1
|
Jann JC, Tothova Z. Microbial molecule of ageing gut nudges blood stem cells towards cancer. Nature 2025; 642:39-41. [PMID: 40295808 DOI: 10.1038/d41586-025-01137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
|
2
|
Forster PM, Jakob MO, Yusuf D, Bubeck M, Limberger H, Luo Y, Thieme P, Polici A, Sterczyk N, Boulekou S, Bartel L, Cosovanu C, Witkowski M, González-Acera M, Kühl AA, Weidinger C, Backofen R, Hegazy AN, Patankar JV, Klose CSN. A transcriptional atlas of gut-innervating neurons reveals activation of interferon signaling and ferroptosis during intestinal inflammation. Neuron 2025; 113:1333-1351.e7. [PMID: 40101721 DOI: 10.1016/j.neuron.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
Enteric infections often cause long-term sequelae, including persistent gastrointestinal symptoms, such as pain, discomfort, or irritable bowel syndrome. The plethora of sensory symptoms indicates that gut-innervating neurons might be directly affected by inflammation. However, sequencing studies of neurons in the gastrointestinal tract are hampered by difficulties in purifying neurons, especially during inflammation. Activating a nuclear GFP tag selectively in neurons enabled sort purification of intrinsic and extrinsic neurons of the gastrointestinal tract in models of intestinal inflammation. Using bulk and single-nucleus RNA sequencing, we mapped the whole transcriptomic landscape and identified a conserved neuronal response to inflammation, which included the interferon signaling and ferroptosis pathway. Deletion of the interferon receptor 1 in neurons regulated ferroptosis, neuronal loss, and consequently gut-transit time. Collectively, this study offers a resource documenting neuronal adaptation to inflammatory conditions and exposes the interferon and ferroptosis pathways as signaling cascades activated in neurons during inflammation.
Collapse
Affiliation(s)
- Patrycja M Forster
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Manuel O Jakob
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dilmurat Yusuf
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Heidi Limberger
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Yanjiang Luo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Paula Thieme
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Alexandra Polici
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nele Sterczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sotiria Boulekou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Laura Bartel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Catalina Cosovanu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miguel González-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin-Immunpathologie für Experimentelle Modelle, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| | - Ahmed N Hegazy
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph S N Klose
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany.
| |
Collapse
|
3
|
Xie X, Wang Y, Deng B, Blatchley MR, Lan D, Xie Y, Lei M, Liu N, Xu F, Wei Z. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomater 2024; 186:354-368. [PMID: 39117116 DOI: 10.1016/j.actbio.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12 to 36 h in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003 mg/h to 0.278 mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. This forms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Michael R Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
4
|
Zhao J, Feng Y, Liu X, Li H, Guo H, Ke J, Long X. The relationship of ALPK1, hyaluronic acid and M1 macrophage polarization in the temporomandibular joint synovitis. J Cell Mol Med 2024; 28:e18172. [PMID: 38494837 PMCID: PMC10945073 DOI: 10.1111/jcmm.18172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
M1 macrophage polarization and synovitis play an important role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Reduced molecular weight of hyaluronic acid (HA) in synovial fluid of patients with TMJOA. In addition, high molecular weight hyaluronic acid (HMW-HA) is often used clinically to treat TMJ inflammation. As a pattern recognition receptor of the cytoplasm, ALPK1 was found to be pro-inflammatory in a variety of diseases. However, the relationship of ALPK1, HA and M1 macrophage polarization in TMJ synovitis remains unclear. We aimed to investigate the role of ALPK1 and HA in macrophage polarization and TMJ synovitis and the underlying mechanisms. The results demonstrated that ALPK1 was highly upregulated in the synovial macrophages in the inflamed TMJ synovium of patients. Low molecular weight hyaluronic acid (LMW-HA) promoted the expression of ALPK1 and M1 macrophage-associated genes. Besides, rhALPK1 promoted the expression of M1 macrophage-associated factors and the nuclear translocation of PKM2. Furthermore, ALPK1 knockout mice exhibited limited infiltration of macrophages and decreased expression levels of M1 macrophage-associated genes in CFA-induced TMJ synovitis. While HMW-HA inhibited the expression of ALPK1 and M1 macrophage polarization. Our results elucidated that ALPK1 promoted TMJ synovitis by promoting nuclear PKM2-mediated M1 macrophage polarization, whereas HMW-HA inhibited the expression of ALPK1 as well as M1 macrophage polarization.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Yaping Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Huimin Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Huilin Guo
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jin Ke
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xing Long
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
5
|
Neuper T, Frauenlob T, Dang HH, Krenn PW, Posselt G, Regl C, Fortelny N, Schäpertöns V, Unger MS, Üblagger G, Neureiter D, Mühlbacher I, Weitzendorfer M, Singhartinger F, Emmanuel K, Huber CG, Wessler S, Aberger F, Horejs-Hoeck J. ADP-heptose attenuates Helicobacter pylori-induced dendritic cell activation. Gut Microbes 2024; 16:2402543. [PMID: 39288239 PMCID: PMC11409497 DOI: 10.1080/19490976.2024.2402543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Sophisticated immune evasion strategies enable Helicobacter pylori (H. pylori) to colonize the gastric mucosa of approximately half of the world's population. Persistent infection and the resulting chronic inflammation are a major cause of gastric cancer. To understand the intricate interplay between H. pylori and host immunity, spatial profiling was used to monitor immune cells in H. pylori infected gastric tissue. Dendritic cell (DC) and T cell phenotypes were further investigated in gastric organoid/immune cell co-cultures and mechanistic insights were acquired by proteomics of human DCs. Here, we show that ADP-heptose, a bacterial metabolite originally reported to act as a bona fide PAMP, reduces H. pylori-induced DC maturation and subsequent T cell responses. Mechanistically, we report that H. pylori uptake and subsequent DC activation by an ADP-heptose deficient H. pylori strain depends on TLR2. Moreover, ADP-heptose attenuates full-fledged activation of primary human DCs in the context of H. pylori infection by impairing type I IFN signaling. This study reveals that ADP-heptose mitigates host immunity during H. pylori infection.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Tobias Frauenlob
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Veronika Schäpertöns
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Michael S Unger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Gunda Üblagger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, Austria
- Institute of Pathology, Uniklinikum Salzburg, Salzburg, Austria
| | - Iris Mühlbacher
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Michael Weitzendorfer
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Franz Singhartinger
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Klaus Emmanuel
- Cancer Cluster Salzburg, Salzburg, Austria
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Martin-Gallausiaux C, Salesse L, Garcia-Weber D, Marinelli L, Beguet-Crespel F, Brochard V, Le Gléau C, Jamet A, Doré J, Blottière HM, Arrieumerlou C, Lapaque N. Fusobacterium nucleatum promotes inflammatory and anti-apoptotic responses in colorectal cancer cells via ADP-heptose release and ALPK1/TIFA axis activation. Gut Microbes 2024; 16:2295384. [PMID: 38126163 PMCID: PMC10761154 DOI: 10.1080/19490976.2023.2295384] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.
Collapse
Affiliation(s)
| | - Laurène Salesse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Ludovica Marinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Brochard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Camille Le Gléau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Jamet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
7
|
Teng M, Zhao X, Zhou L, Yan H, Zhao L, Sun J, Li Y, Zhu W, Wu F. An integrated analysis of the fecal metabolome and metagenome reveals the distinct effects of differentially charged nanoplastics on the gut microbiota-associated metabolites in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167287. [PMID: 37748599 DOI: 10.1016/j.scitotenv.2023.167287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Whether nanoplastics with differential charges cause intestinal impairment via distinct mechanisms remains unclear. We investigated the relationship between fecal metabolites and the gut microbiome, and potential biomarkers thereof, in mice following exposure to differentially charged polystyrene nanoplastics (PS-NPs). Metagenomic analysis revealed that exposure to differentially charged PS-NPs resulted in alterations in the abundances of Bilophila_wadsworthia, Helicobacter apodemus, and Helicobacter typhlonius. A total of 237 fecal metabolites were significantly altered in mice that exhibited intestinal impairment, and these included 10 gut microbiota-related fecal metabolites that accurately discriminated impaired intestinal samples from the control. Additionally, the specific gut microbiome-related fecal metabolite-based model approach for the prediction of intestinal impairment in mice had an area under the curve (AUC) of 1.0 in the PS (without charge) group, an AUC of 0.94 in the PS-NH2 (positive charge) group, and an AUC of 0.86 in the PS-COOH (negative charge) group. Thus, the model showed promising evaluable accuracy for the prediction of intestinal impairment induced by nanoplastics in a charge-specific manner. Our study demonstrates that the fecal metabolome of mice with intestinal impairment following exposure to differentially charged nanoplastics is associated with changes in the gut microbiome. The identified biomarkers have potential application for the detection of intestinal impairment after exposure to negative, positive, or noncharged nanomaterials.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
| | - Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunxia Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
9
|
Lou S, Wang J, Chen J, Xie H, Chen H, Zhou B, Zhang B, Hou J, Jiang DK. The Role of ALPK1 in Inhibiting Hepatitis B Virus Replication Facilitates the Identification of ALPK1 P660L Variant for Predicting Response to Pegylated Interferon α Therapy. J Infect Dis 2023; 228:694-703. [PMID: 36932045 DOI: 10.1093/infdis/jiad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Alpha kinase 1 (ALPK1) agonist has recently been reported to demonstrate anti-hepatitis B virus (HBV) efficacy via activating NF-κB signaling, which is crucial for maximizing interferon (IFN) responses. Here, we investigated the impact of ALPK1 on HBV replication and explored ALPK1 variants for predicting the response to pegylated IFN-α (PegIFN-α) treatment. METHODS The potential anti-HBV effect of ALPK1 was evaluated in HBV-integrated and HBV-infected hepatoma cells. The potentially functional genetic variants of ALPK1 were screened out, and their correlations with PegIFN-α treatment response were assessed in 945 hepatitis B e antigen (HBeAg)-positive patients with chronic hepatitis B (CHB). RESULTS We revealed that ALPK1 inhibited HBV replication in hepatocytes via activating the JAK-STAT pathway. ALPK1 overexpression improved the anti-HBV effect of IFN-α in cell models. A missense variant, rs35389530 (P660L), of ALPK1 was strongly associated with combined response (CR; namely, HBeAg seroconversion and HBV DNA level <3.3log10 IU/mL) to PegIFN-α treatment in patients with CHB (P = 2.12 × 10-6). Moreover, a polygenic score integrating ALPK1_rs35389530 and 2 additional genetic variants was further significantly associated with CR (Ptrend = 9.28 × 10-7), hepatitis B surface antigen (HBsAg) level (Ptrend = .0002), and HBsAg loss (Ptrend = .025). CONCLUSIONS The anti-HBV effects of ALPK1 through activating JAK-STAT pathway provides a new perspective for CHB therapy. ALPK1_rs35389530 and polygenic score are potential biomarkers to predict PegIFN-α treatment response and may be used for optimizing CHB treatment.
Collapse
Affiliation(s)
- Shuang Lou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jialin Wang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
10
|
Chen L, Wang Z, Wu J, Yao Q, Peng J, Zhang C, Chen H, Li Y, Jiang Z, Liu Y, Shi C. Released dsDNA-triggered inflammasomes serve as intestinal radioprotective targets. Clin Transl Immunology 2023; 12:e1452. [PMID: 37333051 PMCID: PMC10276537 DOI: 10.1002/cti2.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Intestinal mucositis is the major side effect during abdominal or pelvic radiotherapy, but the underlying immunogen remains to be further characterised and few radioprotective agents are available. This study investigated the role of dsDNA-triggered inflammasomes in intestinal mucositis during radiotherapy. Methods Pro-inflammatory cytokines were detected by ELISA. Radiation-induced intestinal injury in mice was analyzed by means of survival curves, body weight, HE staining of intestines, and intestinal barrier integrity. Western blot, immunofluorescence staining, co-immunoprecipitation assay and flow cytometry were used to investigate the regulatory role of dsDNA on inflammasomes. Results Here, we show that a high level of IL-1β and IL-18 is associated with diarrhoea in colorectal cancer (CRC) patients during radiotherapy, which accounts for intestinal radiotoxicity. Subsequently, we found that the dose-dependently released dsDNA from the intestinal epithelial cells (IECs) serves as the potential immunogenic molecule for radiation-induced intestinal mucositis. Our results further indicate that the released dsDNA transfers into the macrophages in an HMGB1/RAGE-dependent manner and then triggers absent in melanoma 2 (AIM2) inflammasome activation and the IL-1β and IL-18 secretion. Finally, we show that the FDA-approved disulfiram (DSF), a newly identified inflammasome inhibitor, could mitigate intestinal radiotoxicity by controlling inflammasome. Conclusion These findings indicate that the extracellular self-dsDNA released from the irradiated IECs is a potential immunogen to stimulate immune cells and trigger the subsequent intestinal mucositis, while blunting the dsDNA-triggered inflammasome in macrophages may represent an exciting therapeutic strategy for side effects control during abdominal radiotherapy.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
- Shigatse Branch, Xinqiao Hospital, Army 953 HospitalArmy Medical UniversityShigatseChina
| | - Ziwen Wang
- Department of CardiologyGeriatric Cardiovascular Disease Research and Treatment Center, 252 Hospital of PLABaodingChina
| | - Jie Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Quan Yao
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & InstituteUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jingjing Peng
- Department of OncologyWestern Theater General HospitalChengduChina
| | - Chi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Hongdan Chen
- Breast and Thyroid Surgical Department, Chongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| | - Yingjie Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Zhongyong Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Yunsheng Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| |
Collapse
|
11
|
Patik I, Redhu NS, Eran A, Bao B, Nandy A, Tang Y, El Sayed S, Shen Z, Glickman J, Fox JG, Snapper SB, Horwitz BH. The IL-10 receptor inhibits cell extrinsic signals necessary for STAT1-dependent macrophage accumulation during colitis. Mucosal Immunol 2023; 16:233-249. [PMID: 36868479 PMCID: PMC10431098 DOI: 10.1016/j.mucimm.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The loss of IL-10R function leads to severe early onset colitis and, in murine models, is associated with the accumulation of immature inflammatory colonic macrophages. We have shown that IL-10R-deficient colonic macrophages exhibit increased STAT1-dependent gene expression, suggesting that IL-10R-mediated inhibition of STAT1 signaling in newly recruited colonic macrophages might interfere with the development of an inflammatory phenotype. Indeed, STAT1-/- mice exhibit defects in colonic macrophage accumulation after Helicobacter hepaticus infection and IL-10R blockade, and this was phenocopied in mice lacking IFNγR, an inducer of STAT1 activation. Radiation chimeras demonstrated that reduced accumulation of STAT1-deficient macrophages was based on a cell-intrinsic defect. Unexpectedly, mixed radiation chimeras generated with both wild-type and IL-10R-deficient bone marrow indicated that rather than directly interfering with STAT1 function, IL-10R inhibits the generation of cell extrinsic signals that promote the accumulation of immature macrophages. These results define the essential mechanisms controlling the inflammatory macrophage accumulation in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Izabel Patik
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Naresh S Redhu
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA; Morphic Therapeutic, Waltham, Massachusetts, USA
| | - Alal Eran
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bin Bao
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anubhab Nandy
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shorouk El Sayed
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Massachusetts, USA
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Massachusetts, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA; Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Sidor K, Skirecki T. A Bittersweet Kiss of Gram-Negative Bacteria: The Role of ADP-Heptose in the Pathogenesis of Infection. Microorganisms 2023; 11:1316. [PMID: 37317291 DOI: 10.3390/microorganisms11051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the global crisis caused by the dramatic rise of drug resistance among Gram-negative bacteria, there is an urgent need for a thorough understanding of the pathogenesis of infections of such an etiology. In light of the limited availability of new antibiotics, therapies aimed at host-pathogen interactions emerge as potential treatment modalities. Thus, understanding the mechanism of pathogen recognition by the host and immune evasion appear to be the key scientific issues. Until recently, lipopolysaccharide (LPS) was recognized as a major pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria. However, recently, ADP-L-glycero-β-D-manno-heptose (ADP-heptose), an intermediate carbohydrate metabolite of the LPS biosynthesis pathway, was discovered to activate the hosts' innate immunity. Therefore, ADP-heptose is regarded as a novel PAMP of Gram-negative bacteria that is recognized by the cytosolic alpha kinase-1 (ALPK1) protein. The conservative nature of this molecule makes it an intriguing player in host-pathogen interactions, especially in the context of changes in LPS structure or even in its loss by certain resistant pathogens. Here, we present the ADP-heptose metabolism, outline the mechanisms of its recognition and the activation of its immunity, and summarize the role of ADP-heptose in the pathogenesis of infection. Finally, we hypothesize about the routes of the entry of this sugar into cytosol and point to emerging questions that require further research.
Collapse
Affiliation(s)
- Karolina Sidor
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
13
|
García-Weber D, Dangeard AS, Teixeira V, Hauke M, Carreaux A, Josenhans C, Arrieumerlou C. In vitro kinase assay reveals ADP-heptose-dependent ALPK1 autophosphorylation and altered kinase activity of disease-associated ALPK1 mutants. Sci Rep 2023; 13:6278. [PMID: 37072480 PMCID: PMC10113258 DOI: 10.1038/s41598-023-33459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Alpha-protein kinase 1 (ALPK1) is a pathogen recognition receptor that detects ADP-heptose (ADPH), a lipopolysaccharide biosynthesis intermediate, recently described as a pathogen-associated molecular pattern in Gram-negative bacteria. ADPH binding to ALPK1 activates its kinase domain and triggers TIFA phosphorylation on threonine 9. This leads to the assembly of large TIFA oligomers called TIFAsomes, activation of NF-κB and pro-inflammatory gene expression. Furthermore, mutations in ALPK1 are associated with inflammatory syndromes and cancers. While this kinase is of increasing medical interest, its activity in infectious or non-infectious diseases remains poorly characterized. Here, we use a non-radioactive ALPK1 in vitro kinase assay based on the use of ATPγS and protein thiophosphorylation. We confirm that ALPK1 phosphorylates TIFA T9 and show that T2, T12 and T19 are also weakly phosphorylated by ALPK1. Interestingly, we find that ALPK1 itself is phosphorylated in response to ADPH recognition during Shigella flexneri and Helicobacter pylori infection and that disease-associated ALPK1 mutants exhibit altered kinase activity. In particular, T237M and V1092A mutations associated with ROSAH syndrome and spiradenoma/spiradenocarcinoma respectively, exhibit enhanced ADPH-induced kinase activity and constitutive assembly of TIFAsomes. Altogether, this study provides new insights into the ADPH sensing pathway and disease-associated ALPK1 mutants.
Collapse
Affiliation(s)
- Diego García-Weber
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | | | - Veronica Teixeira
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Alexis Carreaux
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | | |
Collapse
|
14
|
Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut. Nat Microbiol 2023; 8:424-440. [PMID: 36759753 PMCID: PMC9981464 DOI: 10.1038/s41564-023-01326-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
The molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe-host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, these results suggest that ornithine lipids are potentially important for A. muciniphila-host interactions and support the role of host genetics as a determinant of responses to gut microbes.
Collapse
|
15
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
16
|
Cui X, Li Y, Yuan S, Huang Y, Chen X, Han Y, Liu Z, Li Z, Xiao Y, Wang Y, Sun L, Liu H, Zhu X. Alpha-kinase1 promotes tubular injury and interstitial inflammation in diabetic nephropathy by canonical pyroptosis pathway. Biol Res 2023; 56:5. [PMID: 36732854 PMCID: PMC9893546 DOI: 10.1186/s40659-023-00416-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1β in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1β and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1β, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1β and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1β in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1β, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.
Collapse
Affiliation(s)
- Xinyuan Cui
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Yifu Li
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,grid.452708.c0000 0004 1803 0208Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuguang Yuan
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Yao Huang
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Xiaojun Chen
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Yachun Han
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Zhiwen Liu
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Zheng Li
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Yang Xiao
- grid.452708.c0000 0004 1803 0208Key Laboratory of Diabetes Immunology, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Youliang Wang
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Lin Sun
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Hong Liu
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - Xuejing Zhu
- grid.452708.c0000 0004 1803 0208Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
17
|
de Boer I, Harder AVE, Ferrari MD, van den Maagdenberg AMJM, Terwindt GM. Genetics of migraine: Delineation of contemporary understanding of the genetic underpinning of migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:85-103. [PMID: 38043973 DOI: 10.1016/b978-0-12-823356-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine is a disabling episodic brain disorder with an increased familial relative risk, an increased concordance in monozygotic twins, and an estimated heritability of approximately 50%. Various genetic approaches have been applied to identify genetic factors conferring migraine risk. Initially, candidate gene associations studies (CGAS) have been performed that test DNA variants in genes prioritized based on presumed a priori knowledge of migraine pathophysiology. More recently, genome-wide association studies (GWAS) are applied that test genetic variants, single-nucleotide polymorphisms (SNPs), in a hypothesis-free manner. To date, GWAS have identified ~40 genetic loci associated with migraine. New GWAS data, which are expected to come out soon, will reveal over 100 loci. Also, large-scale GWAS, which have appeared for many traits over the last decade, have enabled studying the overlap in genetic architecture between migraine and its comorbid disorders. Importantly, other genetic factors that cannot be identified by a GWAS approach also confer risk for migraine. First steps have been taken to determine the contribution of these mechanisms by investigating mitochondrial DNA and epigenetic mechanisms. In addition to typical epigenetic mechanisms, that is, DNA methylation and histone modifications, also RNA-based mechanisms regulating gene silencing and activation have recently gotten attention. Regardless, until now, most relevant genetic discoveries related to migraine still come from investigating monogenetic syndromes with migraine as a prominent part of the phenotype. Experimental studies on these syndromes have expanded our knowledge on the mechanisms underlying migraine pathophysiology. It can be envisaged that when all (epi)genetic and phenotypic data on the common and rare forms of migraine will be integrated, this will help to unravel the biological mechanisms for migraine, which will likely guide decision-making in clinical practice in the future.
Collapse
Affiliation(s)
- Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aster V E Harder
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Kozycki CT, Kodati S, Huryn L, Wang H, Warner BM, Jani P, Hammoud D, Abu-Asab MS, Jittayasothorn Y, Mattapallil MJ, Tsai WL, Ullah E, Zhou P, Tian X, Soldatos A, Moutsopoulos N, Kao-Hsieh M, Heller T, Cowen EW, Lee CCR, Toro C, Kalsi S, Khavandgar Z, Baer A, Beach M, Long Priel D, Nehrebecky M, Rosenzweig S, Romeo T, Deuitch N, Brenchley L, Pelayo E, Zein W, Sen N, Yang AH, Farley G, Sweetser DA, Briere L, Yang J, de Oliveira Poswar F, Schwartz IVD, Silva Alves T, Dusser P, Koné-Paut I, Touitou I, Titah SM, van Hagen PM, van Wijck RTA, van der Spek PJ, Yano H, Benneche A, Apalset EM, Jansson RW, Caspi RR, Kuhns DB, Gadina M, Takada H, Ida H, Nishikomori R, Verrecchia E, Sangiorgi E, Manna R, Brooks BP, Sobrin L, Hufnagel RB, Beck D, Shao F, Ombrello AK, Aksentijevich I, Kastner DL. Gain-of-function mutations in ALPK1 cause an NF-κB-mediated autoinflammatory disease: functional assessment, clinical phenotyping and disease course of patients with ROSAH syndrome. Ann Rheum Dis 2022; 81:1453-1464. [PMID: 35868845 PMCID: PMC9484401 DOI: 10.1136/annrheumdis-2022-222629] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.
Collapse
Affiliation(s)
- Christina Torres Kozycki
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | - Hongying Wang
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Blake M Warner
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Priyam Jani
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Dima Hammoud
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Mones S Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, Maryland, USA
| | | | | | - Wanxia Li Tsai
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Ping Zhou
- National Institute of Biological Sciences Beijing, Beijing, China
| | - Xiaoying Tian
- National Institute of Biological Sciences Beijing, Beijing, China
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Niki Moutsopoulos
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Marie Kao-Hsieh
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Theo Heller
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Edward W Cowen
- Dermatology Branch, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | | | - Camilo Toro
- Undiagnosed Diseases Program, Bethesda, Maryland, USA
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Shelley Kalsi
- National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Zohreh Khavandgar
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Alan Baer
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Margaret Beach
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Debra Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michele Nehrebecky
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Tina Romeo
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Natalie Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
- Oncogenesis and Development Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Laurie Brenchley
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Eileen Pelayo
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Wadih Zein
- National Eye Institute, Bethesda, Maryland, USA
| | - Nida Sen
- National Eye Institute, Bethesda, Maryland, USA
| | - Alexander H Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Gary Farley
- Drs. Gilbert and Farley, OD, PC, Colonial Heights, Virginia, USA
| | - David A Sweetser
- Massachusetts General Hospital Center for Genomic Medicine, Boston, Massachusetts, USA
- Division of Medical Genetics & Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lauren Briere
- Massachusetts General Hospital Center for Genomic Medicine, Boston, Massachusetts, USA
| | - Janine Yang
- Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Fabiano de Oliveira Poswar
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ida Vanessa D Schwartz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Perrine Dusser
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires de l'enfant, Hôpital Bicêtre, AP HP, Université Paris Sud, Bicetre, France
| | - Isabelle Koné-Paut
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires et de l'amylose inflammatoire CEREMAIA, Hôpital Bicêtre, AP HP, Université Paris Saclay, Bicetre, France
| | - Isabelle Touitou
- CeRéMAIA, CHU Montpellier, INSERM, University of Montpellier, Montpellier, France
| | | | | | | | | | | | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ellen M Apalset
- Bergen Group of Epidemiology and Biomarkers in Rheumatic Disease, Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | | | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Douglas Byron Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Massimo Gadina
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Hidetoshi Takada
- Department of Child Health, University of Tsukuba Faculty of Medicine, Tsukuba, Japan
| | - Hiroaki Ida
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Elena Verrecchia
- Department of Internal Medicine, Periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Roma, Italy
- Dipartimento di scienze dell'invecchiamento, neurologiche, ortopediche e della testa-collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Eugenio Sangiorgi
- Istitute of Genomic di Medicine, Universita Cattolica del Sacro Cuore, Roma, Italy
| | - Raffaele Manna
- Department of Internal Medicine, Periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Lucia Sobrin
- Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | | | - Feng Shao
- National Institute of Biological Sciences Beijing, Beijing, China
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Martin-Gallausiaux C, Garcia-Weber D, Lashermes A, Larraufie P, Marinelli L, Teixeira V, Rolland A, Béguet-Crespel F, Brochard V, Quatremare T, Jamet A, Doré J, Gray-Owen SD, Blottière HM, Arrieumerlou C, Lapaque N. Akkermansia muciniphila upregulates genes involved in maintaining the intestinal barrier function via ADP-heptose-dependent activation of the ALPK1/TIFA pathway. Gut Microbes 2022; 14:2110639. [PMID: 36036242 PMCID: PMC9427033 DOI: 10.1080/19490976.2022.2110639] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear. Here, we seek for novel MAMP-PRR interactions involved in the beneficial effect of the commensal bacterium Akkermansia muciniphila on intestinal homeostasis. We show that A. muciniphila strongly activates NF-κB in IECs by releasing one or more potent activating metabolites into the microenvironment. By using drugs, chemical and gene-editing tools, we found that the released metabolite(s) enter(s) epithelial cells and activate(s) NF-κB via an ALPK1, TIFA and TRAF6-dependent pathway. Furthermore, we show that the released molecule has the biological characteristics of the ALPK1 ligand ADP-heptose. Finally, we show that A. muciniphila induces the expression of the MUC2, BIRC3 and TNFAIP3 genes involved in the maintenance of the intestinal barrier function and that this process is dependent on TIFA. Altogether, our data strongly suggest that the commensal A. muciniphila promotes intestinal homeostasis by activating the ALPK1/TIFA/TRAF6 axis, an innate immune pathway exclusively described so far in the context of Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - Amandine Lashermes
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Larraufie
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovica Marinelli
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Veronica Teixeira
- INSERM, Institut Cochin, Université de Paris Cité, CNRS, Paris, France
| | - Alice Rolland
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Vincent Brochard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Timothé Quatremare
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Jamet
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Joël Doré
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hervé M. Blottière
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France,CONTACT Nicolas Lapaque INRAE-MICALIS UMR1319, Bat 442, Domaine de Vilvert78350Jouy-en-Josas, France
| |
Collapse
|
20
|
Moraes Holst L, Halfvarson J, Carlson M, Hedin C, Kruse R, Lindqvist CM, Bergemalm D, Almér S, Bresso F, Ling Lundström M, Repsilber D, D’Amato M, Keita Å, Hjortswang H, Söderholm J, Sundin J, Törnblom H, Simrén M, Strid H, Magnusson MK, Öhman L. Downregulated Mucosal Autophagy, Alpha Kinase-1 and IL-17 Signaling Pathways in Active and Quiescent Ulcerative Colitis. Clin Exp Gastroenterol 2022; 15:129-144. [PMID: 35928254 PMCID: PMC9343467 DOI: 10.2147/ceg.s368040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Improved mucosal immune profiling in active and quiescent colonic inflammatory bowel disease (IBD) is needed to develop therapeutic options for treating and preventing flares. This study therefore aimed to provide a comprehensive mucosal characterization with emphasis on immunological host response of patients with active ulcerative colitis (UC active), UC during remission (UC remission) and active colonic Crohn’s disease (CD active). Methods Colonic biopsies from 47 study subjects were collected for gene expression and pathway analyses using the NanoString host-response panel, including 776 genes and 56 immune-related pathways. Results The majority of mucosal gene expression and signaling pathway scores were increased in active IBD (n=27) compared to healthy subjects (n=10). However, both active IBD and UC remission (n=10) demonstrated decreased gene expression and signaling pathway scores related to autophagy, alpha kinase-1 and IL-17 signaling pathways compared to healthy subjects. Further, UC remission was characterized by decreased scores of several signaling pathways linked to homeostasis along with increased mononuclear cell migration pathway score as compared to healthy subjects. No major differences in the colonic mucosal gene expression between CD active (n=7) and UC (n=20) active were observed. Conclusion This study indicates that autophagy, alpha kinase-1 and IL-17 signaling pathways are persistently downregulated in UC irrespective of disease activity. Further, UC patients in remission present a unique mucosal environment, potentially preventing patients from reaching and sustaining true homeostasis. These findings may enable better comprehension of the remitting and relapsing pattern of colonic IBD and guide future treatment and prevention of flares.
Collapse
Affiliation(s)
- Luiza Moraes Holst
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Charlotte Hedin
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sven Almér
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Francesca Bresso
- Karolinska University Hospital, Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden
| | | | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mauro D’Amato
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
| | - Åsa Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Clinical and Experimental Science, Linköping University, Linköping, Sweden
| | - Johan Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sundin
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence: Lena Öhman, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, Tel +46703616499, Email
| |
Collapse
|
21
|
El Sayed S, Patik I, Redhu NS, Glickman JN, Karagiannis K, El Naenaeey ESY, Elmowalid GA, Abd El Wahab AM, Snapper SB, Horwitz BH. CCR2 promotes monocyte recruitment and intestinal inflammation in mice lacking the interleukin-10 receptor. Sci Rep 2022; 12:452. [PMID: 35013585 PMCID: PMC8748948 DOI: 10.1038/s41598-021-04098-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a heterogeneous population of mononuclear phagocytes abundantly distributed throughout the intestinal compartments that adapt to microenvironmental specific cues. In adult mice, the majority of intestinal macrophages exhibit a mature phenotype and are derived from blood monocytes. In the steady-state, replenishment of these cells is reduced in the absence of the chemokine receptor CCR2. Within the intestine of mice with colitis, there is a marked increase in the accumulation of immature macrophages that demonstrate an inflammatory phenotype. Here, we asked whether CCR2 is necessary for the development of colitis in mice lacking the receptor for IL10. We compared the development of intestinal inflammation in mice lacking IL10RA or both IL10RA and CCR2. The absence of CCR2 interfered with the accumulation of immature macrophages in IL10R-deficient mice, including a novel population of rounded submucosal Iba1+ cells, and reduced the severity of colitis in these mice. In contrast, the absence of CCR2 did not reduce the augmented inflammatory gene expression observed in mature intestinal macrophages isolated from mice lacking IL10RA. These data suggest that both newly recruited CCR2-dependent immature macrophages and CCR2-independent residual mature macrophages contribute to the development of intestinal inflammation observed in IL10R-deficient mice.
Collapse
Affiliation(s)
- Shorouk El Sayed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Izabel Patik
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
| | - Naresh S Redhu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
- Morphic Therapeutic, Waltham, MA, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Konstantinos Karagiannis
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - El Sayed Y El Naenaeey
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Gamal A Elmowalid
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Ashraf M Abd El Wahab
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA.
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
22
|
Jeffery R, Ilott NE, Powrie F. Genetic and environmental factors shape the host response to Helicobacter hepaticus: insights into IBD pathogenesis. Curr Opin Microbiol 2021; 65:145-155. [PMID: 34883389 DOI: 10.1016/j.mib.2021.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
Pathobionts are members of the gut microbiota with the capacity to cause disease when there is malfunctioning intestinal homeostasis. These organisms are thought to be major contributors to the pathogenesis of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders driven by dysregulated responses towards the microbiota. Over two decades have passed since the discovery of Helicobacter hepaticus, a mouse pathobiont which causes colitis in the context of immune deficiency. During this time, we have developed a detailed understanding of the cellular players and cytokine networks which drive H. hepaticus immunopathology. However, we are just beginning to understand the microbial factors that enable H. hepaticus to interact with the host and influence colonic health and disease. Here we review key H. hepaticus-host interactions, their relevance to other exemplar pathobionts and how when maladapted they drive colitis. Further understanding of these pathways may offer new therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Rebecca Jeffery
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
23
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Ayatollahi Mehrgardi A, Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genet Sel Evol 2021; 53:72. [PMID: 34503452 PMCID: PMC8428137 DOI: 10.1186/s12711-021-00664-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Various regions of the chicken genome have been under natural and artificial selection for thousands of years. The substantial diversity that exits among chickens from different geographic regions provides an excellent opportunity to investigate the genomic regions under selection which, in turn, will increase our knowledge about the mechanisms that underlie chicken diversity and adaptation. Several statistics have been developed to detect genomic regions that are under selection. In this study, we applied approaches based on differences in allele or haplotype frequencies (FST and hapFLK, respectively) between populations, differences in long stretches of consecutive homozygous sequences (ROH), and differences in allele frequencies within populations (composite likelihood ratio (CLR)) to identify inter- and intra-populations traces of selection in two Iranian indigenous chicken ecotypes, the Lari fighting chicken and the Khazak or creeper (short-leg) chicken. Results Using whole-genome resequencing data of 32 individuals from the two chicken ecotypes, approximately 11.9 million single nucleotide polymorphisms (SNPs) were detected and used in genomic analyses after quality processing. Examination of the distribution of ROH in the two populations indicated short to long ROH, ranging from 0.3 to 5.4 Mb. We found 90 genes that were detected by at least two of the four applied methods. Gene annotation of the detected putative regions under selection revealed candidate genes associated with growth (DCN, MEOX2 and CACNB1), reproduction (ESR1 and CALCR), disease resistance (S1PR1, ALPK1 and MHC-B), behavior pattern (AGMO, GNAO1 and PSEN1), and morphological traits (IHH and NHEJ1). Conclusions Our findings show that these two phenotypically different indigenous chicken populations have been under selection for reproduction, immune, behavioral, and morphology traits. The results illustrate that selection can play an important role in shaping signatures of differentiation across the genomic landscape of two chicken populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00664-9.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran.
| |
Collapse
|
24
|
Lee CP, Ko AMS, Nithiyanantham S, Lai CH, Ko YC. Long noncoding RNA HAR1A regulates oral cancer progression through the alpha-kinase 1, bromodomain 7, and myosin IIA axis. J Mol Med (Berl) 2021; 99:1323-1334. [PMID: 34097087 DOI: 10.1007/s00109-021-02095-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Studies suggested that long noncoding HAR1A RNA may be a tumor suppressor, but its association with oral cancer remains unclear. Here, we show the functional role and mechanisms of HAR1A in oral cancer progression. Microarray analysis was performed to screen the related candidates of long noncoding RNA (lncRNA) in human monocytes. Following lncRNA HAR1A, the regulation of HAR1A, ALPK1, myosin IIA, and BRD7 was tested using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in oral cancer cells. The inflammatory and epithelial-to-mesenchymal transition marker expressions were analyzed using enzyme-linked immunosorbent assay and western blot. Phenotypic experiments were verified by colony formation assay, transwell migration assay, and Annexin V-apoptotic assay. In the nuclei of cancer cells, HAR1A functions upstream of signaling pathways and knockdown of HAR1A promoted ALPK1 expression and downregulated BRD7 resulting in inflammation and oral cancer progression. In monocytes, the expressions of TNF-α and CCL2 were increased following HAR1A knockdown and reduced following ALPK1 knockdown. HAR1A knockdown upregulated the expression of ALPK1, slug, vimentin, fibronectin, and N-cadherin but reduced the expression of E-cadherin in oral cancer cells. Myosin IIA was primarily located in the cytoplasm and that its decrease in the nuclei of oral cancer cells was likely to demonstrate suppressive ability in late-stage cancer. Our findings suggest that the HAR1A, BRD7, and myosin IIA are tumor suppressors while ALPK1 has oncogene-like property in the nucleus and is involved in inflammation and oral cancer progression. More research for HAR1A activators or ALPK1 inhibitors is required to develop potential therapeutic agents for advanced oral cancer. KEY MESSAGES: lncRNA HAR1A, BRD7, and myosin IIA are tumor suppressors whereas ALPK1 has an oncogenic-like property in the nucleus. lncRNA HAR1A/ALPK1/BRD7/myosin IIA axis plays a critical role in the progression of oral cancer. lncRNA HAR1A localizes upstream of signaling pathways to inhibit ALPK1 expression and then upregulated BRD7. lncRNA HAR1A and ALPK1 are involved in cancer progression via epithelial-to-mesenchymal transition regulations. ALPK1 inhibitors are potential kinase-targeted therapeutic agents for patients with advanced oral cancer.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing, 100044, China
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan
| | - Chu-Hu Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan.
| |
Collapse
|
25
|
Zhang J, Fan J, Zeng X, Nie M, Luan J, Wang Y, Ju D, Yin K. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharm Sin B 2021; 11:609-620. [PMID: 33777671 PMCID: PMC7982428 DOI: 10.1016/j.apsb.2020.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog (HH) signaling pathway plays important roles in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment (TME). Aberrant HH signaling activation may accelerate the growth of gastrointestinal tumors and lead to tumor immune tolerance and drug resistance. The interaction between HH signaling and the TME is intimately involved in these processes, for example, tumor growth, tumor immune tolerance, inflammation, and drug resistance. Evidence indicates that inflammatory factors in the TME, such as interleukin 6 (IL-6) and interferon-γ (IFN-γ), macrophages, and T cell-dependent immune responses, play a vital role in tumor growth by affecting the HH signaling pathway. Moreover, inhibition of proliferating cancer-associated fibroblasts (CAFs) and inflammatory factors can normalize the TME by suppressing HH signaling. Furthermore, aberrant HH signaling activation is favorable to both the proliferation of cancer stem cells (CSCs) and the drug resistance of gastrointestinal tumors. This review discusses the current understanding of the role and mechanism of aberrant HH signaling activation in gastrointestinal carcinogenesis, the gastrointestinal TME, tumor immune tolerance and drug resistance and highlights the underlying therapeutic opportunities.
Collapse
Key Words
- 5-Fu, 5-fluorouracil
- ALK5, TGF-β receptor I kinase
- ATO, arsenic trioxide
- BCC, basal cell carcinoma
- BCL-2, B cell lymphoma 2
- BMI-1, B cell-specific moloney murine leukemia virus insertion region-1
- CAFs, cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer stem cells
- Carcinogenesis
- DHH, Desert Hedgehog
- Drug resistance
- EGF, epidermal growth factor
- FOLFOX, oxaliplatin
- G protein coupled receptor kinase 2, HH
- Gastrointestinal cancer
- Hedgehog
- Hedgehog, HIF-1α
- IHH, Indian Hedgehog
- IL-10/6, interleukin 10/6
- ITCH, itchy E3 ubiquitin ligase
- MDSCs, myeloid-derived suppressor cells
- NK, natural killer
- NOX4, NADPH Oxidase 4
- PD-1, programmed cell death-1
- PD-L1, programmed cell death ligand-1
- PKA, protein kinase A
- PTCH, Patched
- ROS, reactive oxygen species
- SHH, Sonic Hedgehog
- SMAD3, mothers against decapentaplegic homolog 3
- SMO, Smoothened
- SNF5, sucrose non-fermenting 5
- STAT3, signal transducer and activator of transcription 3
- SUFU, Suppressor of Fused
- TAMs, tumor-related macrophages
- TGF-β, transforming growth factor β
- TME, tumor microenvironment
- Tumor microenvironment
- VEGF, vascular endothelial growth factor
- WNT, Wingless/Integrated
- and leucovorin, GLI
- ch5E1, chimeric monoclonal antibody 5E1
- glioma-associated oncogene homologue, GRK2
- hypoxia-inducible factor 1α, IFN-γ: interferon-γ
- βArr2, β-arrestin2
Collapse
Affiliation(s)
- Jinghui Zhang
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Xian Zeng
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingyun Luan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Yichen Wang
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| |
Collapse
|
26
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
27
|
Knutson KA, Deng Y, Pan W. Implicating causal brain imaging endophenotypes in Alzheimer's disease using multivariable IWAS and GWAS summary data. Neuroimage 2020; 223:117347. [PMID: 32898681 PMCID: PMC7778364 DOI: 10.1016/j.neuroimage.2020.117347] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests the existence of many undiscovered heritable brain phenotypes involved in Alzheimer's Disease (AD) pathogenesis. This finding necessitates methods for the discovery of causal brain changes in AD that integrate Magnetic Resonance Imaging measures and genotypic data. However, existing approaches for causal inference in this setting, such as the univariate Imaging Wide Association Study (UV-IWAS), suffer from inconsistent effect estimation and inflated Type I errors in the presence of genetic pleiotropy, the phenomenon in which a variant affects multiple causal intermediate risk phenotypes. In this study, we implement a multivariate extension to the IWAS model, namely MV-IWAS, to consistently estimate and test for the causal effects of multiple brain imaging endophenotypes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) in the presence of pleiotropic and possibly correlated SNPs. We further extend MV-IWAS to incorporate variant-specific direct effects on AD, analogous to the existing Egger regression Mendelian Randomization approach, which allows for testing of remaining pleiotropy after adjusting for multiple intermediate pathways. We propose a convenient approach for implementing MV-IWAS that solely relies on publicly available GWAS summary data and a reference panel. Through simulations with either individual-level or summary data, we demonstrate the well controlled Type I errors and superior power of MV-IWAS over UV-IWAS in the presence of pleiotropic SNPs. We apply the summary statistic based tests to 1578 heritable imaging derived phenotypes (IDPs) from the UK Biobank. MV-IWAS detected numerous IDPs as possible false positives by UV-IWAS while uncovering many additional causal neuroimaging phenotypes in AD which are strongly supported by the existing literature.
Collapse
Affiliation(s)
- Katherine A Knutson
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota United States
| | - Yangqing Deng
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota United States
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota United States.
| |
Collapse
|
28
|
Qiao S, Lv C, Tao Y, Miao Y, Zhu Y, Zhang W, Sun D, Yun X, Xia Y, Wei Z, Dai Y. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett 2020; 491:162-179. [DOI: 10.1016/j.canlet.2020.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022]
|
29
|
The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomed Pharmacother 2020; 129:110354. [DOI: 10.1016/j.biopha.2020.110354] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
|
30
|
Du T, Yang CL, Ge MR, Liu Y, Zhang P, Li H, Li XL, Li T, Liu YD, Dou YC, Yang B, Duan RS. M1 Macrophage Derived Exosomes Aggravate Experimental Autoimmune Neuritis via Modulating Th1 Response. Front Immunol 2020; 11:1603. [PMID: 32793234 PMCID: PMC7390899 DOI: 10.3389/fimmu.2020.01603] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Guillain–Barré syndrome (GBS), an immune-mediated disorder affecting the peripheral nervous system, is the most common and severe acute paralytic neuropathy. GBS remains to be potentially life-threatening and disabling despite the increasing availability of current standard therapeutic regimens. Therefore, more targeted therapeutics are in urgent need. Macrophages have been implicated in both initiation and resolution of experimental autoimmune neuritis (EAN), the animal model of GBS, but the exact mechanisms remain to be elucidated. It has been increasingly appreciated that exosomes, a type of extracellular vesicles (EVs), are of importance for functions of macrophages. Nevertheless, the roles of macrophage derived exosomes in EAN/GBS remain unclear. Here we determined the effects of macrophage derived exosomes on the development of EAN in Lewis rats. M1 macrophage derived exosomes (M1 exosomes) were found to aggravate EAN via boosting Th1 and Th17 response, while M2 macrophage derived exosomes (M2 exosomes) showed potentials to mitigate disease severity via a mechanism bypassing Th1 and Th17 response. Besides, both M1 and M2 exosomes increased germinal center reactions in EAN. Further in vitro studies confirmed that M1 exosomes could directly promote IFN-γ production in T cells and M2 exosomes were not capable of inhibiting IFN-γ expression. Thus, our data identify a previously undescribed means that M1 macrophages amplify Th1 response via exosomes and provide novel insights into the crosstalk between macrophages and T cells as well.
Collapse
Affiliation(s)
- Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Meng-Ru Ge
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ying Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yu-Dong Liu
- Department of Neuronal Electrophysiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
31
|
Regulating T-cell differentiation through the polyamine spermidine. J Allergy Clin Immunol 2020; 147:335-348.e11. [PMID: 32407834 DOI: 10.1016/j.jaci.2020.04.037] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. OBJECTIVE We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. METHODS Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell differentiation in vitro. Moreover, mice were subjected to oral supplementation of spermidine, or its precursor l-arginine, to assess the frequency and total numbers of regulatory T (Treg) cells in vivo. RESULTS Spermidine modulates CD4+ T-cell differentiation in vitro, preferentially committing naive T cells to a regulatory phenotype. After spermidine treatment, activated T cells lacking the autophagy gene Atg5 fail to upregulate Foxp3 to the same extent as wild-type cells. These results indicate that spermidine's polarizing effect requires an intact autophagic machinery. Furthermore, dietary supplementation with spermidine promotes homeostatic differentiation of Treg cells within the gut and reduces pathology in a model of T-cell transfer-induced colitis. CONCLUSION Altogether, our results highlight the beneficial effects of spermidine, or l-arginine, on gut immunity by promoting Treg cell development.
Collapse
|
32
|
CD14 and ALPK1 Affect Expression of Tight Junction Components and Proinflammatory Mediators upon Bacterial Stimulation in a Colonic 3D Organoid Model. Stem Cells Int 2020; 2020:4069354. [PMID: 32076438 PMCID: PMC7016478 DOI: 10.1155/2020/4069354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cd14 and Alpk1 both encode pathogen recognition receptors and are known candidate genes for affecting severity in inflammatory bowel diseases. CD14 acts as a coreceptor for bacterial lipopolysaccharide (LPS), while ALPK1 senses ADP-D-glycero-beta-D-manno-heptose, a metabolic intermediate of LPS biosynthesis. Intestinal barrier integrity can be influenced by CD14, whereas to date, the role of ALPK1 in maintaining barrier function remains unknown. We used colon-derived 3D organoids, first characterised for growth, proliferation, stem cell markers, and expression of tight junction (TJ) components using qPCR and immunohistochemistry. They showed characteristic crypt stem cells, apical shedding of dead cells, and TJ formation. Afterwards, organoids of different genotypes (WT, Il10−/−, Cd14−/−, and Alpk1−/−) were then stimulated with either LPS or Escherichia coli Nissle 1917 (EcN). Gene expression and protein levels of cytokines and TJ components were analysed. WT organoids increased expression of Tnfα and tight junction components. Cd14−/− organoids expressed significantly less Tnfα and Ocln after LPS stimulation than WT organoids but reacted similarly to WT organoids after EcN stimulation. In contrast, compared to WT, Alpk1−/− organoids showed decreased expression of different TJ and cytokine genes in response to EcN but not LPS. However, Western blotting revealed an effect of ALPK1 on TJ protein levels. These findings demonstrate that Cd14, but not Alpk1, alters the response to LPS stimulation in colonic epithelial cells, whereas Alpk1 is involved in the response upon bacterial challenge.
Collapse
|
33
|
Juvenile Onset Splenomegaly and Oculopathy Due to Germline Mutation in ALPK1. J Clin Immunol 2020; 40:350-358. [PMID: 31939038 DOI: 10.1007/s10875-020-00741-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022]
Abstract
ROSAH syndrome was recently identified as an autosomal dominant systemic disorder due to mutations in ALPK1. It was characterized by retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. We collected and summarized the clinical data of two patients with juvenile onset splenomegaly and oculopathy. Whole exome sequencing (WES) was adapted for genetic analysis. Mutations in ALPK1 were confirmed by Sanger sequencing. Besides juvenile oculopathy and splenomegaly, both patients had intermittent fever and anhidrosis. Patient 2 also experienced recurrent upper respiratory infections in her infancy and developed dental and nail problems in childhood. Elevated TNF-α was their prominent laboratory features. Both patients were found to have a previously reported mutation, c.710C>T, p. T237M (NM_001102406) in ALPK1. Anti-TNF treatment of adalimumab was applied to patient 1, after which her optic disc edema in the left eye continued and the visual acuity deteriorated further. Patient 1 underwent elective splenectomy due to concern for spontaneous rupture of the spleen. Up to date, 18 patients of ROSAH syndrome have been reported. The clinical manifestations were relatively homogeneous, prominently presenting with juvenile onset oculopathy and splenomegaly. As it mainly involves ocular fundus, severe oculopathy deeply affects the quality of life and prognosis of ROSAH patients. Now little has been known about its treatment. As a newly recognized inherited systemic disorder, ROSAH syndrome needs to be paid more attention to, especially for those with juvenile onset splenomegaly and oculopathy.
Collapse
|
34
|
Carson D, Barry R, Hopkins EGD, Roumeliotis TI, García-Weber D, Mullineaux-Sanders C, Elinav E, Arrieumerlou C, Choudhary JS, Frankel G. Citrobacter rodentium induces rapid and unique metabolic and inflammatory responses in mice suffering from severe disease. Cell Microbiol 2019; 22:e13126. [PMID: 31610608 PMCID: PMC7003488 DOI: 10.1111/cmi.13126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell‐based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP‐heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.
Collapse
Affiliation(s)
- Danielle Carson
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Rachael Barry
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Eve G D Hopkins
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Diego García-Weber
- Inserm U1016, Institute Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Caroline Mullineaux-Sanders
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Cécile Arrieumerlou
- Inserm U1016, Institute Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
35
|
Abstract
This article is a review of the most important, accessible, and relevant literature published between April 2018 and April 2019 in the field of Helicobacter species other than Helicobacter pylori. The initial part of the review covers new insights regarding the presence of gastric and enterohepatic non-H. pylori Helicobacter species (NHPH) in humans and animals, while the subsequent section focuses on the progress in our understanding of the pathogenicity and evolution of these species. Over the last year, relatively few cases of gastric NHPH infections in humans were published, with most NHPH infections being attributed to enterohepatic Helicobacters. A novel species, designated "Helicobacter caesarodunensis," was isolated from the blood of a febrile patient and numerous cases of human Helicobacter cinaedi infections underlined this species as a true emerging pathogen. With regard to NHPH in animals, canine/feline gastric NHPH cause little or no harm in their natural host; however they can become opportunistic when translocated to the hepatobiliary tract. The role of enterohepatic Helicobacter species in colorectal tumors in pets has also been highlighted. Several studies in rodent models have further elucidated the mechanisms underlying the development of NHPH-related disease, and the extra-gastric effects of a Helicobacter suis infection on brain homeostasis was also studied. Comparative genomics facilitated a breakthrough in the evolutionary history of Helicobacter in general and NHPH in particular. Investigation of the genome of Helicobacter apodemus revealed particular traits with regard to its virulence factors. A range of compounds including mulberries, dietary fiber, ginseng, and avian eggs which target the gut microbiota have also been shown to affect Helicobacter growth, with a potential therapeutic utilization and increase in survival.
Collapse
Affiliation(s)
- Armelle Ménard
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France
| | - Annemieke Smet
- Laboratorium of Experimental Medicine and Pediatrics, Department of Translational Research in Immunology and Inflammation, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium
| |
Collapse
|
36
|
Abstract
Chronic inflammation induced by Helicobacter pylori infection is a critical factor in the development of peptic ulcer disease and gastric cancer. Central to this inflammation is the initiation of pro-inflammatory signaling cascades within epithelial cells, in particular those mediated by two sensors of bacterial cell wall components, nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and alpha-protein kinase 1 (ALPK1). H pylori is, however, also highly adept at mitigating inflammation in the host, thereby restricting tissue damage and favoring bacterial persistence. H pylori modulates host immune responses by altering cytokine signaling in epithelial and myeloid cells, which results in increased proliferation of regulatory T cells and downregulation of effector T-cell responses. H pylori vacuolating cytotoxin A (VacA) has been shown to play an important role in the dampening of immune responses and induction of immune tolerance capable of protecting against asthma. It is also possible to generate protective immune responses by immunization with various H pylori antigens or their epitopes, in combination with an adjuvant, though this for now has only been shown in mouse models. Novel non-toxic adjuvants, consisting of modified bacterial enterotoxins or nanoparticles, have recently been developed that may not only enhance vaccine efficacy, but also help translate candidate vaccines to the clinic. This review will summarize the main discoveries in the past year regarding host immune responses to H pylori infection, as well as the design of new vaccine approaches against this infection.
Collapse
Affiliation(s)
- Philippe Lehours
- INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France.,French National Reference Centre for Campylobacters and Helicobacters, Pellegrin Hospital, Bordeaux, France
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia.,Biomedical Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Sangiorgi E, Azzarà A, Molinario C, Pietrobono R, Rigante D, Verrecchia E, Sicignano LL, Genuardi M, Gurrieri F, Manna R. Rare missense variants in the ALPK1 gene may predispose to periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome. Eur J Hum Genet 2019; 27:1361-1368. [PMID: 31053777 PMCID: PMC6777630 DOI: 10.1038/s41431-019-0421-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
PFAPA is an autoinflammatory syndrome characterized by periodic fever, aphthous stomatitis, sterile pharingitis, and adenitis, with an onset usually before the age of five. While the condition is most commonly sporadic, a few cases are familial and are usually compatible with an autosomal dominant (AD) transmission pattern, with reduced penetrance in some pedigrees. We performed exome analysis in a family where PFAPA was present in three relatives in two generations showing apparent AD segregation, identifying several rare and/or novel heterozygous variants in genes involved in the autoinflammatory pathway. Following segregation analysis of candidate variants, only one, c. 2770T>C p.(S924P) in the ALPK1 gene, was found to be consistently present in affected family members. ALPK1 is broadly expressed in different tissues and its protein is the intracellular kinase activated by the bacterial ADP-heptose bisphosphate that phosphorylates and activates TRAF-Interacting protein with Forkhead-Associated domain (TIFA) and triggers the immediate response to Gram-negative bacterial invasion. Sequencing analysis of 13 additional sporadic cases and 10 familial PFAPA cases identified two additional heterozygous missense variants c.1024G>C p.(D342H) and c.710C>T p.(T237M) in two sporadic patients, suggesting that rare variants in ALPK1 may represent a predisposing factor for recurrent periodic fever in a pediatric population.
Collapse
Affiliation(s)
- Eugenio Sangiorgi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Alessia Azzarà
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Clelia Molinario
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Roberta Pietrobono
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Donato Rigante
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Elena Verrecchia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ludovico Luca Sicignano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Fiorella Gurrieri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italy.
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Raffaele Manna
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Centro delle Febbri Periodiche, Università Cattolica del Sacro Cuore, Roma, Italy
- Istituto di Medicina Interna, Rare diseases and periodic Fevers Research Center, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
38
|
West NR. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front Immunol 2019; 10:1093. [PMID: 31156640 PMCID: PMC6529849 DOI: 10.3389/fimmu.2019.01093] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Stromal cells are a subject of rapidly growing immunological interest based on their ability to influence virtually all aspects of innate and adaptive immunity. Present in every bodily tissue, stromal cells complement the functions of classical immune cells by sensing pathogens and tissue damage, coordinating leukocyte recruitment and function, and promoting immune response resolution and tissue repair. These diverse roles come with a price: like classical immune cells, inappropriate stromal cell behavior can lead to various forms of pathology, including inflammatory disease, tissue fibrosis, and cancer. An important immunological function of stromal cells is to act as information relays, responding to leukocyte-derived signals and instructing leukocyte behavior in kind. In this regard, several members of the interleukin-6 (IL-6) cytokine family, including IL-6, IL-11, oncostatin M (OSM), and leukemia inhibitory factor (LIF), have gained recognition as factors that mediate crosstalk between stromal and immune cells, with diverse roles in numerous inflammatory and homeostatic processes. This review summarizes our current understanding of how IL-6 family cytokines control stromal-immune crosstalk in health and disease, and how these interactions can be leveraged for clinical benefit.
Collapse
Affiliation(s)
- Nathaniel R West
- Department of Cancer Immunology, Genentech, South San Francisco, CA, United States
| |
Collapse
|
39
|
|
40
|
Analysis of Cdcs1 colitogenic effects in the hematopoietic compartment reveals distinct microbiome interaction and a new subcongenic interval active in T cells. Mucosal Immunol 2019; 12:691-702. [PMID: 30659231 DOI: 10.1038/s41385-019-0133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Disease activity in Interleukin-10-deficient (Il10-/-) mice, a model for IBD, depends on genetic background and microbiome composition. B6.129P2/JZtm-Il10tm1Cgn (B6-Il10-/-) mice are partially resistant to colitis, whereas mice carrying the Cdcs1C3Bir haplotype on chromosome 3, B6.Cg-Il10tm1CgnMMU3(D3Mit11-D3Mit348)/JZtm (BC-R3-Il10-/-), are susceptible. This study was performed to clarify Cdcs1 and candidate gene effects on the colitogenic potential of hematopoietic cells using bone marrow (BM) and T-cell transfer models. Acute and chronic graft versus host reaction was excluded by high-density genotyping, in vitro and in vivo approaches. BM-chimeras were created with animals housed in two barriers (I and II) with distinct microbiota composition as identified by sequencing. BM-chimeras of all groups developed comparable moderate-to-severe colitis in Barrier I, however, in Barrier II only recipients of BC-R3-Il10-/- BM. Subsequent adoptive T cell transfers pointed to a new subcongenic interval within Cdcs1 affecting their colitogenic potential. Transfers excluded Larp7 and Alpk1 but highlighted Ifi44 as potential candidate genes. In this model-system, colitis development after cell transfer heavily depends on microbiome, though Cdcs1 acts mainly independently in hematopoietic cells. A new subcongenic interval, provisionally named Cdcs1.4, modifies colitogenic T cell function. Within this locus, Ifi44 represents an important candidate gene for colitis expression.
Collapse
|
41
|
Williams LB, Javed A, Sabri A, Morgan DJ, Huff CD, Grigg JR, Heng XT, Khng AJ, Hollink IHIM, Morrison MA, Owen LA, Anderson K, Kinard K, Greenlees R, Novacic D, Nida Sen H, Zein WM, Rodgers GM, Vitale AT, Haider NB, Hillmer AM, Ng PC, Shankaracharya, Cheng A, Zheng L, Gillies MC, van Slegtenhorst M, van Hagen PM, Missotten TOAR, Farley GL, Polo M, Malatack J, Curtin J, Martin F, Arbuckle S, Alexander SI, Chircop M, Davila S, Digre KB, Jamieson RV, DeAngelis MM. ALPK1 missense pathogenic variant in five families leads to ROSAH syndrome, an ocular multisystem autosomal dominant disorder. Genet Med 2019; 21:2103-2115. [PMID: 30967659 PMCID: PMC6752478 DOI: 10.1038/s41436-019-0476-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 01/07/2023] Open
Abstract
Purpose To identify the molecular cause in five unrelated families with a distinct autosomal dominant ocular systemic disorder we called ROSAH syndrome due to clinical features of retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. Methods Independent discovery exome and genome sequencing in families 1, 2, and 3, and confirmation in families 4 and 5. Expression of wild-type messenger RNA and protein in human and mouse tissues and cell lines. Ciliary assays in fibroblasts from affected and unaffected family members. Results We found the heterozygous missense variant in the ɑ-kinase gene, ALPK1, (c.710C>T, [p.Thr237Met]), segregated with disease in all five families. All patients shared the ROSAH phenotype with additional low-grade ocular inflammation, pancytopenia, recurrent infections, and mild renal impairment in some. ALPK1 was notably expressed in retina, retinal pigment epithelium, and optic nerve, with immunofluorescence indicating localization to the basal body of the connecting cilium of the photoreceptors, and presence in the sweat glands. Immunocytofluorescence revealed expression at the centrioles and spindle poles during metaphase, and at the base of the primary cilium. Affected family member fibroblasts demonstrated defective ciliogenesis. Conclusion Heterozygosity for ALPK1, p.Thr237Met leads to ROSAH syndrome, an autosomal dominant ocular systemic disorder.
Collapse
Affiliation(s)
- Lloyd B Williams
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Asif Javed
- Genome Institute of Singapore, Singapore, Singapore.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Amin Sabri
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chad D Huff
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Grigg
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Margaux A Morrison
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Krista Kinard
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rebecca Greenlees
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Danica Novacic
- National Institutes of Health, National Human Genome Research Institute, Undiagnosed Diseases Network, Bethesda, MD, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - George M Rodgers
- Department of Hematology, Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Albert T Vitale
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Pauline C Ng
- Genome Institute of Singapore, Singapore, Singapore
| | - Shankaracharya
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anson Cheng
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Linda Zheng
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Mark C Gillies
- Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | - Michael Polo
- Drs. Farley, Polo and Ho, Colonial Heights, VA, USA
| | - James Malatack
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Julie Curtin
- Department of Haematology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Frank Martin
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Susan Arbuckle
- Department of Pathology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Stephen I Alexander
- Department of Nephrology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Megan Chircop
- Cell Cycle Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Sonia Davila
- Genome Institute of Singapore, Singapore, Singapore
| | - Kathleen B Digre
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia. .,Disciplines of Genomic Medicine, and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia. .,Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia.
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA. .,Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
Hu X, Yang C, Wang PG, Zhang GL. ADP-heptose: A new innate immune modulator. Carbohydr Res 2019; 473:123-128. [DOI: 10.1016/j.carres.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
|
43
|
Mueller C, Kwong Chung CKC, Faderl MR, Brasseit J, Zysset D. Helicobacter spp. in Experimental Models of Colitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:97-105. [DOI: 10.1007/978-3-030-28524-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|