1
|
Yagi T, Nakabuchi R, Muranaka Y, Tanaka G, Katoh Y, Nakayama K, Takatsu H, Shin HW. Lipid flippases ATP9A and ATP9B form a complex and contribute to the exocytic pathway from the Golgi. Life Sci Alliance 2025; 8:e202403163. [PMID: 40234049 PMCID: PMC12000689 DOI: 10.26508/lsa.202403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Type IV P-type ATPases (P4-ATPases) serve as lipid flippases, translocating membrane lipids from the exoplasmic (or luminal) leaflet to the cytoplasmic leaflet of lipid bilayers. In mammals, these P4-ATPases are localized to distinct subcellular compartments. ATP8A1 and ATP9A, members of the P4-ATPase family, are involved in endosome-mediated membrane trafficking, although the roles of P4-ATPases in the exocytic pathway remain to be clarified. ATP9A and ATP9B are located in the TGN, with ATP9A also present in endosomal compartments. This study revealed the overlapping roles of ATP9A and ATP9B in transporting VSVG from the Golgi to the plasma membrane within the exocytic pathway. Furthermore, we demonstrated that the flippase activities of ATP9A and ATP9B were crucial for the transport process. Notably, we discovered the formation of homomeric and/or heteromeric complexes between ATP9A and ATP9B. Therefore, ATP9A and ATP9B play a role in the exocytic pathway from the Golgi to the plasma membrane, forming either homomeric or heteromeric complexes.
Collapse
Affiliation(s)
- Tsukasa Yagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Riki Nakabuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yumeka Muranaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Gaku Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Jian L, Wang B, Gao Y, Xue Y, Guan Y, Qu Y, Liu K, Yan L, Li S, Luo H. Rab8a and Vps35 influence intracellular transport of vitamin E via α-Tocopherol transport protein in hepatocytes. Int J Biol Macromol 2025; 311:143021. [PMID: 40258550 DOI: 10.1016/j.ijbiomac.2025.143021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Of all the forms of vitamin E, α-tocopherol is distinguished as the primary ligand for the α-tocopherol transport protein (α-TTP), a pivotal factor in its secretion into the bloodstream and subsequent systemic distribution. Nevertheless, the intricate molecular mechanisms governing the transport of α-tocopherol via α-TTP have yet to be fully elucidated. In this research, Co-Immunoprecipitation (Co-IP)/LC-MS and His-pull-down assays were utilized to identify proteins interacting with α-TTP. Immunofluorescence staining and Co-IP/Western blotting further confirmed these interactions. Meanwhile, RNA-seq was utilized to discover α-tocopherol-related genes. Genes knockdown was conducted to examine the influence of related genes on vitamin E transport. The concentrations of intracellular and extracellular vitamin E were quantified using LC-MS and specific assay kits. Immunofluorescence staining showed colocalization of Rab8a, SNX3, SNX5, SNX17, and SNX27 with α-TTP, whereas Co-IP/Western blot analysis indicated a specific interaction among Vps35, Rab8a and α-TTP. Notably, the knockdown of Rab8a, SNX5, SNX17, and SNX27 individually influenced the vitamin E content both intracellularly and extracellularly, whereas knockdown of SNX3 did not show such effects in hepatocytes. This research highlights the crucial roles of Rab8a and Vps35 in α-tocopherol's intracellular transport probably by direct interaction with α-TTP, and their association with Retromer-SNX27, Commander-SNX17, and ESCPE1 complexes.
Collapse
Affiliation(s)
- Luyang Jian
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuefeng Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Xue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjuan Guan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanghua Qu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Leyan Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuanghong Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Chen KE, Tillu VA, Gopaldass N, Chowdhury SR, Leneva N, Kovtun O, Ruan J, Guo Q, Ariotti N, Mayer A, Collins BM. Molecular basis for the assembly of the Vps5-Vps17 SNX-BAR proteins with Retromer. Nat Commun 2025; 16:3568. [PMID: 40234461 PMCID: PMC12000511 DOI: 10.1038/s41467-025-58846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Retromer mediates endosomal retrieval of transmembrane proteins in all eukaryotes and was first discovered in yeast in complex with the Vps5 and Vps17 sorting nexins (SNXs). Cryoelectron tomography (cryoET) studies of Retromer-Vps5 revealed a pseudo-helical coat on membrane tubules where dimers of the Vps26 subunit bind Vps5 membrane-proximal domains. However, the Vps29 subunit is also required for Vps5-Vps17 association despite being far from the membrane. Here, we show that Vps5 binds both Vps29 and Vps35 subunits through its unstructured N-terminal domain. A Pro-Leu (PL) motif in Vps5 binds Vps29 and is required for association with Retromer on membrane tubules in vitro, and for the proper recycling of the Vps10 cargo in Saccharomyces cerevisiae. CryoET of Retromer tubules with Vps5-Vps17 heterodimers show a similar architecture to the coat with Vps5-Vps5 homodimers, however, the spatial relationship between Retromer units is highly restricted, likely due to more limited orientations for docking. These results provide mechanistic insights into how Retromer and SNX-BAR association has evolved across species.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Vikas A Tillu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Natalya Leneva
- Research Group Molecular Mechanism of Membrane Trafficking, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksiy Kovtun
- Research Group Molecular Mechanism of Membrane Trafficking, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
4
|
Viduka I, Štimac I, Jurić SL, Gulić T, Lisnić B, Zagorac GB, Lučin HM, Lučin P. Contribution of Sorting Nexin 3 in the Cytomegalovirus Assembly. Biomedicines 2025; 13:936. [PMID: 40299528 PMCID: PMC12024572 DOI: 10.3390/biomedicines13040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Cytomegalovirus (CMV) infection expands early endosomes (EEs) into tubular extensions that may contribute to the control of virus replication and virion assembly. Sequential recruitment of protein coats and sorting nexins (SNXs) creates membrane zones at the EEs that serve as scaffolds for membrane tubulation and retrieval of cargo proteins, including host cell signaling proteins and viral glycoproteins. This study aims to investigate whether the SNX3-dependent zone of EEs contributes to CMV replication and assembly. Methods: Protein localization was analyzed by confocal imaging and expression by Western blot. The contribution of SNX3 to murine CMV (MCMV) replication, assembly compartment (AC) formation, and virion release was analyzed by siRNA and shRNA depletion. The impact of other downstream SNXs that act in EE tubulation was investigated by combined siRNA knockdowns of SNX1, SNX2, SNX4, SNX17, and SNX27 on cell lines expressing shRNA for SNX3. Results: The SNX3-162 isoform acting at EEs was efficiently knocked down by siRNA and shRNA. The SNX3-dependent EE zone recruited SNX27 and contributed to Rab10-dependent tubulation within the pre-AC. SNX3 was not essential for MCMV replication but contributed to the SNX27-, SNX17- and SNX4-dependent release of virions. Silencing SNX3 further reduced the release of virions after silencing SNX27, SNX4, and SNX17, three SNXs that control recycling to the plasma membrane. Conclusions: SNX3 contributes to the formation of pre-AC and MCMV assembly. It acts sequentially with SNX27, SNX4, and SNX17 along the recycling pathway in the process of the production and release of infection virions, suggesting that multiple membrane sources may contribute to the secondary envelopment of MCMV virions.
Collapse
Affiliation(s)
- Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Silvija Lukanović Jurić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Tamara Gulić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
5
|
Li H, Peng MX, Yang RX, Chen JX, Wang YM, Wang PX, Hu YH, Pan DY, Liu PQ, Lu J. SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation. Acta Pharmacol Sin 2025; 46:964-975. [PMID: 39753981 PMCID: PMC11950316 DOI: 10.1038/s41401-024-01436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/17/2024] [Indexed: 03/17/2025]
Abstract
Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart. In this study we investigated the role of SNX3 in the development of pathological cardiac hypertrophy and heart failure. We generated abdominal aortic constriction (AAC) rat model and transverse aortic constriction (TAC) mouse model; hypertrophic neonatal rat cardiomyocytes (NRCMs) were induced by exposure to isoproterenol (10 μM). We showed that the expression of SNX3 was significantly upregulated in ISO-treated NRCMs and in the failing heart of AAC rats. Overexpression of SNX3 by intramyocardial injection of Ad-SNX3 induced heart failure in rats, and increased the susceptibility of NRCMs to ISO-induced myocardial injury in vitro. In contrast, conditional knockout of SNX3 in cardiac tissue in mice rescued the detrimental heart function in TAC mice, and knockdown of SNX3 protected against ISO-induced injury in NRCMs and AAC rats. We then conducted immunoprecipitation-based mass spectrometry and localized surface plasmon resonance, and demonstrated a direct interaction between SNX3-retromer and high mobility group box 1 (HMGB1), which mediated the efflux of nuclear HMGB1. Moreover, overexpression of HMGB1 in NRCMs inhibited the pro-hypertrophic effects of SNX3, whereas knockdown of HMGB1 abolished the protective effect of SNX3-deficiency. These results suggest that HMGB1 might be a direct cargo protein of SNX3-retromer, and its interaction with SNX3 promotes its efflux from the nucleus, leading to the pathological development of heart failure.
Collapse
Affiliation(s)
- Hong Li
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ming-Xia Peng
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rui-Xue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jian-Xing Chen
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Mei Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan-Xia Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Huai Hu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Di-Yi Pan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Pei-Qing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Maniates KA, Suryanarayanan S, Rumin A, Lewin M, Singson A, Wehman AM. Sperm activation for fertilization requires robust activity of the TAT-5 lipid flippase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641851. [PMID: 40093082 PMCID: PMC11908258 DOI: 10.1101/2025.03.06.641851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
During fertilization, sperm and egg membranes signal and fuse to form a zygote and begin embryonic development. Here, we investigated the role of lipid asymmetry in gametogenesis, fertilization, and embryogenesis. We find that phosphatidylethanolamine asymmetry is lost during meiosis prior to phosphatidylserine exposure. We show that TAT-5, the P4-ATPase that maintains phosphatidylethanolamine asymmetry, is required for both oocyte formation and sperm activation, albeit at different levels of flippase activity. Loss of TAT-5 significantly decreases fertility in both males and hermaphrodites and decreases sperm activation. TAT-5 localizes to the plasma membrane of primary spermatocytes but is sorted away from maturing spermatids during meiosis. Our findings demonstrate that phosphatidylethanolamine asymmetry plays key roles during gametogenesis and sperm activation, expanding the roles of lipid dynamics in developmental cell fusion.
Collapse
|
7
|
Cordovado A, Hérenger Y, Cormier C, López-Martín E, Stamberger H, Faivre L, Denommé-Pichon AS, Vitobello A, Abdallah HH, Barcia G, Courtin T, Martínez-Delgado B, Bermejo-Sánchez E, Barrero MJ, Gasser B, Bezieau S, Küry S, Weckhuysen S, Laumonnier F, Toutain A, Vuillaume ML. Heterozygous Missense Variants in the ATPase Phospholipid Transporting 9A Gene, ATP9A, Alter Dendritic Spine Maturation and Cause Dominantly Inherited Nonsyndromic Intellectual Disability. Hum Mutat 2025; 2025:7085599. [PMID: 40226306 PMCID: PMC11987072 DOI: 10.1155/humu/7085599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
Intellectual disability is a neurodevelopmental disorder, affecting 2%-3% of the population, with a genetic cause in the majority of cases. ATP9A (Online Mendelian Inheritance in Man (OMIM)∗609126, NM_006045.3) has recently been added to the list of candidate genes involved in this disorder with the identification of biallelic truncating variants in patients with a neurodevelopmental disorder. In this study, we propose a novel mode of inheritance for ATP9A-related disorders with the identification of five de novo heterozygous missense variants (p.(Thr393Arg), p.(Glu400Gln), p.(Lys461Glu), p.(Gly552Ala), and p.(His713Asp)), in patients with intellectual disability. In a patient with a similar phenotype, we also identified two truncating variants in ATP9A (p.(Arg145∗), p.(Glu901∗)), adding a novel family to the six already described in the literature with the recessive mode of inheritance. Functional studies were performed to assess the pathogenicity of these variants. Overexpression of four selected missense mutant forms of Atp9a in HeLa cells and in primary neuronal cultures led to a loss of mature dendritic spines. In HeLa cells, the endosomal localization of the protein encoded by three of these missense variants was preserved whereas the fourth remained blocked in the endoplasmic reticulum. To mimic the effect on neuronal morphology and spine density of nonsense variants, small hairpin RNAs (shRNAs) were used. They induced a decreased expression of ATP9A, affecting the neuronal arborization by decreasing the number of dendrites per neuron. Our results therefore demonstrate the pathogenicity of ATP9A heterozygous missense variants and confirm the role of ATP9A in neuronal maturation and in brain wiring during development. They strengthen the association of ATP9A with neurodevelopmental disorders and demonstrate that a double mode of inheritance should be considered for ATP9A-related disorders.
Collapse
Affiliation(s)
- Amélie Cordovado
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
| | - Yvan Hérenger
- Genetica AG, Human Genetics and Genetic Counselling Unit, Zurich, Switzerland
| | - Coline Cormier
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
| | - Estrella López-Martín
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Laurence Faivre
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Antonio Vitobello
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Hamza Hadj Abdallah
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Giulia Barcia
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Thomas Courtin
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | | | - Eva Bermejo-Sánchez
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María J. Barrero
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Stéphane Bezieau
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sébastien Küry
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Frédéric Laumonnier
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Annick Toutain
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Marie-Laure Vuillaume
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| |
Collapse
|
8
|
Jain BK, Duan HD, Valentine C, Samiha A, Li H, Graham TR. P4-ATPase control over phosphoinositide membrane asymmetry and neomycin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641220. [PMID: 40093091 PMCID: PMC11908233 DOI: 10.1101/2025.03.03.641220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Neomycin, an aminoglycoside antibiotic, has robust antibacterial properties, yet its clinical utility is curtailed by its nephrotoxicity and ototoxicity. The mechanism by which the polycationic neomycin enters specific eukaryotic cell types remains poorly understood. In budding yeast, NEO1 is required for neomycin resistance and encodes a phospholipid flippase that establishes membrane asymmetry. Here, we show that mutations altering Neo1 substrate recognition cause neomycin hypersensitivity by exposing phosphatidylinositol-4-phosphate (PI4P) in the plasma membrane extracellular leaflet. Human cells also expose extracellular PI4P upon knockdown of ATP9A, a Neo1 ortholog and ATP9A expression level correlates to neomycin sensitivity. In yeast, the extracellular PI4P is initially produced in the cytosolic leaflet of the plasma membrane and then delivered by Osh6-dependent nonvesicular transport to the endoplasmic reticulum (ER). Here, a portion of PI4P escapes degradation by the Sac1 phosphatase by entering the ER lumenal leaflet. COPII vesicles transport lumenal PI4P to the Golgi where Neo1 flips this substrate back to the cytosolic leaflet. Cryo-EM reveals that PI4P binds Neo1 within the substrate translocation pathway. Loss of Neo1 activity in the Golgi allows secretion of extracellular PI4P, which serves as a neomycin receptor and facilitates its endocytic uptake. These findings unveil novel mechanisms of aminoglycoside sensitivity and phosphoinositide homeostasis, with important implications for signaling by extracellular phosphoinositides.
Collapse
Affiliation(s)
- Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- These authors contributed equally: Bhawik K. Jain, H. Diessel Duan
| | - H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
- These authors contributed equally: Bhawik K. Jain, H. Diessel Duan
| | - Christina Valentine
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ariana Samiha
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
9
|
Shin HW, Takatsu H. Substrates, regulation, cellular functions, and disease associations of P4-ATPases. Commun Biol 2025; 8:135. [PMID: 39875509 PMCID: PMC11775268 DOI: 10.1038/s42003-025-07549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases. Initially identified as aminophospholipid translocases, P4-ATPases have since been found to translocate other phospholipids, including phosphatidylcholine, phosphatidylinositol, and even glycosphingolipids. Recent advances in structural analysis have significantly improved our understanding of the lipid transport machinery associated with P4-ATPases, as documented in recent reviews. In this review, we highlight the emerging evidence related to substrate diversity, the regulation of cellular localization, enzymatic activities, and their impact on organism homeostasis and diseases.
Collapse
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
10
|
Jiménez M, Kyoung CK, Nabukhotna K, Watkins D, Jain BK, Best JT, Graham TR. P4-ATPase endosomal recycling relies on multiple retromer-dependent localization signals. Mol Biol Cell 2024; 35:ar125. [PMID: 39110530 PMCID: PMC11481694 DOI: 10.1091/mbc.e24-05-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024] Open
Abstract
Type IV P-type ATPases (P4-ATPases) are lipid flippases that generate an asymmetric membrane organization essential for cell viability. The five budding yeast P4-ATPases traffic between the Golgi complex, plasma membrane, and endosomes but how they are recycled from the endolysosomal system to the Golgi complex is poorly understood. In this study, we find that P4-ATPase endosomal recycling is primarily driven by the retromer complex and the F-box protein Rcy1. Defects in P4-ATPase recycling result in their mislocalization to the vacuole and a substantial loss of membrane asymmetry. The P4-ATPases contain multiple predicted retromer sorting signals, and the characterization of these signals in Dnf1 and Dnf2 led to the identification of a novel retromer-dependent signal, IPM[ST] that acts redundantly with predicted motifs. Together, these results emphasize the importance of endosomal recycling for the functional localization of P4-ATPases and membrane organization.
Collapse
Affiliation(s)
- Mariana Jiménez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Claire K. Kyoung
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Kateryna Nabukhotna
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Davia Watkins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Bhawik K. Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
11
|
Reshi HA, Medishetti R, Ahuja A, Balasubramanian D, Babu K, Jaiswal M, Chatti K, Maddika S. EYA protein complex is required for Wntless retrograde trafficking from endosomes to Golgi. Dev Cell 2024; 59:2443-2459.e7. [PMID: 38870942 DOI: 10.1016/j.devcel.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/01/2023] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Retrograde transport of WLS (Wntless) from endosomes to trans-Golgi network (TGN) is required for efficient Wnt secretion during development. However, the molecular players connecting endosomes to TGN during WLS trafficking are limited. Here, we identified a role for Eyes Absent (EYA) proteins during retrograde trafficking of WLS to TGN in human cell lines. By using worm, fly, and zebrafish models, we found that the EYA-secretory carrier-associated membrane protein 3 (SCAMP3) axis is evolved in vertebrates. EYAs form a complex and interact with retromer on early endosomes. Retromer-bound EYA complex recruits SCAMP3 to endosomes, which is necessary for the fusion of WLS-containing endosomes to TGN. Loss of EYA complex or SCAMP3 leads to defective transport of WLS to TGN and failed Wnt secretion. EYA mutations found in patients with hearing loss form a dysfunctional EYA-retromer complex that fails to activate Wnt signaling. These findings identify the EYA complex as a component of retrograde trafficking of WLS from the endosome to TGN.
Collapse
Affiliation(s)
- Hilal Ahmad Reshi
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Aishwarya Ahuja
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore 560012, India
| | | | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kiranam Chatti
- Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India.
| |
Collapse
|
12
|
Zhu Q, Zhang R, Gu X, Zhao Z, Gao Q, Chen M, Wu Q, Xie T, Sui X. Honokiol enhances the sensitivity of cetuximab in KRAS G13D mutant colorectal cancer through destroying SNX3-retromer complex. Theranostics 2024; 14:5443-5460. [PMID: 39310106 PMCID: PMC11413778 DOI: 10.7150/thno.97180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale : the proto-oncogene KRAS is frequently mutated in colorectal cancer (CRC), leading to inherent resistance against monoclonal antibodies targeting the epidermal growth factor receptor (EGFR), such as cetuximab. Therefore, addressing the primary resistance and expanding the indications for target therapy have become critical challenges. Methods : the screening of a natural product library against KRAS mutant CRC cells was conducted, leading to the discovery of a small molecule compound that sensitive to the KRASG13D mutation site. The anti-tumor activity of this small molecule compound in combination with cetuximab was evaluated using the KRASG13D mutant CRC models both in vivo and in vitro. This evaluation includes an examination of its effects on cell proliferation, viability, apoptosis, cell cycle progression, and tumor growth. Furthermore, RNA sequencing, western blot analysis, immunofluorescence, real-time quantitative PCR, and pull-down assays were employed to explore the molecular mechanisms underlying the synergistic anti-tumor effect of this small molecule compound in combination with cetuximab. Results : our study screened 882 compounds in KRAS mutant CRC cells and identified honokiol, a small molecule compound that exhibits specific sensitivity to KRASG13D mutant CRC cells. Furthermore, we revealed that the synergistic augmentation of cetuximab's sensitivity in vivo and in vitro models of KRASG13D mutant CRC in combination with honokiol. Mechanistically, honokiol suppresses SNX3-retromer mediated trafficking, thereby impeding lysosomal proteolytic capacity and inhibiting autophagy and macropinocytosis fluxes. Moreover, honokiol inhibits the conversion of RAS GDP to RAS GTP, heightening the susceptibility of KRASG13D CRC mutant cells to cetuximab. Conclusions : honokiol enhances the sensitivity of cetuximab by destroying SNX3 retromer in KRASG13D mutant CRC preclinical model. These findings present a promising strategy for expanding the indications of target therapy in KRAS mutant colorectal cancer patients.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Quan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
13
|
Butkovič R, Walker AP, Healy MD, McNally KE, Liu M, Veenendaal T, Kato K, Liv N, Klumperman J, Collins BM, Cullen PJ. Mechanism and regulation of cargo entry into the Commander endosomal recycling pathway. Nat Commun 2024; 15:7180. [PMID: 39168982 PMCID: PMC11339278 DOI: 10.1038/s41467-024-50971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Commander is a multiprotein complex that orchestrates endosomal recycling of integral cargo proteins and is essential for normal development. While the structure of this complex has recently been described, how cargo proteins are selected for Commander-mediated recycling remains unclear. Here we identify the mechanism through which the unstructured carboxy-terminal tail of the cargo adaptor sorting nexin-17 (SNX17) directly binds to the Retriever sub-complex of Commander. SNX17 adopts an autoinhibited conformation where its carboxy-terminal tail occupies the cargo binding groove. Competitive cargo binding overcomes this autoinhibition, promoting SNX17 endosomal residency and the release of the tail for Retriever association. Furthermore, our study establishes the central importance of SNX17-Retriever association in the handover of integrin and lipoprotein receptor cargoes into pre-existing endosomal retrieval sub-domains. In describing the principal mechanism of cargo entry into the Commander recycling pathway we provide key insight into the function and regulation of this evolutionary conserved sorting pathway.
Collapse
Affiliation(s)
- Rebeka Butkovič
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Alexander P Walker
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Michael D Healy
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Biosciences, The University of Queensland, SLCA, Australia
| | - Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Meihan Liu
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Biosciences, The University of Queensland, SLCA, Australia
| | - Tineke Veenendaal
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Kohji Kato
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Biosciences, The University of Queensland, SLCA, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| |
Collapse
|
14
|
He X, Liao Y, Shen Y, Shao J, Wang S, Bao Y. Transcriptomic analysis of mRNA and miRNA reveals new insights into the regulatory mechanisms of Anadara granosa responses to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101311. [PMID: 39154435 DOI: 10.1016/j.cbd.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Temperature fluctuations resulting from climate change and global warming pose significant threats to various species. The blood clam, Anadara granosa, a commercially important marine bivalve, predominantly inhabits intertidal mudflats that are especially susceptible to elevated temperatures. This vulnerability has led to noticeable declines in the survival rates of A. granosa larvae, accompanied by an increase in malformations. Despite these observable trends, there is a lack of comprehensive research on the regulatory mechanisms underlying A. granosa's responses to heat stress. In this study, we examined the survival rates of A. granosa under varying high temperature conditions, selecting 34 °C as heat stress temperature. Enzyme activity assays have shed light on A. granosa's adaptive response to heat stress, revealing its ability to maintain redox balance and transition from aerobic to anaerobic metabolic pathways. Subsequently, mRNA and miRNA transcriptome analyses were conducted, elucidating several key responses of A. granosa to heat stress. These responses include the upregulation of transcription and protein synthesis, downregulation of proteasome activity, and metabolic pattern adjustments. Furthermore, we identified miRNA-mRNA networks implicated in heat stress responses, potentially serving as valuable candidate markers for A. granosa's heat stress response. Notably, we validated the involvement of agr-miR-3199 in A. granosa's heat stress response through its regulation of the target gene Foxj1. These findings not only deepen our understanding of the molecular mechanisms underlying the blood clam's response to heat stress but also offer valuable insights for enhancing heat stress resilience in the blood clam aquaculture industry. Moreover, they contribute to improved cultivation strategies for molluscs in the face of global warming and have significant implications for the conservation of marine resources and the preservation of ecological balance.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yiping Shen
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Junfa Shao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
15
|
Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics 2024; 227:iyae088. [PMID: 38884207 PMCID: PMC11304975 DOI: 10.1093/genetics/iyae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Extracellular vesicles (EVs) encompass a diverse array of membrane-bound organelles released outside cells in response to developmental and physiological cell needs. EVs play important roles in remodeling the shape and content of differentiating cells and can rescue damaged cells from toxic or dysfunctional content. EVs can send signals and transfer metabolites between tissues and organisms to regulate development, respond to stress or tissue damage, or alter mating behaviors. While many EV functions have been uncovered by characterizing ex vivo EVs isolated from body fluids and cultured cells, research using the nematode Caenorhabditis elegans has provided insights into the in vivo functions, biogenesis, and uptake pathways. The C. elegans EV field has also developed methods to analyze endogenous EVs within the organismal context of development and adult physiology in free-living, behaving animals. In this review, we summarize major themes that have emerged for C. elegans EVs and their relevance to human health and disease. We also highlight the diversity of biogenesis mechanisms, locations, and functions of worm EVs and discuss open questions and unexplored topics tenable in C. elegans, given the nematode model is ideal for light and electron microscopy, genetic screens, genome engineering, and high-throughput omics.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
16
|
Shinde AP, Kučerová J, Dacks JB, Tachezy J. The retromer and retriever systems are conserved and differentially expanded in parabasalids. J Cell Sci 2024; 137:jcs261949. [PMID: 38884339 PMCID: PMC11267458 DOI: 10.1242/jcs.261949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.
Collapse
Affiliation(s)
- Abhishek Prakash Shinde
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Joel Bryan Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005České Budějovice (Budweis), Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
17
|
Huang S, Zou F, Zhou H, He J. SNX3 Promotes Doxorubicin-Induced Cardiomyopathy by Regulating GPX4-Mediated Ferroptosis. Int J Med Sci 2024; 21:1629-1639. [PMID: 39006843 PMCID: PMC11241105 DOI: 10.7150/ijms.95466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
The complete molecular mechanism underlying doxorubicin-induced cardiomyopathy remains incompletely elucidated. In this investigation, we engineered mice with cardiomyocyte-specific sorting nexin 3 knockout (SNX3Cko ) to probe the potential protective effects of SNX3 ablation on doxorubicin-triggered myocardial injury, focusing on GPX4-dependent ferroptosis. Our findings indicate that SNX3 deletion normalized heart contractile/relaxation function and thwarted the escalation of cardiac injury biomarkers following doxorubicin exposure. Additionally, SNX3 deletion in the heart mitigated the inflammatory response and oxidative stress in the presence of doxorubicin. At the molecular level, the detrimental effects of doxorubicin-induced cell death, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction were alleviated by SNX3 deficiency. Molecular analysis revealed the activation of GPX4-mediated ferroptosis by doxorubicin, whereas loss of SNX3 prevented the initiation of GPX4-dependent ferroptosis. Furthermore, treatment with erastin, a ferroptosis inducer, markedly reduced cell viability, exacerbated ER stress, and induced mitochondrial dysfunction in SNX3-depleted cardiomyocytes upon doxorubicin exposure. In summary, our results demonstrate that SNX3 deficiency shielded the heart from doxorubicin-induced myocardial dysfunction by modulating GPX4-associated ferroptosis.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Fan Zou
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinyuan He
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630, Guangzhou, China
| |
Collapse
|
18
|
Zhang W, Tariq M, Roy B, Shen J, Khan A, Altaf Malik N, He S, Baig SM, Fang X, Zhang J. Whole exome sequencing identified a homozygous novel variant in DOP1A gene in the Pakistan family with neurodevelopmental disabilities: case report and literature review. Front Genet 2024; 15:1351710. [PMID: 38818041 PMCID: PMC11137318 DOI: 10.3389/fgene.2024.1351710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
Background Hereditary neurodevelopmental disorders (NDDs) are prevalent in poorly prognostic pediatric diseases, but the pathogenesis of NDDs is still unclear. Irregular myelination could be one of the possible causes of NDDs. Case presentation Here, whole exome sequencing was carried out for a consanguineous Pakistani family with NDDs to identify disease-associated variants. The co-segregation of candidate variants in the family was validated using Sanger sequencing. The potential impact of the gene on NDDs has been supported by conservation analysis, protein prediction, and expression analysis. A novel homozygous variant DOP1A(NM_001385863.1):c.2561A>G was identified. It was concluded that the missense variant might affect the protein-protein binding sites of the critical MEC interaction region of DOP1A, and DOP1A-MON2 may cause stability deficits in Golgi-endosome protein traffic. Proteolipid protein (PLP) and myelin-associate glycoprotein (MAG) could be targets of the DOP1A-MON2 Golgi-endosome traffic complex, especially during the fetal stage and the early developmental stages. This further supports the perspective that disorganized myelinogenesis due to congenital DOP1A deficiency might cause neurodevelopmental disorders (NDDs). Conclusion Our case study revealed the potential pathway of myelinogenesis-relevant NDDs and identified DOP1A as a potential NDDs-relevant gene in humans.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Genomics, Shenzhen, China
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Bhaskar Roy
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Juan Shen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ayaz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Sijie He
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang, China
- Clin Lab, BGI Genomics, Shijiazhuang, China
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Xiaodong Fang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jianguo Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Park S, Noblett N, Pitts L, Colavita A, Wehman AM, Jin Y, Chisholm AD. Dopey-dependent regulation of extracellular vesicles maintains neuronal morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.591898. [PMID: 38766017 PMCID: PMC11100700 DOI: 10.1101/2024.05.07.591898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mature neurons maintain their distinctive morphology for extended periods in adult life. Compared to developmental neurite outgrowth, axon guidance, and target selection, relatively little is known of mechanisms that maintain mature neuron morphology. Loss of function in C. elegans DIP-2, a member of the conserved lipid metabolic regulator Dip2 family, results in progressive overgrowth of neurites in adults. We find that dip-2 mutants display specific genetic interactions with sax-2, the C. elegans ortholog of Drosophila Furry and mammalian FRY. Combined loss of DIP-2 and SAX-2 results in severe disruption of neuronal morphology maintenance accompanied by increased release of neuronal extracellular vesicles (EVs). By screening for suppressors of dip-2 sax-2 double mutant defects we identified gain-of-function (gf) mutations in the conserved Dopey family protein PAD-1 and its associated phospholipid flippase TAT-5/ATP9A. In dip-2 sax-2 double mutants carrying either pad-1(gf) or tat-5(gf) mutation, EV release is reduced and neuronal morphology across multiple neuron types is restored to largely normal. PAD-1(gf) acts cell autonomously in neurons. The domain containing pad-1(gf) is essential for PAD-1 function, and PAD-1(gf) protein displays increased association with the plasma membrane and inhibits EV release. Our findings uncover a novel functional network of DIP-2, SAX-2, PAD-1, and TAT-5 that maintains morphology of neurons and other types of cells, shedding light on the mechanistic basis of neurological disorders involving human orthologs of these genes.
Collapse
Affiliation(s)
- Seungmee Park
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathaniel Noblett
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Pitts
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Antonio Colavita
- Neuroscience Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Naß J, Terglane J, Zeuschner D, Gerke V. Evoked Weibel-Palade Body Exocytosis Modifies the Endothelial Cell Surface by Releasing a Substrate-Selective Phosphodiesterase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306624. [PMID: 38359017 PMCID: PMC11040351 DOI: 10.1002/advs.202306624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Weibel Palade bodies (WPB) are lysosome-related secretory organelles of endothelial cells. Commonly known for their main cargo, the platelet and leukocyte receptors von-Willebrand factor (VWF) and P-selectin, WPB play a crucial role in hemostasis and inflammation. Here, the authors identify the glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) as a WPB cargo protein and show that GDPD5 is transported to WPB following uptake from the plasma membrane via an unique endocytic transport route. GDPD5 cleaves GPI-anchored, plasma membrane-resident proteins within their GPI-motif, thereby regulating their local activity. The authors identify a novel target of GDPD5 , the complement regulator CD59, and show that it is released from the endothelial surface by GDPD5 following WPB exocytosis. This results in increased deposition of complement components and can enhance local inflammatory and thrombogenic responses. Thus, stimulus-induced WPB exocytosis can modify the endothelial cell surface by GDPD5-mediated selective release of a subset of GPI-anchored proteins.
Collapse
Affiliation(s)
- Johannes Naß
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Dagmar Zeuschner
- Electron Microscopy FacilityMax Planck Institute for Molecular BiomedicineRoentgenstr. 2048149MuensterGermany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| |
Collapse
|
21
|
Yoshida K, Suehiro Y, Dejima K, Yoshina S, Mitani S. Distinct pathways for export of silencing RNA in Caenorhabditis elegans systemic RNAi. iScience 2023; 26:108067. [PMID: 37854694 PMCID: PMC10579535 DOI: 10.1016/j.isci.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023] Open
Abstract
Dietary supplied double-stranded RNA (dsRNA) can trigger RNA interference (RNAi) systemically in some animals, including the nematode Caenorhabditis elegans. Although this phenomenon has been utilized as a major tool for gene silencing in C. elegans, how cells spread the silencing RNA throughout the organism is largely unknown. Here, we identify two novel systemic RNAi-related factors, REXD-1 and TBC-3, and show that these two factors together with SID-5 act redundantly to promote systemic spreading of dsRNA. Animals that are defective in all REXD-1, TBC-3, and SID-5 functions show strong deficiency in export of dsRNA from intestinal cells, whereas cellular uptake and processing of dsRNA and general secretion events other than dsRNA secretion are still functional in the triple mutant animals. Our findings reveal pathways that specifically regulate the export of dsRNA in parallel, implying the importance of spreading RNA molecules for intercellular communication in organisms.
Collapse
Affiliation(s)
- Keita Yoshida
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
22
|
Ayoubi R, Fotouhi M, Southern K, McPherson PS, Laflamme C. Identification of high-performing antibodies for Vacuolar protein sorting-associated protein 35 (hVPS35) for use in Western Blot, immunoprecipitation and immunofluorescence. F1000Res 2023; 12:452. [PMID: 38434631 PMCID: PMC10905012 DOI: 10.12688/f1000research.133696.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 03/05/2024] Open
Abstract
Vacuolar protein sorting-associated protein 35 is a subunit of the retromer complex, a vital constituent of the endosomal protein sorting pathway. The D620N mutation in the VPS35 gene has been reported to be linked to type 17 Parkinson's Disease progression, the exact molecular mechanism remains to be solved. The scientific community would benefit from the accessibility of validated and high-quality anti-hVPS35 antibodies. In this study, we characterized thirteen hVPS35 commercial antibodies for Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.
Collapse
Affiliation(s)
- Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | | | - ABIF consortium
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| |
Collapse
|
23
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Bianchi L, Damiani I, Castiglioni S, Carleo A, De Salvo R, Rossi C, Corsini A, Bellosta S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int J Mol Sci 2023; 24:ijms24076431. [PMID: 37047404 PMCID: PMC10094728 DOI: 10.3390/ijms24076431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.
Collapse
|
25
|
Xiao Y, Hu M, Lin Q, Zhang T, Li S, Shu L, Song X, Xu X, Meng W, Li X, Xu H, Mo X. Dopey2 and Pcdh7 orchestrate the development of embryonic neural stem cells/ progenitors in zebrafish. iScience 2023; 26:106273. [PMID: 36936789 PMCID: PMC10014312 DOI: 10.1016/j.isci.2023.106273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
DOPEY2 has been shown to be associated with Down syndrome and PCDH7 might be involved in Rett syndrome and MECP2 duplication syndrome. The mechanism how both proteins play roles in these syndromes are largely unknown. Here, we show that Dopey2 and Pcdh7 balance the proliferation and differentiation of neural stem cells and progenitors during embryonic neurogenesis to generate proper size and architecture of zebrafish brains. Dopey2 and Pcdh7 mutually restricted expression of each other in zebrafish embryos. Dopey2 was responsible for the proliferation of neural stem cells/progenitors, whereas Pcdh7 was responsible for the differentiation of neural stem cells/progenitors. Both proteins were shown to orchestrate the proper development and arrangement of neural cells in zebrafish embryonic brains. The results provide an insight into mechanisms to understand how the embryonic brain is constituted and how developmental defects occur in the brains of patients with Down syndrome, Rett syndrome, or MECP2 duplication syndrome.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Min Hu
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiyan Lin
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Siying Li
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Linjuan Shu
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiuli Song
- Hangzhou HuaAn Biotechnology Co.Ltd, Hangzhou, China
| | - Xiaoyong Xu
- Hangzhou HuaAn Biotechnology Co.Ltd, Hangzhou, China
| | - Wentong Meng
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xue Li
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Corresponding author
| |
Collapse
|
26
|
Meng T, Chen X, He Z, Huang H, Lin S, Liu K, Bai G, Liu H, Xu M, Zhuang H, Zhang Y, Waqas A, Liu Q, Zhang C, Sun XD, Huang H, Umair M, Yan Y, Feng D. ATP9A deficiency causes ADHD and aberrant endosomal recycling via modulating RAB5 and RAB11 activity. Mol Psychiatry 2023; 28:1219-1231. [PMID: 36604604 PMCID: PMC9816018 DOI: 10.1038/s41380-022-01940-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.
Collapse
Affiliation(s)
- Tian Meng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaoting Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhengjie He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shiyin Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Kunru Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Guo Bai
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Mindong Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ahmed Waqas
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Qian Liu
- Department of Cerebrovascular Disease Center, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Chuan Zhang
- Medical Genetics Center, Gansu Provincial Maternity and Child-care Hospital; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, 730050, China
| | - Xiang-Dong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, 11481, Saudi Arabia. .,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 22209, Pakistan.
| | - Yousheng Yan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
27
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Pitts LR, Frondoni J, Nguyen AT, Wehman AM. The ATPase activity of the phosphatidylethanolamine flippase TAT-5 inhibits extracellular vesicle budding from the plasma membrane. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000779. [PMID: 37038482 PMCID: PMC10082395 DOI: 10.17912/micropub.biology.000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
Cells release extracellular vesicles (EVs) from their surface, but the mechanisms that govern EV release by plasma membrane budding are poorly understood. The lipid flippase TAT-5 inhibits EV release from the plasma membrane in C. elegans , but how the level of flippase activity regulates EV release was unknown. We generated point mutations in the DGET motif of TAT-5 predicted to lead to a partial or complete loss of ATPase activity. We discovered that tat-5(E246Q) mutants were sterile, while tat-5(D244T) mutants produced embryos that arrested during development. Using degron-based reporters, we found that EV release was increased in tat-5(D244T) mutant embryos and that phagocytosis was also disrupted. These data suggest that a low level of flippase activity can promote fertility, while a higher level of flippase activity is required to inhibit EV release, allow phagocytosis, and carry out embryonic development.
Collapse
Affiliation(s)
- Lauren R Pitts
- Biological Sciences, University of Denver, Denver, Colorado, United States
| | - Julia Frondoni
- Biological Sciences, University of Denver, Denver, Colorado, United States
| | - Alexander T Nguyen
- Biological Sciences, University of Denver, Denver, Colorado, United States
| | - Ann M Wehman
- Biological Sciences, University of Denver, Denver, Colorado, United States
- Correspondence to: Ann M Wehman (
)
| |
Collapse
|
29
|
Chansaenroj A, Kornsuthisopon C, Roytrakul S, Phothichailert S, Rochanavibhata S, Fournier BPJ, Srithanyarat SS, Nowwarote N, Osathanon T. Indirect Immobilised Jagged-1 Enhances Matrisome Proteins Associated with Osteogenic Differentiation of Human Dental Pulp Stem Cells: A Proteomic Study. Int J Mol Sci 2022; 23:ijms232213897. [PMID: 36430375 PMCID: PMC9694941 DOI: 10.3390/ijms232213897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The indirect immobilisation of Jagged-1 (Jagged-1) promoted osteogenic differentiation of human dental pulp cells (hDPs). Furthermore, the analysis of the Reactome pathway of RNA sequencing data indicates the upregulated genes involved with the extracellular matrix (ECM). Hence, our objective was to investigate the effects of Jagged-1 on proteomic profiles of human dental pulp stem cells (hDPSC). hDPSCs were cultured on the surface coated with human IgG Fc fragment (hFc) and the surface coated with rhJagged1/Fc recombinant protein-coated surface. Cells were differentiated to the osteogenic lineage using an osteogenic differentiation medium (OM) for 14 days, and cells cultured in a growth medium were used as a control. The protein component of the cultured cells was extracted into the cytosol, membrane, nucleus, and cytoskeletal compartment. Subsequently, the proteomic analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS). Metascape gene list analysis reported that Jagged-1 stimulated the expression of the membrane trafficking protein (DOP1B), which can indirectly improve osteogenic differentiation. hDPSCs cultured on Jagged-1 surface under OM condition expressed COL27A1, MXRA5, COL7A1, and MMP16, which played an important role in osteogenic differentiation. Furthermore, common matrisome proteins of all cellular components were related to osteogenesis/osteogenic differentiation. Additionally, the gene ontology categorised by the biological process of cytosol, membrane, and cytoskeleton compartments was associated with the biomineralisation process. The gene ontology of different culture conditions in each cellular component showed several unique gene ontologies. Remarkably, the Jagged-1_OM culture condition showed the biological process related to odontogenesis in the membrane compartment. In conclusion, the Jagged-1 induces osteogenic differentiation could, mainly through the regulation of protein in the membrane compartment.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Suphalak Phothichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
| | | | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006 Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (N.N.); (T.O.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (N.N.); (T.O.)
| |
Collapse
|
30
|
Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. THE PLANT CELL 2022; 34:3718-3736. [PMID: 35861414 PMCID: PMC9516151 DOI: 10.1093/plcell/koac208] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube guidance regulates the growth direction and ovule targeting of pollen tubes in pistils, which is crucial for the completion of sexual reproduction in flowering plants. The Arabidopsis (Arabidopsis thaliana) pollen-specific receptor kinase (PRK) family members PRK3 and PRK6 are specifically tip-localized and essential for pollen tube growth and guidance. However, the mechanisms controlling the polar localization of PRKs at the pollen tube tip are unclear. The Arabidopsis P4-ATPase ALA3 helps establish the polar localization of apical phosphatidylserine (PS) in pollen tubes. Here, we discovered that loss of ALA3 function caused pollen tube defects in growth and ovule targeting and significantly affected the polar localization pattern of PRK3 and PRK6. Both PRK3 and PRK6 contain two polybasic clusters in the intracellular juxtamembrane domain, and they bound to PS in vitro. PRK3 and PRK6 with polybasic cluster mutations showed reduced or abolished binding to PS and altered polar localization patterns, and they failed to effectively complement the pollen tube-related phenotypes of prk mutants. These results suggest that ALA3 influences the precise localization of PRK3, PRK6, and other PRKs by regulating the distribution of PS, which plays a key role in regulating pollen tube growth and guidance.
Collapse
Affiliation(s)
| | | | - Tao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongkai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingxia Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Bi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
31
|
Molière A, Beer KB, Wehman AM. Dopey proteins are essential but overlooked regulators of membrane trafficking. J Cell Sci 2022; 135:274973. [PMID: 35388894 DOI: 10.1242/jcs.259628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dopey family proteins play crucial roles in diverse processes from morphogenesis to neural function and are conserved from yeast to mammals. Understanding the mechanisms behind these critical functions could have major clinical significance, as dysregulation of Dopey proteins has been linked to the cognitive defects in Down syndrome, as well as neurological diseases. Dopey proteins form a complex with the non-essential GEF-like protein Mon2 and an essential lipid flippase from the P4-ATPase family. Different combinations of Dopey, Mon2 and flippases have been linked to regulating membrane remodeling, from endosomal recycling to extracellular vesicle formation, through their interactions with lipids and other membrane trafficking regulators, such as ARL1, SNX3 and the kinesin-1 light chain KLC2. Despite these important functions and their likely clinical significance, Dopey proteins remain understudied and their roles elusive. Here, we review the major scientific discoveries relating to Dopey proteins and detail key open questions regarding their function to draw attention to these fascinating enigmas.
Collapse
Affiliation(s)
- Adrian Molière
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katharina B Beer
- Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.,Rudolf Virchow Center, Julius Maximilian University of Würzburg, D-97080, Würzburg, Germany
| |
Collapse
|
32
|
EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene 2022; 41:220-232. [PMID: 34718348 PMCID: PMC8883427 DOI: 10.1038/s41388-021-02086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor receptor (EGFR) has critical roles in epithelial cell physiology. Over-expression and over-activation of EGFR have been implicated in diverse cancers, including triple-negative breast cancers (TNBCs), prompting anti-EGFR therapies. Therefore, developing potent therapies and addressing the inevitable drug resistance mechanisms necessitates deciphering of EGFR related networks. Here, we describe Sorting Nexin 3 (SNX3), a member of the recycling retromer complex, as a critical player in the epidermal growth factor (EGF) stimulated EGFR network in TNBCs. We show that SNX3 is an immediate and sustained target of EGF stimulation initially at the protein level and later at the transcriptional level, causing increased SNX3 abundance. Using a proximity labeling approach, we observed increased interaction of SNX3 and EGFR upon EGF stimulation. We also detected colocalization of SNX3 with early endosomes and endocytosed EGF. Moreover, we show that EGFR protein levels are sensitive to SNX3 loss. Transient RNAi models of SNX3 downregulation have a temporary reduction in EGFR levels. In contrast, long-term silencing forces cells to recover and overexpress EGFR mRNA and protein, resulting in increased proliferation, colony formation, migration, invasion in TNBC cells, and increased tumor growth and metastasis in syngeneic models. Consistent with these results, low SNX3 and high EGFR mRNA levels correlate with poor relapse-free survival in breast cancer patients. Overall, our results suggest that SNX3 is a critical player in the EGFR network in TNBCs with implications for other cancers dependent on EGFR activity.
Collapse
|
33
|
Jung Y, Artan M, Kim N, Yeom J, Hwang AB, Jeong DE, Altintas Ö, Seo K, Seo M, Lee D, Hwang W, Lee Y, Sohn J, Kim EJE, Ju S, Han SK, Nam HJ, Adams L, Ryu Y, Moon DJ, Kang C, Yoo JY, Park SK, Ha CM, Hansen M, Kim S, Lee C, Park SY, Lee SJV. MON-2, a Golgi protein, mediates autophagy-dependent longevity in Caenorhabditis elegans. SCIENCE ADVANCES 2021; 7:eabj8156. [PMID: 34860542 PMCID: PMC8641931 DOI: 10.1126/sciadv.abj8156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 06/02/2023]
Abstract
The Golgi apparatus plays a central role in trafficking cargoes such as proteins and lipids. Defects in the Golgi apparatus lead to various diseases, but its role in organismal longevity is largely unknown. Using a quantitative proteomic approach, we found that a Golgi protein, MON-2, was up-regulated in long-lived Caenorhabditis elegans mutants with mitochondrial respiration defects and was required for their longevity. Similarly, we showed that DOP1/PAD-1, which acts with MON-2 to traffic macromolecules between the Golgi and endosome, contributed to the longevity of respiration mutants. Furthermore, we demonstrated that MON-2 was required for up-regulation of autophagy, a longevity-associated recycling process, by activating the Atg8 ortholog GABARAP/LGG-1 in C. elegans. Consistently, we showed that mammalian MON2 activated GABARAPL2 through physical interaction, which increased autophagic flux in mammalian cells. Thus, the evolutionarily conserved role of MON2 in trafficking between the Golgi and endosome is an integral part of autophagy-mediated longevity.
Collapse
Affiliation(s)
- Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Murat Artan
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jeonghun Yeom
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Ara B. Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Özlem Altintas
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Mihwa Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun Ji E. Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyun-Jun Nam
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Linnea Adams
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Youngjae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Dong Jin Moon
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chanhee Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Malene Hansen
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
34
|
Tang S, Davoudi Z, Wang G, Xu Z, Rehman T, Prominski A, Tian B, Bratlie KM, Peng H, Wang Q. Soft materials as biological and artificial membranes. Chem Soc Rev 2021; 50:12679-12701. [PMID: 34636824 DOI: 10.1039/d1cs00029b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few decades have seen emerging growth in the field of soft materials for synthetic biology. This review focuses on soft materials involved in biological and artificial membranes. The biological membranes discussed here are mainly those involved in the structure and function of cells and organelles. As building blocks in medicine, non-native membranes including nanocarriers (NCs), especially liposomes and DQAsomes, and polymeric membranes for scaffolds are constructed from amphiphilic combinations of lipids, proteins, and carbohydrates. Artificial membranes can be prepared using synthetic, soft materials and molecules and then incorporated into structures through self-organization to form micelles or niosomes. The modification of artificial membranes can be realized using traditional chemical methods such as click reactions to target the delivery of NCs and control the release of therapeutics. The biomembrane, a lamellar structure inlaid with ion channels, receptors, lipid rafts, enzymes, and other functional units, separates cells and organelles from the environment. An active domain inserted into the membrane and organelles for energy conversion and cellular communication can target disease by changing the membrane's composition, structure, and fluidity and affecting the on/off status of the membrane gates. The biological membrane targets analyzing pathological mechanisms and curing complex diseases, which inspires us to create NCs with artificial membranes.
Collapse
Affiliation(s)
- Shukun Tang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| | - Guangtian Wang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zihao Xu
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Tanzeel Rehman
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Aleksander Prominski
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bozhi Tian
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kaitlin M Bratlie
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA. .,Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| |
Collapse
|
35
|
Nilsson L, Rahmani S, Tuck S. C. elegans TAT-6, a putative aminophospholipid translocase, is expressed in sujc cells in the hermaphrodite gonad. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34746684 PMCID: PMC8569451 DOI: 10.17912/micropub.biology.000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
In healthy eukaryotic cells, the two leaflets that make up plasma membranes are highly asymmetric with respect to the lipids they contain. In both unicellular eukaryotes and metazoans, the asymmetry in the distribution of aminophospholipids is maintained by P4-family transmembrane ATPases, which catalyze the movement of selected phospholipids from the outer leaflet to the inner. C. elegans has six P4-family ATPases, TAT-1 – TAT-6. TAT-1 – TAT-5 are expressed in many tissues and cells. Here we report that, in contrast, TAT-6 is much less broadly expressed and that, within the somatic gonad, expression of TAT-6 reporters is restricted to the spermathecal-uterine core cell (sujc) cells.
Collapse
|
36
|
Bai L, Jain BK, You Q, Duan HD, Takar M, Graham TR, Li H. Structural basis of the P4B ATPase lipid flippase activity. Nat Commun 2021; 12:5963. [PMID: 34645814 PMCID: PMC8514546 DOI: 10.1038/s41467-021-26273-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
P4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory β-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a β-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1’s ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport. The P4 ATPase lipid flippases play a crucial role in membrane biogenesis. Here the authors report the structure of the monomeric P4B ATPase Neo1 in several states, clarifying the mechanism of substrate transport.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Qinglong You
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Mehmet Takar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
37
|
Retromer dependent changes in cellular homeostasis and Parkinson's disease. Essays Biochem 2021; 65:987-998. [PMID: 34528672 PMCID: PMC8709886 DOI: 10.1042/ebc20210023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
To date, mechanistic treatments targeting the initial cause of Parkinson's disease (PD) are limited due to the underlying biological cause(s) been unclear. Endosomes and their associated cellular homeostasis processes have emerged to have a significant role in the pathophysiology associated with PD. Several variants within retromer complex have been identified and characterised within familial PD patients. The retromer complex represents a key sorting platform within the endosomal system that regulates cargo sorting that maintains cellular homeostasis. In this review, we summarise the current understandings of how PD-associated retromer variants disrupt cellular trafficking and how the retromer complex can interact with other PD-associated genes to contribute to the disease progression.
Collapse
|
38
|
The understudied links of the retromer complex to age-related pathways. GeroScience 2021; 44:19-24. [PMID: 34370162 PMCID: PMC8811076 DOI: 10.1007/s11357-021-00430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/30/2021] [Indexed: 11/03/2022] Open
Abstract
Neuronal aging is associated with numerous diseases resulting in memory impairment and functional decline. A common hallmark of these disorders is the accumulation of intracellular and extracellular protein aggregates. The retromer complex plays a central role in sorting proteins by marking them for reuse rather than degradation. Retromer dysfunction has been shown to induce protein aggregates and neurodegeneration, suggesting that it may be important for age-related neuronal decline and disease progression. Despite this, little is known about how aging influences retromer stability and the proteins with which it interacts. Detailed insights into age-dependent changes in retromer structure and function could provide valuable information towards treating and preventing many age-related neurodegenerative disorders. Here, we visit age-related pathways which interact with retromer function that ought to be further explored to determine its role in age-related neurodegeneration.
Collapse
|
39
|
Unveiling the cryo-EM structure of retromer. Biochem Soc Trans 2021; 48:2261-2272. [PMID: 33125482 DOI: 10.1042/bst20200552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.
Collapse
|
40
|
Vogt G, Verheyen S, Schwartzmann S, Ehmke N, Potratz C, Schwerin-Nagel A, Plecko B, Holtgrewe M, Seelow D, Blatterer J, Speicher MR, Kornak U, Horn D, Mundlos S, Fischer-Zirnsak B, Boschann F. Biallelic truncating variants in ATP9A cause a novel neurodevelopmental disorder involving postnatal microcephaly and failure to thrive. J Med Genet 2021; 59:662-668. [PMID: 34379057 PMCID: PMC9252857 DOI: 10.1136/jmedgenet-2021-107843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022]
Abstract
Background Genes implicated in the Golgi and endosomal trafficking machinery are crucial for brain development, and mutations in them are particularly associated with postnatal microcephaly (POM). Methods Exome sequencing was performed in three affected individuals from two unrelated consanguineous families presenting with delayed neurodevelopment, intellectual disability of variable degree, POM and failure to thrive. Patient-derived fibroblasts were tested for functional effects of the variants. Results We detected homozygous truncating variants in ATP9A. While the variant in family A is predicted to result in an early premature termination codon, the variant in family B affects a canonical splice site. Both variants lead to a substantial reduction of ATP9A mRNA expression. It has been shown previously that ATP9A localises to early and recycling endosomes, whereas its depletion leads to altered gene expression of components from this compartment. Consistent with previous findings, we also observed overexpression of ARPC3 and SNX3, genes strongly interacting with ATP9A. Conclusion In aggregate, our findings show that pathogenic variants in ATP9A cause a novel autosomal recessive neurodevelopmental disorder with POM. While the physiological function of endogenous ATP9A is still largely elusive, our results underline a crucial role of this gene in endosomal transport in brain tissue.
Collapse
Affiliation(s)
- Guido Vogt
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sarina Schwartzmann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia Potratz
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anette Schwerin-Nagel
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Manuel Holtgrewe
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health, Berlin, Germany
| | - Dominik Seelow
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Bioinformatics and Translational Genetics, Berlin Institute of Health, Berlin, Germany
| | - Jasmin Blatterer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Gottingen, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,RG Development and Disease, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,RG Development and Disease, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
41
|
Cejas RB, Tamaño-Blanco M, Blanco JG. Analysis of the intracellular traffic of IgG in the context of Down syndrome (trisomy 21). Sci Rep 2021; 11:10981. [PMID: 34040082 PMCID: PMC8155081 DOI: 10.1038/s41598-021-90469-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Persons with Down syndrome (DS, trisomy 21) have widespread cellular protein trafficking defects. There is a paucity of data describing the intracellular transport of IgG in the context of endosomal-lysosomal alterations linked to trisomy 21. In this study, we analyzed the intracellular traffic of IgG mediated by the human neonatal Fc receptor (FcRn) in fibroblast cell lines with trisomy 21. Intracellular IgG trafficking studies in live cells showed that fibroblasts with trisomy 21 exhibit higher proportion of IgG in lysosomes (~ 10% increase), decreased IgG content in intracellular vesicles (~ 9% decrease), and a trend towards decreased IgG recycling (~ 55% decrease) in comparison to diploid cells. Amyloid-beta precursor protein (APP) overexpression in diploid fibroblasts replicated the increase in IgG sorting to the degradative pathway observed in cells with trisomy 21. The impact of APP on the expression of FCGRT (alpha chain component of FcRn) was investigated by APP knock down and overexpression of the APP protein. APP knock down increased the expression of FCGRT mRNA by ~ 60% in both diploid and trisomic cells. Overexpression of APP in diploid fibroblasts and HepG2 cells resulted in a decrease in FCGRT and FcRn expression. Our results indicate that the intracellular traffic of IgG is altered in cells with trisomy 21. This study lays the foundation for future investigations into the role of FcRn in the context of DS.
Collapse
Affiliation(s)
- R B Cejas
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - M Tamaño-Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - J G Blanco
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 470 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
42
|
Lu J, Xu S, Huo Y, Sun D, Hu Y, Wang J, Zhang X, Wang P, Li Z, Liang M, Wu Z, Liu P. Sorting nexin 3 induces heart failure via promoting retromer-dependent nuclear trafficking of STAT3. Cell Death Differ 2021; 28:2871-2887. [PMID: 33947971 DOI: 10.1038/s41418-021-00789-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Sorting nexins (SNXs), the retromer-associated cargo binding proteins, have emerged as critical regulators of the trafficking of proteins involved in the pathogenesis of diverse diseases. However, studies of SNXs in the development of cardiovascular diseases, especially cardiac hypertrophy and heart failure, are lacking. Here, we ask whether SNX3, the simplest structured isoform in the SNXs family, may act as a key inducer of myocardial injury. An increased level of SNX3 was observed in failing hearts from human patients and mice. Cardiac-specific Snx3 knockout (Snx3-cKO) mice and Snx3 transgenic (Snx3-cTg) mice were generated to evaluate the role of Snx3 in myocardial hypertrophy, fibrosis, and heart function by morphology, echocardiography, histological staining, and hypertrophic biomarkers. We report that Snx3-cKO in mice significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy at 12 weeks. Conversely, Snx3-cTg mice were more susceptible to ISO-induced cardiac hypertrophy at 12 weeks and showed aggravated cardiac injury even heart failure at 24 weeks. Immunoprecipitation-based mass spectrometry, immunofluorescent staining, co-immunoprecipitation, localized surface plasmon resonance, and proximity ligation assay were performed to examine the direct interaction of SNX3-retromer with signal transducer and activator of transcription 3 (STAT3). We discovered that STAT3 was a new interacting partner of SNX3-retromer, and SNX3-retromer served as an essential platform for assembling gp130/JAK2/STAT3 complexes and subsequent phosphorylation of STAT3 by direct combination at EE. SNX3-retromer and STAT3 complexes were transiently imported into the nucleus after hypertrophic stimuli. The pharmacological inhibition or knockdown of STAT3 reversed SNX3 overexpression-induced myocardial injury. STAT3 overexpression blunts the beneficial function of SNX3 knockdown on hypertrophic cardiomyocytes. We show that SNX3-retromer promoted importin α3-mediated STAT3 nuclear trafficking and ultimately leading to cardiac injury. Taken together, our study reveals that SNX3 plays a key role in cardiac function and implicates SNX3 as a potential therapeutic target for cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Yuehuai Hu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junjian Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Panxia Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuoming Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mengya Liang
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
43
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
44
|
Cai Q, Zhao X, Wang Y, Li S, Wang J, Xin Z, Li F. LINC01614 promotes osteosarcoma progression via miR-520a-3p/SNX3 axis. Cell Signal 2021; 83:109985. [PMID: 33753211 DOI: 10.1016/j.cellsig.2021.109985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported as essential regulators in osteosarcoma (OS), the most malignant bone tumor usually observed in children and adolescents. In the present study, we detected differentially expressed lncRNAs among OS tissues through RNA-sequencing. Then through bioinformatics analysis, we constructed the aberrant lncRNAs regulatory networks, and detected the key-lncRNAs. We identified LINC01614 was most significantly up-regulated among OS tissues, which was positively correlated with the worse prognosis. Through related in vitro experiments, we confirmed that knockdown of LINC01614 could inhibit the proliferation, invasion, and metastasis activities of OS cells. Furthermore, we identified LINC01614 may promote the proliferation and invasion activities of OS cells, via binding miR-520a-3p and increase the expression of SNX3. In conclusion, we identified lncRNAs participate in various malignant behaviors in OS. We also proved that LINC01614 could function as competing endogenous RNAs and promote the proliferation, and invasion of OS cells through miR-520a-3p/SNX3 axis, and thus acts as a novel prognostic marker for OS in clinic.
Collapse
Affiliation(s)
- Qixuan Cai
- The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xin Zhao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shuai Li
- The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuoyuan Xin
- The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China; China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Fan Li
- The Key Laboratory of Zoonosis Research, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China.
| |
Collapse
|
45
|
Ravanidis S, Bougea A, Karampatsi D, Papagiannakis N, Maniati M, Stefanis L, Doxakis E. Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Mov Disord 2021; 36:1170-1179. [PMID: 33433033 PMCID: PMC8248110 DOI: 10.1002/mds.28467] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background New noninvasive and affordable molecular approaches that will complement current practices and increase the accuracy of Parkinson's disease (PD) diagnosis are urgently needed. Circular RNAs (circRNAs) are stable noncoding RNAs that accumulate with aging in neurons and are increasingly shown to regulate all aspects of neuronal development and function. Objectives Τhe aims of this study were to identify differentially expressed circRNAs in blood mononuclear cells of patients with idiopathic PD and explore the competing endogenous RNA networks affected. Methods Eighty‐seven circRNAs were initially selected based on relatively high gene expression in the human brain. More than half of these were readily detectable in blood mononuclear cells using real‐time reverse transcription‐polymerase chain reaction. Comparative expression analysis was then performed in blood mononuclear cells from 60 control subjects and 60 idiopathic subjects with PD. Results Six circRNAs were significantly down‐regulated in patients with PD. The classifier that best distinguished PD consisted of four circRNAs with an area under the curve of 0.84. Cross‐linking immunoprecipitation‐sequencing data revealed that the RNA‐binding proteins bound by most of the deregulated circRNAs include the neurodegeneration‐associated FUS, TDP43, FMR1, and ATXN2. MicroRNAs predicted to be sequestered by most deregulated circRNAs have the Gene Ontology categories “protein modification” and “transcription factor activity” mostly enriched. Conclusions This is the first study that identifies specific circRNAs that may serve as diagnostic biomarkers for PD. Because they are highly expressed in the brain and are derived from genes with essential brain functions, they may also hint on the PD pathways affected. © 2021 Biomedical Research Foundation, Academy of Athens. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitra Karampatsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matina Maniati
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
46
|
Hanley SE, Cooper KF. Sorting Nexins in Protein Homeostasis. Cells 2020; 10:cells10010017. [PMID: 33374212 PMCID: PMC7823608 DOI: 10.3390/cells10010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis is maintained by removing misfolded, damaged, or excess proteins and damaged organelles from the cell by three major pathways; the ubiquitin-proteasome system, the autophagy-lysosomal pathway, and the endo-lysosomal pathway. The requirement for ubiquitin provides a link between all three pathways. Sorting nexins are a highly conserved and diverse family of membrane-associated proteins that not only traffic proteins throughout the cells but also provide a second common thread between protein homeostasis pathways. In this review, we will discuss the connections between sorting nexins, ubiquitin, and the interconnected roles they play in maintaining protein quality control mechanisms. Underlying their importance, genetic defects in sorting nexins are linked with a variety of human diseases including neurodegenerative, cardiovascular diseases, viral infections, and cancer. This serves to emphasize the critical roles sorting nexins play in many aspects of cellular function.
Collapse
|
47
|
Li B, Niswander LA. TMEM132A, a Novel Wnt Signaling Pathway Regulator Through Wntless (WLS) Interaction. Front Cell Dev Biol 2020; 8:599890. [PMID: 33324648 PMCID: PMC7726220 DOI: 10.3389/fcell.2020.599890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
Wnt signaling pathway plays indispensable roles in embryonic development and adult tissue homeostasis. However, the regulatory mechanisms involved in Wnt ligand trafficking within and secretion from the signal sending cells is still relatively uncharacterized. Here, we discover a novel regulator of Wnt signaling pathway called transmembrane protein 132A (TMEM132A). Our evidence shows a physical and functional interaction of TMEM132A with the Wnt ligand transporting protein Wntless (WLS). We show that TMEM132A stabilizes Wnt ligand, enhances WLS–Wnt ligand interaction, and activates the Wnt signaling pathway. Our results shed new light on the cellular mechanism underlying the fundamental aspect of WNT secretion from Wnt signal sending cells.
Collapse
Affiliation(s)
- Binbin Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
48
|
Abstract
For decades, recycling of membrane proteins has been represented in figures by arrows between the "endosome" and the plasma membrane, but recently there has been an explosion in the understanding of the mechanisms and protein complexes required to facilitate protein recycling. Here, some key discoveries will be introduced, including assigning function to a number of recently recognized protein complexes and linking their function to protein recycling. Furthermore, the importance of lipid interactions and links to diseases and epithelial polarity will be summarized.
Collapse
Affiliation(s)
- Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
49
|
Pan B, Liu L, Hu X, Sun X, Zhu Y, Zhang T, Wei D, Guo Y, Shan J. Promotion of esophageal adenocarcinoma metastasis via Wnt/ß-catenin signal pathway by sorting nexins 3. J Gastroenterol Hepatol 2020; 35:2131-2139. [PMID: 32187731 DOI: 10.1111/jgh.15039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Esophageal adenocarcinoma is often associated with late diagnoses, poor prognoses, significant morbidities, and high mortality rates. Aberrant expression of Wnt/β-catenin signal pathways were observed in the tumorigenesis and metastasis of esophageal adenocarcinoma. Sorting nexins 3 has been shown to participate in Wnt protein sorting and regulate Wnt/β-catenin signal transduction. Thus, we studied the role and molecular mechanism of sorting nexins 3 in esophageal adenocarcinoma. METHODS Tissue microassay were used to analyze the expression of sorting nexins 3 in esophageal adenocarcinoma tissue and its relationship with survival rate. Using in vivo and in vitro models, we further investigated the effect of sorting nexins 3 on tumor growth and metastasis and underling mechanism. RESULTS Immunohistochemical staining of human esophageal adenocarcinoma tissue microassay revealed an increased sorting nexins 3 level in esophageal adenocarcinoma tissue and high expression of sorting nexins 3 correlated with the poor prognosis. In vitro study showed that sorting nexins 3 knockdown suppressed esophageal adenocarcinoma cell invasion, metastasis, and epithelial-mesenchymal translation (EMT) process, and this result was confirmed by in vivo tumor metastasis assays. Moreover, we further proved that sorting nexins 3 affected cell invasion and EMT through Wnt/β-catenin signal pathway. CONCLUSION Our data provided strong evidence that sorting nexins 3 played a critical role in esophageal adenocarcinoma metastasis through Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Biran Pan
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.,Assisted Reproductive Center, The Maternal and Child Health Hospital of Qinzhou, Qinzhou, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xia Hu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yifang Zhu
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Danfeng Wei
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jing Shan
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
50
|
Shin JJH, Crook OM, Borgeaud AC, Cattin-Ortolá J, Peak-Chew SY, Breckels LM, Gillingham AK, Chadwick J, Lilley KS, Munro S. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nat Commun 2020; 11:5987. [PMID: 33239640 PMCID: PMC7689464 DOI: 10.1038/s41467-020-19840-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intracellular traffic between compartments of the secretory and endocytic pathways is mediated by vesicle-based carriers. The proteomes of carriers destined for many organelles are ill-defined because the vesicular intermediates are transient, low-abundance and difficult to purify. Here, we combine vesicle relocalisation with organelle proteomics and Bayesian analysis to define the content of different endosome-derived vesicles destined for the trans-Golgi network (TGN). The golgin coiled-coil proteins golgin-97 and GCC88, shown previously to capture endosome-derived vesicles at the TGN, were individually relocalised to mitochondria and the content of the subsequently re-routed vesicles was determined by organelle proteomics. Our findings reveal 45 integral and 51 peripheral membrane proteins re-routed by golgin-97, evidence for a distinct class of vesicles shared by golgin-97 and GCC88, and various cargoes specific to individual golgins. These results illustrate a general strategy for analysing intracellular sub-proteomes by combining acute cellular re-wiring with high-resolution spatial proteomics.
Collapse
Affiliation(s)
- John J H Shin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Oliver M Crook
- The Milner Therapeutics Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Alicia C Borgeaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jérôme Cattin-Ortolá
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kathryn S Lilley
- The Milner Therapeutics Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|