1
|
Mojaddidi MA, Aboonq M, Alqahtani SA. Glycemic control and vaccine response: the role of mucosal immunity after vaccination in diabetic patients. Front Immunol 2025; 16:1577523. [PMID: 40406123 PMCID: PMC12095022 DOI: 10.3389/fimmu.2025.1577523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/10/2025] [Indexed: 05/26/2025] Open
Abstract
This review explores the critical interplay between glycemic control, mucosal immunity, and vaccine response in diabetic patients. Diabetes mellitus, characterized by impaired glucose regulation, significantly impacts immune function, particularly at mucosal surfaces. Poor glycemic control diminishes vaccine-induced antibody responses and compromises mucosal defenses, such as secretory IgA production, increasing susceptibility to infections. We synthesize evidence highlighting the importance of optimizing glycemic management prior to vaccination to enhance immunogenicity. Furthermore, we examine the potential of personalized vaccination strategies, tailored to individual glycemic status, age, BMI, and kidney function, to improve vaccine efficacy in this vulnerable population. Additionally, we discuss the role of adjunct therapies, including probiotics, nutritional interventions, and lifestyle modifications, in modulating the gut microbiota and reinforcing mucosal barrier integrity. This review underscores the necessity for an interdisciplinary approach, integrating metabolic management with innovative vaccine designs, to maximize protection against infectious diseases in diabetic patients. Future research should prioritize longitudinal studies assessing both systemic and mucosal immunity and refine personalized vaccination strategies to ensure robust and durable protection.
Collapse
|
2
|
Sonoda J, Mizoguchi I, Yamaguchi N, Horio E, Miyakawa S, Xu M, Yoneto T, Katahira Y, Hasegawa H, Hasegawa T, Yamashita K, Yoshimoto T. Intradermal Injection of a Protein Alone Without Additional Adjuvants Using a Needle-Free Pyro-Drive Jet Injector Induces Potent CD8 + T Cell-Mediated Antitumor Immunity. Int J Mol Sci 2025; 26:4442. [PMID: 40362678 PMCID: PMC12072794 DOI: 10.3390/ijms26094442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Vaccines usually contain an adjuvant that activates innate immunity to promote the acquisition of adaptive immunity. Aluminum and lipid nanoparticles have been used for this purpose, but their accumulation or widespread circulation in the body can lead to adverse effects. In contrast, physical adjuvants, which use physical energy to transiently stress tissues, do not persist in exposed tissues or cause lasting adverse effects. Herein, we investigate the effects of intradermal injection of endotoxin-free ovalbumin (OVA) protein alone without additional adjuvants using a needle-free pyro-drive jet injector (PJI) on tumor vaccination efficacy. Intradermal injection of OVA protein alone using PJI significantly increased OVA-specific CD8+ T cell expansion in the lymph node, although lymph node swelling was much less than when aluminum hydroxide was used. The injection also induced OVA-specific killing activity and antibody production and showed strong CD8+ T cell-dependent prophylactic antitumor effects against transplanted E.G7-OVA tumors. In particular, intradermal injection of the fluorescent OVA protein significantly enhanced its uptake by XCR1+ dendritic cells, which have a strong ability to cross-present extracellular proteins in the skin and draining lymph nodes. In addition, the injection increased the expression of HMGB1, one of the potent danger signals whose expression has been reported to increase in response to shear stress. Thus, intradermal injection of OVA protein alone without any additional adjuvants using PJI induces potent CD8+ T cell-mediated antitumor immunity by enhancing its uptake into XCR1+ dendritic cells, which have a high cross-presentation capacity accompanied by an increased expression of shear stress-induced HMGB1.
Collapse
Affiliation(s)
- Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Natsuki Yamaguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Eri Horio
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takashi Hasegawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan (K.Y.)
- Medical Device Division, Life Sciences Strategic Business Unit, Daicel Corporation, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan (K.Y.)
- Medical Device Division, Life Sciences Strategic Business Unit, Daicel Corporation, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
3
|
Li Z, Wen X, Lu S, Zheng Y, Zhao P, Mu S, Wang X, Shi Y, Qu F, Chang H. Ice-pop making inspired photothermal ultra-swelling microneedles to facilitate loading and intradermal vaccination of tumor antigen. J Control Release 2025; 379:77-88. [PMID: 39756684 DOI: 10.1016/j.jconrel.2024.12.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Cancer vaccines hold great promise in the fight against cancer. Here, we report an ice-pop making inspired photothermal ultra-swelling microneedle (PUSMN) patch for facilitating and enhancing cancer vaccination. The PUSMN patch consist of an array of microneedles made from photo-crosslinked methacrylated hyaluronic acid and polydopamine, a near-infrared photothermal conversion material, connected to a customized resin handle like an ice-pop stick. Using a fabrication process similar to ice-pop making, the PUSMNs exhibit a rapid swelling ratio of over 2000 %, enabling straightforward and efficient loading of tumor antigen with just a 1-min incubation in the antigen solution, followed by 15 min of drying. The handle not only ensures convenient application but also guarantees full embedding of the PUSMNs in the skin after penetration. Under near-infrared irradiation, PUSMNs efficiently generate local heat, further promoting the activation and maturation of dendritic cells. In vivo vaccination with the model antigen ovalbumin using PUSMNs combined with near-infrared irradiation elicits robust tumor antigen-specific cellular and humoral immune responses, ultimately resulting in delayed tumor growth. Given its ease of use, efficiency, and safety features, this biocompatible PUSMN patch could greatly improve cancer vaccination.
Collapse
Affiliation(s)
- Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Sijia Mu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Fengli Qu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
4
|
Wu Q, Chen K, Xue W, Wang G, Yang Y, Li S, Xia N, Chen Y. An insect cell-derived extracellular vesicle-based gB vaccine elicits robust adaptive immune responses against Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:734-745. [PMID: 39499444 DOI: 10.1007/s11427-023-2599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 11/07/2024]
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, is implicated in various human malignancies, infectious mononucleosis, and more recently, multiple sclerosis. Prophylactic vaccines have the potential to effectively prevent EBV infection. Glycoprotein B (gB) serves as the fusogen and plays a pivotal role in the virus entry process, making it a critical target for EBV vaccine development. Surface membrane proteins of enveloped viruses serve as native conformational antigens, making them susceptible to immune recognition. Utilizing lipid membrane-bound viral antigens is a promising strategy for effective vaccine presentation in this context. In this study, we employed a truncated design for gB proteins, observing that these truncated gB proteins prompted a substantial release of extracellular vesicles (EVs) in insect cells. We verified that EVs exhibited abundant gB proteins, displaying the typical virus particle morphology and extracellular vesicle characteristics. gB EVs demonstrated a more efficient humoral and cellular immune response compared with the gB ectodomain trimer vaccine in mice. Moreover, the antisera induced by the gB EVs vaccine exhibited robust antibody-dependent cytotoxicity. Consequently, gB EVs-based vaccines hold significant potential for preventing EBV infection and offer valuable insights for vaccine design.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Kaiyun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Yanbo Yang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China.
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Christensen RL, Son HG, Zhou EY, Olesen UH, Garibyan L, Farinelli WA, Sakamoto FH, Rox Anderson R, Haedersdal M, Demehri S. Cutaneous Immune Responses to Ablative Fractional Laser, Heat- and Cold-Based Dermatological Procedures. Lasers Surg Med 2025; 57:101-111. [PMID: 39698750 DOI: 10.1002/lsm.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVE Physical treatment modalities, such as ablative fractional laser (AFL), electrocautery, and cryotherapy, are extensively used in the field of dermatology. This study aimed to characterize the short-term innate and adaptive immune responses induced by AFL compared with heat- and cold-based procedures. MATERIALS AND METHODS Innate (CD11b+Ly6G+ neutrophils) and adaptive (CD8+CD3+ T cells) immune cell infiltration and histopathological changes were examined in murine skin on Days 1 and 7, following AFL, monopolar-electrocautery (RF), thermocautery, and cryotherapy. Interventions were standardized to reach the reticular dermis. Clinical skin reactions were photo-documented daily. As a comparator, the adaptive immune response was examined in murine basal cell carcinomas (BCC) on Day 7 after AFL exposure. RESULTS Baseline histopathology confirmed immediate deep dermal tissue impact by all procedures. Immune cell dynamics varied across treatments throughout the progression of clinical and histopathological responses. On Day 1, AFL and heat-based procedures triggered an innate immune response, characterized by CD11b+Ly6G+ neutrophil cell infiltration that correlated with histopathological findings and immediate onset of clinical skin reactions. In addition, heat-based procedures led to an increase in overall dermal CD45+ cells (Day 1), which continued to rise for AFL and RF-electrocautery at Day 7 posttreatment. On the contrary, cryotherapy did not induce immediate (Day 1) innate immune responses, but instead a delayed increase in neutrophil and CD45+ cell infiltration (Day 7), which coincided with the late onset of clinical reaction. CD3+ T cells and CD8+CD3+ T cells demonstrated a similar pattern, with an increase observed for heat-based procedures on Day 1 and a delayed increase for cryotherapy on Day 7. Distinctive for AFL-treated skin, the level of dermal CD3+ T cells increased over time, significant by Day 7, and AFL-treated mouse BCCs responded with increased CD8+ T cell infiltration at Day 7 posttreatment. CONCLUSION Heat- and cold-based procedures developed distinct cutaneous immune responses, with cryotherapy resulting in a delayed response compared to immediate immune responses from heat-based procedures. The substantial T cell response induced by AFL in the skin and BCC tumors indicates a potential for AFL as an adjuvant in immunotherapeutic treatments of keratinocyte cancers.
Collapse
Affiliation(s)
- Rikke L Christensen
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology and Venereology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Heehwa G Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eray Yihui Zhou
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Uffe H Olesen
- Department of Dermatology and Venereology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Lilit Garibyan
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Farinelli
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fernanda H Sakamoto
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - R Rox Anderson
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merete Haedersdal
- Department of Dermatology and Venereology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Gao C, Liu M, Xin Y, Zeng Y, Yang H, Fan X, Zhao C, Zhang B, Zhang L, Li JJ, Zhao M, Wang Z, Lu Q. Immunostimulatory effects of Toll-like receptor ligands as adjuvants in establishing a novel mouse model for pemphigus vulgaris. Clin Transl Med 2024; 14:e1765. [PMID: 39031979 PMCID: PMC11259602 DOI: 10.1002/ctm2.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The meticulous selection of appropriate vaccine adjuvants is crucial for optimizing immune responses. Traditionally, pemphigus vulgaris (PV), an autoimmune disorder, has been modelled using complete Freund's adjuvant (CFA). In this study, we aimed to discern potential variations in immune responses elicited by Toll-like receptor (TLR) ligands as compared to CFA. METHODS A comprehensive investigation was conducted, comparing the effects of these adjuvants in conjunction with ovalbumin or desmoglein-3. Flow cytometry was employed to analyse distinct cell subsets, while enzyme-linked immunosorbent assay quantified antigen-specific antibodies and cytokine levels. Histological examination of harvested skin tissues and transcriptome analysis of skin lesions were performed to identify differentially expressed genes. RESULTS TLR ligands demonstrated efficacy in inducing PV-like symptoms in wild-type mice, in contrast to CFA. This underscored the substantial impact of the adjuvant on self-antigen tolerance. Furthermore, we proposed an enhanced method for establishing a PV model through adoptive transfer, substituting CFA with TLR ligands. Our results revealed that in contrast to the perception that CFA being the most potent immunopotentiator reported, CFA promoted regulatory T cells (Treg), follicular regulatory T cells and IL-10-producing neutrophils, whereas TLR ligands downregulated CCL17 and IL-10. This suggested potential implications for the recruitment and activation of Treg subsets. While B cell and CD8+ T cell responses exhibited similarity, CFA induced less activation in dendritic cell subsets. A novel mouse model of PV and systemic comparison of immunostimulatory effects of adjuvants were provided by this study. CONCLUSIONS The systematic comparison of CFA and TLR ligands shed light on the distinctive properties of these adjuvants, presenting innovative mouse models for the investigation of pemphigus. This study significantly contributes to adjuvant research and advances our understanding of PV pathogenesis. KEY POINTS/HIGHLIGHTS Immunization with desmoglein 3 and Toll-like receptor (TLR) ligands effectively induces pemphigus symptoms in wild-type mice, whereas complete Freund's adjuvant (CFA) fails. TLR ligands heightened the autoreactivity of donor cells in the adoptive transfer pemphigus model. CFA promoted regulatory T cells and IL-10-producing neutrophils, whereas TLR ligands downregulated CCL17 and IL-10, leading to more effective immune responses.
Collapse
Affiliation(s)
- Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yue Xin
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yong Zeng
- Department of DermatologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Hui Yang
- Drum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Cheng Zhao
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Bo Zhang
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Lingzhi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesBeijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyDepartment of PharmacologyInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing J. Li
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesBeijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyDepartment of PharmacologyInstitute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Zijun Wang
- Department of DermatologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Laboratory of Molecular ImmunologyThe Rockefeller UniversityNew York CityNew YorkUSA
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesJiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsHospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
7
|
Nakkala JR, Li Y, Akter L, Kang X, Chen X. Differential Regulation of DC Function, Adaptive Immunity, and MyD88 Dependence by Two Squalene Emulsion-Based Vaccine Adjuvants. Vaccines (Basel) 2024; 12:531. [PMID: 38793782 PMCID: PMC11125884 DOI: 10.3390/vaccines12050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
MF59 and AS03 are squalene emulsion-based vaccine adjuvants with similar compositions and droplet sizes. Despite their broad use in licensed influenza vaccines, few studies compared their adjuvant effects and action mechanisms side by side. Considering the majority of adjuvants act on dendritic cells (DCs) to achieve their adjuvant effects, this study compared AddaVax and AddaS03 with similar compositions to MF59 and AS03 adjuvants to enhance antigen uptake, DC maturation, ovalbumin (OVA), and seasonal influenza vaccine-induced immune responses. Considering MF59 was reported to activate MyD88 to mediate its adjuvant effects, this study also investigated whether the above-explored adjuvant effects of AddaVax and AddaS03 depended on MyD88. We found AddaVax more potently enhanced antigen uptake at the local injection site, while AddaS03 more potently enhanced antigen uptake in the draining lymph nodes. AddaS03 but not AddaVax stimulated DC maturation. Adjuvant-enhanced antigen uptake was MyD88 independent, while AddaS03-induced DC maturation was MyD88 dependent. AddaVax and AddaS03 similarly enhanced OVA-induced IgG and subtype IgG1 antibody responses as well as influenza vaccine-induced hemagglutination inhibition antibody titers, whileAddaS03 more potently enhanced OVA-specific IgG2c antibody responses. Both adjuvants depended on MyD88 to enhance vaccine-induced antibody responses, while AddaVax depended more on MyD88 to achieve its adjuvant effects. Our study reveals similarities and differences of the two squalene emulsion-based vaccine adjuvants, contributing to our improved understanding of their action mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (J.R.N.); (Y.L.); (L.A.); (X.K.)
| |
Collapse
|
8
|
van Strien J, Makurat M, Zeng Y, Olsthoorn R, Schneider GF, Slütter B, MacKay JA, Jiskoot W, Kros A. Noncovalent Conjugation of OVA323 to ELP Micelles Increases Immune Response. Biomacromolecules 2024; 25:1027-1037. [PMID: 38166400 PMCID: PMC10865353 DOI: 10.1021/acs.biomac.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
Subunit vaccines would benefit from a safe particle-based adjuvant. Elastin-like polypeptide (ELP)-based micelles are interesting candidate adjuvants due to their well-defined size and easy modification with protein-based cargo. Coiled coils can facilitate noncovalent modifications, while potentially enhancing antigen delivery through interaction with cell membranes. ELP micelles comprise ELP diblock copolymers that self-assemble above a critical micelle temperature. In this study, an amphiphilic ELP was conjugated to peptide "K", which forms a heterodimeric coiled-coil complex with peptide "E". Self-assembled "covalent" micelles containing ELP-OVA323 (i.e., model antigen OVA323 conjugated to ELP), "coiled-coil" micelles containing ELP-K/E-OVA323 and "hybrid" micelles containing ELP-K and ELP-OVA323 were shown to be monodisperse and spherical. Dendritic cells (DCs) were exposed to all micelle compositions, and T-cell proliferation was investigated. The presence of ELP-K enhanced micelle uptake and subsequent DC maturation, resulting in enhanced CD4+ T-cell proliferation, which makes ELPs with coiled coil-associated antigens a promising vaccine platform.
Collapse
Affiliation(s)
- Jolinde van Strien
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Max Makurat
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ye Zeng
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - René Olsthoorn
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gregory F. Schneider
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bram Slütter
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - J. Andrew MacKay
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089-9121, United States
| | - Wim Jiskoot
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Xu Y, Hu Y, Xia H, Zhang S, Lei H, Yan B, Xiao ZX, Chen J, Pang J, Zha GF. Delivery of mRNA Vaccine with 1, 2-Diesters-Derived Lipids Elicits Fast Liver Clearance for Safe and Effective Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2302691. [PMID: 37990414 DOI: 10.1002/adhm.202302691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Messenger RNA (mRNA) vaccine is explored as a promising strategy for cancer immunotherapy, but the side effects, especially the liver-related damage caused by LNP, raise concerns about its safety. In this study, a novel library of 248 ionizable lipids comprising 1,2-diesters is designed via a two-step process involving the epoxide ring-opening reaction with carboxyl group-containing alkyl chains followed by an esterification reaction with the tertiary amines. Owing to the special chemical structure of 1,2-diesters, the top-performing lipids and formulations exhibit a faster clearance rate in the liver, contributing to increased stability and higher safety compared with DLin-MC3-DMA. Moreover, the LNP shows superior intramuscular mRNA delivery and elicits robust antigen-specific immune activation. The vaccinations delivered by the LNP system suppress tumor growth and prolong survival in both model human papillomavirus E7 and ovalbumin antigen-expressing tumor models. Finally, the structure of lipids which enhances the protein expression in the spleen and draining lymph nodes compared with ALC-0315 lipid in Comirnaty is further optimized. In conclusion, the 1, 2-diester-derived lipids exhibit rapid liver clearance and effective anticancer efficiency to different types of antigens-expressing tumor models, which may be a safe and universal platform for mRNA vaccines.
Collapse
Affiliation(s)
- Yuandong Xu
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| | - Yuexiao Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, CN430205, China
| | - Heng Xia
- Scientific Research Center, The Seventh Affiliated Hospital Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| | - Hanqi Lei
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| | - Binyuan Yan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| | - Ze Xiu Xiao
- Research and Development Center, Shenzhen MagicRNA Biotech, No. 459, Qiaokai Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| | - Jinjin Chen
- Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, Guangdong, CN510120, China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| | - Gao-Feng Zha
- Scientific Research Center, The Seventh Affiliated Hospital Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, Guangdong, CN518107, China
| |
Collapse
|
10
|
Ye JJ, Bao P, Deng K, Dong X, He J, Xia Y, Wang Z, Liu X, Tang Y, Feng J, Zhang XZ. Engineering cancer cell membranes with endogenously upregulated HSP70 as a reinforced antigenic repertoire for the construction of material-free prophylactic cancer vaccines. Acta Biomater 2024; 174:386-399. [PMID: 38016511 DOI: 10.1016/j.actbio.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Immune cells distinguish cancer cells mainly relying on their membrane-membrane communication. The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. We exploit cancer cell membranes as the whole cancer antigen repertoire and reinforce its immunogenicity by cellular engineering to modulate the cytomembrane's immune-associated functions. This study reports a vaccine platform based on radiation-engineered cancer cells, of which the membrane HSP70 protein as the immune chaperon/traitor is endogenously upregulated. The resulting positive influences are shown to cover immunogenic steps occurring in antigen-presenting cells, including the uptake and the cross-presentation of the cancer antigens, thus amplifying cancer-specific immunogenicity. Membrane vaccines offer chances to introduce desired metal ions through membrane-metal complexation. Using Mn2+ ion as the costimulatory interferon genes agonist, immune activity is enhanced to further boost adaptive cancer immunogenicity. Results have evidenced that this artificially engineered membrane vaccine with favorable bio-safety could considerably reduce tumorigenicity and inhibit tumor growth. This study provides a universally applicable and facilely available cancer vaccine platform by artificial engineering of cancer cells to inherit and amplify the natural merits of cancer cell membranes. STATEMENT OF SIGNIFICANCE: The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. Cancer cell membrane presents superior advantages as the whole cancer antigen repertoire, including the reported and the unidentified antigens, but its immunogenicity is far from satisfactory. Cellular engineering approaches offer chances to endogenously modulate the immune-associated functions of cell membranes. Such a reinforced vaccine based on the engineered cancer cell membranes matches better the natural immune recognition pathway than the conventional vaccines.
Collapse
Affiliation(s)
- Jing-Jie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Xue Dong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, PR China
| | - Jinlian He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu Xia
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ziyang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xinhua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ying Tang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) School and Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
11
|
Heidary R, Nikbakht Brujeni G, Lotfi M, Hajizadeh A, Yousefi AR. A Comparative Study of the Effects of Al(OH) 3 and AlPO 4 Adjuvants on the Production of Neutralizing Antibodies (NAbs) against Bovine parainfluenza Virus Type 3 (BPIV3) in Guinea Pigs. ARCHIVES OF RAZI INSTITUTE 2023; 78:1779-1786. [PMID: 38828184 PMCID: PMC11139405 DOI: 10.32592/ari.2023.78.6.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 06/05/2024]
Abstract
Aluminum-containing adjuvants are extensively used in inactive human and animal vaccines owing to their favorable immunostimulatory and safe properties. Nonetheless, there is controversy over the effects of different aluminum salts as an adjuvant for the bovine parainfluenza virus type 3 (BPIV3) vaccine. In order to find a suitable adjuvant, we studied the effects of two adjuvants (i.e., aluminum hydroxide [Al(OH)3] and aluminum potassium sulfate [AlPO4]) on the production of neutralizing antibodies (NAbs) for an experimental BPIV3 vaccine. The animals under study (Guinea pigs) were randomly assigned to five groups of experimental vaccines containing Al(OH)3 (AH), AlPO4 (AP), Al(OH)3-AlPO4 mixture (MIX), commercial vaccine (COM), and control (NS). The treatment groups were immunized with two doses of vaccine 21 days apart (on days 0 and 21), and the control group received normal saline under the same conditions. The animals were monitored for 42 days, and blood samples were then taken. The results indicated that all vaccines were able to induce the production of NAbs at levels higher than the minimum protective titer (0.6). An increase in titer was observed throughout the monitoring period. Moreover, an increase in both the level and mean titer of NAbs obtained from the vaccine containing Al(OH)3 adjuvant was significantly higher than in the other studied groups (P≤0.005). The comparison of NAbs titer in other groups did not display a significant difference. Considering the speed of rising and the optimal titer of NAbs production in the experimental vaccine, the Al(OH)3 adjuvant is a suitable candidate for preparing a vaccine against BPIV3 for immunization.
Collapse
Affiliation(s)
- R Heidary
- Department of Microbiology and immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - G Nikbakht Brujeni
- Department of Microbiology and immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Lotfi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Hajizadeh
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A R Yousefi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
12
|
Pan Y, Zhang Y, Shi X, Li D, Xu X, Xiao B, Piao Y, Xiang J, Shao S, Ho FCY, Shen Y, Zhang AP, Tang J. Electrical stimulation induces anti-tumor immunomodulation via a flexible microneedle-array-integrated interdigital electrode. Sci Bull (Beijing) 2023; 68:2779-2792. [PMID: 37863773 DOI: 10.1016/j.scib.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Immunotherapy has revolutionized cancer therapy, using chemical or biological agents to reinvigorate the immune system. However, most of these agents have poor tumor penetration and inevitable side effects that complicate therapeutic outcomes. Electrical stimulation (ES) is a promising alternative therapy against cancers that does not involve chemical or biological agents but is limited in the fabrication and operation of complex micrometer-scale ES devices. Here, we present an optically microprinted flexible interdigital electrode with a gold-plated polymer microneedle array to generate alternating electric fields for cancer treatment. A flexible microneedle-array-integrated interdigital electrode (FMIE) was fabricated by combining optical 3D microprinting and electroless plating processes. FMIE-mediated ES of cancer cells induced necrotic cell death through mitochondrial Ca2+ overload and increased intracellular reactive oxygen species (ROS) production. This led to the release of damage-associated molecular patterns that activated the immune response and potentiated immunogenic cell death (ICD). FMIE-based ES has an excellent safety profile and systemic anti-tumor effects, inhibiting the growth of primary and distant tumors as well as melanoma lung metastasis. FMIE-based ES-driven cancer immunomodulation provides a new pathway for drug-free cancer therapy.
Collapse
Affiliation(s)
- Yixuan Pan
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yangxi Zhang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xueying Shi
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dongdong Li
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaodan Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Bing Xiao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Frederic Chun-Yip Ho
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - A Ping Zhang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
| |
Collapse
|
13
|
Li Y, Chen X. Protocol for preparing murine tissue for comparative proteomics study of vaccine adjuvant mechanisms. STAR Protoc 2023; 4:102396. [PMID: 37393612 PMCID: PMC10336302 DOI: 10.1016/j.xpro.2023.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Understanding the mechanisms of action of adjuvants at the tissue level is crucial to the development of more potent and safer versions for human use. Comparative tissue proteomics presents a novel tool to study their unique action mechanisms. Here, we present a protocol for preparing murine tissue for comparative proteomics study of vaccine adjuvant mechanisms. We describe steps for adjuvant treatment in live animals, tissue harvesting, and homogenization. We then detail protein extraction and digestion to prepare for liquid chromatography-tandem mass spectrometry analysis. For complete details on the use and execution of this protocol, please refer to Li et al.1.
Collapse
Affiliation(s)
- Yibo Li
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA
| | - Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA.
| |
Collapse
|
14
|
Sonoda J, Mizoguchi I, Inoue S, Watanabe A, Sekine A, Yamagishi M, Miyakawa S, Yamaguchi N, Horio E, Katahira Y, Hasegawa H, Hasegawa T, Yamashita K, Yoshimoto T. A Promising Needle-Free Pyro-Drive Jet Injector for Augmentation of Immunity by Intradermal Injection as a Physical Adjuvant. Int J Mol Sci 2023; 24:ijms24109094. [PMID: 37240448 DOI: 10.3390/ijms24109094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.
Collapse
Affiliation(s)
- Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Natsuki Yamaguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Eri Horio
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takashi Hasegawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
15
|
Wei Z, Yu X, Huang M, Wen L, Lu C. Nanoplatforms Potentiated Ablation-Immune Synergistic Therapy through Improving Local Control and Suppressing Recurrent Metastasis. Pharmaceutics 2023; 15:1456. [PMID: 37242696 PMCID: PMC10224284 DOI: 10.3390/pharmaceutics15051456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Minimally invasive ablation has been widely applied for treatment of various solid tumors, including hepatocellular carcinoma, renal cell carcinoma, breast carcinomas, etc. In addition to removing the primary tumor lesion, ablative techniques are also capable of improving the anti-tumor immune response by inducing immunogenic tumor cell death and modulating the tumor immune microenvironment, which may be of great benefit to inhibit the recurrent metastasis of residual tumor. However, the short-acting activated anti-tumor immunity of post-ablation will rapidly reverse into an immunosuppressive state, and the recurrent metastasis owing to incomplete ablation is closely associated with a dismal prognosis for the patients. In recent years, numerous nanoplatforms have been developed to improve the local ablative effect through enhancing the targeting delivery and combining it with chemotherapy. Particularly, amplifying the anti-tumor immune stimulus signal, modulating the immunosuppressive microenvironment, and improving the anti-tumor immune response with the versatile nanoplatforms have heralded great application prospects for improving the local control and preventing tumor recurrence and distant metastasis. This review discusses recent advances in nanoplatform-potentiated ablation-immune synergistic tumor therapy, focusing on common ablation techniques including radiofrequency, microwave, laser, and high-intensity focused ultrasound ablation, cryoablation, and magnetic hyperthermia ablation, etc. We discuss the advantages and challenges of the corresponding therapies and propose possible directions for future research, which is expected to provide references for improving the traditional ablation efficacy.
Collapse
Affiliation(s)
- Zixuan Wei
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Xiaoya Yu
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
| | - Mao Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, China;
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning 530004, China; (Z.W.); (X.Y.)
| |
Collapse
|
16
|
Hamad M, AlKhamach DMH, Alsayadi LM, Sarhan SA, Saeed BQ, Sokovic M, Ben Hadda T, Soliman SSM. Alpha to Omicron (Variants of Concern): Mutation Journey, Vaccines, and Therapy. Viral Immunol 2023; 36:83-100. [PMID: 36695729 DOI: 10.1089/vim.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initially emerged in December 2019 and has subsequently expanded globally, leading to the ongoing pandemic. The extensive spread of various SARS-CoV-2 variants possesses a serious public health threat. An extensive literature search along with deep analysis was performed to describe and evaluate the characteristics of SARS-CoV-2 variants of concern in relation to the effectiveness of the current vaccines and therapeutics. The obtained results showed that several significant mutations have evolved during the COVID-19 pandemic. The developed variants and their various structural mutations can compromise the effectiveness of several vaccines, escape the neutralizing antibodies, and limit the efficiency of available therapeutics. Furthermore, deep analysis of the available data enables the prediction of the future impact of virus mutations on the ongoing pandemic along with the selection of appropriate vaccines and therapeutics.
Collapse
Affiliation(s)
- Mohamad Hamad
- College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M H AlKhamach
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | - Marina Sokovic
- Institute for Biological Research "Siniša Stanković," National Institute of the Republic of Serbia, University of Belgrade, Beograd, Serbia
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Sameh S M Soliman
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
17
|
Abstract
The majority of vaccines have been delivered into the muscular tissue. Skin contains large amounts of antigen-presenting cells and has been recognized as a more immunogenic site for vaccine delivery. Intradermal delivery has been approved to improve influenza vaccine efficacy and spare influenza vaccine doses. In response to the recent monkeypox outbreak, intradermal delivery has been also approved to stretch the limited monkeypox vaccine doses to immunize more people at risk. Incorporation of vaccine adjuvants is promising to further increase intradermal vaccine efficacy and spare more vaccine doses. Yet, intradermal vaccination is associated with more significant local reactions than intramuscular vaccination. Thus, adjuvants suitable to boost intradermal vaccination need to have a good local safety without inducing overt local reactions. This review introduces currently approved adjuvants in licensed human vaccines and their relative reactogenicity for intradermal delivery and then introduces emerging chemical and physical adjuvants with a good local safety to boost intradermal vaccination. The rational to develop physical adjuvants, the types of physical adjuvants, and the unique advantages of physical adjuvants to boost intradermal vaccination are also introduced in this review.
Collapse
Affiliation(s)
- Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, United States.
| |
Collapse
|
18
|
Khare S, Niharika, Singh A, Hussain I, Singh NB, Singh S. SARS-CoV-2 Vaccines: Types, Working Principle, and Its Impact on Thrombosis and Gastrointestinal Disorders. Appl Biochem Biotechnol 2023; 195:1541-1573. [PMID: 36222988 PMCID: PMC9554396 DOI: 10.1007/s12010-022-04181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
In the current scenario of the coronavirus pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), considerable efforts have been made to control the pandemic by the development of a strong immune system through massive vaccination. Just after the discovery of the genetic sequences of SARS-CoV-2, the development of vaccines became the prime focus of scientists around the globe. About 200 SARS-CoV-2 candidate vaccines have already been entered into preclinical and clinical trials. Various traditional and novel approaches are being utilized as a broad range of platforms. Viral vector (replicating and non-replicating), nucleic acid (DNA and RNA), recombinant protein, virus-like particle, peptide, live attenuated virus, an inactivated virus approaches are the prominent attributes of the vaccine development. This review article includes the current knowledge about the platforms used for the development of different vaccines, their working principles, their efficacy, and the impacts of COVID-19 vaccines on thrombosis. We provide a detailed description of the vaccines that are already approved by administrative authorities. Moreover, various strategies utilized in the development of emerging vaccines that are in the trial phases along with their mode of delivery have been discussed along with their effect on thrombosis and gastrointestinal disorders.
Collapse
Affiliation(s)
- Shubhra Khare
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Niharika
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Ajey Singh
- grid.411488.00000 0001 2302 6594Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - Imtiyaz Hussain
- grid.412997.00000 0001 2294 5433Government Degree College, University of Ladakh, Dras, Ladakh India
| | - Narsingh Bahadur Singh
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Subhash Singh
- grid.16416.340000 0004 1936 9174The Institute of Optics, University of Rochester, Rochester, NY-14627 USA
| |
Collapse
|
19
|
Comparative tissue proteomics reveals unique action mechanisms of vaccine adjuvants. iScience 2022; 26:105800. [PMID: 36619976 PMCID: PMC9813788 DOI: 10.1016/j.isci.2022.105800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Radiofrequency adjuvant (RFA) was recently developed to boost influenza vaccination without the safety concerns of chemical adjuvants due to their physical nature. Yet, the action mechanisms of RFA remain largely unknown. Omics techniques offer new opportunities to identify molecular mechanisms of RFA. This study utilized comparative tissue proteomics to explore molecular mechanisms of the physical RFA. Comparison of RFA and chemical adjuvant (Alum, AddaVax, MPL, MPL/Alum)-induced tissue proteome changes identified 14 exclusively induced proteins by RFA, among which heat shock protein (HSP) 70 was selected for further analysis due to its known immune-modulating functions. RFA showed much weakened ability to boost ovalbumin and pandemic influenza vaccination in HSP70 knockout than wild-type mice, hinting crucial roles of HSP70 in RFA effects. This study supports comparative tissue proteomics to be an effective tool to study molecular mechanisms of vaccine adjuvants.
Collapse
|
20
|
Li Z, Kang X, Kim KH, Zhao Y, Li Y, Kang SM, Chen X. Effective adjuvantation of nanograms of influenza vaccine and induction of cross-protective immunity by physical radiofrequency adjuvant. Sci Rep 2022; 12:21249. [PMID: 36481697 PMCID: PMC9732352 DOI: 10.1038/s41598-022-25605-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Novel adjuvants are highly demanded to aid in development of improved or new vaccines against existing or emerging infectious diseases. Considering commonly used Alum and MF59 adjuvants induce tissue stress and release of endogenous danger signals to mediate their adjuvant effects, physical modalities may be used to induce tissue stress and endogenous danger signal release to enhance vaccine-induced immune responses. Furthermore, physical adjuvants are less likely to induce significant systemic adverse reactions due to their localized effects. Recently we found non-invasive radiofrequency (RF) pretreatment of the skin could significantly enhance intradermal vaccine-induced immune responses in murine models that included pandemic influenza vaccine, pre-pandemic vaccine, and influenza internal antigen vaccine. It remained to be explored whether the physical RF adjuvant (RFA) could be used to boost seasonal influenza vaccination, spare vaccine doses, and induce cross-protective immunity. This study found the physical RFA could significantly enhance seasonal influenza vaccine-induced immune responses against each viral strain and robustly enhance low-dose (nanograms) H3N2 vaccine-induced immune responses and protection in murine models. RFA also induced cross-protective immunity against heterologous and heterosubtypic influenza viruses. Further studies found heat shock protein 70 (inducible endogenous danger signal) and myeloid differentiation primary response 88 adaptor played a crucial role in dose-sparing effects of RFA. These data strongly support further development of the physical RFA to boost influenza vaccination.
Collapse
Affiliation(s)
- Zhuofan Li
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI, 02881, USA
| | - Xinliang Kang
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI, 02881, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Yiwen Zhao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI, 02881, USA
| | - Yibo Li
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI, 02881, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30302, USA
| | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI, 02881, USA.
| |
Collapse
|
21
|
Kang X, Li Y, Zhao Y, Chen X. Overcoming Aging-Associated Poor Influenza Vaccine Responses with CpG 1018 Adjuvant. Vaccines (Basel) 2022; 10:1894. [PMID: 36366402 PMCID: PMC9695697 DOI: 10.3390/vaccines10111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is associated with diminished immune system function, which renders old people vulnerable to influenza infection and also less responsive to influenza vaccination. This study explored whether the CpG 1018 adjuvant was effective in enhancing influenza vaccine efficacy in aged mice equivalent to human beings in their late 50s to early 60s. Using the influenza pandemic 2009 H1N1 (pdm09) vaccine as a model, we found that the CpG 1018 adjuvant could significantly enhance the pdm09 vaccine-induced serum antibody titer, while the pdm09 vaccine alone failed to elicit significant antibody titer. In contrast, the pdm09 vaccine alone elicited significant antibody titer in young adult mice. Antibody subtype analysis found that the pdm09 vaccine alone elicited Th2-biased antibody responses in young adult mice, while incorporation of the CpG 1018 adjuvant promoted the elicitation of potent Th1-biased antibody responses in aged mice. The pdm09 vaccine alone was further found to induce significant expansion of Th2 cells in young adult mice, while incorporation of the CpG 1018 adjuvant stimulated significant expansion of Th1 cells in aged mice. The CpG 1018 adjuvant also stimulated vaccine-specific cytotoxic T lymphocytes in aged mice. The pdm09 vaccine in the presence of CpG 1018 elicited significant protection against lethal viral challenges, while the pdm09 vaccine alone failed to confer significant protection in young adult or aged mice. Our study provided strong evidence to support the high effectiveness of the CpG 1018 adjuvant to boost influenza vaccination in aged mouse models.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881, USA
| |
Collapse
|
22
|
Multifunctional light-activatable nanocomplex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy. Biomaterials 2022; 290:121815. [DOI: 10.1016/j.biomaterials.2022.121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
|
23
|
Xue W, Li T, Zhang S, Wang Y, Hong M, Cui L, Wang H, Zhang Y, Chen T, Zhu R, Chen Z, Zhou L, Zhang R, Cheng T, Zheng Q, Zhang J, Gu Y, Xia N, Li S. Baculovirus Display of Varicella-Zoster Virus Glycoprotein E Induces Robust Humoral and Cellular Immune Responses in Mice. Viruses 2022; 14:1785. [PMID: 36016407 PMCID: PMC9416595 DOI: 10.3390/v14081785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is the causative agent of varicella and herpes zoster (HZ) and can pose a significant challenge to human health globally. The initial VZV infection-more common in children-causes a self-limiting chicken pox. However, in later life, the latent VZV can become reactivated in these patients, causing HZ and postherpetic neuralgia (PHN), a serious and painful complication. VZV glycoprotein E (gE) has been developed into a licensed subunit vaccine against HZ (Shingrix). However, its efficacy relies on the concomitant delivery of a robust adjuvant (AS01B). Here, we sought to create a new immunogen for vaccine design by displaying the VZV-gE on the baculovirus surface (Bac-gE). Correct localization and display of gE on the engineered baculovirus was verified by flow cytometry and immune electron microscopy. We show that Bac-gE provides excellent antigenicity against VZV and induces not only stronger gE-specific CD4+ and CD8+ T cell responses but also higher levels of VZV-specific neutralizing antibodies as compared with other vaccine strategies in mice. Collectively, we show that the baculovirus display of VZV-gE confers ideal humoral and cellular immune responses required for HZ vaccine development, paving the way for a baculovirus-based vaccine design.
Collapse
Affiliation(s)
- Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Minqing Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Lingyan Cui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yuyun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Rongwei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
24
|
Zhao Y, Li Z, Voyer J, Li Y, Chen X. Flagellin/Virus-like Particle Hybrid Platform with High Immunogenicity, Safety, and Versatility for Vaccine Development. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21872-21885. [PMID: 35467839 PMCID: PMC9121874 DOI: 10.1021/acsami.2c01028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 05/07/2023]
Abstract
Hepatitis B core (HBc) virus-like particles (VLPs) and flagellin are highly immunogenic and widely explored vaccine delivery platforms. Yet, HBc VLPs mainly allow the insertion of relatively short antigenic epitopes into the immunodominant c/e1 loop without affecting VLP assembly, and flagellin-based vaccines carry the risk of inducing systemic adverse reactions. This study explored a hybrid flagellin/HBc VLP (FH VLP) platform to present heterologous antigens by replacing the surface-exposed D3 domain of flagellin. FH VLPs were prepared by the insertion of flagellin gene into the c/e1 loop of HBc, followed by E. coli expression, purification, and self-assembly into VLPs. Using the ectodomain of influenza matrix protein 2 (M2e) and ovalbumin (OVA) as models, we found that the D3 domain of flagellin could be replaced with four tandem copies of M2e or the cytotoxic T lymphocyte (CTL) epitope of OVA without interfering with the FH VLP assembly, while the insertion of four tandem copies of M2e into the c/e1 loop of HBc disrupted the VLP assembly. FH VLP-based M2e vaccine elicited potent anti-M2e antibody responses and conferred significant protection against multiple influenza A viral strains, while FljB- or HBc-based M2e vaccine failed to elicit significant protection. FH VLP-based OVA peptide vaccine elicited more potent CTL responses and protection against OVA-expressing lymphoma or melanoma challenges than FljB- or HBc-based OVA peptide vaccine. FH VLP-based vaccines showed a good systemic safety, while flagellin-based vaccines significantly increased serum interleukin 6 and tumor necrosis factor α levels and also rectal temperature at increased doses. We further found that the incorporation of a clinical CpG 1018 adjuvant could enhance the efficacy of FH VLP-based vaccines. Our data support FH VLPs to be a highly immunogenic, safe, and versatile platform for vaccine development to elicit potent humoral and cellular immune responses.
Collapse
Affiliation(s)
- Yiwen Zhao
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Zhuofan Li
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Jewel Voyer
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Yibo Li
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| | - Xinyuan Chen
- Biomedical & Pharmaceutical
Sciences, College of Pharmacy, University
of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, Rhode Island 02881, United States
| |
Collapse
|
25
|
Li Z, Kim KH, Bhatnagar N, Park BR, Jeeva S, Jung YJ, Raha J, Kang SM, Chen X. Physical radiofrequency adjuvant enhances immune responses to influenza H5N1 vaccination. FASEB J 2022; 36:e22182. [PMID: 35113455 PMCID: PMC8928172 DOI: 10.1096/fj.202101703r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Pre-pandemic influenza H5N1 vaccine has relatively low immunogenicity and often requires high antigen amounts and two immunizations to induce protective immunity. Incorporation of vaccine adjuvants is promising to stretch vaccine doses during pandemic outbreaks. This study presents a physical radiofrequency (RF) adjuvant (RFA) to conveniently and effectively increase the immunogenicity and efficacy of H5N1 vaccine without modification of vaccine preparation. Physical RFA is based on a brief RF treatment of the skin to induce thermal stress to enhance intradermal vaccine-induced immune responses with minimal local or systemic adverse reactions. We found that physical RFA could significantly increase H5N1 vaccine-induced hemagglutination inhibition antibody titers in murine models. Intradermal H5N1 vaccine in the presence of RFA but not vaccine alone significantly lowered lung viral titers, reduced body weight loss, and improved survival rates after lethal viral challenges. The improved protection in the presence of RFA was correlated with enhanced humoral and cellular immune responses to H5N1 vaccination in both male and female mice, indicating no gender difference of RFA effects in murine models. Our data support further development of the physical RFA to conveniently enhance the efficacy of H5N1 vaccine.
Collapse
Affiliation(s)
- Zhuofan Li
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Bo Ryoung Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Subbiah Jeeva
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Jannatul Raha
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881
| |
Collapse
|
26
|
Li Y, Li Z, Zhao Y, Chen X. Potentiation of Recombinant NP and M1-Induced Cellular Immune Responses and Protection by Physical Radiofrequency Adjuvant. Vaccines (Basel) 2021; 9:1382. [PMID: 34960128 PMCID: PMC8706500 DOI: 10.3390/vaccines9121382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Nucleoprotein (NP) and matrix protein 1 (M1) are highly conserved among influenza A viruses and have been attractive targets to develop vaccines to elicit cross-reactive cytotoxic T lymphocytes (CTLs). Yet, external antigens are often presented on major histocompatibility complex class II molecules and elicit humoral immune responses. In this study, we present a physical radiofrequency adjuvant (RFA) to assist recombinant NP and M1 to elicit potent CTL responses. We found recombinant NP/M1 immunization in the presence of RFA could elicit potent anti-NP CTLs and confer significant protection against homologous viral challenges, while NP/M1 immunization alone failed to elicit significant CTL responses or confer significant protection. Interestingly, RFA failed to elicit potent anti-M1 CTL responses or anti-NP or anti-M1 antibody responses. Different from RFA, AddaVax adjuvant was found to significantly increase NP-specific antibody responses but not CTLs. NP/M1 immunization in the presence of RFA or AddaVax similarly reduced body weight loss, while only the former significantly increased the survival. We further found NP/M1 immunization in the presence of RFA did not significantly increase serum IL-6 release (a systemic inflammatory mediator) and rather reduced serum IL-6 release after boost immunization. NP/M1 immunization in the presence of RFA did not induce significant local reactions or increase body temperature of mice. The high potency and safety strongly support further development of RFA-based recombinant NP/M1 vaccine to elicit cross-protective immunity.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (Y.L.); (Z.L.); (Y.Z.)
| |
Collapse
|
27
|
In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. COATINGS 2021. [DOI: 10.3390/coatings11111273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of computational models to identify new therapeutics and repurpose existing drugs has gained significance in recent times. The current ‘COVID-19’ pandemic caused by the new SARS CoV2 virus has affected over 200 million people and caused over 4 million deaths. The enormity and the consequences of this viral infection have fueled the research community to identify drugs or vaccines through a relatively expeditious process. The availability of high-throughput datasets has cultivated new strategies for drug development and can provide the foundation towards effective therapy options. Molecular modeling methods using structure-based or computer-aided virtual screening can potentially be employed as research guides to identify novel antiviral agents. This review focuses on in-silico modeling of the potential therapeutic candidates against SARS CoVs, in addition to strategies for vaccine design. Here, we particularly focus on the recently published SARS CoV main protease (Mpro) active site, the RNA-dependent RNA polymerase (RdRp) of SARS CoV2, and the spike S-protein as potential targets for vaccine development. This review can offer future perspectives for further research and the development of COVID-19 therapies via the design of new drug candidates and multi-epitopic vaccines and through the repurposing of either approved drugs or drugs under clinical trial.
Collapse
|
28
|
Wang YX, Yang GH, Zhang LL, Wang J, Wang JF. Melatonin as Immune Potentiator for Enhancing Subunit Vaccine Efficacy against Bovine Viral Diarrhea Virus. Vaccines (Basel) 2021; 9:vaccines9091039. [PMID: 34579276 PMCID: PMC8473004 DOI: 10.3390/vaccines9091039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a pathogen associated with substantial economic losses in the dairy cattle industry. Currently, there are no effective vaccines against BVDV. Melatonin (MT) has been shown to have anti-inflammatory and anti-viral properties, and the use of MF59 in vaccines significantly enhances vaccine efficiency. Here, MT and MF59 were added into the Erns-LTB vaccine. Subsequently, their inhibitory activity on the NF-κB signaling pathway in Mardin-Darby Bovine Kidney cells and the hippocampus was assessed using western blot and quantitative reverse transcription PCR. The findings revealed that MT in the Erns-LTB vaccine decreases the phosphorylation of p65 proteins caused by BVDV infection. In addition, MT decreased the mRNA levels of IL-1β and IL-6 in vitro, but increased the production of IFN-α, IFN-β, Mx1 in vitro, brain-derived neurotrophic factor, cyclic amp response element-binding protein, and the stem cell factor in vivo. Furthermore, treatment with Erns-LTB + MF59 + MT stimulated the production of T lymphocytes, alleviated pathological damage, decreased expressions of BVDV antigen, and tight junction proteins in mice. These findings imply that MT has potential for use in the Erns-LTB vaccine to inhibit BVDV infection and regulate the immune responses of T-cells by inhibiting the NF-κB signaling pathway.
Collapse
|
29
|
Fix OK, Blumberg EA, Chang KM, Chu J, Chung RT, Goacher EK, Hameed B, Kaul DR, Kulik LM, Kwok RM, McGuire BM, Mulligan DC, Price JC, Reau NS, Reddy KR, Reynolds A, Rosen HR, Russo MW, Schilsky ML, Verna EC, Ward JW, Fontana RJ. American Association for the Study of Liver Diseases Expert Panel Consensus Statement: Vaccines to Prevent Coronavirus Disease 2019 Infection in Patients With Liver Disease. Hepatology 2021; 74:1049-1064. [PMID: 33577086 PMCID: PMC8014184 DOI: 10.1002/hep.31751] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
The aim of this document is to provide a concise scientific review of the currently available COVID-19 vaccines and those in development, including mRNA, adenoviral vectors, and recombinant protein approaches. The anticipated use of COVID-19 vaccines in patients with chronic liver disease (CLD) and liver transplant (LT) recipients is reviewed and practical guidance is provided for health care providers involved in the care of patients with liver disease and LT about vaccine prioritization and administration. The Pfizer and Moderna mRNA COVID-19 vaccines are associated with a 94%-95% vaccine efficacy compared to placebo against COVID-19. Local site reactions of pain and tenderness were reported in 70%-90% of clinical trial participants, and systemic reactions of fever and fatigue were reported in 40%-70% of participants, but these reactions were generally mild and self-limited and occurred more frequently in younger persons. Severe hypersensitivity reactions related to the mRNA COVID-19 vaccines are rare and more commonly observed in women and persons with a history of previous drug reactions for unclear reasons. Because patients with advanced liver disease and immunosuppressed patients were excluded from the vaccine licensing trials, additional data regarding the safety and efficacy of COVID-19 vaccines are eagerly awaited in these and other subgroups. Remarkably safe and highly effective mRNA COVID-19 vaccines are now available for widespread use and should be given to all adult patients with CLD and LT recipients. The online companion document located at https://www.aasld.org/about-aasld/covid-19-resources will be updated as additional data become available regarding the safety and efficacy of other COVID-19 vaccines in development.
Collapse
Affiliation(s)
- Oren K Fix
- Elson S. Floyd College of MedicineWashington State UniversitySpokaneWAUSA
| | | | - Kyong-Mi Chang
- University of PennsylvaniaPhiladelphiaPAUSA.,The Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
| | - Jaime Chu
- Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mark W Russo
- Atrium HealthCarolinas Medical CenterCharlotteNCUSA
| | | | | | - John W Ward
- Coalition for Global Hepatitis EliminationDecaturGAUSA
| | | | | |
Collapse
|
30
|
Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, Eri RD, Dua K, Tambuwala MM, Shastri MD. An Appraisal of the Current Scenario in Vaccine Research for COVID-19. Viruses 2021; 13:1397. [PMID: 34372603 PMCID: PMC8310376 DOI: 10.3390/v13071397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) outbreak has drawn global attention, affecting millions, disrupting economies and healthcare modalities. With its high infection rate, COVID-19 has caused a colossal health crisis worldwide. While information on the comprehensive nature of this infectious agent, SARS-CoV-2, still remains obscure, ongoing genomic studies have been successful in identifying its genomic sequence and the presenting antigen. These may serve as promising, potential therapeutic targets in the effective management of COVID-19. In an attempt to establish herd immunity, massive efforts have been directed and driven toward developing vaccines against the SARS-CoV-2 pathogen. This review, in this direction, is aimed at providing the current scenario and future perspectives in the development of vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia;
| | - Dinesh K. Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur 57000, Malaysia;
| | - Shakti D. Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia; (S.D.S.); (K.D.)
| | - Gregory M. Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia; (G.M.P.); (R.P.P.)
| | - Rahul P. Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia; (G.M.P.); (R.P.P.)
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, UP, India;
| | - Rajaraman D. Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia;
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia; (S.D.S.); (K.D.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK
| | - Madhur D. Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia; (G.M.P.); (R.P.P.)
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia;
| |
Collapse
|
31
|
Patel SP, Patel GS, Suthar JV. Inside the story about the research and development of COVID-19 vaccines. Clin Exp Vaccine Res 2021; 10:154-170. [PMID: 34222129 PMCID: PMC8217575 DOI: 10.7774/cevr.2021.10.2.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
The ongoing coronavirus threat from China has spread rapidly to other nations and has been declared a global health emergency by the World Health Organization (WHO). The pandemic has resulted in over half of the world's population living under conditions of lockdown. Several academic institutions and pharmaceutical companies that are in different stages of development have plunged into the vaccine development race against coronavirus disease 2019 (COVID-19). The demand for immediate therapy and potential prevention of COVID-19 is growing with the increase in the number of individuals affected due to the seriousness of the disease, global dissemination, lack of prophylactics, and therapeutics. The challenging part is a need for vigorous testing for immunogenicity, safety, efficacy, and level of protection conferred in the hosts for the vaccines. As the world responds to the COVID-19 pandemic, we face the challenge of an overabundance of information related to the virus. Inaccurate information and myths spread widely and at speed, making it more difficult for the public to identify verified facts and advice from trusted sources, such as their local health authority or WHO. This review focuses on types of vaccine candidates against COVID-19 in clinical as well as in the preclinical development platform.
Collapse
Affiliation(s)
- Shrina P Patel
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| | - Gayatri S Patel
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| | - Jalpa V Suthar
- Ramanbhai Patel College of Pharmacy, Charusat University, Anand, India
| |
Collapse
|
32
|
Li Z, Cao Y, Li Y, Zhao Y, Chen X. Vaccine delivery alerts innate immune systems for more immunogenic vaccination. JCI Insight 2021; 6:144627. [PMID: 33690222 PMCID: PMC8119203 DOI: 10.1172/jci.insight.144627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Vaccine delivery technologies are mainly designed to minimally invasively deliver vaccines to target tissues with little or no adjuvant effects. This study presents a prototype laser-based powder delivery (LPD) with inherent adjuvant effects for more immunogenic vaccination without incorporation of external adjuvants. LPD takes advantage of aesthetic ablative fractional laser to generate skin microchannels to support high-efficient vaccine delivery and at the same time creates photothermal stress in microchannel-surrounding tissues to boost vaccination. LPD could significantly enhance pandemic influenza 2009 H1N1 vaccine immunogenicity and protective efficacy as compared with needle-based intradermal delivery in murine models. The ablative fractional laser was found to induce host DNA release, activate NLR family pyrin domain containing 3 inflammasome, and stimulate IL-1β release despite their dispensability for laser adjuvant effects. Instead, the ablative fractional laser activated MyD88 to mediate its adjuvant effects by potentiation of antigen uptake, maturation, and migration of dendritic cells. LPD also induced minimal local or systemic adverse reactions due to the microfractional and sustained vaccine delivery. Our data support the development of self-adjuvanted vaccine delivery technologies by intentional induction of well-controlled tissue stress to alert innate immune systems for more immunogenic vaccination.
Collapse
|
33
|
Dash P, Mohapatra S, Ghosh S, Nayak B. A Scoping Insight on Potential Prophylactics, Vaccines and Therapeutic Weaponry for the Ongoing Novel Coronavirus (COVID-19) Pandemic- A Comprehensive Review. Front Pharmacol 2021; 11:590154. [PMID: 33815095 PMCID: PMC8015872 DOI: 10.3389/fphar.2020.590154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of highly virulent CoVs (SARS-CoV-2), the etiologic agent of novel ongoing "COVID-19" pandemics has been marked as an alarming case of pneumonia posing a large global healthcare crisis of unprecedented magnitude. Currently, the COVID-19 outbreak has fueled an international demand in the biomedical field for the mitigation of the fast-spreading illness, all through the urgent deployment of safe, effective, and rational therapeutic strategies along with epidemiological control. Confronted with such contagious respiratory distress, the global population has taken significant steps towards a more robust strategy of containment and quarantine to halt the total number of positive cases but such a strategy can only delay the spread. A substantial number of potential vaccine candidates are undergoing multiple clinical trials to combat COVID-19 disease, includes live-attenuated, inactivated, viral-vectored based, sub-unit vaccines, DNA, mRNA, peptide, adjuvant, plant, and nanoparticle-based vaccines. However, there are no licensed anti-COVID-19 drugs/therapies or vaccines that have proven to work as more effective therapeutic candidates in open-label clinical trial studies. To counteract the infection (SARS-CoV-2), many people are under prolonged treatment of many chemical drugs that inhibit the PLpro activity (Ribavirin), viral proteases (Lopinavir/Ritonavir), RdRp activity (Favipiravir, Remdesivir), viral membrane fusion (Umifenovir, Chloroquine phosphate (CQ), Hydroxychloroquine phosphate (HCQ), IL-6 overexpression (Tocilizumab, Siltuximab, Sarilumab). Mesenchymal Stem Cell therapy and Convalescent Plasma Therapy have emerged as a promising therapeutic strategy against SARS-CoV-2 virion. On the other hand, repurposing previously designed antiviral agents with tolerable safety profile and efficacy could be the only promising approach and fast response to the novel virion. In addition, research institutions and corporations have commenced the redesign of the available therapeutic strategy to manage the global crisis. Herein, we present succinct information on selected anti-COVID-19 therapeutic medications repurposed to combat SARS-CoV-2 infection. Finally, this review will provide exhaustive detail on recent prophylactic strategies and ongoing clinical trials to curb this deadly pandemic, outlining the major therapeutic areas for researchers to step in.
Collapse
Affiliation(s)
| | | | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
34
|
Rani D, Nayak B, Srivastava S. Immunogenicity of gold nanoparticle-based truncated ORF2 vaccine in mice against Hepatitis E virus. 3 Biotech 2021; 11:49. [PMID: 33457173 PMCID: PMC7799426 DOI: 10.1007/s13205-020-02573-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
This study presents nanoparticle-based vaccine development for Hepatitis E virus (HEV). Gold nanoparticles (GNP) of average size 12 nm were synthesized by citrate reduction method followed by functionalization with cysteamine hydrochloride for nano-conjugation. Immune response of nano-conjugates of GNP with 26 kDa protein (368-606 amino acids) and 54 kDa protein (112-606 amino acids) were evaluated. In vitro release kinetics of GNP-conjugated 54 kDa (GNP54) and 26 kDa (GNP26) proteins showed slower rate of release of 54 kDa protein as compared to 26 kDa protein. Humoral immune response of mice immunized intramuscularly with GNP54, GNP26 and GNP alone, exhibited HEV-specific IgG titer of 7.9 ± 2.9, 5.686 ± 4.098 and 0.698 ± 0.089, respectively, after 14 days of booster immunization. In addition to this, HEV-specific cell-mediated immune response was demonstrated by splenocyte proliferation assay. Analysis of results using one-way ANOVA, showed statistically significant (p value < 0.05) increase in splenocyte proliferation for GNP54- and GNP26-immunized mice in comparison to GNP alone immunized mice. Stimulation index of HEV ORF2 proteins in GNP54/GNP26-immunized mice were comparable to Concanavalin A-treated positive control. These results indicate GNP-based vaccine as a promising candidate for efficiently mediating both humoral and cell-mediated immune response against HEV.
Collapse
|
35
|
Li Z, Zhao Y, Li Y, Chen X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines (Basel) 2021; 9:75. [PMID: 33494477 PMCID: PMC7911902 DOI: 10.3390/vaccines9020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Influenza poses a huge threat to global public health. Influenza vaccines are the most effective and cost-effective means to control influenza. Current influenza vaccines mainly induce neutralizing antibodies against highly variable globular head of hemagglutinin and lack cross-protection. Vaccine adjuvants have been approved to enhance seasonal influenza vaccine efficacy in the elderly and spare influenza vaccine doses. Clinical studies found that MF59 and AS03-adjuvanted influenza vaccines could induce cross-protective immunity against non-vaccine viral strains. In addition to MF59 and AS03 adjuvants, experimental adjuvants, such as Toll-like receptor agonists, saponin-based adjuvants, cholera toxin and heat-labile enterotoxin-based mucosal adjuvants, and physical adjuvants, are also able to broaden influenza vaccine-induced immune responses against non-vaccine strains. This review focuses on introducing the various types of adjuvants capable of assisting current influenza vaccines to induce cross-protective immunity in preclinical and clinical studies. Mechanisms of licensed MF59 and AS03 adjuvants to induce cross-protective immunity are also introduced. Vaccine adjuvants hold a great promise to adjuvant influenza vaccines to induce cross-protective immunity.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
36
|
|
37
|
Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res 2020; 288:198114. [PMID: 32800805 PMCID: PMC7423510 DOI: 10.1016/j.virusres.2020.198114] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
Abstract
The current COVID-19 pandemic has urged the scientific community internationally to find answers in terms of therapeutics and vaccines to control SARS-CoV-2. Published investigations mostly on SARS-CoV and to some extent on MERS has taught lessons on vaccination strategies to this novel coronavirus. This is attributed to the fact that SARS-CoV-2 uses the same receptor as SARS-CoV on the host cell i.e. human Angiotensin Converting Enzyme 2 (hACE2) and is approximately 79% similar genetically to SARS-CoV. Though the efforts on COVID-19 vaccines started very early, initially in China, as soon as the outbreak of novel coronavirus erupted and then world-over as the disease was declared a pandemic by WHO. But we will not be having an effective COVID-19 vaccine before September, 2020 as per very optimistic estimates. This is because a successful COVID-19 vaccine will require a cautious validation of efficacy and adverse reactivity as the target vaccinee population include high-risk individuals over the age of 60, particularly those with chronic co-morbid conditions, frontline healthcare workers and those involved in essentials industries. Various platforms for vaccine development are available namely: virus vectored vaccines, protein subunit vaccines, genetic vaccines, and monoclonal antibodies for passive immunization which are under evaluations for SARS-CoV-2, with each having discrete benefits and hindrances. The COVID-19 pandemic which probably is the most devastating one in the last 100 years after Spanish flu mandates the speedy evaluation of the multiple approaches for competence to elicit protective immunity and safety to curtail unwanted immune-potentiation which plays an important role in the pathogenesis of this virus. This review is aimed at providing an overview of the efforts dedicated to an effective vaccine for this novel coronavirus which has crippled the world in terms of economy, human health and life.
Collapse
Affiliation(s)
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
38
|
George PJ, Tai W, Du L, Lustigman S. The Potency of an Anti-MERS Coronavirus Subunit Vaccine Depends on a Unique Combinatorial Adjuvant Formulation. Vaccines (Basel) 2020; 8:vaccines8020251. [PMID: 32471056 PMCID: PMC7350031 DOI: 10.3390/vaccines8020251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 01/29/2023] Open
Abstract
Vaccination is one of the most successful strategies to prevent human infectious diseases. Combinatorial adjuvants have gained increasing interest as they can stimulate multiple immune pathways and enhance the vaccine efficacy of subunit vaccines. We investigated the adjuvanticity of Aluminum (alum) in combination with rASP-1, a protein adjuvant, using the Middle East respiratory syndrome coronavirus MERS-CoV receptor-binding-domain (RBD) vaccine antigen. A highly enhanced anti-MERS-CoV neutralizing antibody response was induced when mice were immunized with rASP-1 and the alum-adjuvanted RBD vaccine in two separate injection sites as compared to mice immunized with RBD + rASP-1 + alum formulated into a single inoculum. The antibodies produced also significantly inhibited the binding of RBD to its cell-associated receptor. Moreover, immunization with rASP-1 co-administered with the alum-adjuvanted RBD vaccine in separate sites resulted in an enhanced frequency of TfH and GC B cells within the draining lymph nodes, both of which were positively associated with the titers of the neutralizing antibody response related to anti-MERS-CoV protective immunity. Our findings not only indicate that this unique combinatorial adjuvanted RBD vaccine regimen improved the immunogenicity of RBD, but also point to the importance of utilizing combinatorial adjuvants for the induction of synergistic protective immune responses.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA;
| | - Wanbo Tai
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA; (W.T.); (L.D.)
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA; (W.T.); (L.D.)
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA;
- Correspondence:
| |
Collapse
|
39
|
Zhao Y, Li Z, Zhu X, Cao Y, Chen X. Improving immunogenicity and safety of flagellin as vaccine carrier by high-density display on virus-like particle surface. Biomaterials 2020; 249:120030. [PMID: 32315864 DOI: 10.1016/j.biomaterials.2020.120030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
Flagellin is a protein-based adjuvant that activates toll-like receptor (TLR) 5. Flagellin has been actively explored as vaccine adjuvants and carriers. Preclinical and clinical studies find flagellin-based vaccines have a risk to induce systemic adverse reactions potentially due to its overt activation of TLR5. To improve safety and immunogenicity of flagellin as vaccine carriers, FljB was displayed at high densities on hepatitis b core (HBc) virus-like particle (VLP) surface upon c/e1 loop insertion. FljB-HBc (FH) VLPs showed significantly reduced ability to activate TLR5 or induce systemic interleukin-6 release as compared to FljB. FH VLPs also failed to significantly increase rectal temperature of mice, while FljB could significantly increase rectal temperature of mice. These data indicated systemic safety of FljB could be significantly improved by high-density display on HBc VLP surface. Besides improved safety, FH VLPs and FljB similarly boosted co-administered ovalbumin immunization and FH VLPs were found to induce two-fold higher anti-FljB antibody titer than FljB. These data indicated preserved adjuvant potency and improved immunogenicity after high-density display of FljB on HBc VLP surface. Consistent with the high immunogenicity, FH VLPs were found to be more efficiently taken up by bone marrow-derived dendritic cells and stimulate more potent dendritic cell maturation than FljB. Lastly, FH VLPs were found to be a more immunogenic carrier than FljB, HBc VLPs, or the widely used keyhole limpet hemocyanin for nicotine vaccine development with a good local and systemic safety. Our data support FH VLPs to be a potentially safer and more immunogenic carrier than FljB for vaccine development.
Collapse
Affiliation(s)
- Yiwen Zhao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Zhuofan Li
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Xiaoyue Zhu
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Yan Cao
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
40
|
Recombinant E rns-E2 protein vaccine formulated with MF59 and CPG-ODN promotes T cell immunity against bovine viral diarrhea virus infection. Vaccine 2020; 38:3881-3891. [PMID: 32280039 DOI: 10.1016/j.vaccine.2020.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
To obtain an effective vaccine candidate against bovine viral diarrhea virus (BVDV) disease which causes great economical loss in cattle industries, recombinant Erns-E2 protein vaccine containing MF59 and CPG-ODN adjuvants was prepared and assessed in this study. The recombinant plasmid (pET32a-Erns-E2) was constructed and transformed into BL21 (DE3) cells to produce Erns-E2 protein. We immunized mice with the MF59-and CPG-ODN-adjuvanted recombinant Erns-E2 protein, E2 protein, or Erns protein, respectively. To evaluate immunogenicity and efficacy of a vaccine-adjuvant combination, mice were challenged with BVDV BJ175170 strain after immunization. All adjuvanted vaccines elicited detectable humoral and cellular immune responses, the BVDV-specific antibody titers as well as interleukin 4 (IL-4) levels in sera of mice immunized with the recombinant Erns-E2 protein were higher than in those of mice immunized with either the recombinant Erns or E2 protein. Besides, immunization with the Erns-E2 vaccines induced higher percentage of CD4+IFN-γ+, CD8+IFN-γ+ T cells and CD3+TNF-α+ T cells compared with the other vaccines. More protective efficacy against BVDV infection was acquired in the mice treated with the recombinant Erns-E2 protein, as shown by a reduction of viremia and slight pathological changes compared with both the control mice and the other vaccinated mice. Our findings suggest that the use of the recombinant Erns-E2 protein vaccine formulated with MF59 and CPG-ODN adjuvants enhances T cell responses and viral control, which warrants the Erns-E2 protein vaccine-adjuvant combination could be as a vaccine strategy to against BVDV.
Collapse
|