable conditions due to the treatment of COVID-19. Summary High background prevalence of DM, inappropriate administration of corticosteroids and immune dysregulation due to COVID-19 favor the growth of Mucorales in CAM. Melanization of Mucorales hyphae and sporangia on histopathology probably represent adaptive and protective mechanism due to the treatment with hyperbaric oxygen with inadequate humidification as well as the metabolic alterations.
Collapse
Affiliation(s)
- Bishan Radotra
- Department of Histopathology, Group “C” Departments, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Sundaram Challa
- Department of Pathology and Lab Medicine, Basavatarakam Indo-American Cancer Hospital & Research Institute, Hyderabad, Telangana State 50034 India
| |
Collapse
|
33
|
Saadi MHG, Hosseini SA, Khodamoradi Z, Mokhtaryan M, Omidifar N, Moghadami M. Comparison of mucormycosis infection between patients with and without a history of COVID-19 infection: a retrospective cohort study. Trans R Soc Trop Med Hyg 2022; 117:174-178. [PMID: 36001888 PMCID: PMC9452119 DOI: 10.1093/trstmh/trac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Mucormycosis infection is a complication seen in some coronavirus disease 2019 (COVID-19) patients. This study compares the characteristics of mucormycosis infection between COVID-19 and non-COVID-19 patients. METHODS This retrospective cohort comprised 87 patients with mucormycosis divided into two groups. The first included 44 patients who had COVID-19 recently before hospitalization due to mucormycosis at Namazi Hospital, Shiraz, Iran, between February 2019 and August 2021. The second group included all 43 patients hospitalized at the same hospital due to mucormycosis between 2010 and 2019 (pre-pandemic). RESULTS Mucormycosis patients with a history of recent COVID-19 infection had a higher rate of diabetes mellitus, fewer malignancies and higher blood glucose, erythrocyte sedimentation rate and C-reactive protein levels (p<0.05). Glucocorticoid use was common (77%) in the COVID-19 group. CONCLUSIONS In the pre-COVID-19 era, mucormycosis mainly affected immunodeficient patients like those receiving chemotherapy due to malignancy but now seems to affect COVID-19 patients with uncontrolled blood glucose and glucocorticoids use. Special care must be taken in prescribing glucocorticoids and controlling the blood glucose levels of COVID-19 patients.
Collapse
Affiliation(s)
| | | | - Zohre Khodamoradi
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mokhtaryan
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Research Center of Quran, Hadith and Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
34
|
Abstract
Coronavirus disease 2019 (COVID-19)-associated invasive fungal infections are an important complication in a substantial number of critically ill, hospitalized patients with COVID-19. Three groups of fungal pathogens cause co-infections in COVID-19: Aspergillus, Mucorales and Candida species, including Candida auris. Here we review the incidence of COVID-19-associated invasive fungal infections caused by these fungi in low-, middle- and high-income countries. By evaluating the epidemiology, clinical risk factors, predisposing features of the host environment and immunological mechanisms that underlie the pathogenesis of these co-infections, we set the scene for future research and development of clinical guidance. Hoenigl and colleagues review the epidemiology, immunology and clinical risk factors contributing to COVID-19-associated fungal infections.
Collapse
|
35
|
Dark Mold Infections in Solid Organ Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Wang X, Cunha C, Grau MS, Robertson SJ, Lacerda JF, Campos A, Lagrou K, Maertens J, Best SM, Carvalho A, Obar JJ. MAVS Expression in Alveolar Macrophages Is Essential for Host Resistance against Aspergillus fumigatus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:346-353. [PMID: 35750336 PMCID: PMC9307106 DOI: 10.4049/jimmunol.2100759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/17/2022] [Indexed: 05/21/2023]
Abstract
Our recent data demonstrate a critical role of the RIG-I-like receptor family in regulating antifungal immunity against Aspergillus fumigatus in a murine model. However, the importance of this pathway in humans and the cell types that use this innate immune receptor family to detect A. fumigatus remain unresolved. In this study, using patients who underwent hematopoietic stem cell transplantation, we demonstrate that a polymorphism in human MAVS present in the donor genome was associated with the incidence of invasive pulmonary aspergillosis. Moreover, in a separate cohort of confirmed invasive pulmonary aspergillosis patients, polymorphisms in the IFIH1 gene alter the inflammatory response, including IFN-responsive chemokines. Returning to our murine model, we now demonstrate that CD11c+ Siglec F+ alveolar macrophages require Mavs expression to maintain host resistance against A. fumigatus. Our data support the role of MAVS signaling in mediating antifungal immunity in both mice and humans at least in part through the role of MAVS-dependent signaling in alveolar macrophages.
Collapse
Affiliation(s)
- Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Cristina Cunha
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Madeleine S Grau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisbon, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Medical Mycology, University Hospitals Leuven, Leuven, Belgium; and
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH;
| |
Collapse
|
37
|
Gonçalves SM, Ferreira AV, Cunha C, Carvalho A. Targeting immunometabolism in host-directed therapies to fungal disease. Clin Exp Immunol 2022; 208:158-166. [PMID: 35641161 PMCID: PMC9188340 DOI: 10.1093/cei/uxab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2024] Open
Abstract
Fungal infections affect over a billion people and are responsible for more than 1.5 million deaths each year. Despite progress in diagnostic and therapeutic approaches, the management of severe fungal infections remains a challenge. Recently, the reprogramming of cellular metabolism has emerged as a central mechanism through which the effector functions of immune cells are supported to promote antifungal activity. An improved understanding of the immunometabolic signatures that orchestrate antifungal immunity, together with the dissection of the mechanisms that underlie heterogeneity in individual immune responses, may therefore unveil new targets amenable to adjunctive host-directed therapies. In this review, we highlight recent advances in the metabolic regulation of host-fungus interactions and antifungal immune responses, and outline targetable pathways and mechanisms with promising therapeutic potential.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Anaísa V Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
38
|
García-Carnero LC, Mora-Montes HM. Mucormycosis and COVID-19-Associated Mucormycosis: Insights of a Deadly but Neglected Mycosis. J Fungi (Basel) 2022; 8:445. [PMID: 35628701 PMCID: PMC9144279 DOI: 10.3390/jof8050445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ongoing COVID-19 pandemic has quickly become a health threat worldwide, with high mortality and morbidity among patients with comorbidities. This viral infection promotes the perfect setting in patients for the development of opportunistic infections, such as those caused by fungi. Mucormycosis, a rare but deadly fungal infection, has recently increased its incidence, especially in endemic areas, since the onset of the pandemic. COVID-19-associated mucormycosis is an important complication of the pandemic because it is a mycosis hard to diagnose and treat, causing concern among COVID-19-infected patients and even in the already recovered population. The risk factors for the development of mucormycosis in these patients are related to the damage caused by the SARS-CoV-2 itself, the patient's overstimulated immune response, and the therapy used to treat COVID-19, causing alterations such as hyperglycemia, acidosis, endothelial and lung damage, and immunosuppression. In this review, the molecular aspects of mucormycosis and the main risk factors for the development of COVID-19-associated mucormycosis are explained to understand this virus-fungi-host interaction and highlight the importance of this neglected mycosis.
Collapse
Affiliation(s)
- Laura C. García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
39
|
Soliman SSM, El-Labbad EM, Abu-Qiyas A, Fayed B, Hamoda AM, Al-Rawi AM, Dakalbab S, El-Shorbagi ANA, Hamad M, Ibrahim AS, Mohammad MG. Novel Secreted Peptides From Rhizopus arrhizus var. delemar With Immunomodulatory Effects That Enhance Fungal Pathogenesis. Front Microbiol 2022; 13:863133. [PMID: 35387075 PMCID: PMC8977774 DOI: 10.3389/fmicb.2022.863133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Secreted fungal peptides are known to influence the interactions between the pathogen and host innate immunity. The aim of this study is to screen and evaluate secreted peptides from the fungus Rhizopus arrhizus var. delemar for their immunomodulatory activity. By using mass spectrometry and immuno-informatics analysis, we identified three secreted peptides CesT (S16), Colicin (S17), and Ca2+/calmodulin-dependent protein kinase/ligand (CAMK/CAMKL; S27). Culturing peripheral blood-derived monocytic macrophages (PBMMs) in the presence of S16 or S17 caused cell clumping, while culturing them with S27 resulted in the formation of spindle-shaped cells. S27-treated PBMMs showed cell cycle arrest at G0 phase and exhibited alternatively activated macrophage phenotype with pronounced reduction in scavenger receptors CD163 and CD206. Homology prediction indicated that IL-4/IL-13 is the immunomodulatory target of S27. Confirming this prediction, S27 initiated macrophage activation through phosphorylation of STAT-6; STAT-6 inhibition reversed the activity of S27 and reduced the formation of spindle-shaped PBMMs. Lastly, S27 treatment of PBMMs was associated with altered expression of key iron regulatory genes including hepcidin, ferroportin, transferrin receptor 1, and ferritin in a pattern consistent with increased cellular iron release; a condition known to enhance Rhizopus infection. Collectively, R. arrhizus var. delemar secretes peptides with immunomodulatory activities that support fungal pathogenesis. Targeting the IL-4/IL-13R/STAT-6 axis is a potential therapeutic approach to enhance the PBMM-mediated fungal phagocytosis. This represents a potential new approach to overcome lethal mucormycosis.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman M El-Labbad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Pharmaceutical Sciences Department, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdel-Nasser A El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mawieh Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
40
|
Choudhury QJ, Ambati S, Lewis ZA, Meagher RB. Targeted Delivery of Antifungal Liposomes to Rhizopus delemar. J Fungi (Basel) 2022; 8:jof8040352. [PMID: 35448583 PMCID: PMC9026866 DOI: 10.3390/jof8040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Mucormycosis (a.k.a. zygomycosis) is an often-life-threatening disease caused by fungi from the ancient fungal division Mucoromycota. Globally, there are nearly a million people with the disease. Rhizopus spp., and R. delemar (R. oryzae, R. arrhizus) in particular, are responsible for most of the diagnosed cases. Pulmonary, rhino-orbito-cerebral, and invasive mucormycosis are most effectively treated with amphotericin B (AmB) and particularly with liposomal formulations (e.g., AmBisome®). However, even after antifungal therapy, there is still a 50% mortality rate. Hence, there is a critical need to improve therapeutics for mucormycosis. Targeting AmB-loaded liposomes (AmB-LLs) with the pathogen receptor Dectin-1 (DEC1-AmB-LLs) to the beta-glucans expressed on the surface of Aspergillus fumigatus and Candida albicans lowers the effective dose required to kill cells relative to untargeted AmB-LLs. Because Dectin-1 is an immune receptor for R. delemar infections and may bind it directly, we explored the Dectin-1-mediated delivery of liposomal AmB to R. delemar. DEC1-AmB-LLs bound 100- to 1000-fold more efficiently to the exopolysaccharide matrix of R. delemar germlings and mature hyphae relative to AmB-LLs. DEC1-AmB-LLs delivering sub-micromolar concentrations of AmB were an order of magnitude more efficient at inhibiting and/or killing R. delemar than AmB-LLs. Targeted antifungal drug-loaded liposomes have the potential to improve the treatment of mucormycosis.
Collapse
Affiliation(s)
- Quanita J. Choudhury
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (Q.J.C.); (Z.A.L.)
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (Q.J.C.); (Z.A.L.)
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
- Correspondence:
| |
Collapse
|
41
|
Itabangi H, Sephton-Clark PCS, Tamayo DP, Zhou X, Starling GP, Mahamoud Z, Insua I, Probert M, Correia J, Moynihan PJ, Gebremariam T, Gu Y, Ibrahim AS, Brown GD, King JS, Ballou ER, Voelz K. A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Curr Biol 2022; 32:1115-1130.e6. [PMID: 35134329 PMCID: PMC8926845 DOI: 10.1016/j.cub.2022.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/04/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Opportunistic infections by environmental fungi are a growing clinical problem, driven by an increasing population of people with immunocompromising conditions. Spores of the Mucorales order are ubiquitous in the environment but can also cause acute invasive infections in humans through germination and evasion of the mammalian host immune system. How they achieve this and the evolutionary drivers underlying the acquisition of virulence mechanisms are poorly understood. Here, we show that a clinical isolate of Rhizopus microsporus contains a Ralstonia pickettii bacterial endosymbiont required for virulence in both zebrafish and mice and that this endosymbiosis enables the secretion of factors that potently suppress growth of the soil amoeba Dictyostelium discoideum, as well as their ability to engulf and kill other microbes. As amoebas are natural environmental predators of both bacteria and fungi, we propose that this tri-kingdom interaction contributes to establishing endosymbiosis and the acquisition of anti-phagocyte activity. Importantly, we show that this activity also protects fungal spores from phagocytosis and clearance by human macrophages, and endosymbiont removal renders the fungal spores avirulent in vivo. Together, these findings describe a new role for a bacterial endosymbiont in Rhizopus microsporus pathogenesis in animals and suggest a mechanism of virulence acquisition through environmental interactions with amoebas.
Collapse
Affiliation(s)
- Herbert Itabangi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Poppy C S Sephton-Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Diana P Tamayo
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Xin Zhou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina P Starling
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Zamzam Mahamoud
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ignacio Insua
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark Probert
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Teclegiorgis Gebremariam
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yiyou Gu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ashraf S Ibrahim
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Jason S King
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
42
|
Garre V. Recent Advances and Future Directions in the Understanding of Mucormycosis. Front Cell Infect Microbiol 2022; 12:850581. [PMID: 35281441 PMCID: PMC8907824 DOI: 10.3389/fcimb.2022.850581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mucormycosis is an emerging infection caused by fungi of the order Mucorales that has recently gained public relevance due to the high incidence among COVID-19 patients in some countries. The reduced knowledge about Mucorales pathogenesis is due, in large part, to the historically low interest for these fungi fostered by their reluctance to be genetically manipulated. The recent introduction of more tractable genetic models together with an increasing number of available whole genome sequences and genomic analyses have improved our understanding of Mucorales biology and mucormycosis in the last ten years. This review summarizes the most significant advances in diagnosis, understanding of the innate and acquired resistance to antifungals, identification of new virulence factors and molecular mechanisms involved in the infection. The increased awareness about the disease and the recent successful genetic manipulation of previous intractable fungal models using CRISPR-Cas9 technology are expected to fuel the characterization of Mucorales pathogenesis, facilitating the development of effective treatments to fight this deadly infection.
Collapse
Affiliation(s)
- Victoriano Garre
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
43
|
Sterling JK, Kam TI, Guttha S, Park H, Baumann B, Mehrabani-Tabari AA, Schultz H, Anderson B, Alnemri A, Chou SC, Troncoso JC, Dawson VL, Dawson TM, Dunaief JL. Interleukin-6 triggers toxic neuronal iron sequestration in response to pathological α-synuclein. Cell Rep 2022; 38:110358. [PMID: 35172141 PMCID: PMC8898592 DOI: 10.1016/j.celrep.2022.110358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) aggregation and accumulation drive neurodegeneration in Parkinson's disease (PD). The substantia nigra of patients with PD contains excess iron, yet the underlying mechanism accounting for this iron accumulation is unclear. Here, we show that misfolded α-syn activates microglia, which release interleukin 6 (IL-6). IL-6, via its trans-signaling pathway, induces changes in the neuronal iron transcriptome that promote ferrous iron uptake and decrease cellular iron export via a pathway we term the cellular iron sequestration response, or CISR. The brains of patients with PD exhibit molecular signatures of the IL-6-mediated CISR. Genetic deletion of IL-6, or treatment with the iron chelator deferiprone, reduces pathological α-syn toxicity in a mouse model of sporadic PD. These data suggest that IL-6-induced CISR leads to toxic neuronal iron accumulation, contributing to synuclein-induced neurodegeneration.
Collapse
Affiliation(s)
- Jacob K Sterling
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Samyuktha Guttha
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bailey Baumann
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amir A Mehrabani-Tabari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah Schultz
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Diana Helis Henry and Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA.
| | - Joshua L Dunaief
- Scheie Eye Institute, F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
G Alshahawey M, S El-Housseiny G, S Elsayed N, Y Alshahrani M, Wakeel LM, M Aboshanab K. New insights on mucormycosis and its association with the COVID-19 pandemic. Future Sci OA 2022; 8:FSO772. [PMID: 35059222 PMCID: PMC8686842 DOI: 10.2144/fsoa-2021-0122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
COVID-19 continues to cause significant fatality worldwide. Glucocorticoids prove to play essential roles in COVID-19 management; however, the extensive use of steroids together with the virus immune dysregulation may increase the danger of secondary infections with mucormycosis, an angioinvasive fungal infection. Unfortunately, a definite correlation between COVID-19 and elevated mucormycosis infection cases is now clear worldwide. In this review, we discuss the historical record and epidemiology of mucormycosis as well as pathogenesis and associated host immune response, risk factors, clinical presentation, diagnosis and treatment. Special emphasis is given to its association with the current COVID-19 pandemic, including latest updates on COVID-19-associated mucormycosis cases globally, with recommendations for efficacious management.
Collapse
Affiliation(s)
- Mona G Alshahawey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Noha S Elsayed
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Lamia M EL Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
45
|
Ghosh D, Dey S, Chakraborty H, Mukherjee S, Halder A, Sarkar A, Chakraborty P, Ghosh R, Sarkar J. Mucormycosis: A new threat to Coronavirus disease 2019 with special emphasis on India. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022; 15:101013. [PMID: 35342843 PMCID: PMC8934183 DOI: 10.1016/j.cegh.2022.101013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
The main reason for the growth of mucormycosis in people with Coronavirus disease-2019 (COVID-19) is mainly produced by Rhizopus spp. The infective mechanisms and issues recognized in Rhizopus spp. are the cell wall, germination proteins, and enzymes assisted to iron sequestration, CotH protein, and positive regulation of the GRP78 cell receptor. Mucormycosis is mainly caused by the Rhizopus spp. such as R. oryzae, R. microsporus, R. arrhizus, R. homothallicus, etc. that are gifted to numerous host defense mechanisms and attribute to the endothelium via specific receptors, GRP78 simplifying their endocytosis and angio-invasion. Factors such as hyperglycemia, elevated iron concentrations, and ketoacidosis have been shown to contribute to the pathogenesis in the tentative situation. The analytical data of 'black fungus disease' or 'mucormycosis', specify India reported for about 42.3% of published cases, followed by the USA about 16.9%, Iraq, Bangladesh, Iran, Paraguay, and 1 case each from Brazil, Mexico, Italy, UK, China, France, Uruguay, Turkey, and Austria. The COVID-19 infection is maybe a predisposing factor for mucormycosis and is related to a high mortality rate. Early recognition and restriction of hyperglycemia, liposomal amphotericin B, and surgical debridement are the bases in the successful managing of mucormycosis.
Collapse
Affiliation(s)
- Deganta Ghosh
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, India, 700084
| | - Sagardeep Dey
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, India, 700084
| | - Himanko Chakraborty
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, India, 700084
| | - Sneha Mukherjee
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, India, 700084
| | - Ankita Halder
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, India, 700084
| | - Akash Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, India, 700084
| | - Pallab Chakraborty
- Department of Botany, Acharya Prafulla Chandra College, New Barrakpur, Kolkata, West Bengal, India, 700131
| | - Rajdeep Ghosh
- GSL Medical College and General Hospital, Rajahmundry, Andhra Pradesh, India, 533296
| | - Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, India, 700084,Corresponding author
| |
Collapse
|
46
|
Ghosh A, Sarkar A, Paul P, Patel P. The rise in cases of mucormycosis, candidiasis and aspergillosis amidst COVID19. FUNGAL BIOL REV 2021; 38:67-91. [PMID: 34548877 PMCID: PMC8445778 DOI: 10.1016/j.fbr.2021.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The Coronavirus outbreak globally has changed the medical system and also led to a shortage of medical facilities in both developing and underdeveloped countries. The COVID19 disease, being novel in nature along with high infectivity and frequent mutational rate, has been termed to be fatal across the globe. The advent of infection by SARS-CoV-2 has brought a myriad of secondary complications and comorbidities resulting in additional challenges to the health care system induced by novel therapeutic procedures. The emerging variant with respect to the Indian subcontinent and the associated genetic mutations have worsened the situation at hand. Proper clinical management along with epidemiological studies and clinical presentations in scientific studies and trials is necessary in order to combat the simultaneous waves of emerging strains. This article summarizes three of the major fungal outbreaks in India namely mucormycosis, candidiasis and aspergillosis, and elaborates their subtypes, pathogenesis, symptoms and treatment and detection techniques. A detail of future therapeutics under consideration are also elaborated along with a general hypothesis on how COVID19 is related to immunological advances leading to major widespread fungal infection in the country. The factors that contribute in promoting virus proliferation and invasive fungal infections include cell-mediated immunity, associated immunocompromised conditions and treatment protocols that slows down immune mechanisms. To better comprehend a fungal or bacterial outbreak, it is very important to conduct audits mediated through multicenter national and state research teams for recognizing patterns and studying current cases of fungal infection in both healthy and comorbid groups of COVID19 patients.
Collapse
Affiliation(s)
- Asmita Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Anusua Sarkar
- Department of Biotechnology, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Pubali Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Parth Patel
- H. K. College of Pharmacy, Jogeshwari West, Mumbai 400102, Maharashtra, India
| |
Collapse
|
47
|
Dos Santos AR, Fraga-Silva TF, de Fátima Almeida-Donanzam D, Dos Santos RF, Finato AC, Soares CT, Lara VS, Almeida NLM, Andrade MI, de Arruda OS, de Arruda MSP, Venturini J. IFN-γ Mediated Signaling Improves Fungal Clearance in Experimental Pulmonary Mucormycosis. Mycopathologia 2021; 187:15-30. [PMID: 34716549 PMCID: PMC8555725 DOI: 10.1007/s11046-021-00598-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022]
Abstract
We established three immunocompetent murine models of pulmonary mucormycosis to determine the involvement of the adaptive immune response in host resistance in pulmonary mucormycosis, a rapidly fatal disease caused mainly by Rhizopus spp. Immunocompetent inbred (C57BL/6, BALB/c) and outbred (Swiss) strains of mice were inoculated with R. oryzae via the intratracheal route. The inoculation resulted in a disseminated infection that spread to the brain, spleen, kidney, and liver. After 7 and 30 days of R. oryzae infection, BALB/c mice showed the lowest fungal load and highest production of IFN-γ and IL-2 by splenocytes. Swiss mice showed a higher fungal load 30 days p.i. and was associated with a weak development of the Th-1 profile. To confirm our findings, R. oryzae-infected IFN-γ−/− mice were evaluated after 60 days, where the mice still showed viable fungi in the lungs. This study showed, for the first time, that pulmonary mucormycosis in three widely used mouse strains resulted in an acute fungal dissemination without immunosuppression whose outcome varies according to the genetic background of the mice. We also identified the partial role of IFN-γ in the efficient elimination of R. oryzae during pulmonary infection.
Collapse
Affiliation(s)
- Amanda Ribeiro Dos Santos
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | - Thais Fernanda Fraga-Silva
- Departamento de Bioquimica e Imunologia, Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, São Paulo, SP, 14049-900, Brazil
| | - Débora de Fátima Almeida-Donanzam
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil.,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil
| | | | - Angela Carolina Finato
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil
| | | | - Vanessa Soares Lara
- Faculdade de Odontologia de Bauru (FOB), Universidade de São Paulo (USP), Bauru, SP, 17012-901, Brazil
| | | | | | | | | | - James Venturini
- Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, SP, 17033-360, Brazil. .,Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Unit 9, Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
48
|
Raghav A, Ali SG, Jeong GB, Gautam KA, Banday S, Mateen QN, Tripathi P, Giri R, Agarwal S, Singh M, Khan HM. Newer Horizon of Mesenchymal Stem Cell-Based Therapy in the Management of SARS-CoV-2-Associated Mucormycosis: A Safe Hope for Future Medicine. Front Microbiol 2021; 12:738983. [PMID: 34707590 PMCID: PMC8543035 DOI: 10.3389/fmicb.2021.738983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2-infected patients are reported to show immunocompromised behavior that gives rise to a wide variety of complications due to impaired innate immune response, cytokine storm, and thrombo-inflammation. Prolonged use of steroids, diabetes mellitus, and diabetic ketoacidosis (DKA) are some of the factors responsible for the growth of Mucorales in such immunocompromised patients and, thus, can lead to a life-threatening condition referred to as mucormycosis. Therefore, an early diagnosis and cell-based management cosis is the need of the hour to help affected patients overcome this severe condition. In addition, extended exposure to antifungal drugs/therapeutics is found to initiate hormonal and neurological complications. More recently, mesenchymal stem cells (MSCs) have been used to exhibit immunomodulatory function and proven to be beneficial in a clinical cell-based regenerative approach. The immunomodulation ability of MSCs in mucormycosis patient boosts the immunity by the release of chemotactic proteins. MSC-based therapy in mucormycosis along with the combination of short-term antifungal drugs can be utilized as a prospective approach for mucormycosis treatment with promising outcomes. However, preclinical and in mucormyIn mucormycosis, the hyphae of clinical trials are needed to establish the precise mechanism of MSCs in mucormycosis treatment.
Collapse
Affiliation(s)
- Alok Raghav
- Multidiscplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | - Syed Ghazanfar Ali
- Viral Research Diagnostic Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Getbeol-ro Yeonsu-gu, Incheon, Korea
| | - Kirti Amresh Gautam
- Multidiscplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Qazi Noorul Mateen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Richa Giri
- Department of Medicine, GSVM Medical College, Kanpur, India
| | | | - Manish Singh
- Department of Neurosciences, GSVM Medical College, Kanpur, India
| | - Haris M Khan
- Viral Research Diagnostic Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
49
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
50
|
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the Dots: Interplay of Pathogenic Mechanisms between COVID-19 Disease and Mucormycosis. J Fungi (Basel) 2021; 7:616. [PMID: 34436155 PMCID: PMC8400165 DOI: 10.3390/jof7080616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19)-associated mucormycosis (CAM) is an emerging threat globally, especially in India. More than 40,000 CAM cases have been reported in India. The emergence of CAM cases in India has been attributed to environmental, host, and iatrogenic factors. Mucorales spore burden has been reported globally; however, their presence is higher in tropical countries such as India, contributing to the emergence of CAM. Before the COVID-19 pandemic, patients with diabetes mellitus, haematological malignancies, solid organ transplants, corticosteroid therapy and neutropenia were more prone to mucormycosis, whereas in COVID-19 patients, virus-induced endothelial dysfunction, hyperglycaemia, and immune dysfunction following corticosteroid use increase the risk of acquiring mucormycosis. The interaction of Mucorales spores with the epithelial cells, followed by endothelial invasion, is a crucial step in the pathogenesis of mucormycosis. Endothelial damage and increased endothelial receptor expression induced by COVID-19 infection may predispose patients to CAM. COVID-19 infection may directly induce hyperglycaemia by damaging beta cells of the pancreas or by corticosteroid therapy, which may contribute to CAM pathogenesis. Iron acquisition from the host, especially in diabetic ketoacidosis (DKA) or deferoxamine therapy, is an important virulence trait of Mucorales. Similarly, the hyperferritinaemia caused by COVID-19 may act as a source of iron for Mucorales growth and invasion. In addition, corticosteroid treatment reduces or abolishes the innate immune functions of phagocytic cells contributing to the pathogenesis of CAM. This review aims to discuss primarily the host and iatrogenic factors shared between COVID-19 and mucormycosis that could explain the emergence of CAM.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Medical Microbiology, Department of Public Health, International Higher School of Medicine, Issyk-Kul Regional Campus, Cholpon-Ata 722125, Kyrgyzstan;
| | - Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Raees Ahmad Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| | - Shivaprakash Mandya Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.A.P.); (A.C.)
| |
Collapse
|