1
|
Hong SR, Chuang YC, Yang WT, Song CS, Yeh HW, Wu BH, Lin IH, Chou PC, Chen SC, Sharma L, Lu JC, Li RY, Chang YC, Liao KJ, Cheng HC, Wang WJ, Wang LHC, Lin YC. Glutamylation of centrosomes ensures their function by recruiting microtubule nucleation factors. EMBO J 2025; 44:2976-2996. [PMID: 40229407 DOI: 10.1038/s44318-025-00435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Centrosomes are tubulin-based organelles that undergo glutamylation, a post-translational modification that conjugates glutamic acid residues to tubulins. Although centrosomal glutamylation has been known for several decades, how this modification regulates centrosome structure and function remains unclear. To address this long-standing issue, we developed a method to spatiotemporally reduce centrosomal glutamylation by recruiting an engineered deglutamylase to centrosomes. We found that centrosome structure remains largely unaffected by centrosomal hypoglutamylation. Intriguingly, glutamylation physically recruits, via electrostatic forces, the NEDD1/CEP192/γ-tubulin complex to centrosomes, ensuring microtubule nucleation and proper trafficking of centriolar satellites. The consequent defect in centriolar satellite trafficking leads to reduced levels of the ciliogenesis factor Talpid3, suppressing ciliogenesis. Centrosome glutamylation also promotes proper mitotic spindle formation and mitosis. In summary, our study provides a new approach to spatiotemporally manipulate glutamylation at centrosomes, and offers novel insights into how centrosomes are organized and regulated by glutamylation.
Collapse
Affiliation(s)
- Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Chien Chuang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chiou-Shian Song
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hung-Wei Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bing-Huan Wu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - I-Hsuan Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 300093, Taiwan
| | - Po-Chun Chou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 300093, Taiwan
| | - Shiau-Chi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Lohitaksh Sharma
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jui-Chen Lu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Rou-Ying Li
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Kuan-Ju Liao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 300093, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
2
|
Shahdadnejad K, Yazdanparast R. The influence of IMPDH activity on ciliogenesis and adipogenesis of 3T3-L1 cells while undergoing differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159603. [PMID: 39961477 DOI: 10.1016/j.bbalip.2025.159603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
The functional roles of primary cilia and inosine 5'-monophosphate dehydrogenase (IMPDH) are among the hot topics in today's adipogenesis research. Considering the reported interaction between IMPDH and ADP Ribosylation Factor-Like GTPase 13B (ARL13B), as a key ciliary protein, our study focused on this interaction during the ciliogenesis process while 3T3-L1 pre-adipocytes undergoing differentiation to lipid-accumulating adipocytes. Our results indicated that, in the early days of differentiation, when cilium length is long, IMPDH expression is high and its interaction with ARL13B is low. Conversely, in the last days of differentiation, the cilia length and IMPDH expression reduced while, the IMPDH/ARL13B interaction remains high relative to the initial days. In either of these two situations, IMPDH was not documented within the cilia. The extent of the interaction between IMPDH and ARL13B might account for the lack of co-localization of IMPDH and ARL13B within cilia during the process of differentiation. Although, inhibiting IMPDH in the early days of differentiation did not have a significant effect on cilia length, it did reduce adipogenesis by limiting mitotic clonal expansion through arresting cells in the G1/G0 phase. These findings provide the ground for further research to investigate the relationship between the IMPDH/ARL13B interaction and cilia length, which decline in obesity.
Collapse
Affiliation(s)
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Badarudeen B, Chiang HJ, Collado L, Wang L, Sanchez I, Dynlacht BD. The tubulin poly-glutamylase complex, TPGC, is required for phosphatidyl inositol homeostasis and cilium assembly and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641315. [PMID: 40093036 PMCID: PMC11908161 DOI: 10.1101/2025.03.03.641315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The tubulin poly-glutamylase complex (TPGC) is comprised of TTLL1 and at least five associated proteins that promote the addition of glutamate residues to tubulin tails of microtubules. Despite its discovery two decades ago, the enzyme has been refractory to characterization owing to its complex multimeric nature and the inability to detect poly-glutamylase activity after assembling the six-subunit complex. We now show that TPGC is the key enzyme driving centriolar and ciliary poly-glutamylation. We identified two novel TPGC subunits, TBC1D19 and KIAA1841, and showed that both components play an essential role in the assembly of the eight-subunit holo-enzyme. Remarkably, we were able to reconstitute the activity of TPGC with all eight subunits. TBC1D19 and KIAA1841 were essential for assembly and activity, and loss of TBC1D19 strongly compromised multiple tubulin modifications, including axonemal poly-glutamylation. TBC1D19 loss abolished transport of Arl13b and other ciliary membrane proteins, abrogating primary cilium assembly. Structural modeling revealed an essential role for TBC1D19 and KIAA1841 in complex assembly, microtubule binding, and preferential poly-glutamylation of α-tubulin. We found that TBC1D19 loss abrogated the ciliary localization of phosphatidyl inositol phosphatase, INPP5E, triggering cilium instability. Ciliogenesis in TBC1D19 null cells could be restored through inhibition of a specific phosphatidyl inositol phosphate (PIP) kinase, PIP5K1c, suggesting that TBC1D19 is required to instigate and maintain PIP homeostasis during ciliogenesis. Collectively, our data show that TPGC is a multi-functional enzyme essential for cilium assembly and maintenance.
Collapse
|
4
|
He K, Sun X, Chen C, Luc S, Robichaud JH, Zhang Y, Huang Y, Ji B, Ku PI, Subramanian R, Ling K, Hu J. Non-canonical CDK6 activity promotes cilia disassembly by suppressing axoneme polyglutamylation. J Cell Biol 2025; 224:e202405170. [PMID: 39636239 PMCID: PMC11619382 DOI: 10.1083/jcb.202405170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Tubulin polyglutamylation is a posttranslational modification that occurs primarily along the axoneme of cilia. Defective axoneme polyglutamylation impairs cilia function and has been correlated with ciliopathies, including Joubert Syndrome (JBTS). However, the precise mechanisms regulating proper axoneme polyglutamylation remain vague. Here, we show that cyclin-dependent kinase 6 (CDK6), but not its paralog CDK4, localizes to the cilia base and suppresses axoneme polyglutamylation by phosphorylating RAB11 family interacting protein 5 (FIP5) at site S641, a critical regulator of cilia import of glutamylases. S641 phosphorylation disrupts the ciliary recruitment of FIP5 and its association with RAB11, thereby reducing the ciliary import of glutamylases. Encouragingly, the FDA-approved CDK4/6 inhibitor Abemaciclib can effectively restore cilia function in JBTS cells with defective glutamylation. In summary, our study elucidates the regulatory mechanisms governing axoneme polyglutamylation and suggests that developing CDK6-specific inhibitors could be a promising therapeutic strategy to enhance cilia function in ciliopathy patients.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaobo Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - San Luc
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jielu Hao Robichaud
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Biyun Ji
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Liu X, Ge X. Classical cell cycle kinase limits tubulin polyglutamylation and cilium stability. J Cell Biol 2025; 224:e202412034. [PMID: 39812708 PMCID: PMC11734621 DOI: 10.1083/jcb.202412034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al. (https://doi.org/10.1083/jcb.202405170) discovered that Cdk7/Cdk6/FIP5 phosphorylation cascade controls the ciliary import of tubulin glutamylases, thereby modulating axoneme polyglutamylation and ciliary signaling.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA
| |
Collapse
|
6
|
Yanez‐Dominguez C, Macedo‐Osorio K, Lagunas‐Gomez D, Torres‐Cifuentes D, Castillo‐Gonzalez J, Zavala G, Pantoja O. The chloroplast-located HKT transporter plays an important role in fertilization and development in Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17253. [PMID: 39917874 PMCID: PMC11826126 DOI: 10.1111/tpj.17253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025]
Abstract
Cell survival depends on the maintenance of cell homeostasis that involves all the biochemical, genomic and transport processes that take place in all the organelles within a eukaryote cell. In particular, ion homeostasis is required to regulate the membrane potential and solute transport across all membranes, any alteration in these parameters will reflect in the malfunctioning of any organelle, and consequently, in the development of the organism. In plant cells, sodium transporters play a central role in keeping the concentrations of this cation across all membranes under physiological conditions to prevent its toxic effects. HKT transporters are a family of membrane proteins exclusively present in plants, with some homologs present in prokaryotes. HKT transporters have been associated to salt tolerance in plants, retrieving any leak of the cation into the xylem, or removing it from aerial parts, including the flowers, to be transported to the roots along the phloem. This function has been assigned as most of the HKT transporters are located at the plasma membrane. Here, we report the localization of the HKT from Physcomitrium patens to the thylakoid membrane, reminiscent of the prokaryote origin of these family of transporters. Mutation of PpHKT leads to several alterations in the phenotype of the organism, including the lack of sporophyte formation, and changes in expression of many genes. These alterations suggest that the breakdown in chloroplast ion homeostasis triggers a signalling cascade to the nucleus to communicate its status, being important for the moss to complete its life cycle.
Collapse
Affiliation(s)
- Carolina Yanez‐Dominguez
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoAv. Universidad 2001, Col.Chamilpa62210MorelosMexico
| | - Karla Macedo‐Osorio
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoAv. Universidad 2001, Col.Chamilpa62210MorelosMexico
| | - Daniel Lagunas‐Gomez
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoAv. Universidad 2001, Col.Chamilpa62210MorelosMexico
| | - Diana Torres‐Cifuentes
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoAv. Universidad 2001, Col.Chamilpa62210MorelosMexico
- Depto. Microbiología, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaSan Claudio No. 1 Ciudad Universitaria, Col. San Manuel Puebla72590PueblaMexico
| | - Juan Castillo‐Gonzalez
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoAv. Universidad 2001, Col.Chamilpa62210MorelosMexico
| | - Guadalupe Zavala
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoAv. Universidad 2001, Col.Chamilpa62210MorelosMexico
| | - Omar Pantoja
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoAv. Universidad 2001, Col.Chamilpa62210MorelosMexico
| |
Collapse
|
7
|
Jun JH, Cha H, Ko JY, Kim HS, Yoo KH, Park JH. Loss of Kat2b impairs intraflagellar transport and the Hedgehog signaling pathway in primary cilia. Sci Rep 2025; 15:2127. [PMID: 39820844 PMCID: PMC11739504 DOI: 10.1038/s41598-025-86292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Primary cilia are sensory organelles that regulate various signaling pathways. When microtubules are compared to a highway, motor proteins carry and transport cargo proteins, which are tuned by post-translational modifications, such as acetylation. However, the role of acetylation in primary cilia regulation remains unclear. In this study, histone K (lysine) acetyltransferase 2 B (Kat2b) was identified as a novel regulator of primary cilia. Kat2b, which mainly regulates transcription as a p300/CBP associated factor, is localized to the cytosol, centrosome, and cilium basal body. In addition, basal Kat2b expression gradually increased during ciliogenesis. Kat2b regulates the rate of cilia assembly, particularly in the early stages, and loss of Kat2b reduces the recruitment of intraflagellar transport (IFT) components to the ciliary axoneme and impairs Hedgehog (Hh) signaling activation. In addition, Kat2b-knockout mice showed mild abnormalities and ciliary IFT defects in the kidneys. These results establish a link between acetylation regulated by Kat2b and its relevance to ciliary assembly and function.
Collapse
Affiliation(s)
- Jae Hee Jun
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hwayeon Cha
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
8
|
Karali M, García-García G, Kaminska K, AlTalbishi A, Cancellieri F, Testa F, Barillari MR, Panagiotou ES, Psillas G, Vaclavik V, Tran VH, Janeschitz-Kriegl L, Scholl HP, Salameh M, Barberán-Martínez P, Rodríguez-Muñoz A, Armengot M, Scarpato M, Zeuli R, Quinodoz M, Simonelli F, Rivolta C, Banfi S, Millán JM. Variants in the AGBL5 gene are responsible for autosomal recessive Retinitis pigmentosa with hearing loss. Eur J Hum Genet 2024:10.1038/s41431-024-01768-8. [PMID: 39672920 DOI: 10.1038/s41431-024-01768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024] Open
Abstract
The AGBL5 gene encodes for the Cytoplasmic Carboxypeptidase 5 (CCP5), an α-tubulin deglutamylase that cleaves the γ-carboxyl-linked branching point of glutamylated tubulin. To date, pathogenic variants in AGBL5 have been associated only with isolated retinitis pigmentosa (RP). Hearing loss has not been reported in AGBL5-caused retinal disease. In this study, we performed exome sequencing in probands of eight unrelated families from Italy, Spain, Palestine, Switzerland, and Greece. All subjects had a clinical diagnosis of (suspected) Usher syndrome type II for the concurrent presence of RP and post-verbal sensorineural hearing loss (SNHL) that ranged from mild to moderate.We identified biallelic sequence variants in AGBL5 in all analysed subjects. Four of the identified variants were novel. The variants co-segregated with the retinal and auditory phenotypes in additional affected family members. We did not detect any causative variants in known deafness or Usher syndrome genes that could explain the patients' hearing loss. We therefore conclude that SNHL is a feature of a syndromic presentation of AGBL5 retinopathy. This study provides the first evidence that mutations in AGBL5 can cause syndromic RP forms associated with hearing loss, probably due to dysfunction of sensory cilia in the retina and the inner ear.
Collapse
Affiliation(s)
- Marianthi Karali
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', 80131, Naples, Italy
| | - Gema García-García
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, Valencia, Spain
- Center for Rare Diseases (CIBERER), Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular, and Genomic Biomedicine, Valencia, Spain
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | | | | | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', 80131, Naples, Italy
| | - Maria Rosaria Barillari
- Department of Mental and Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Evangelia S Panagiotou
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - George Psillas
- 1st Academic ENT Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Veronika Vaclavik
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004, Lausanne, Switzerland
| | - Viet H Tran
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | | | - Hendrik Pn Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Manar Salameh
- St John of Jerusalem Eye Hospital, Jerusalem, Palestine
| | - Pilar Barberán-Martínez
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular, and Genomic Biomedicine, Valencia, Spain
| | | | - Miguel Armengot
- University and Polytechnic La Fe Hospital of Valencia, Valencia, Spain
| | - Margherita Scarpato
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Roberta Zeuli
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', 80131, Naples, Italy
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy.
- Telethon Institute of Genetics and Medicine, 80078, Pozzuoli, Italy.
| | - José M Millán
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, Valencia, Spain.
- Center for Rare Diseases (CIBERER), Madrid, Spain.
- Joint Unit CIPF-IIS La Fe Molecular, Cellular, and Genomic Biomedicine, Valencia, Spain.
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| |
Collapse
|
9
|
Mercey O, Gadadhar S, Magiera MM, Lebrun L, Kostic C, Moulin A, Arsenijevic Y, Janke C, Guichard P, Hamel V. Glutamylation imbalance impairs the molecular architecture of the photoreceptor cilium. EMBO J 2024; 43:6679-6704. [PMID: 39528655 PMCID: PMC11649768 DOI: 10.1038/s44318-024-00284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Microtubules, composed of conserved α/β-tubulin dimers, undergo complex post-translational modifications (PTMs) that fine-tune their properties and interactions with other proteins. Cilia exhibit several tubulin PTMs, such as polyglutamylation, polyglycylation, detyrosination, and acetylation, with functions that are not fully understood. Mutations in AGBL5, which encodes the deglutamylating enzyme CCP5, have been linked to retinitis pigmentosa, suggesting that altered polyglutamylation may cause photoreceptor cell degeneration, though the underlying mechanisms are unclear. Using super-resolution ultrastructure expansion microscopy (U-ExM) in mouse and human photoreceptor cells, we observed that most tubulin PTMs accumulate at the connecting cilium that links outer and inner photoreceptor segments. Mouse models with increased glutamylation (Ccp5-/- and Ccp1-/-) or loss of tubulin acetylation (Atat1-/-) showed that aberrant glutamylation, but not acetylation loss, disrupts outer segment architecture. This disruption includes exacerbation of the connecting cilium, loss of the bulge region, and destabilization of the distal axoneme. Additionally, we found significant impairment in tubulin glycylation, as well as reduced levels of intraflagellar transport proteins and of retinitis pigmentosa-associated protein RPGR. Our findings indicate that proper glutamylation levels are crucial for maintaining the molecular architecture of the photoreceptor cilium.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, India
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Laura Lebrun
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexandre Moulin
- Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
10
|
Kravec M, Šedo O, Nedvědová J, Micka M, Šulcová M, Zezula N, Gömöryová K, Potěšil D, Sri Ganji R, Bologna S, Červenka I, Zdráhal Z, Harnoš J, Tripsianes K, Janke C, Bařinka C, Bryja V. Carboxy-terminal polyglutamylation regulates signaling and phase separation of the Dishevelled protein. EMBO J 2024; 43:5635-5666. [PMID: 39349846 PMCID: PMC11574253 DOI: 10.1038/s44318-024-00254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Polyglutamylation is a reversible posttranslational modification that is catalyzed by enzymes of the tubulin tyrosine ligase-like (TTLL) family. Here, we found that TTLL11 generates a previously unknown type of polyglutamylation that is initiated by the addition of a glutamate residue to the free C-terminal carboxyl group of a substrate protein. TTLL11 efficiently polyglutamylates the Wnt signaling protein Dishevelled 3 (DVL3), thereby changing the interactome of DVL3. Polyglutamylation increases the capacity of DVL3 to get phosphorylated, to undergo phase separation, and to act in the noncanonical Wnt pathway. Both carboxy-terminal polyglutamylation and the resulting reduction in phase separation capacity of DVL3 can be reverted by the deglutamylating enzyme CCP6, demonstrating a causal relationship between TTLL11-mediated polyglutamylation and phase separation. Thus, C-terminal polyglutamylation represents a new type of posttranslational modification, broadening the range of proteins that can be modified by polyglutamylation and providing the first evidence that polyglutamylation can modulate protein phase separation.
Collapse
Affiliation(s)
- Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Jana Nedvědová
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Ranjani Sri Ganji
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Sara Bologna
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Igor Červenka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
11
|
Mahalingan KK, Grotjahn DA, Li Y, Lander GC, Zehr EA, Roll-Mecak A. Structural basis for α-tubulin-specific and modification state-dependent glutamylation. Nat Chem Biol 2024; 20:1493-1504. [PMID: 38658656 PMCID: PMC11529724 DOI: 10.1038/s41589-024-01599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. Tubulin tyrosine ligase-like (TTLL) enzymes introduce the most prevalent modifications on α-tubulin and β-tubulin. How TTLLs specialize for specific substrate recognition and ultimately modification-pattern generation is largely unknown. TTLL6, a glutamylase implicated in ciliopathies, preferentially modifies tubulin α-tails in microtubules. Cryo-electron microscopy, kinetic analysis and single-molecule biochemistry reveal an unprecedented quadrivalent recognition that ensures simultaneous readout of microtubule geometry and posttranslational modification status. By binding to a β-tubulin subunit, TTLL6 modifies the α-tail of the longitudinally adjacent tubulin dimer. Spanning two tubulin dimers along and across protofilaments (PFs) ensures fidelity of recognition of both the α-tail and the microtubule. Moreover, TTLL6 reads out and is stimulated by glutamylation of the β-tail of the laterally adjacent tubulin dimer, mediating crosstalk between α-tail and β-tail. This positive feedback loop can generate localized microtubule glutamylation patterns. Our work uncovers general principles that generate tubulin chemical and topographic complexity.
Collapse
Affiliation(s)
- Kishore K Mahalingan
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry & Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
12
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
13
|
Robichaud JH, Zhang Y, Chen C, He K, Huang Y, Zhang X, Sun X, Ma X, Hardiman G, Morrison CG, Dong Z, LeBrasseur NK, Ling K, Hu J. Transiently formed nucleus-to-cilium microtubule arrays mediate senescence initiation in a KIFC3-dependent manner. Nat Commun 2024; 15:7977. [PMID: 39266565 PMCID: PMC11393428 DOI: 10.1038/s41467-024-52363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the importance of cellular senescence in human health, how damaged cells undergo senescence remains elusive. We have previously shown that promyelocytic leukemia nuclear body (PML-NBs) translocation of the ciliary FBF1 is essential for senescence induction in stressed cells. Here we discover that an early cellular event occurring in stressed cells is the transient assembly of stress-induced nucleus-to-cilium microtubule arrays (sinc-MTs). The sinc-MTs are distinguished by unusual polyglutamylation and unique polarity, with minus-ends nucleating near the nuclear envelope and plus-ends near the ciliary base. KIFC3, a minus-end-directed kinesin, is recruited to plus-ends of sinc-MTs and interacts with the centrosomal protein CENEXIN1. In damaged cells, CENEXIN1 co-translocates with FBF1 to PML-NBs. Deficiency of KIFC3 abolishes PML-NB translocation of FBF1 and CENEXIN1, as well as senescence initiation in damaged cells. Our study reveals that KIFC3-mediated nuclear transport of FBF1 along polyglutamylated sinc-MTs is a prerequisite for senescence induction in mammalian cells.
Collapse
Affiliation(s)
- Jielu Hao Robichaud
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xu Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Xiaobo Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Ireland
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Nathan K LeBrasseur
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Power KM, Nguyen KC, Silva A, Singh S, Hall DH, Rongo C, Barr MM. NEKL-4 regulates microtubule stability and mitochondrial health in ciliated neurons. J Cell Biol 2024; 223:e202402006. [PMID: 38767515 PMCID: PMC11104396 DOI: 10.1083/jcb.202402006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by a mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet it negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. Additionally, nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1∆ mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1∆ cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PEST∆) mutant resembled the ccpp-1∆ mutant with dye-filling defects and B-tubule breaks. The nekl-4(PEST∆) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andriele Silva
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
15
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EF, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. EMBO Rep 2024; 25:3040-3063. [PMID: 38849673 PMCID: PMC11239879 DOI: 10.1038/s44319-024-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K Rezi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mariam G Aslanyan
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaurav D Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Mohamed Chamlali
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | - Kleo B Pauly
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Fa Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Copenhagen, Denmark
| | | | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Long X, Chen L, Xiao X, Min X, Wu Y, Yang Z, Wen X. Structure, function, and research progress of primary cilia in reproductive physiology and reproductive diseases. Front Cell Dev Biol 2024; 12:1418928. [PMID: 38887518 PMCID: PMC11180893 DOI: 10.3389/fcell.2024.1418928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Primary cilia, serving as the central hub for cellular signal transduction, possess the remarkable ability to translate diverse extracellular signals, both chemical and mechanical, into intracellular responses. Their ubiquitous presence in the reproductive system underscores their pivotal roles in various cellular processes including development, differentiation, and migration. Emerging evidence suggests primary cilia as key players in reproductive physiology and associated pathologies. Notably, primary cilia have been identified in granulosa cells within mouse ovaries and uterine stromal cells, and perturbations in their structure and function have been implicated in a spectrum of reproductive dysfunctions and ciliary-related diseases. Furthermore, disruptions in primary cilia-mediated signal transduction pathways under pathological conditions exacerbate the onset and progression of reproductive disorders. This review provides a comprehensive overview of current research progress on primary cilia and their associated signaling pathways in reproductive physiology and diseases, with the aim of furnishing theoretical groundwork for the prevention and management of primary cilia-related structural and functional abnormalities contributing to reproductive system pathologies.
Collapse
Affiliation(s)
- Xiaochuan Long
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Li Chen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xinyao Xiao
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xiayu Min
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Yao Wu
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Zengming Yang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
- Basic Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
| | - Xin Wen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| |
Collapse
|
17
|
Lin Z, Shen Y, Li Y, Lu C, Zhu Y, He R, Cao Z, Yin Z, Gao H, Guo B, Ma X, Cao M, Luo M. Novel compound heterozygous variants in ARL13B lead to Joubert syndrome. J Cell Physiol 2024; 239:e31189. [PMID: 38219074 DOI: 10.1002/jcp.31189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.
Collapse
Affiliation(s)
- Zaisheng Lin
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shen
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Yan Li
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lu
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Ying Zhu
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongfu Cao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Zhe Yin
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Huafang Gao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Bin Guo
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Ma
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Muqing Cao
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minna Luo
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
18
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EFA, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566524. [PMID: 37987012 PMCID: PMC10659422 DOI: 10.1101/2023.11.10.566524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K. Rezi
- Department of Biology, University of Copenhagen, Denmark
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | | | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Denmark
| | - Kleo B. Pauly
- Department of Biology, University of Copenhagen, Denmark
| | | | - Eduardo F. A. Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Denmark
| | | | | | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H. Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R. Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
19
|
Power KM, Nguyen KC, Silva A, Singh S, Hall DH, Rongo C, Barr MM. NEKL-4 regulates microtubule stability and mitochondrial health in C. elegans ciliated neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580304. [PMID: 38405845 PMCID: PMC10888866 DOI: 10.1101/2024.02.14.580304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1 mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1 cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PESTΔ) mutant resembled the ccpp-1 mutant with dye filling defects and B-tubule breaks. The nekl-4(PESTΔ) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaiden M Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Andriele Silva
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States of America
| | - Shaneen Singh
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States of America
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States of America
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
20
|
Ceglowski J, Hoffman HK, Neumann AJ, Hoff KJ, McCurdy BL, Moore JK, Prekeris R. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells. EMBO Rep 2024; 25:198-227. [PMID: 38177908 PMCID: PMC10883266 DOI: 10.1038/s44319-023-00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/β-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Collapse
Affiliation(s)
- Julia Ceglowski
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Huxley K Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Andrew J Neumann
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Katie J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Bailey L McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA.
| |
Collapse
|
21
|
Ceglowski J, Hoffman H, Hoff K, McCurdy B, Moore J, Prekeris R. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550533. [PMID: 37546873 PMCID: PMC10402096 DOI: 10.1101/2023.07.25.550533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as, axonemal microtubule growth and stabilization in polarized epithelia are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/β-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Collapse
Affiliation(s)
- J. Ceglowski
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - H.K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - K.J. Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - B.L. McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - J.K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - R. Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| |
Collapse
|
22
|
Zhang X, Li X, Chen W, Wang Y, Diao L, Gao Y, Wang H, Bao L, Liang X, Wu HY. The distinct initiation sites and processing activities of TTLL4 and TTLL7 in glutamylation of brain tubulin. J Biol Chem 2023; 299:104923. [PMID: 37321451 PMCID: PMC10404701 DOI: 10.1016/j.jbc.2023.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian brain tubulins undergo a reversible posttranslational modification-polyglutamylation-which attaches a secondary polyglutamate chain to the primary sequence of proteins. Loss of its erasers can disrupt polyglutamylation homeostasis and cause neurodegeneration. Tubulin tyrosine ligase like 4 (TTLL4) and TTLL7 were known to modify tubulins, both with preference for the β-isoform, but differently contribute to neurodegeneration. However, differences in their biochemical properties and functions remain largely unknown. Here, using an antibody-based method, we characterized the properties of a purified recombinant TTLL4 and confirmed its sole role as an initiator, unlike TTLL7, which both initiates and elongates the side chains. Unexpectedly, TTLL4 produced stronger glutamylation immunosignals for α-isoform than β-isoform in brain tubulins. Contrarily, the recombinant TTLL7 raised comparable glutamylation immunoreactivity for two isoforms. Given the site selectivity of the glutamylation antibody, we analyzed modification sites of two enzymes. Tandem mass spectrometry analysis revealed their incompatible site selectivity on synthetic peptides mimicking carboxyl termini of α1- and β2-tubulins and a recombinant tubulin. Particularly, in the recombinant α1A-tubulin, a novel region was found glutamylated by TTLL4 and TTLL7, that again at distinct sites. These results pinpoint different site specificities between two enzymes. Moreover, TTLL7 exhibits less efficiency to elongate microtubules premodified by TTLL4, suggesting possible regulation of TTLL7 elongation activity by TTLL4-initiated sites. Finally, we showed that kinesin behaves differentially on microtubules modified by two enzymes. This study underpins the different reactivity, site selectivity, and function of TTLL4 and TTLL7 on brain tubulins and sheds light on their distinct role in vivo.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangxiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Heyi Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
23
|
Wang Y, Zhang Y, Guo X, Zheng Y, Zhang X, Feng S, Wu HY. CCP5 and CCP6 retain CP110 and negatively regulate ciliogenesis. BMC Biol 2023; 21:124. [PMID: 37226238 DOI: 10.1186/s12915-023-01622-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The axonemal microtubules of primary cilium undergo a conserved protein posttranslational modification (PTM) - polyglutamylation. This reversible procedure is processed by tubulin tyrosine ligase-like polyglutamylases to form secondary polyglutamate side chains, which are metabolized by the 6-member cytosolic carboxypeptidase (CCP) family. Although polyglutamylation modifying enzymes have been linked to ciliary architecture and motility, it was unknown whether they also play a role in ciliogenesis. RESULTS In this study, we found that CCP5 expression is transiently downregulated upon the initiation of ciliogenesis, but recovered after cilia are formed. Overexpression of CCP5 inhibited ciliogenesis, suggesting that a transient downregulation of CCP5 expression is required for ciliation initiation. Interestingly, the inhibitory effect of CCP5 on ciliogenesis does not rely on its enzyme activity. Among other 3 CCP members tested, only CCP6 can similarly suppress ciliogenesis. Using CoIP-MS analysis, we identified a protein that potentially interacts with CCP - CP110, a known negative regulator of ciliogenesis, whose degradation at the distal end of mother centriole permits cilia assembly. We found that both CCP5 and CCP6 can modulate CP110 level. Particularly, CCP5 interacts with CP110 through its N-terminus. Loss of CCP5 or CCP6 led to the disappearance of CP110 at the mother centriole and abnormally increased ciliation in cycling RPE-1 cells. Co-depletion of CCP5 and CCP6 synergized this abnormal ciliation, suggesting their partially overlapped function in suppressing cilia formation in cycling cells. In contrast, co-depletion of the two enzymes did not further increase the length of cilia, although CCP5 and CCP6 differentially regulate polyglutamate side-chain length of ciliary axoneme and both contribute to limiting cilia length, suggesting that they may share a common pathway in cilia length control. Through inducing the overexpression of CCP5 or CCP6 at different stages of ciliogenesis, we further demonstrated that CCP5 or CCP6 inhibited cilia formation before ciliogenesis, while shortened the length of cilia after cilia formation. CONCLUSION These findings reveal the dual role of CCP5 and CCP6. In addition to regulating cilia length, they also retain CP110 level to suppress cilia formation in cycling cells, pointing to a novel regulatory mechanism for ciliogenesis mediated by demodifying enzymes of a conserved ciliary PTM, polyglutamylation.
Collapse
Affiliation(s)
- Yujuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Yuan Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Xinyu Guo
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Yiqiang Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Xinjie Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 51063, China
| | - Hui-Yuan Wu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China.
| |
Collapse
|
24
|
Lin T, Sun Y. Arl13b promotes the proliferation, migration, osteogenesis, and mechanosensation of osteoblasts. Tissue Cell 2023; 82:102088. [PMID: 37058812 DOI: 10.1016/j.tice.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Primary cilia are microtubule-based organelles presenting on the surface of most postmitotic mammalian cells. As being signaling hubs and sensory organelles, primary cilia can respond to mechanical and chemical stimuli from the extracellular environment. Arl13b (ADP-ribosylation factor-like 13B), an atypical Arf/Arl family GTPase, was identified in genetic screening as a protein essential for maintaining the integrity of cilia and neural tubes. Previous studies on Arl13b have mostly focused on its role in the development of neural tubes, polycystic kidneys, and tumors, but no role in bone patterns was described. This study reported the essential roles of Arl13b in bone formation and osteogenic differentiation. Arl13b was highly expressed in bone tissues and osteoblasts, positively correlated with osteogenic activity during bone development. Furthermore, Arl13b was essential for primary cilium maintenance and Hedgehog signaling activation in osteoblasts. Arl13b knockdown in osteoblasts decreased the length of primary cilia and the upregulated levels of Gli1, Smo, and Ptch1 upon Smo agonist treatment. Additionally, Arl13b knockdown inhibited cell proliferation and migration. Moreover, Arl13b mediated osteogenesis and cell mechanosensation. Cyclic tension strain upregulated the Arl13b expression. Arl13b knockdown suppressed osteogenesis and mitigated cyclic tension strain-induced osteogenesis. These results suggest that Arl13b have important roles in bone formation and mechanosensation.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| |
Collapse
|
25
|
Li B, Yan YP, He YY, Liang C, Li MY, Wang Y, Yang ZM. IHH, SHH, and primary cilia mediate epithelial-stromal cross-talk during decidualization in mice. Sci Signal 2023; 16:eadd0645. [PMID: 36853961 DOI: 10.1126/scisignal.add0645] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The establishment of pregnancy depends on interactions between the epithelial and stromal cells of the endometrium that drive the decidual reaction that remodels the stroma and enables embryo implantation. Decidualization in mice also depends on ovarian hormones and the presence of a blastocyst. Hedgehog signaling is transduced by primary cilia in many tissues and is involved in epithelial-stromal cross-talk during decidualization. We found that primary cilia on mouse uterine stromal cells increased in number and length during early pregnancy and were required for decidualization. In vitro and in vivo, progesterone promoted stromal ciliogenesis and the production of Indian hedgehog (IHH) in the epithelium and Sonic hedgehog (SHH) in the stroma. Blastocyst-derived TNF-α also induced epithelial IHH, which stimulated the production of SHH in the stroma through a mechanism that may involve the release of arachidonic acid from epithelial cells. In the stroma, SHH activated canonical Hedgehog signaling through primary cilia and promoted decidualization through a mechanism that depended on interleukin-11 (IL-11) and primary cilia. Our findings identify a primary cilia-dependent network that controls endometrial decidualization and suggest primary cilia as a candidate therapeutic target for endometrial diseases.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ping Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
26
|
Rodriguez-Calado S, Van Damme P, Avilés FX, Candiota AP, Tanco S, Lorenzo J. Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly. Int J Mol Sci 2023; 24:ijms24021273. [PMID: 36674791 PMCID: PMC9867282 DOI: 10.3390/ijms24021273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry. We used HEK 293 cells stably expressing CCP6-BirA* to identify 37 putative interactors of this enzyme. This list of CCP6 proximal proteins displayed enrichment of proteins associated with the centrosome and centriolar satellites, indicating that CCP6 could be present in the pericentriolar material. In addition, we identified cilium assembly-related proteins as putative interactors of CCP6. In addition, the CCP6 proximal partner list included five proteins associated with the Joubert syndrome, a ciliopathy linked to defects in polyglutamylation. Using the proximity ligation assay (PLA), we show that PCM1, PIBF1, and NudC are true CCP6 physical interactors. Therefore, the BioID methodology confirms the location and possible functional role of CCP6 in centrosomes and centrioles, as well as in the formation and maintenance of primary cilia.
Collapse
Affiliation(s)
- Sergi Rodriguez-Calado
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| |
Collapse
|
27
|
Guo X, Wang R, Ma R, Fan X, Gao Y, Zhang X, Yuchi Z, Wu HY. Facile purification of active recombinant mouse cytosolic carboxypeptidase 6 from Escherichia coli. Protein Expr Purif 2022; 197:106112. [DOI: 10.1016/j.pep.2022.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
|
28
|
Dai J, Zhang G, Alkhofash RA, Mekonnen B, Saravanan S, Xue B, Fan ZC, Betleja E, Cole DG, Liu P, Lechtreck K. Loss of ARL13 impedes BBSome-dependent cargo export from Chlamydomonas cilia. J Cell Biol 2022; 221:213429. [PMID: 36040375 PMCID: PMC9436004 DOI: 10.1083/jcb.202201050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022] Open
Abstract
The GTPase Arl13b participates in ciliary protein transport, but its contribution to intraflagellar transport (IFT), the main motor-based protein shuttle of cilia, remains largely unknown. Chlamydomonas arl13 mutant cilia were characterized by both abnormal reduction and accumulation of select membrane-associated proteins. With respect to the latter, a similar set of proteins including phospholipase D (PLD) also accumulated in BBSome-deficient cilia. IFT and BBSome traffic were apparently normal in arl13. However, transport of PLD, which in control cells moves by BBSome-dependent IFT, was impaired in arl13, causing PLD to accumulate in cilia. ARL13 only rarely and transiently traveled by IFT, indicating that it is not a co-migrating adapter securing PLD to IFT trains. In conclusion, the loss of Chlamydomonas ARL13 impedes BBSome-dependent protein transport, resulting in overlapping biochemical defects in arl13 and bbs mutant cilia.
Collapse
Affiliation(s)
- Jin Dai
- Cellular Biology, University of Georgia, Athens, GA
| | - Gui Zhang
- Cellular Biology, University of Georgia, Athens, GA
| | | | | | | | - Bin Xue
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | | | | | - Peiwei Liu
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Karl Lechtreck
- Cellular Biology, University of Georgia, Athens, GA,Correspondence to Karl F. Lechtreck:
| |
Collapse
|
29
|
Ge R, Cao M, Chen M, Liu M, Xie S. Cytoskeletal networks in primary cilia: Current knowledge and perspectives. J Cell Physiol 2022; 237:3975-3983. [PMID: 36000703 DOI: 10.1002/jcp.30865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
Primary cilia, microtubule-based protrusions present on the surface of most mammalian cells, function as sensory organelles that monitor extracellular signals and transduce them into intracellular biochemical responses. There is renewed research interest in primary cilia due to their essential roles in development, tissue homeostasis, and human diseases. Primary cilia dysfunction causes a large spectrum of human diseases, collectively known as ciliopathies. Despite significant advances in our understanding of primary cilia, there are still no effective agents for treating ciliopathies. Primary ciliogenesis is a highly ordered process involving membrane trafficking, basal body maturation, vesicle docking and fusion, transition zone assembly, and axoneme extension, in which actin and microtubule networks play critical and multiple roles. Actin and microtubule network architecture, isotropy, and dynamics are tightly controlled by cytoskeleton-associated proteins, a growing number of which are now recognized as responsible for cilium formation and maintenance. Here we summarize the roles of actin and microtubules and their associated proteins in primary ciliogenesis and maintenance. In doing so, we highlight that targeting cytoskeleton-associated proteins may be a promising therapeutic strategy for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Ruixin Ge
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Minghui Cao
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Min Liu
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China.,Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
30
|
Zhong Y, Yan W, Ruan J, Fang M, Yu C, Du S, Rai G, Tao D, Henderson MJ, Fang S. XBP1 variant 1 promotes mitosis of cancer cells involving upregulation of the polyglutamylase TTLL6. Hum Mol Genet 2022; 31:2639-2654. [PMID: 35333353 PMCID: PMC9396943 DOI: 10.1093/hmg/ddac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1β. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pulmonary Medicine, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Mike Fang
- Population and Quantitative Health Sciences Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Changjun Yu
- Department of General surgery, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Hoffmann F, Bolz S, Junger K, Klose F, Schubert T, Woerz F, Boldt K, Ueffing M, Beyer T. TTC30A and TTC30B Redundancy Protects IFT Complex B Integrity and Its Pivotal Role in Ciliogenesis. Genes (Basel) 2022; 13:genes13071191. [PMID: 35885974 PMCID: PMC9319246 DOI: 10.3390/genes13071191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Intraflagellar transport (IFT) is a microtubule-based system that supports the assembly and maintenance of cilia. The dysfunction of IFT leads to ciliopathies of variable severity. Two of the IFT-B components are the paralogue proteins TTC30A and TTC30B. To investigate whether these proteins constitute redundant functions, CRISPR/Cas9 was used to generate single TTC30A or B and double-knockout hTERT-RPE1 cells. Ciliogenesis assays showed the redundancy of both proteins while the polyglutamylation of cilia was affected in single knockouts. The localization of other IFT components was not affected by the depletion of a single paralogue. A loss of both proteins led to a severe ciliogenesis defect, resulting in no cilia formation, which was rescued by TTC30A or B. The redundancy can be explained by the highly similar interaction patterns of the paralogues; both equally interact with the IFT-B machinery. Our study demonstrates that a loss of one TTC30 paralogue can mostly be compensated by the other, thus preventing severe ciliary defects. However, cells assemble shorter cilia, which are potentially limited in their function, especially because of impaired polyglutamylation. A complete loss of both proteins leads to a deficit in IFT complex B integrity followed by disrupted IFT and subsequently no cilia formation.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Sylvia Bolz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Timm Schubert
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Franziska Woerz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (F.H.); (S.B.); (K.J.); (F.K.); (T.S.); (F.W.); (K.B.); (M.U.)
- Correspondence:
| |
Collapse
|
32
|
Van De Weghe JC, Gomez A, Doherty D. The Joubert-Meckel-Nephronophthisis Spectrum of Ciliopathies. Annu Rev Genomics Hum Genet 2022; 23:301-329. [PMID: 35655331 DOI: 10.1146/annurev-genom-121321-093528] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Joubert syndrome (JS), Meckel syndrome (MKS), and nephronophthisis (NPH) ciliopathy spectrum could be the poster child for advances and challenges in Mendelian human genetics over the past half century. Progress in understanding these conditions illustrates many core concepts of human genetics. The JS phenotype alone is caused by pathogenic variants in more than 40 genes; remarkably, all of the associated proteins function in and around the primary cilium. Primary cilia are near-ubiquitous, microtubule-based organelles that play crucial roles in development and homeostasis. Protruding from the cell, these cellular antennae sense diverse signals and mediate Hedgehog and other critical signaling pathways. Ciliary dysfunction causes many human conditions termed ciliopathies, which range from multiple congenital malformations to adult-onset single-organ failure. Research on the genetics of the JS-MKS-NPH spectrum has spurred extensive functional work exploring the broadly important role of primary cilia in health and disease. This functional work promises to illuminate the mechanisms underlying JS-MKS-NPH in humans, identify therapeutic targets across genetic causes, and generate future precision treatments. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Molecular Medicine and Mechanisms of Disease Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA;
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA; .,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
33
|
Liu C, Chen Y, Xie Y, Xiang M. Tubulin Post-translational Modifications: Potential Therapeutic Approaches to Heart Failure. Front Cell Dev Biol 2022; 10:872058. [PMID: 35493101 PMCID: PMC9039000 DOI: 10.3389/fcell.2022.872058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, advancing insights into the mechanisms of cardiac dysfunction have focused on the involvement of microtubule network. A variety of tubulin post-translational modifications have been discovered to fine-tune the microtubules’ properties and functions. Given the limits of therapies based on conserved structures of the skeleton, targeting tubulin modifications appears to be a potentially promising therapeutic strategy. Here we review the current understanding of tubulin post-translational modifications in regulating microtubule functions in the cardiac system. We also discussed how altered modifications may lead to a range of cardiac dysfunctions, many of which are linked to heart failure.
Collapse
Affiliation(s)
- Chang Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwen Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
35
|
Takashiro T, Akiyama R, Kibirev IA, Matetskiy AV, Nakanishi R, Sato S, Fukasawa T, Sasaki T, Toyama H, Hiwatari KL, Zotov AV, Saranin AA, Hirahara T, Hasegawa S. Soft-Magnetic Skyrmions Induced by Surface-State Coupling in an Intrinsic Ferromagnetic Topological Insulator Sandwich Structure. NANO LETTERS 2022; 22:881-887. [PMID: 35084202 DOI: 10.1021/acs.nanolett.1c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space and can be a carrier for information processing by manipulating it in tailored structures. Here, a sandwich structure containing two layers of a self-assembled ferromagnetic septuple-layer TI, Mn(Bi1-xSbx)2Te4 (MnBST), separated by quintuple layers of TI, (Bi1-xSbx)2Te3 (BST), is fabricated and skyrmions are observed through the topological Hall effect in an intrinsic magnetic topological insulator for the first time. The thickness of BST spacer layer is crucial in controlling the coupling between the gapped topological surface states in the two MnBST layers to stabilize the skyrmion formation. The homogeneous, highly ordered arrangement of the Mn atoms in the septuple-layer MnBST leads to a strong exchange interaction therein, which makes the skyrmions "soft magnetic". This would open an avenue toward a topologically robust rewritable magnetic memory.
Collapse
Affiliation(s)
- Takuya Takashiro
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ryota Akiyama
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ivan A Kibirev
- Institute of Automation and Control Processes, Vladivostok 690041, Russia
| | - Andrey V Matetskiy
- Institute of Automation and Control Processes, Vladivostok 690041, Russia
| | - Ryosuke Nakanishi
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Shunsuke Sato
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takuro Fukasawa
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Taisuke Sasaki
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Haruko Toyama
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kota L Hiwatari
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Andrey V Zotov
- Institute of Automation and Control Processes, Vladivostok 690041, Russia
| | | | - Toru Hirahara
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Shuji Hasegawa
- Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Kanamaru T, Neuner A, Kurtulmus B, Pereira G. Balancing the length of the distal tip by septins is key for stability and signalling function of primary cilia. EMBO J 2022; 41:e108843. [PMID: 34981518 PMCID: PMC8724769 DOI: 10.15252/embj.2021108843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.
Collapse
Affiliation(s)
- Taishi Kanamaru
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Annett Neuner
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Bahtiyar Kurtulmus
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| |
Collapse
|
37
|
Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proc Natl Acad Sci U S A 2021; 118:2106770118. [PMID: 34548398 PMCID: PMC8488674 DOI: 10.1073/pnas.2106770118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia are tubulin-based cellular appendages, and their dysfunction has been linked to a variety of genetic diseases. Ciliary chondrodysplasia is one such condition that can co-occur with cystic kidney disease and other organ manifestations. We modeled skeletal ciliopathies by mutating two established disease genes in Xenopus tropicalis frogs. Bioinformatic analysis identified ttc30a as a ciliopathy network component, and targeting it replicated skeletal malformations and renal cysts as seen in patients and the amphibian models. A loss of Ttc30a affected cilia by altering posttranslational tubulin modifications. Our findings identify TTC30A/B as a component of ciliary segmentation essential for cartilage differentiation and renal tubulogenesis. These findings may lead to novel therapeutic targets in treating ciliary skeletopathies and cystic kidney disease. Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis. Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining–based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type–specific manner. These findings have implications for potential therapeutic strategies.
Collapse
|
38
|
Cevik S, Kaplan OI. The Joubert syndrome protein CEP41 is excluded from the distal segment of cilia in C. elegans. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000406. [PMID: 34113804 PMCID: PMC8185565 DOI: 10.17912/micropub.biology.000406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
Rare diseases are a fundamental issue in today's world, affecting more than 300 million individuals worldwide. According to data from Orphanet and OMIM, about 50-60 new conditions are added to the list of over 6,000 clinically distinct diseases each year, rendering disease diagnosis and treatment even more challenging. Ciliopathies comprise a heterogeneous category of rare diseases made up of over 35 distinct diseases, including Joubert syndrome (JBTS; OMIM 213300), that are caused by functional and structural defects in cilia. JBTS is an autosomal recessive condition characterized by a range of symptoms, including cerebellar vermis hypoplasia and poor muscle tone. There are now a total of 38 genes that cause JBTS, almost all of which encode protein products that are found in cilia and cilia-associated compartments, such as the basal body and transition zone. CEP41 is a JBTS-associated protein that is found in cilia and the basal body of mammals, but its localization in other ciliary organisms remains elusive. C. elegans is an excellent model organism for studying the molecular mechanisms of rare diseases like JBTS. We, therefore, decided to use C. elegans to identify the localization of CEP41. Our microscopy analysis revealed that CEPH-41(CEntrosomal Protein Homolog 41) not only localizes to cilia but is excluded from the distal segment of the amphid and phasmid cilia in C. elegans. Furthermore, we discovered a putative X-box motif located in the promoter of ceph-41 and the expression of ceph-41 is regulated by DAF-19, a sole Regulatory Factor X (RFX) transcription factor.
Collapse
Affiliation(s)
- Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Oktay I. Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
39
|
Mathieu H, Patten SA, Aragon-Martin JA, Ocaka L, Simpson M, Child A, Moldovan F. Genetic variant of TTLL11 gene and subsequent ciliary defects are associated with idiopathic scoliosis in a 5-generation UK family. Sci Rep 2021; 11:11026. [PMID: 34040021 PMCID: PMC8155187 DOI: 10.1038/s41598-021-90155-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic scoliosis (IS) is a complex 3D deformation of the spine with a strong genetic component, most commonly found in adolescent girls. Adolescent idiopathic scoliosis (AIS) affects around 3% of the general population. In a 5-generation UK family, linkage analysis identified the locus 9q31.2-q34.2 as a candidate region for AIS; however, the causative gene remained unidentified. Here, using exome sequencing we identified a rare insertion c.1569_1570insTT in the tubulin tyrosine ligase like gene, member 11 (TTLL11) within that locus, as the IS causative gene in this British family. Two other TTLL11 mutations were also identified in two additional AIS cases in the same cohort. Analyses of primary cells of individuals carrying the c.1569_1570insTT (NM_194252) mutation reveal a defect at the primary cilia level, which is less present, smaller and less polyglutamylated compared to control. Further, in a zebrafish, the knock down of ttll11, and the mutated ttll11 confirmed its role in spine development and ciliary function in the fish retina. These findings provide evidence that mutations in TTLL11, a ciliary gene, contribute to the pathogenesis of IS.
Collapse
Affiliation(s)
- Hélène Mathieu
- CHU Sainte-Justine Research Center, 3175 Côte Sainte-Catherine, 2.17.026, Montreal, QC, H3T 1C5, Canada
| | - Shunmoogum A Patten
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, QC, H7V1B7, Canada
| | | | - Louise Ocaka
- Centre for Translational Omics-GOSgene, Department of Genetics and Genomic Medicine, UCL GOSH Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michael Simpson
- Genetics and Molecular Medicine, King's College London, SE1 1UL, London, UK
| | - Anne Child
- Marfan Trust, NHLI, Imperial College, Guy Scadding Building, London, SW3 6LY, UK.
| | - Florina Moldovan
- CHU Sainte-Justine Research Center, 3175 Côte Sainte-Catherine, 2.17.026, Montreal, QC, H3T 1C5, Canada.
- Faculty of Dentistry, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
40
|
Wang W, Jack BM, Wang HH, Kavanaugh MA, Maser RL, Tran PV. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length. Front Cell Dev Biol 2021; 9:661350. [PMID: 34095126 PMCID: PMC8170031 DOI: 10.3389/fcell.2021.661350] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are small, antenna-like organelles that detect and transduce chemical and mechanical cues in the extracellular environment, regulating cell behavior and, in turn, tissue development and homeostasis. Primary cilia are assembled via intraflagellar transport (IFT), which traffics protein cargo bidirectionally along a microtubular axoneme. Ranging from 1 to 10 μm long, these organelles typically reach a characteristic length dependent on cell type, likely for optimum fulfillment of their specific roles. The importance of an optimal cilia length is underscored by the findings that perturbation of cilia length can be observed in a number of cilia-related diseases. Thus, elucidating mechanisms of cilia length regulation is important for understanding the pathobiology of ciliary diseases. Since cilia assembly/disassembly regulate cilia length, we review the roles of IFT in processes that affect cilia assembly/disassembly, including ciliary transport of structural and membrane proteins, ectocytosis, and tubulin posttranslational modification. Additionally, since the environment of a cell influences cilia length, we also review the various stimuli encountered by renal epithelia in healthy and diseased states that alter cilia length and IFT.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robin L Maser
- Department of Clinical Laboratory Sciences, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
41
|
Ho EK, Stearns T. Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. Development 2021; 148:dev195552. [PMID: 33914866 PMCID: PMC8126410 DOI: 10.1242/dev.195552] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of vertebrate Hedgehog signaling are linked to the biology of the primary cilium, an antenna-like organelle that projects from the surface of most vertebrate cell types. Although the advantages of restricting signal transduction to cilia are often noted, the constraints imposed are less frequently considered, and yet they are central to how Hedgehog signaling operates in developing tissues. In this Review, we synthesize current understanding of Hedgehog signal transduction, ligand secretion and transport, and cilia dynamics to explore the temporal and spatial constraints imposed by the primary cilium on Hedgehog signaling in vivo.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Developmental Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Liu P, Lou X, Wingfield JL, Lin J, Nicastro D, Lechtreck K. Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. J Cell Biol 2021; 219:151720. [PMID: 32348466 PMCID: PMC7265326 DOI: 10.1083/jcb.202001122] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the channel protein PKD2 cause autosomal dominant polycystic kidney disease, but the function of PKD2 in cilia remains unclear. Here, we show that PKD2 targets and anchors mastigonemes, filamentous polymers of the glycoprotein MST1, to the extracellular surface of Chlamydomonas cilia. PKD2–mastigoneme complexes physically connect to the axonemal doublets 4 and 8, positioning them perpendicular to the plane of ciliary beating. pkd2 mutant cilia lack mastigonemes, and mutant cells swim with reduced velocity, indicating a motility-related function of the PKD2–mastigoneme complex. Association with both the axoneme and extracellular structures supports a mechanosensory role of Chlamydomonas PKD2. We propose that PKD2–mastigoneme arrays, on opposing sides of the cilium, could perceive forces during ciliary beating and transfer these signals to locally regulate the response of the axoneme.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Xiaochu Lou
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
43
|
Van Bergen NJ, Ahmed SM, Collins F, Cowley M, Vetro A, Dale RC, Hock DH, de Caestecker C, Menezes M, Massey S, Ho G, Pisano T, Glover S, Gusman J, Stroud DA, Dinger M, Guerrini R, Macara IG, Christodoulou J. Mutations in the exocyst component EXOC2 cause severe defects in human brain development. J Exp Med 2021; 217:151928. [PMID: 32639540 PMCID: PMC7537385 DOI: 10.1084/jem.20192040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
The exocyst, an octameric protein complex, is an essential component of the membrane transport machinery required for tethering and fusion of vesicles at the plasma membrane. We report pathogenic variants in an exocyst subunit, EXOC2 (Sec5). Affected individuals have severe developmental delay, dysmorphism, and brain abnormalities; variability associated with epilepsy; and poor motor skills. Family 1 had two offspring with a homozygous truncating variant in EXOC2 that leads to nonsense-mediated decay of EXOC2 transcript, a severe reduction in exocytosis and vesicle fusion, and undetectable levels of EXOC2 protein. The patient from Family 2 had a milder clinical phenotype and reduced exocytosis. Cells from both patients showed defective Arl13b localization to the primary cilium. The discovery of mutations that partially disable exocyst function provides valuable insight into this essential protein complex in neural development. Since EXOC2 and other exocyst complex subunits are critical to neuronal function, our findings suggest that EXOC2 variants are the cause of the patients’ neurological disorders.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Felicity Collins
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Medical Genomics Department, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mark Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia.,Children's Cancer Institute, Kensington, New South Wales, Australia
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniella H Hock
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Minal Menezes
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Seana Glover
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jovanka Gusman
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington Campus, Sydney, New South Wales, Australia
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
44
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|
45
|
Bernatik O, Paclikova P, Kotrbova A, Bryja V, Cajanek L. Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling. Front Cell Dev Biol 2021; 9:623753. [PMID: 33718363 PMCID: PMC7952446 DOI: 10.3389/fcell.2021.623753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Paclikova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Kotrbova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vitezslav Bryja
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lukas Cajanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
46
|
Latour BL, Van De Weghe JC, Rusterholz TD, Letteboer SJ, Gomez A, Shaheen R, Gesemann M, Karamzade A, Asadollahi M, Barroso-Gil M, Chitre M, Grout ME, van Reeuwijk J, van Beersum SE, Miller CV, Dempsey JC, Morsy H, Bamshad MJ, Nickerson DA, Neuhauss SC, Boldt K, Ueffing M, Keramatipour M, Sayer JA, Alkuraya FS, Bachmann-Gagescu R, Roepman R, Doherty D. Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome. J Clin Invest 2021; 130:4423-4439. [PMID: 32453716 DOI: 10.1172/jci131656] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy characterized by a pathognomonic hindbrain malformation. All known JBTS genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we used the recently identified JBTS-associated protein armadillo repeat motif-containing 9 (ARMC9) in tandem-affinity purification and yeast 2-hybrid screens to identify a ciliary module whose dysfunction underlies JBTS. In addition to the known JBTS-associated proteins CEP104 and CSPP1, we identified coiled-coil domain containing 66 (CCDC66) and TOG array regulator of axonemal microtubules 1 (TOGARAM1) as ARMC9 interaction partners. We found that TOGARAM1 variants cause JBTS and disrupt TOGARAM1 interaction with ARMC9. Using a combination of protein interaction analyses, characterization of patient-derived fibroblasts, and analysis of CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrated that dysfunction of ARMC9 or TOGARAM1 resulted in short cilia with decreased axonemal acetylation and polyglutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in ARMC9 and TOGARAM1 patient cell lines suggest a role for this new JBTS-associated protein module in ciliary stability.
Collapse
Affiliation(s)
- Brooke L Latour
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Tamara Ds Rusterholz
- Institute of Medical Genetics, and.,Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Stef Jf Letteboer
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arianna Gomez
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Arezou Karamzade
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Asadollahi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Manali Chitre
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Megan E Grout
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jeroen van Reeuwijk
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sylvia Ec van Beersum
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Caitlin V Miller
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Heba Morsy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.,The University of Washington Center for Mendelian Genomics is detailed in Supplemental Acknowledgments.,University of Washington Center for Mendelian Genomics, Seattle, Washington, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Deborah A Nickerson
- The University of Washington Center for Mendelian Genomics is detailed in Supplemental Acknowledgments.,University of Washington Center for Mendelian Genomics, Seattle, Washington, USA
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Karsten Boldt
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Marius Ueffing
- Medical Proteome Center, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, and.,Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
47
|
Failler M, Giro-Perafita A, Owa M, Srivastava S, Yun C, Kahler DJ, Unutmaz D, Esteva FJ, Sánchez I, Dynlacht BD. Whole-genome screen identifies diverse pathways that negatively regulate ciliogenesis. Mol Biol Cell 2020; 32:169-185. [PMID: 33206585 PMCID: PMC8120696 DOI: 10.1091/mbc.e20-02-0111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving “outside-in” and “inside-out” signaling that restrain cilium assembly.
Collapse
Affiliation(s)
- Marion Failler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Ariadna Giro-Perafita
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Mikito Owa
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Shalini Srivastava
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Chi Yun
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - David J Kahler
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, Farmington, CT 06031
| | - Francisco J Esteva
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Irma Sánchez
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Brian D Dynlacht
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
48
|
Devi R, Pelletier L, Prosser SL. Charting the complex composite nature of centrosomes, primary cilia and centriolar satellites. Curr Opin Struct Biol 2020; 66:32-40. [PMID: 33130249 DOI: 10.1016/j.sbi.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 10/24/2022]
Abstract
The centrosome and its associated structures of the primary cilium and centriolar satellites have been established as central players in a plethora of cellular processes ranging from cell division to cellular signaling. Consequently, defects in the structure or function of these organelles are linked to a diverse range of human diseases, including cancer, microcephaly, ciliopathies, and neurodegeneration. To understand the molecular mechanisms underpinning these diseases, the biology of centrosomes, cilia, and centriolar satellites has to be elucidated. Central to solving this conundrum is the identification, localization, and functional analysis of all the proteins that reside and interact with these organelles. In this review, we discuss the technological breakthroughs that are dissecting the molecular players of these enigmatic organelles with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Raksha Devi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | - Suzanna L Prosser
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.
| |
Collapse
|
49
|
Tubulin modifying enzymes as target for the treatment oftau-related diseases. Pharmacol Ther 2020; 218:107681. [PMID: 32961263 DOI: 10.1016/j.pharmthera.2020.107681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
In the brain of patients with Alzheimer's disease (AD), the number and length of microtubules (MTs) are significantly and selectively reduced. MTs are involved in a wide range of cellular functions, and defects of the microtubular system have emerged as a unifying hypothesis for the heterogeneous and variable clinical presentations of AD. MTs orchestrate their numerous functions through the spatiotemporal regulation of the binding of specialised microtubule-associated proteins (MAPs) and molecular motors. Covalent posttranslational modifications (PTMs) on the tubulin C-termini that protrude at the surface of MTs regulate the binding of these effectors. In neurons, MAP tau is highly abundant and its abnormal dissociation from MTs in the axon, cellular mislocalization and hyperphosphorylation, are primary events leading to neuronal death. Consequently, compounds targeting tau phosphorylation or aggregation are currently evaluated but their clinical significance has not been demonstrated yet. In this review, we discuss the emerging link between tubulin PTMs and tau dysfunction. In neurons, high levels of glutamylation and detyrosination profoundly impact the physicochemical properties at the surface of MTs. Moreover, in patients with early-onset progressive neurodegeneration, deleterious mutations in enzymes involved in modifying MTs at the surface have recently been identified, underscoring the importance of this enzymatic machinery in neurology. We postulate that pharmacologically targeting the tubulin-modifying enzymes holds promise as therapeutic approach for the treatment of neurodegenerative diseases.
Collapse
|
50
|
The emerging role of tubulin posttranslational modifications in cilia and ciliopathies. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|