1
|
Zouridis IS, Balsamo G, Preston-Ferrer P, Burgalossi A. Anatomical and electrophysiological analysis of the fasciola cinerea of the mouse hippocampus. Hippocampus 2024; 34:528-539. [PMID: 39105449 DOI: 10.1002/hipo.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
The hippocampus is considered essential for several forms of declarative memory, including spatial and social memory. Despite the extensive research of the classic subfields of the hippocampus, the fasciola cinerea (FC)-a medially located structure within the hippocampal formation-has remained largely unexplored. In the present study, we performed a morpho-functional characterization of principal neurons in the mouse FC. Using in vivo juxtacellular recording of single neurons, we found that FC neurons are distinct from neighboring CA1 pyramidal cells, both morphologically and electrophysiologically. Specifically, FC neurons displayed non-pyramidal morphology and granule cell-like apical dendrites. Compared to neighboring CA1 pyramidal neurons, FC neurons exhibited more regular in vivo firing patterns and a lower tendency to fire spikes at short interspike intervals. Furthermore, tracing experiments revealed that the FC receives inputs from the lateral but not the medial entorhinal cortex and CA3, and it provides a major intra-hippocampal projection to the septal CA2 and sparser inputs to the distal CA1. Overall, our results indicate that the FC is a morphologically and electrophysiologically distinct subfield of the hippocampal formation; given the established role of CA2 in social memory and seizure initiation, the unique efferent intra-hippocampal connectivity of the FC points to possible roles in social cognition and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Zouridis IS, Schmors L, Fischer KM, Berens P, Preston-Ferrer P, Burgalossi A. Juxtacellular recordings from identified neurons in the mouse locus coeruleus. Eur J Neurosci 2024; 60:3659-3676. [PMID: 38872397 DOI: 10.1111/ejn.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Lisa Schmors
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Kathrin Maite Fischer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
3
|
Clark BJ, LaChance PA, Winter SS, Mehlman ML, Butler W, LaCour A, Taube JS. Comparison of head direction cell firing characteristics across thalamo-parahippocampal circuitry. Hippocampus 2024; 34:168-196. [PMID: 38178693 PMCID: PMC10950528 DOI: 10.1002/hipo.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024]
Abstract
Head direction (HD) cells, which fire persistently when an animal's head is pointed in a particular direction, are widely thought to underlie an animal's sense of spatial orientation and have been identified in several limbic brain regions. Robust HD cell firing is observed throughout the thalamo-parahippocampal system, although recent studies report that parahippocampal HD cells exhibit distinct firing properties, including conjunctive aspects with other spatial parameters, which suggest they play a specialized role in spatial processing. Few studies, however, have quantified these apparent differences. Here, we performed a comparative assessment of HD cell firing characteristics across the anterior dorsal thalamus (ADN), postsubiculum (PoS), parasubiculum (PaS), medial entorhinal (MEC), and postrhinal (POR) cortices. We report that HD cells with a high degree of directional specificity were observed in all five brain regions, but ADN HD cells display greater sharpness and stability in their preferred directions, and greater anticipation of future headings compared to parahippocampal regions. Additional analysis indicated that POR HD cells were more coarsely modulated by other spatial parameters compared to PoS, PaS, and MEC. Finally, our analyses indicated that the sharpness of HD tuning decreased as a function of laminar position and conjunctive coding within the PoS, PaS, and MEC, with cells in the superficial layers along with conjunctive firing properties showing less robust directional tuning. The results are discussed in relation to theories of functional organization of HD cell tuning in thalamo-parahippocampal circuitry.
Collapse
Affiliation(s)
- Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Patrick A LaChance
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Shawn S Winter
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Max L Mehlman
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Will Butler
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| | - Ariyana LaCour
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Grieves RM. Estimating neuronal firing density: A quantitative analysis of firing rate map algorithms. PLoS Comput Biol 2023; 19:e1011763. [PMID: 38150481 PMCID: PMC10775984 DOI: 10.1371/journal.pcbi.1011763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/09/2024] [Accepted: 12/15/2023] [Indexed: 12/29/2023] Open
Abstract
The analysis of neurons that exhibit receptive fields dependent on an organism's spatial location, such as grid, place or boundary cells typically begins by mapping their activity in space using firing rate maps. However, mapping approaches are varied and depend on multiple tuning parameters that are usually chosen qualitatively by the experimenter and thus vary significantly across studies. Small changes in parameters such as these can impact results significantly, yet, to date a quantitative investigation of firing rate maps has not been attempted. Using simulated datasets, we examined how tuning parameters, recording duration and firing field size affect the accuracy of spatial maps generated using the most widely used approaches. For each approach we found a clear subset of parameters which yielded low-error firing rate maps and isolated the parameters yielding 1) the least error possible and 2) the Pareto-optimal parameter set which balanced error, computation time, place field detection accuracy and the extrapolation of missing values. Smoothed bivariate histograms and averaged shifted histograms were consistently associated with the fastest computation times while still providing accurate maps. Adaptive smoothing and binning approaches were found to compensate for low positional sampling the most effectively. Kernel smoothed density estimation also compensated for low sampling well and resulted in accurate maps, but it was also among the slowest methods tested. Overall, the bivariate histogram, coupled with spatial smoothing, is likely the most desirable method in the majority of cases.
Collapse
Affiliation(s)
- Roddy M. Grieves
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
5
|
Ding L, Balsamo G, Diamantaki M, Preston-Ferrer P, Burgalossi A. Opto-juxtacellular interrogation of neural circuits in freely moving mice. Nat Protoc 2023; 18:2415-2440. [PMID: 37420087 DOI: 10.1038/s41596-023-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2023] [Indexed: 07/09/2023]
Abstract
Neural circuits are assembled from an enormous variety of neuronal cell types. Although significant advances have been made in classifying neurons on the basis of morphological, molecular and electrophysiological properties, understanding how this diversity contributes to brain function during behavior has remained a major experimental challenge. Here, we present an extension to our previous protocol, in which we describe the technical procedures for performing juxtacellular opto-tagging of single neurons in freely moving mice by using Channelrhodopsin-2-expressing viral vectors. This method allows one to selectively target molecularly defined cell classes for in vivo single-cell recordings. The targeted cells can be labeled via juxtacellular procedures and further characterized via post-hoc morphological and molecular analysis. In its current form, the protocol allows multiple recording and labeling attempts to be performed within individual animals, by means of a mechanical pipette micropositioning system. We provide proof-of-principle validation of this technique by recording from Calbindin-positive pyramidal neurons in the mouse hippocampus during spatial exploration; however, this approach can easily be extended to other behaviors and cortical or subcortical areas. The procedures described here, from the viral injection to the histological processing of brain sections, can be completed in ~4-5 weeks.This protocol is an extension to: Nat. Protoc. 9, 2369-2381 (2014): https://doi.org/10.1038/nprot.2014.161.
Collapse
Affiliation(s)
- Lingjun Ding
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Maria Diamantaki
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Greece
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
6
|
Shi Y, Cui H, Li X, Chen L, Zhang C, Zhao X, Li X, Shao Q, Sun Q, Yan K, Wang G. Laminar and dorsoventral organization of layer 1 interneuronal microcircuitry in superficial layers of the medial entorhinal cortex. Cell Rep 2023; 42:112782. [PMID: 37436894 DOI: 10.1016/j.celrep.2023.112782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/03/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) participate in various brain functions by gating information flow in the neocortex, but their role in the medial entorhinal cortex (MEC) is still unknown, largely due to scant knowledge of MEC L1 microcircuitry. Using simultaneous triple-octuple whole-cell recordings and morphological reconstructions, we comprehensively depict L1IN networks in the MEC. We identify three morphologically distinct types of L1INs with characteristic electrophysiological properties. We dissect intra- and inter-laminar cell-type-specific microcircuits of L1INs, showing connectivity patterns different from those in the neocortex. Remarkably, motif analysis reveals transitive and clustered features of L1 networks, as well as over-represented trans-laminar motifs. Finally, we demonstrate the dorsoventral gradient of L1IN microcircuits, with dorsal L1 neurogliaform cells receiving fewer intra-laminar inputs but exerting more inhibition on L2 principal neurons. These results thus present a more comprehensive picture of L1IN microcircuitry, which is indispensable for deciphering the function of L1INs in the MEC.
Collapse
Affiliation(s)
- Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
7
|
Applegate MC, Gutnichenko KS, Mackevicius EL, Aronov D. An entorhinal-like region in food-caching birds. Curr Biol 2023; 33:2465-2477.e7. [PMID: 37295426 PMCID: PMC10329498 DOI: 10.1016/j.cub.2023.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
The mammalian entorhinal cortex routes inputs from diverse sources into the hippocampus. This information is mixed and expressed in the activity of many specialized entorhinal cell types, which are considered indispensable for hippocampal function. However, functionally similar hippocampi exist even in non-mammals that lack an obvious entorhinal cortex or, generally, any layered cortex. To address this dilemma, we mapped extrinsic hippocampal connections in chickadees, whose hippocampi are used for remembering numerous food caches. We found a well-delineated structure in these birds that is topologically similar to the entorhinal cortex and interfaces between the hippocampus and other pallial regions. Recordings of this structure revealed entorhinal-like activity, including border and multi-field grid-like cells. These cells were localized to the subregion predicted by anatomical mapping to match the dorsomedial entorhinal cortex. Our findings uncover an anatomical and physiological equivalence of vastly different brains, suggesting a fundamental nature of entorhinal-like computations for hippocampal function.
Collapse
Affiliation(s)
- Marissa C Applegate
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Konstantin S Gutnichenko
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Emily L Mackevicius
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Dmitriy Aronov
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA.
| |
Collapse
|
8
|
Applegate MC, Gutnichenko KS, Mackevicius EL, Aronov D. An entorhinal-like region in food-caching birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522940. [PMID: 36711539 PMCID: PMC9881956 DOI: 10.1101/2023.01.05.522940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mammalian entorhinal cortex routes inputs from diverse sources into the hippocampus. This information is mixed and expressed in the activity of many specialized entorhinal cell types, which are considered indispensable for hippocampal function. However, functionally similar hippocampi exist even in non-mammals that lack an obvious entorhinal cortex, or generally any layered cortex. To address this dilemma, we mapped extrinsic hippocampal connections in chickadees, whose hippocampi are used for remembering numerous food caches. We found a well-delineated structure in these birds that is topologically similar to the entorhinal cortex and interfaces between the hippocampus and other pallial regions. Recordings of this structure revealed entorhinal-like activity, including border and multi-field grid-like cells. These cells were localized to the subregion predicted by anatomical mapping to match the dorsomedial entorhinal cortex. Our findings uncover an anatomical and physiological equivalence of vastly different brains, suggesting a fundamental nature of entorhinal-like computations for hippocampal function.
Collapse
Affiliation(s)
| | | | | | - Dmitriy Aronov
- Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
9
|
Szocs S, Henn-Mike N, Agocs-Laboda A, Szabo-Meleg E, Varga C. Neurogliaform cells mediate feedback inhibition in the medial entorhinal cortex. Front Neuroanat 2022; 16:779390. [PMID: 36003850 PMCID: PMC9393258 DOI: 10.3389/fnana.2022.779390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Layer I of the medial entorhinal cortex (MEC) contains converging axons from several brain areas and dendritic tufts originating from principal cells located in multiple layers. Moreover, specific GABAergic interneurons are also located in the area, but their inputs, outputs, and effect on local network events remain elusive. Neurogliaform cells are the most frequent and critically positioned inhibitory neurons in layer I. They are considered to conduct feed-forward inhibition via GABAA and GABAB receptors on pyramidal cells located in several cortical areas. Using optogenetic experiments, we showed that layer I neurogliaform cells receive excitatory inputs from layer II pyramidal cells, thereby playing a critical role in local feedback inhibition in the MEC. We also found that neurogliaform cells are evenly distributed in layer I and do not correlate with the previously described compartmentalization (“cell islands”) of layer II. We concluded that the activity of neurogliaform cells in layer I is largely set by layer II pyramidal cells through excitatory synapses, potentially inhibiting the apical dendrites of all types of principal cells in the MEC.
Collapse
Affiliation(s)
- Szilard Szocs
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Henn-Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
- *Correspondence: Nora Henn-Mike,
| | - Agnes Agocs-Laboda
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Edina Szabo-Meleg
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Csaba Varga
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Csaba Varga,
| |
Collapse
|
10
|
Long X, Deng B, Young CK, Liu G, Zhong Z, Chen Q, Yang H, Lv S, Chen ZS, Zhang S. Sharp Tuning of Head Direction and Angular Head Velocity Cells in the Somatosensory Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200020. [PMID: 35297541 PMCID: PMC9109065 DOI: 10.1002/advs.202200020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Indexed: 05/27/2023]
Abstract
Head direction (HD) cells form a fundamental component in the brain's spatial navigation system and are intricately linked to spatial memory and cognition. Although HD cells have been shown to act as an internal neuronal compass in various cortical and subcortical regions, the neural substrate of HD cells is incompletely understood. It is reported that HD cells in the somatosensory cortex comprise regular-spiking (RS, putative excitatory) and fast-spiking (FS, putative inhibitory) neurons. Surprisingly, somatosensory FS HD cells fire in bursts and display much sharper head-directionality than RS HD cells. These FS HD cells are nonconjunctive, rarely theta rhythmic, sparsely connected and enriched in layer 5. Moreover, sharply tuned FS HD cells, in contrast with RS HD cells, maintain stable tuning in darkness; FS HD cells' coexistence with RS HD cells and angular head velocity (AHV) cells in a layer-specific fashion through the somatosensory cortex presents a previously unreported configuration of spatial representation in the neocortex. Together, these findings challenge the notion that FS interneurons are weakly tuned to sensory stimuli, and offer a local circuit organization relevant to the generation and transmission of HD signaling in the brain.
Collapse
Affiliation(s)
- Xiaoyang Long
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Bin Deng
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Calvin K. Young
- Department of PsychologyBrain Health Research CentreUniversity of OtagoDunedin9054New Zealand
| | - Guo‐Long Liu
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Zeqi Zhong
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Qian Chen
- Center for Biomedical AnalysisCollege of Basic MedicineArmy Medical UniversityChongqing400038China
| | - Hui Yang
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Sheng‐Qing Lv
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Zhe Sage Chen
- Department of PsychiatryDepartment of Neuroscience and PhysiologyNeuroscience InstituteNew York University School of MedicineNew YorkNY10016USA
| | - Sheng‐Jia Zhang
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| |
Collapse
|
11
|
Beesley S, Sullenberger T, Lee C, Kumar SS. GluN3 Subunit Expression Correlates with Increased Vulnerability of Hippocampus and Entorhinal Cortex to Neurodegeneration in a Model of Temporal Lobe Epilepsy. J Neurophysiol 2022; 127:1496-1510. [PMID: 35475675 DOI: 10.1152/jn.00070.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults that is often refractory to anti-epileptic medication therapy. Neither the pathology nor the etiology of TLE are fully characterized, although recent studies have established that the two are causally related. TLE pathology entails a stereotypic pattern of neuron loss in hippocampal and parahippocampal regions, predominantly in CA1 subfield of the hippocampus and layer 3 of the medial entorhinal area (MEA), deemed hallmark pathological features of the disease. Through this work, we address the contribution of glutamatergic N-methyl-D-aspartate receptors (NMDARs) to the pathology (vulnerability and pattern of neuronal loss), and by extension to the pathophysiology (Ca2+ induced excitotoxicity), by assaying the spatial expression of their subunit proteins (GluN1, GluN2A, GluN2B and GluN3A) in these regions using ASTA (area specific tissue analysis), a novel methodology for harvesting brain chads from hard-to-reach regions within brain slices for Western blotting. Our data suggest gradient expression of the GluN3A subunit along the mid-lateral extent of layer 3 MEA and along the CA1-subicular axis in the hippocampus, unlike GluN1 or GluN2 subunits which are uniformly distributed. Incorporation of GluN3A in the subunit composition of conventional diheteromeric (d-) NMDARs yield triheteromeric (t-) NMDARs which by virtue of their increased selectivity for Ca2+ render neurons vulnerable to excitotoxic damage. Thus, the expression profile of this subunit sheds light on the spatial extent of the pathology observed in these regions and implicates the GluN3 subunit of NMDARs in hippocampal and entorhinal cortical pathology underlying TLE.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Christopher Lee
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| |
Collapse
|
12
|
Modular microcircuit organization of the presubicular head-direction map. Cell Rep 2022; 39:110684. [PMID: 35417686 DOI: 10.1016/j.celrep.2022.110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Our internal sense of direction is thought to rely on the activity of head-direction (HD) neurons. We find that the mouse dorsal presubiculum (PreS), a key structure in the cortical representation of HD, displays a modular "patch-matrix" organization, which is conserved across species (including human). Calbindin-positive layer 2 neurons within the "matrix" form modular recurrent microcircuits, while inputs from the anterodorsal and laterodorsal thalamic nuclei are non-overlapping and target the "patch" and "matrix" compartments, respectively. The apical dendrites of identified HD cells are largely restricted within the "matrix," pointing to a non-random sampling of patterned inputs and to a precise structure-function architecture. Optogenetic perturbation of modular recurrent microcircuits results in a drastic tonic suppression of firing only in a subpopulation of HD neurons. Altogether, our data reveal a modular microcircuit organization of the PreS HD map and point to the existence of cell-type-specific microcircuits that support the cortical HD representation.
Collapse
|
13
|
Tukker JJ, Beed P, Brecht M, Kempter R, Moser EI, Schmitz D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev 2022; 102:653-688. [PMID: 34254836 PMCID: PMC8759973 DOI: 10.1152/physrev.00042.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.
Collapse
Affiliation(s)
- John J Tukker
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Prateep Beed
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edvard I Moser
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Ding L, Balsamo G, Chen H, Blanco-Hernandez E, Zouridis IS, Naumann R, Preston-Ferrer P, Burgalossi A. Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice. eLife 2022; 11:71720. [PMID: 35080491 PMCID: PMC8791633 DOI: 10.7554/elife.71720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023] Open
Abstract
Neural circuits are made of a vast diversity of neuronal cell types. While immense progress has been made in classifying neurons based on morphological, molecular, and functional properties, understanding how this heterogeneity contributes to brain function during natural behavior has remained largely unresolved. In the present study, we combined the juxtacellular recording and labeling technique with optogenetics in freely moving mice. This allowed us to selectively target molecularly defined cell classes for in vivo single-cell recordings and morphological analysis. We validated this strategy in the CA1 region of the mouse hippocampus by restricting Channelrhodopsin expression to Calbindin-positive neurons. Directly versus indirectly light-activated neurons could be readily distinguished based on the latencies of light-evoked spikes, with juxtacellular labeling and post hoc histological analysis providing ‘ground-truth’ validation. Using these opto-juxtacellular procedures in freely moving mice, we found that Calbindin-positive CA1 pyramidal cells were weakly spatially modulated and conveyed less spatial information than Calbindin-negative neurons – pointing to pyramidal cell identity as a key determinant for neuronal recruitment into the hippocampal spatial map. Thus, our method complements current in vivo techniques by enabling optogenetic-assisted structure–function analysis of single neurons recorded during natural, unrestrained behavior.
Collapse
Affiliation(s)
- Lingjun Ding
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Hongbiao Chen
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Eduardo Blanco-Hernandez
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Robert Naumann
- Chinese Academy of Sciences, Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Nanshan, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
15
|
Ohara S, Yoshino R, Kimura K, Kawamura T, Tanabe S, Zheng A, Nakamura S, Inoue KI, Takada M, Tsutsui KI, Witter MP. Laminar Organization of the Entorhinal Cortex in Macaque Monkeys Based on Cell-Type-Specific Markers and Connectivity. Front Neural Circuits 2021; 15:790116. [PMID: 34949991 PMCID: PMC8688913 DOI: 10.3389/fncir.2021.790116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) is a major gateway between the hippocampus and telencephalic structures, and plays a critical role in memory and navigation. Through the use of various molecular markers and genetic tools, neuron types constituting EC are well studied in rodents, and their layer-dependent distributions, connections, and functions have also been characterized. In primates, however, such cell-type-specific understandings are lagging. To bridge the gap between rodents and primates, here we provide the first cell-type-based global map of EC in macaque monkeys. The laminar organization of the monkey EC was systematically examined and compared with that of the rodent EC by using immunohistochemistry for molecular markers which have been well characterized in the rodent EC: reelin, calbindin, and Purkinje cell protein 4 (PCP4). We further employed retrograde neuron labeling from the nucleus accumbens and amygdala to identify the EC output layer. This cell-type-based approach enabled us to apply the latest laminar definition of rodent EC to monkeys. Based on the similarity of the laminar organization, the monkey EC can be divided into two subdivisions: rostral and caudal EC. These subdivisions likely correspond to the lateral and medial EC in rodents, respectively. In addition, we found an overall absence of a clear laminar arrangement of layer V neurons in the rostral EC, unlike rodents. The cell-type-based architectural map provided in this study will accelerate the application of genetic tools in monkeys for better understanding of the role of EC in memory and navigation.
Collapse
Affiliation(s)
- Shinya Ohara
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Rintaro Yoshino
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kei Kimura
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Taichi Kawamura
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Andi Zheng
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shinya Nakamura
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Laboratory of Systems Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Menno P Witter
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Laboratory of Systems Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
DiTullio RW, Balasubramanian V. Dynamical self-organization and efficient representation of space by grid cells. Curr Opin Neurobiol 2021; 70:206-213. [PMID: 34861597 PMCID: PMC8688296 DOI: 10.1016/j.conb.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
To plan trajectories and navigate, animals must maintain a mental representation of the environment and their own position within it. This "cognitive map" is thought to be supported in part by the entorhinal cortex, where grid cells are active when an animal occupies the vertices of a scaling hierarchy of periodic lattices of locations in an enclosure. Here, we review computational developments which suggest that the grid cell network is: (a) efficient, providing required spatial resolution with a minimum number of neurons, (b) self-organizing, dynamically coordinating the structure and scale of the responses, and (c) adaptive, re-organizing in response to changes in landmarks and the structure of the boundaries of spaces. We consider these ideas in light of recent discoveries of similar structures in the mental representation of abstract spaces of shapes and smells, and in other brain areas, and highlight promising directions for future research.
Collapse
Affiliation(s)
- Ronald W. DiTullio
- David Rittenhouse Laboratories & Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA 19104
| | - Vijay Balasubramanian
- David Rittenhouse Laboratories & Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Marks WD, Yamamoto N, Kitamura T. Complementary roles of differential medial entorhinal cortex inputs to the hippocampus for the formation and integration of temporal and contextual memory (Systems Neuroscience). Eur J Neurosci 2021; 54:6762-6779. [PMID: 32277786 PMCID: PMC8187108 DOI: 10.1111/ejn.14737] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
In humans and rodents, the entorhinal cortical (EC)-hippocampal (HPC) circuit is crucial for the formation and recall of memory, preserving both spatial information and temporal information about the occurrence of past events. Both modeling and experimental studies have revealed circuits within this network that play crucial roles in encoding space and context. However, our understanding about the time-related aspects of memory is just beginning to be understood. In this review, we first describe updates regarding recent anatomical discoveries for the EC-HPC network, as several important neural circuits critical for memory formation have been discovered by newly developed neural tracing technologies. Second, we examine the complementary roles of multiple medial entorhinal cortical inputs, including newly discovered circuits, into the hippocampus for the temporal and spatial aspects of memory. Finally, we will discuss how temporal and contextual memory information is integrated in HPC cornu ammonis 1 cells. We provide new insights into the neural circuit mechanisms for anatomical and functional segregation and integration of the temporal and spatial aspects of memory encoding in the EC-HPC networks.
Collapse
Affiliation(s)
- William D. Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
18
|
Rueckemann JW, Sosa M, Giocomo LM, Buffalo EA. The grid code for ordered experience. Nat Rev Neurosci 2021; 22:637-649. [PMID: 34453151 PMCID: PMC9371942 DOI: 10.1038/s41583-021-00499-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Entorhinal cortical grid cells fire in a periodic pattern that tiles space, which is suggestive of a spatial coordinate system. However, irregularities in the grid pattern as well as responses of grid cells in contexts other than spatial navigation have presented a challenge to existing models of entorhinal function. In this Perspective, we propose that hippocampal input provides a key informative drive to the grid network in both spatial and non-spatial circumstances, particularly around salient events. We build on previous models in which neural activity propagates through the entorhinal-hippocampal network in time. This temporal contiguity in network activity points to temporal order as a necessary characteristic of representations generated by the hippocampal formation. We advocate that interactions in the entorhinal-hippocampal loop build a topological representation that is rooted in the temporal order of experience. In this way, the structure of grid cell firing supports a learned topology rather than a rigid coordinate frame that is bound to measurements of the physical world.
Collapse
Affiliation(s)
- Jon W Rueckemann
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
19
|
Yokose J, Marks WD, Yamamoto N, Ogawa SK, Kitamura T. Entorhinal cortical Island cells regulate temporal association learning with long trace period. ACTA ACUST UNITED AC 2021; 28:319-328. [PMID: 34400533 PMCID: PMC8372565 DOI: 10.1101/lm.052589.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial for TAL. Successful TAL depends on the strength of event stimuli and the duration of the temporal gap between events. Whereas it has been demonstrated that the neural input from pyramidal cells in layer II of MEC, referred to as Island cells, to inhibitory neurons in dorsal hippocampal CA1 controls TAL when the strength of event stimuli is weak, it remains unknown whether Island cells regulate TAL with long trace periods as well. To understand the role of Island cells in regulating the duration of the learnable trace period in TAL, we used Pavlovian trace fear conditioning (TFC) with a 60-sec long trace period (long trace fear conditioning [L-TFC]) coupled with optogenetic and chemogenetic neural activity manipulations as well as cell type-specific neural ablation. We found that ablation of Island cells in MECII partially increases L-TFC performance. Chemogenetic manipulation of Island cells causes differential effectiveness in Island cell activity and leads to a circuit imbalance that disrupts L-TFC. However, optogenetic terminal inhibition of Island cell input to dorsal hippocampal CA1 during the temporal association period allows for long trace intervals to be learned in TFC. These results demonstrate that Island cells have a critical role in regulating the duration of time bridgeable between associated events in TAL.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Kitamura
- Department of Psychiatry.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
20
|
Theta Oscillations Gate the Transmission of Reliable Sequences in the Medial Entorhinal Cortex. eNeuro 2021; 8:ENEURO.0059-20.2021. [PMID: 33820802 PMCID: PMC8208650 DOI: 10.1523/eneuro.0059-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Stability and precision of sequential activity in the entorhinal cortex (EC) is crucial for encoding spatially guided behavior and memory. These sequences are driven by constantly evolving sensory inputs and persist despite a noisy background. In a realistic computational model of a medial EC (MEC) microcircuit, we show that intrinsic neuronal properties and network mechanisms interact with theta oscillations to generate reliable outputs. In our model, sensory inputs activate interneurons near their most excitable phase during each theta cycle. As the inputs change, different interneurons are recruited and postsynaptic stellate cells are released from inhibition. This causes a sequence of rebound spikes. The rebound time scale of stellate cells, because of an h–current, matches that of theta oscillations. This fortuitous similarity of time scales ensures that stellate spikes get relegated to the least excitable phase of theta and the network encodes the external drive but ignores recurrent excitation. In contrast, in the absence of theta, rebound spikes compete with external inputs and disrupt the sequence that follows. Further, the same mechanism where theta modulates the gain of incoming inputs, can be used to select between competing inputs to create transient functionally connected networks. Our results concur with experimental data that show, subduing theta oscillations disrupts the spatial periodicity of grid cell receptive fields. In the bat MEC where grid cell receptive fields persist even in the absence of continuous theta oscillations, we argue that other low frequency fluctuations play the role of theta.
Collapse
|
21
|
Liu X, Ren C, Lu Y, Liu Y, Kim JH, Leutgeb S, Komiyama T, Kuzum D. Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical-hippocampal interactions. Nat Neurosci 2021; 24:886-896. [PMID: 33875893 PMCID: PMC8627685 DOI: 10.1038/s41593-021-00841-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Many cognitive processes require communication between the neocortex and the hippocampus. However, coordination between large-scale cortical dynamics and hippocampal activity is not well understood, partially due to the difficulty in simultaneously recording from those regions. In the present study, we developed a flexible, insertable and transparent microelectrode array (Neuro-FITM) that enables investigation of cortical-hippocampal coordinations during hippocampal sharp-wave ripples (SWRs). Flexibility and transparency of Neuro-FITM allow simultaneous recordings of local field potentials and neural spiking from the hippocampus during wide-field calcium imaging. These experiments revealed that diverse cortical activity patterns accompanied SWRs and, in most cases, cortical activation preceded hippocampal SWRs. We demonstrated that, during SWRs, different hippocampal neural population activity was associated with distinct cortical activity patterns. These results suggest that hippocampus and large-scale cortical activity interact in a selective and diverse manner during SWRs underlying various cognitive functions. Our technology can be broadly applied to comprehensive investigations of interactions between the cortex and other subcortical structures.
Collapse
Affiliation(s)
- Xin Liu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Chi Ren
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Yichen Lu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Yixiu Liu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeong-Hoon Kim
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Stefan Leutgeb
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Takaki Komiyama
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
| | - Duygu Kuzum
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Peng Y, Barreda Tomas FJ, Pfeiffer P, Drangmeister M, Schreiber S, Vida I, Geiger JRP. Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning. SCIENCE ADVANCES 2021; 7:7/25/eabg4693. [PMID: 34134979 PMCID: PMC8208710 DOI: 10.1126/sciadv.abg4693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 05/04/2023]
Abstract
In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a "blanket of inhibition." We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Federico J Barreda Tomas
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Paul Pfeiffer
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Moritz Drangmeister
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Susanne Schreiber
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Jörg R P Geiger
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Lepperød ME, Christensen AC, Lensjø KK, Buccino AP, Yu J, Fyhn M, Hafting T. Optogenetic pacing of medial septum parvalbumin-positive cells disrupts temporal but not spatial firing in grid cells. SCIENCE ADVANCES 2021; 7:eabd5684. [PMID: 33952512 PMCID: PMC11559560 DOI: 10.1126/sciadv.abd5684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Grid cells in the medial entorhinal cortex (MEC) exhibit remarkable spatial activity patterns with spikes coordinated by theta oscillations driven by the medial septal area (MSA). Spikes from grid cells progress relative to the theta phase in a phenomenon called phase precession, which is suggested as essential to create the spatial periodicity of grid cells. Here, we show that optogenetic activation of parvalbumin-positive (PV+) cells in the MSA enabled selective pacing of local field potential (LFP) oscillations in MEC. During optogenetic stimulation, the grid cells were locked to the imposed pacing frequency but kept their spatial patterns. Phase precession was abolished, and speed information was no longer reflected in the LFP oscillations but was still carried by rate coding of individual MEC neurons. Together, these results support that theta oscillations are not critical to the spatial pattern of grid cells and do not carry a crucial velocity signal.
Collapse
Affiliation(s)
- Mikkel Elle Lepperød
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| | - Ane Charlotte Christensen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| | - Kristian Kinden Lensjø
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alessio Paolo Buccino
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Jai Yu
- Department of Psychology, Institute for Mind and Biology, Grossman Institute for Neuroscience, and Quantitative Biology and Human Behavior, University of Chicago, 5848 S. University Avenue, Chicago, IL 60637, USA
| | - Marianne Fyhn
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Torkel Hafting
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Modularization of grid cells constrained by the pyramidal patch lattice. iScience 2021; 24:102301. [PMID: 33870125 PMCID: PMC8042349 DOI: 10.1016/j.isci.2021.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 11/29/2022] Open
Abstract
Grid cells provide a metric representation of self-location. They are organized into modules, showing discretized scales of grid spacing, but the underlying mechanism remains elusive. In this modeling study, we propose that the hexagonal lattice of pyramidal cell patches may underlie the discretization of grid spacing and orientation. In the continuous attractor network composed of interneurons, stellate and pyramidal cells, the hexagonal lattice of bump attractors is specifically aligned to the patch lattice under 22 conditions determined by the geometry of the patch lattice, while pyramidal cells exhibit synchrony to diverse extents. Given the bump attractor lattice in each module originates from those 22 scenarios, the experimental data on the grid spacing ratio and orientation difference between modules can be reproduced. This work recapitulates the patterns of grid spacing versus orientation in individual animals and reveals the correlation between microstructures and firing fields, providing a systems-level mechanism for grid modularity. Each module is modeled as a continuous attractor network with specific parameters The lattice of bump attractors is specifically aligned to the pyramidal patch lattice Twenty-two scenarios for the bump attractor lattice are proposed The grid spacing ratios and orientation differences are determined intrinsically
Collapse
|
25
|
Christensen AC, Lensjø KK, Lepperød ME, Dragly SA, Sutterud H, Blackstad JS, Fyhn M, Hafting T. Perineuronal nets stabilize the grid cell network. Nat Commun 2021; 12:253. [PMID: 33431847 PMCID: PMC7801665 DOI: 10.1038/s41467-020-20241-w] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
Grid cells are part of a widespread network which supports navigation and spatial memory. Stable grid patterns appear late in development, in concert with extracellular matrix aggregates termed perineuronal nets (PNNs) that condense around inhibitory neurons. It has been suggested that PNNs stabilize synaptic connections and long-term memories, but their role in the grid cell network remains elusive. We show that removal of PNNs leads to lower inhibitory spiking activity, and reduces grid cells' ability to create stable representations of a novel environment. Furthermore, in animals with disrupted PNNs, exposure to a novel arena corrupted the spatiotemporal relationships within grid cell modules, and the stored representations of a familiar arena. Finally, we show that PNN removal in entorhinal cortex distorted spatial representations in downstream hippocampal neurons. Together this work suggests that PNNs provide a key stabilizing element for the grid cell network.
Collapse
Affiliation(s)
- Ane Charlotte Christensen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| | - Kristian Kinden Lensjø
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| | - Mikkel Elle Lepperød
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| | - Svenn-Arne Dragly
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Halvard Sutterud
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Jan Sigurd Blackstad
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway
| | - Torkel Hafting
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway.
| |
Collapse
|
26
|
Somatostatin expressing GABAergic interneurons in the medial entorhinal cortex preferentially inhibit layer III-V pyramidal cells. Commun Biol 2020; 3:754. [PMID: 33303963 PMCID: PMC7728756 DOI: 10.1038/s42003-020-01496-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
GABA released from heterogeneous types of interneurons acts in a complex spatio-temporal manner on postsynaptic targets in the networks. In addition to GABA, a large fraction of GABAergic cells also express neuromodulator peptides. Somatostatin (SOM) containing interneurons, in particular, have been recognized as key players in several brain circuits, however, the action of SOM and its downstream network effects remain largely unknown. Here, we used optogenetics, electrophysiologic, anatomical and behavioral experiments to reveal that the dendrite-targeting, SOM+ GABAergic interneurons demonstrate a unique layer-specific action in the medial entorhinal cortex (MEC) both in terms of GABAergic and SOM-related properties. We show that GABAergic and somatostatinergic neurotransmission originating from SOM+ local interneurons preferentially inhibit layerIII-V pyramidal cells, known to be involved in memory formation. We propose that this dendritic GABA–SOM dual inhibitory network motif within the MEC serves to selectively modulate working-memory formation without affecting the retrieval of already learned spatial navigation tasks. Miklós Kecskés et al. show that somatostatin-expressing interneurons in the medial entorhinal cortex regulate deep-layer pyramidal neurons and impact short-term memory in mice.
Collapse
|
27
|
Munn RGK, Giocomo LM. Multiple head direction signals within entorhinal cortex: origin and function. Curr Opin Neurobiol 2020; 64:32-40. [DOI: 10.1016/j.conb.2020.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 12/24/2022]
|
28
|
Munn RGK, Mallory CS, Hardcastle K, Chetkovich DM, Giocomo LM. Entorhinal velocity signals reflect environmental geometry. Nat Neurosci 2020; 23:239-251. [PMID: 31932764 PMCID: PMC7007349 DOI: 10.1038/s41593-019-0562-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/21/2019] [Indexed: 01/05/2023]
Abstract
The entorhinal cortex contains neurons that represent self-location, including grid cells that fire in periodic locations and velocity signals that encode running speed and head direction. Although the size and shape of the environment influence grid patterns, whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments remains unknown. Here we report that speed cells rescale after changes to the size and shape of the environment. Moreover, head direction cells reorganize in an experience-dependent manner to align with the axis of environmental change. A knockout mouse model allows dissociation of the coordination between cell types, with grid and speed cells, but not head direction cells, responding in concert to environmental change. These results point to malleability in the coding features of multiple entorhinal cell types and have implications for which cell types contribute to the velocity signal used by computational models of grid cells.
Collapse
Affiliation(s)
- Robert G K Munn
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Caitlin S Mallory
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kiah Hardcastle
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
29
|
Fukawa A, Aizawa T, Yamakawa H, Eguchi Yairi I. Identifying Core Regions for Path Integration on Medial Entorhinal Cortex of Hippocampal Formation. Brain Sci 2020; 10:brainsci10010028. [PMID: 31948100 PMCID: PMC7016820 DOI: 10.3390/brainsci10010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
Path integration is one of the functions that support the self-localization ability of animals. Path integration outputs position information after an animal’s movement when initial-position and movement information is input. The core region responsible for this function has been identified as the medial entorhinal cortex (MEC), which is part of the hippocampal formation that constitutes the limbic system. However, a more specific core region has not yet been identified. This research aims to clarify the detailed structure at the cell-firing level in the core region responsible for path integration from fragmentarily accumulated experimental and theoretical findings by reviewing 77 papers. This research draws a novel diagram that describes the MEC, the hippocampus, and their surrounding regions by focusing on the MEC’s input/output (I/O) information. The diagram was created by summarizing the results of exhaustively scrutinizing the papers that are relative to the I/O relationship, the connection relationship, and cell position and firing pattern. From additional investigations, we show function information related to path integration, such as I/O information and the relationship between multiple functions. Furthermore, we constructed an algorithmic hypothesis on I/O information and path-integration calculation method from the diagram and the information of functions related to path integration. The algorithmic hypothesis is composed of regions related to path integration, the I/O relations between them, the calculation performed there, and the information representations (cell-firing pattern) in them. Results of examining the hypothesis confirmed that the core region responsible for path integration was either stellate cells in layer II or pyramidal cells in layer III of the MEC.
Collapse
Affiliation(s)
- Ayako Fukawa
- Graduate School of Science and Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan;
- Correspondence: ; Tel.: +81-3-3238-3300
| | - Takahiro Aizawa
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Hiroshi Yamakawa
- The Whole Brain Architecture Initiative, a Specified Nonprofit Organization, Nishikoiwa 2-19-21, Edogawa-ku, Tokyo 133-0057, Japan;
- Dwango Co., Ltd., KABUKIZA TOWER, 4-12-15 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan;
| |
Collapse
|
30
|
Kang L, DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. eLife 2019; 8:46351. [PMID: 31736462 PMCID: PMC6901334 DOI: 10.7554/elife.46351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Grid cells fire in sequences that represent rapid trajectories in space. During locomotion, theta sequences encode sweeps in position starting slightly behind the animal and ending ahead of it. During quiescence and slow wave sleep, bouts of synchronized activity represent long trajectories called replays, which are well-established in place cells and have been recently reported in grid cells. Theta sequences and replay are hypothesized to facilitate many cognitive functions, but their underlying mechanisms are unknown. One mechanism proposed for grid cell formation is the continuous attractor network. We demonstrate that this established architecture naturally produces theta sequences and replay as distinct consequences of modulating external input. Driving inhibitory interneurons at the theta frequency causes attractor bumps to oscillate in speed and size, which gives rise to theta sequences and phase precession, respectively. Decreasing input drive to all neurons produces traveling wavefronts of activity that are decoded as replays.
Collapse
Affiliation(s)
- Louis Kang
- Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Michael R DeWeese
- Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
31
|
Ohara S, Gianatti M, Itou K, Berndtsson CH, Doan TP, Kitanishi T, Mizuseki K, Iijima T, Tsutsui KI, Witter MP. Entorhinal Layer II Calbindin-Expressing Neurons Originate Widespread Telencephalic and Intrinsic Projections. Front Syst Neurosci 2019; 13:54. [PMID: 31680885 PMCID: PMC6803526 DOI: 10.3389/fnsys.2019.00054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022] Open
Abstract
In the present study we provide the first systematic and quantitative hodological study of the calbindin-expressing (CB+) principal neurons in layer II of the entorhinal cortex and compared the respective projections of the lateral and medial subdivisions of the entorhinal cortex. Using elaborate quantitative retrograde tracing, complemented by anterograde tracing, we report that the layer II CB+ population comprises neurons with diverse, mainly excitatory projections. At least half of them originate local intrinsic and commissural projections which distribute mainly to layer I and II. We further show that long-range CB+ projections from the two entorhinal subdivisions differ substantially in that MEC projections mainly target field CA1 of the hippocampus, whereas LEC CB+ projections distribute much more widely to a substantial number of known forebrain targets. This connectional difference between the CB+ populations in LEC and MEC is reminiscent of the overall projection pattern of the two entorhinal subdivisions.
Collapse
Affiliation(s)
- Shinya Ohara
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Michele Gianatti
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kazuki Itou
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Christin H Berndtsson
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Takuma Kitanishi
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Toshio Iijima
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
32
|
Cellular and Network Mechanisms May Generate Sparse Coding of Sequential Object Encounters in Hippocampal-Like Circuits. eNeuro 2019; 6:ENEURO.0108-19.2019. [PMID: 31324676 PMCID: PMC6709220 DOI: 10.1523/eneuro.0108-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
The localization of distinct landmarks plays a crucial role in encoding new spatial memories. In mammals, this function is performed by hippocampal neurons that sparsely encode an animal’s location relative to surrounding objects. Similarly, the dorsolateral pallium (DL) is essential for spatial learning in teleost fish. The DL of weakly electric gymnotiform fish receives both electrosensory and visual input from the preglomerular nucleus (PG), which has been hypothesized to encode the temporal sequence of electrosensory or visual landmark/food encounters. Here, we show that DL neurons in the Apteronotid fish and in the Carassius auratus (goldfish) have a hyperpolarized resting membrane potential (RMP) combined with a high and dynamic spike threshold that increases following each spike. Current-evoked spikes in DL cells are followed by a strong small-conductance calcium-activated potassium channel (SK)-mediated after-hyperpolarizing potential (AHP). Together, these properties prevent high frequency and continuous spiking. The resulting sparseness of discharge and dynamic threshold suggest that DL neurons meet theoretical requirements for generating spatial memory engrams by decoding the landmark/food encounter sequences encoded by PG neurons. Thus, DL neurons in teleost fish may provide a promising, simple system to study the core cell and network mechanisms underlying spatial memory.
Collapse
|
33
|
Kang L, Balasubramanian V. A geometric attractor mechanism for self-organization of entorhinal grid modules. eLife 2019; 8:46687. [PMID: 31373556 PMCID: PMC6776444 DOI: 10.7554/elife.46687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/01/2019] [Indexed: 11/13/2022] Open
Abstract
Grid cells in the medial entorhinal cortex (MEC) respond when an animal occupies a periodic lattice of 'grid fields' in the environment. The grids are organized in modules with spatial periods, or scales, clustered around discrete values separated on average by ratios in the range 1.4-1.7. We propose a mechanism that produces this modular structure through dynamical self-organization in the MEC. In attractor network models of grid formation, the grid scale of a single module is set by the distance of recurrent inhibition between neurons. We show that the MEC forms a hierarchy of discrete modules if a smooth increase in inhibition distance along its dorso-ventral axis is accompanied by excitatory interactions along this axis. Moreover, constant scale ratios between successive modules arise through geometric relationships between triangular grids and have values that fall within the observed range. We discuss how interactions required by our model might be tested experimentally.
Collapse
Affiliation(s)
- Louis Kang
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States.,Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, United States
| | - Vijay Balasubramanian
- David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|