1
|
Buettner WC, Schultz CA. Governing across jurisdictions in post-wildfire response and recovery: An analysis of the 2022 Hermit's Peak Calf Canyon Wildfire. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125272. [PMID: 40222073 DOI: 10.1016/j.jenvman.2025.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Post-fire response and recovery is an increasingly important topic given more catastrophic, extensive, and frequent fires in the US West. Given the lack of research on policy challenges in this arena, we investigated the following questions: 1) What roles do land managers and agencies play during post-wildfire response and recovery efforts? and, 2) What are the policy and other governance facilitators, challenges, and recommendations for improving post-wildfire response and recovery? We conducted qualitative interviews with 22 individuals who had intimate knowledge of and held leadership roles in the response and recovery efforts to the 2022 Hermit's Peak Calf Canyon Fire. We found that every local, state, and federal actor had a different focus during the initial emergency response, and actors self-organized to address immediate challenges. Challenges included inflexible policies, limited capacity and knowledge of post-fire contexts, limited incentives for cross-boundary work, and difficulty adapting federal approaches to local contexts. Consistent with prior literature, we found facilitating factors included local champions, the formation of boundary organizations, and the use of existing collaborative authorities and federal funding support for post-fire response efforts. Interviewee recommendations were to expand workforce capacity, provide more education on post-wildfire programs and ecology, pursue legislative changes, and develop navigator positions. We explore these suggestions in detail, and consider whether they align with governance institutions that are known to support greater adaptiveness, something that is missing from the existing literature.
Collapse
Affiliation(s)
- William C Buettner
- Public Lands Policy Group, Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA.
| | - Courtney A Schultz
- Public Lands Policy Group, Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Taylor C, Evans MJ, Lindenmayer D. A significant increase in forest regeneration failure following logging is driven by climatic and management factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125169. [PMID: 40215858 DOI: 10.1016/j.jenvman.2025.125169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/27/2025]
Abstract
Regeneration following disturbance is a key natural process in forests worldwide and understanding the factors influencing it is critical to forest management. Here, using satellite data, historical logging data (1980-2019), and on-ground surveys, we quantified the spatial and temporal extent of regeneration failure following logging in the Eucalyptus forests of south-eastern Australia. We asked: What is the spatial extent and distribution of regeneration failure? Has the prevalence of regeneration failure changed over time? And, what climatic, topographic and other factors influence regeneration failure? We found that 19.2 % of areas logged between 1980 and 2019 in our study area (8030 ha of 41,819 ha cut) were characterized by regeneration failure. There was strong evidence of a significant increase in the extent of failed regeneration over the 40 years of our study, increasing from an average of <2 ha per cutblock in 1980 (∼7.5%) to an average of >9 ha per cutblock in 2019 (∼85%). The rate of change in regeneration failure also has increased. Regeneration failure was greatest on cutblocks with particular attributes including those: (1) with a high edge-area ratio (corresponding to long narrow logged areas), (2) on steep slopes, (3) at low elevation, and (4) dominated by Mountain Ash (Eucalyptus regnans) forest compared to other species (e.g. Alpine Ash [Eucalyptus delegatensis]). Our results suggest that attempts to regenerate forest cover in some areas may become challenging after logging, including cutblocks on steep slopes that experience comparatively drier conditions.
Collapse
Affiliation(s)
- Chris Taylor
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Maldwyn J Evans
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
3
|
Calderisi G, Rossetti I, Cogoni D, Fenu G. Delayed Vegetation Mortality After Wildfire: Insights from a Mediterranean Ecosystem. PLANTS (BASEL, SWITZERLAND) 2025; 14:730. [PMID: 40094626 PMCID: PMC11902081 DOI: 10.3390/plants14050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Wildfires, one of the most important ecological disturbances, influence the composition and dynamics of ecosystems all around the world. Changes in fire regimes brought on by climate change are making their effects worse by increasing the frequency and size of fires. This study examined the issue of delayed mortality at the species and community levels, concentrating on Mediterranean forests dominated by Quercus ilex and Quercus suber. This research examined areas lacking spectral recovery following a megafire, which, although relatively small compared to the total burned area, represented significant ecological disturbances. The results highlighted distinct post-fire dynamics at both the woodland and species levels. Q. ilex experienced higher delayed mortality, particularly in areas of lower fire severity (NR), likely due to increased intra-specific competition. Because of its thick bark, which offers stronger fire resistance and encourages regeneration even in high-severity fire zones (HR), Q. suber showed greater resilience. Responses from the shrub layer varied, and some species, such as Pteridium aquilinum and Cytisus villosus, showed post-fire proliferation. To improve our knowledge of ecosystem resilience and guide forest management in fire-prone areas, these findings highlight the intricacy of post-fire ecological processes and the need to integrate species-specific features with more general community-level patterns.
Collapse
Affiliation(s)
- Giulia Calderisi
- Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy; (G.C.); (D.C.)
| | - Ivo Rossetti
- Research Centre of S. Teresa, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), 19032 Lerici, Italy;
| | - Donatella Cogoni
- Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy; (G.C.); (D.C.)
| | - Giuseppe Fenu
- Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy; (G.C.); (D.C.)
| |
Collapse
|
4
|
Bowd EJ, McBurney L, Lindenmayer DB. Divergent trajectories of regeneration in early-successional forests after logging and wildfire. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3061. [PMID: 39564765 DOI: 10.1002/eap.3061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 11/21/2024]
Abstract
Increases in forest disturbances have altered global forest demography rates, with many regions now characterized by extensive areas of early-successional forest. Heterogeneity in the structure, diversity, and composition of early-successional forests influence their inherent ecological values from immediately following disturbance to later successional stages, including values for biodiversity and carbon storage. Here, using 14 years of longitudinal data, we describe patterns in the structure, richness, and composition of early-successional forests subject to one of three different disturbance types: (1) clearcut logging followed by slash burn, (2) severe wildfire followed by salvage logging, and (3) severe wildfire only, in the Mountain Ash (Eucalyptus regnans) and Alpine Ash (Eucalyptus delegatensis) forests of southeastern Australia. We also documented the influence of disturbance intervals (short, medium, and long) on early-successional forests. Our analyses revealed several key differences between forests that regenerated from wildfire versus two different anthropogenic perturbations. Most ash-type plant communities were resilient to wildfire within historical fire-regimes (75-150 years), exhibiting temporal trends of recovery in plant structure, richness, and composition within the first decade. In contrast, the richness, occurrence, and abundance of some plant lifeforms and life history traits were negatively associated with clearcut logging and salvage logging, relative to forests disturbed by wildfire alone. These included resprouting species, such as tree ferns and ground ferns. However, Acacia spp. and shrubs were more abundant after clearcut logging. Our findings also provide evidence of the pronounced negative impact of salvage logging on early-successional plant communities, relative to that of both clearcut logging and wildfire. Notably, plant richness declined for over a decade after salvage logging, rather than increased as occurred following other disturbance types. Early-successional forests provide the template for the stand structure and composition of mature forests. Therefore, altered patterns of recovery with different disturbance types will likely shape the structure and function of later-successional stages. Predicted increases in wildfire will increase the generation of early-successional forests and subsequent salvage logging. Therefore, it is pertinent that management consider how different disturbance types can produce alternate states of forest composition and structure early in succession, and the implications for mature stands.
Collapse
Affiliation(s)
- Elle J Bowd
- Fenner School of Environment & Society, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lachlan McBurney
- Fenner School of Environment & Society, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David B Lindenmayer
- Fenner School of Environment & Society, ANU College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
5
|
Rodman KC, Bradford JB, Formanack AM, Fulé PZ, Huffman DW, Kolb TE, Miller‐ter Kuile AT, Normandin DP, Ogle K, Pedersen RJ, Schlaepfer DR, Stoddard MT, Waltz AEM. Restoration treatments enhance tree growth and alter climatic constraints during extreme drought. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3072. [PMID: 39627996 PMCID: PMC11726003 DOI: 10.1002/eap.3072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 01/14/2025]
Abstract
The frequency and severity of drought events are predicted to increase due to anthropogenic climate change, with cascading effects across forested ecosystems. Management activities such as forest thinning and prescribed burning, which are often intended to mitigate fire hazard and restore ecosystem processes, may also help promote tree resistance to drought. However, it is unclear whether these treatments remain effective during the most severe drought conditions or whether their impacts differ across environmental gradients. We used tree-ring data from a system of replicated, long-term (>20 years) experiments in the southwestern United States to evaluate the effects of forest restoration treatments (i.e., evidence-based thinning and burning) on annual growth rates (i.e., basal area increment; BAI) of ponderosa pine (Pinus ponderosa), a broadly distributed and heavily managed species in western North America. The study sites were established at the onset of the most extreme drought event in at least 1200 years and span much of the climatic niche of Rocky Mountain ponderosa pine. Across sites, tree-level BAI increased due to treatment, where trees in treated units grew 133.1% faster than trees in paired, untreated units. Likewise, trees in treated units grew an average of 85.6% faster than their pre-treatment baseline levels (1985 to ca. 2000), despite warm, dry conditions in the post-treatment period (ca. 2000-2018). Variation in the local competitive environment promoted variation in BAI, and larger trees were the fastest-growing individuals, irrespective of treatment. Tree thinning and prescribed fire altered the climatic constraints on growth, decreasing the effects of belowground moisture availability and increasing the effects of atmospheric evaporative demand over multi-year timescales. Our results illustrate that restoration treatments can enhance tree-level growth across sites spanning ponderosa pine's climatic niche, even during recent, extreme drought events. However, shifting climatic constraints, combined with predicted increases in evaporative demand in the southwestern United States, suggest that the beneficial effects of such treatments on tree growth may wane over the upcoming decades.
Collapse
Affiliation(s)
- Kyle C. Rodman
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - John B. Bradford
- US Geological Survey, Northwest Climate Adaptation Science CenterSeattleWashingtonUSA
- US Geological Survey, Southwest Biological Science CenterFlagstaffArizonaUSA
| | - Alicia M. Formanack
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Peter Z. Fulé
- School of ForestryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - David W. Huffman
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas E. Kolb
- School of ForestryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Ana T. Miller‐ter Kuile
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
- USDA Forest Service, Rocky Mountain Research StationFlagstaffArizonaUSA
| | - Donald P. Normandin
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Kiona Ogle
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rory J. Pedersen
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Daniel R. Schlaepfer
- US Geological Survey, Southwest Biological Science CenterFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Michael T. Stoddard
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Amy E. M. Waltz
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
6
|
Miguel S, Ruiz-Benito P, Rebollo P, Viana-Soto A, Mihai MC, García-Martín A, Tanase M. Forest disturbance regimes and trends in continental Spain (1985-2023) using dense landsat time series. ENVIRONMENTAL RESEARCH 2024; 262:119802. [PMID: 39147188 DOI: 10.1016/j.envres.2024.119802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Forest disturbance regimes across biomes are being altered by interactive effects of global change. Establishing baselines for assessing change requires detailed quantitative data on past disturbance events, but such data are scarce and difficult to obtain over large spatial and temporal scales. The integration of remote sensing with dense time series analysis and cloud computing platforms is enhancing the ability to monitor historical disturbances, and especially non-stand replacing events along climatic gradients. Since the integration of such tools is still scarce in Mediterranean regions, here, we combine dense Landsat time series and the Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA) method to monitor forest disturbance in continental Spain from 1985 to 2023. We adapted the CCDC-SMA method for improved disturbance detection creating new spectral libraries representative of the study region, and quantified the year, month, severity, return interval, and type of disturbance (stand replacing, non-stand replacing) at a 30 m resolution. In addition, we characterised forest disturbance regimes and trends (patch size and severity, and frequency of events) of events larger than 0.5 ha at the national scale by biome (Mediterranean and temperate) and forest type (broadleaf, needleleaf and mixed). We quantified more than 2.9 million patches of disturbed forest, covering 4.6 Mha over the region and period studied. Forest disturbances were on average larger but less severe in the Mediterranean than in the temperate biome, and significantly larger and more severe in needleleaf than in mixed and broadleaf forests. Since the late 1980s, forest disturbances have decreased in size and severity while increasing in frequency across all biomes and forest types. These results have important implications as they confirm that disturbance regimes in continental Spain are changing and should therefore be considered in forest strategic planning for policy development and implementation.
Collapse
Affiliation(s)
- S Miguel
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain.
| | - P Ruiz-Benito
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal (FORECO), Departamento de Ciencias de la Vida, 28805, Alcalá de Henares, Madrid, Spain
| | - P Rebollo
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal (FORECO), Departamento de Ciencias de la Vida, 28805, Alcalá de Henares, Madrid, Spain; Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/ José Antonio Novais 12, 28040, Madrid, Spain
| | - A Viana-Soto
- Technical University of Munich, School of Life Sciences, Earth Observation for Ecosystem Management, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - M C Mihai
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain
| | - A García-Martín
- Centro Universitario de la Defensa de Zaragoza, Academia General Militar, Ctra. de Huesca s/n, 50090, Zaragoza, Spain; Geoforest-IUCA, Department of Geography and Land Management, University of 6 Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Tanase
- Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, Colegios 2, Alcalá de Henares, 28801, Spain
| |
Collapse
|
7
|
Mo L, Crowther TW, Maynard DS, van den Hoogen J, Ma H, Bialic-Murphy L, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Phillips OL, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Boonman CCF, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Valverde FC, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hietz P, Hillers A, Honorio Coronado EN, Hui C, Ibanez T, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, et alMo L, Crowther TW, Maynard DS, van den Hoogen J, Ma H, Bialic-Murphy L, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Phillips OL, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Boonman CCF, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Valverde FC, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hietz P, Hillers A, Honorio Coronado EN, Hui C, Ibanez T, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lewis SL, Li Y, Lopez-Gonzalez G, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, McCarthy JK, Meave JA, Melo-Cruz O, Mendoza C, Mendoza-Polo I, Miscicki S, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Picard N, Piedade MTF, Piotto D, Pitman NCA, Poorter L, Poulsen AD, Poulsen JR, Pretzsch H, Arevalo FR, Restrepo-Correa Z, Richardson SJ, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Da Silva AC, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Sosinski EE, Souza AF, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, Van Bodegom PM, van der Plas F, Van Do T, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Zohner CM. The global distribution and drivers of wood density and their impact on forest carbon stocks. Nat Ecol Evol 2024; 8:2195-2212. [PMID: 39406932 PMCID: PMC11618071 DOI: 10.1038/s41559-024-02564-9] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/16/2024] [Indexed: 12/06/2024]
Abstract
The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems.
Collapse
Affiliation(s)
- Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Haozhi Ma
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Lalasia Bialic-Murphy
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | | | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Lab, School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | | | - Esteban Alvarez-Dávila
- Fundacion Con Vida, Universidad Nacional Abierta y a Distancia (UNAD), Medellin, Colombia
| | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Guanare, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Sękocin Stary, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | | | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, Univ Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, the Netherlands
| | - Coline C F Boonman
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Lab, School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St. Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | | | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Ben DeVries
- Department of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, Canada
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, Brazil
| | - Leena Finér
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Martin Herold
- Helmholtz GFZ German Research Centre for Geosciences, Remote Sensing and Geoinformatics Section, Telegrafenberg, Potsdam, Germany
| | - Peter Hietz
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, National Institute for Theoretical and Computational Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas Ibanez
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | - Kuswata Kartawinata
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Dmitry Kucher
- Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Yuanzhi Li
- Department of Ecology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land Ltd, Kirby Misperton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | | | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | | | - Stanislaw Miscicki
- Department of Forest Management, Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Oxapampa, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela (EDIUS), Santiago de Compostela, Spain
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Ecuador
| | - Victor J Neldner
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Petr Ontikov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | | | - Yude Pan
- Climate, Fire and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Lourens Poorter
- Wageningen University and Research, Wageningen, the Netherlands
| | | | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- The Nature Conservancy, Boulder, CO, USA
| | - Hans Pretzsch
- Chair of Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University Valladolid, Valladolid, Spain
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | | | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Center for Natural Climate Solutions, Conservation International, Arlington, TX, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE-Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Botany, Banaras Hindu University, Varanasi, India
| | - Christian Salas-Eljatib
- Departamento de Gestión Forestal y su Medio Ambiente, Universidad de Chile, Santiago, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | | | - Dmitry Schepaschenko
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Siberian Federal University, Krasnoyarsk, Russian Federation
| | | | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, the Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, French Guiana
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russian Federation
| | | | | | - Peter M Van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, the Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Agricultural High School, Polytechnic Institute of Viseu (IPV), Viseu, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Hannsjoerg Woell
- Independent Researcher, Sommersbergseestrasse, Bad Aussee, Austria
| | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderick Zagt
- Tropenbos International, Wageningen, the Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
8
|
Guignabert A, Jonard M, Messier C, André F, de Coligny F, Doyon F, Ponette Q. Adaptive forest management improves stand-level resilience of temperate forests under multiple stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174168. [PMID: 38942315 DOI: 10.1016/j.scitotenv.2024.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Forests are expected to be strongly affected by modifications in climate and disturbance regimes, threatening their ability to sustain the provision of essential services. Promoting drought-tolerant species or functionally diverse stands have recently emerged as management options to cope with global change. Our study aimed at evaluating the impact of contrasting stand-level management scenarios on the resilience of temperate forests in eastern North America and central-western Europe using the individual process-based model HETEROFOR. We simulated the evolution of eight stands over 100 years under a future extreme climate according to four management scenarios (business as usual - BAU; climate change adaptation - CC; functional diversity approach - FD; no management - NM) while facing multiple disturbances, resulting in a total of 160 simulations. We found that FD demonstrated the greatest resilience regarding transpiration and tree biomass, followed by CC and then BAU, while these three scenarios were equivalent concerning the net primary production. These results were however dependent on forest type: increasing functional diversity was a powerful option to increase the resilience of coniferous plantations whereas no clear differences between BAU and adaptive management scenarios were detected in broadleaved and mixed stands. The FD promoted a higher level of tree species diversity than any other scenario, and all scenarios of management were similar regarding the amount of harvested wood. The NM always showed the lowest resilience, demonstrating that forest management could be an important tool to mitigate adverse effects of global change. Our study highlighted that tree-level process-based models are a relevant tool to identify suitable management options for adapting forests to global change provided that model limitations are considered, and that alternative management options, particularly those based on functional diversity, are promising and should be promoted from now on.
Collapse
Affiliation(s)
- Arthur Guignabert
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Mathieu Jonard
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Christian Messier
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada; Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| | - Frédéric André
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Frédérik Doyon
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada; Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| | - Quentin Ponette
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Promi SI, Gardner CM, Hohner AK. Biodegradability of unheated and laboratory heated dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1429-1439. [PMID: 39011602 DOI: 10.1039/d3em00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Following wildfires, partially combusted biomass remains on the forest floor and erosion from the landscape can release dissolved pyrogenic organic matter (dPyOM) to surface waters. Therefore, post-fire alterations to dissolved organic matter (DOM) in aquatic systems may play a vital role in DOM stability and biogeochemical cycles. Dissolved PyOM biodegradation remains poorly understood and is expected to vary with combustion temperature and fuel source. In this study laboratory heating and leaching of forest floor materials (soil and litter) were used to compare the biodegradability of unheated, low (250 °C), and moderate (450 °C) temperature leachates. Inoculation experiments were performed with river microbes. Dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen, and DOM optical properties were monitored for 38 days. Inoculation experiments showed significantly greater DOC biodegradation of low and moderate temperature samples (64% and 71%, respectively) compared to unheated samples (32%). The greater DOC biodegradation may be explained by lower molecular weight DOM composition of heated leachates which was supported by higher initial E2/E3 ratios (absorbance at 250 nm/365 nm). Further, the observed decrease in the E2/E3 ratio after incubation suggests biodegradation of smaller compounds. This trend was greater for heated samples than unheated DOM. Specific ultraviolet absorbance increased after incubation, suggesting biodegradation of aliphatic compounds. Inoculated moderate temperature samples showed the greatest DON degradation (74%), followed by low temperature (58%) and unheated (51%) samples. Overall, results suggest that low and moderate temperature dPyOM was more biodegradable than unheated DOM, which may have implications for aquatic biogeochemical cycling, ecosystem function, and water quality in fire-impacted watersheds.
Collapse
Affiliation(s)
- Saraf Islam Promi
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, TX, USA
| | - Courtney M Gardner
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, TX, USA
| | - Amanda K Hohner
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA
- Department of Civil Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
10
|
Bas TG, Sáez ML, Sáez N. Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1231. [PMID: 38732447 PMCID: PMC11085170 DOI: 10.3390/plants13091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
This research reviews the phenomenon of extractive deforestation as a possible trigger for cascade reactions that could affect part of the forest ecosystem and its biodiversity (surface, aerial, and underground) in tropical, subtropical, and boreal forests. The controversy and disparities in criteria generated in the international scientific community around the hypothesis of a possible link between "mother trees" and mycorrhizal networks in coopetition for nutrients, nitrogen, and carbon are analyzed. The objective is to promote awareness to generate more scientific knowledge about the eventual impacts of forest extraction. Public policies are emphasized as crucial mediators for balanced sustainable development. Currently, the effects of extractive deforestation on forest ecosystems are poorly understood, which requires caution and forest protection. Continued research to increase our knowledge in molecular biology is advocated to understand the adaptation of biological organisms to the new conditions of the ecosystem both in the face of extractive deforestation and reforestation. The environmental impacts of extractive deforestation, such as the loss of biodiversity, soil degradation, altered water cycles, and the contribution of climate change, remain largely unknown. Long-term and high-quality research is essential to ensure forest sustainability and the preservation of biodiversity for future generations.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| | - Mario Luis Sáez
- Facultad de Humanidades, La Serena University, Coquimbo 1700000, Chile;
| | - Nicolas Sáez
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| |
Collapse
|
11
|
Altman J, Fibich P, Trotsiuk V, Altmanova N. Global pattern of forest disturbances and its shift under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170117. [PMID: 38237786 DOI: 10.1016/j.scitotenv.2024.170117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Forests are continuously altered by disturbances. Yet, knowledge of global pattern of forest disturbance agents, its drivers, and shifts under changing climate remain scarce. Here we present a meta-analysis of current and projected (+2° and + 4 °C) distribution of forest disturbance agents causing immediate tree mortality (i.e., fire, pest outbreak, hydro-geomorphic, and wind) at country, continental, biome, and global scales. The model including combination of climatic (precipitation of driest quarter, actual evapotranspiration, and minimum temperature), geographical (distance to coast and topography complexity), and forest characteristics (tree density) performs better than any other model in explaining the distribution of disturbance agents (R2 = 0.74). We provide global maps (0.5° × 0.5°) of current and potential future distribution of forest disturbance agents. Globally, the most frequent disturbance agent was fire (46.09 %), followed by pest outbreak (23.27 %), hydro-geomorphic disturbances (18.97 %), and wind (11.67 %). Our projections indicate spatially contrasting shifts in disturbance agents, with fire and wind risk increase between ~50°S and ~ 40°N under warming climate. In particular, the substantial increase in fire risk, exceeding 31 % in the most affected areas, is projected over Mediterranean, the western and southeast USA, African, Oceanian, and South American forests. On the other hand, pest outbreak and hydro-geomorphic disturbances are projected to increase in more southern (> ~ 50°S) and northern (> ~ 40°N) latitudes. Our findings are critical for understanding ongoing changes and developing mitigation strategies to maintain the ecological integrity and ecosystem services under shifts in forest disturbances. We suggest that projected shifts in the global distribution of forest disturbance agents needs to be considered to future models of vegetation or carbon sink dynamics under projected climate change.
Collapse
Affiliation(s)
- Jan Altman
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic.
| | - Pavel Fibich
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Volodymyr Trotsiuk
- Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903 Birmensdorf, Switzerland
| | - Nela Altmanova
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
12
|
Chen J, Wang J, Li H, Xu J, Huang J, Deng Y. Optimizing functional zoning for Dalingshan Forest Park in China through microcosmic human disturbance evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1195-1211. [PMID: 38038919 DOI: 10.1007/s11356-023-31204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Human disturbance stands as a prominent factor influencing the ecological environment within natural protected areas. Presently, the issue of balancing human activities and ecological preservation has emerged as a critical concern in the construction of China's natural protected area system. Functional zoning serves as the cornerstone of natural protected area management and represents a pivotal tool in achieving this equilibrium. This study endeavors to introduce a set of functional zoning methods for natural protected areas based on human disturbance assessments. Utilizing Dalingshan Forest Park in Dongguan city which is known for its significant human disturbances as a case study, field surveys were conducted to identify various types of small-scale and understory-hidden human disturbances, such as residential areas, roads, tourist areas, forestry areas, and energy facilities. Subsequently, a microcosmic human disturbance model tailored to forested areas was developed using the analytic hierarchy process. By integrating the findings of macrocosmic human disturbance assessments conducted concurrently by the research group, a functional zoning plan for Dalingshan Forest Park was proposed. The results show that ecological conservation zones within the park should be established in three specific areas, primarily in regions with low-level microcosmic human disturbance (levels 1 and 2) and terrain fluctuations ≥110 m. In contrast, the rational use zone is notably influenced by tourist infrastructure and road networks, predominantly located in regions with high human activity, such as popular tourist destinations and areas with road classifications and vehicular traffic. The microcosmic human disturbance assessment method proposed in this study enhances the rationality and accuracy of natural protected area functional zoning. It provides a more scientifically grounded research approach for similar studies concerning natural protected area functional zoning and contributes valuable insights for the further advancement of China's efforts in the integration and optimization of natural protected areas.
Collapse
Affiliation(s)
- Jiawei Chen
- School of Architecture and Urban Planning, Guangzhou University, Guangzhou, 510006, China
| | - Jie Wang
- School of Architecture and Urban Planning, Guangzhou University, Guangzhou, 510006, China
| | - Haiyun Li
- School of Architecture and Urban Planning, Guangzhou University, Guangzhou, 510006, China
| | - Jin Xu
- School of Architecture and Urban Planning, Guangzhou University, Guangzhou, 510006, China.
| | - Jinling Huang
- School of Resources and Planning, Guangzhou Xinhua University, Guangzhou, 510310, China
| | - Yi Deng
- School of Architecture and Urban Planning, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
13
|
Klockow PA, Edgar CB, Domke GM, Woodall CW, Russell MB. Tracking 20 years of forest demographics in east Texas, USA, using national forest inventory data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1478. [PMID: 37966615 DOI: 10.1007/s10661-023-12060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
Forest resource reporting techniques primarily use the two most recent measurements for understanding forest change. Multiple remeasurements now exist within the US national forest inventory (NFI), providing an opportunity to examine long-term forest demographics. We leverage two decades of remeasurements to quantify live-dead wood demographics which can better inform estimates of resource changes in forest ecosystems. Our overall objective is to identify opportunities and gaps in tracking 20 years of forest demographics within the US NFI using east Texas as a pilot study region given its diversity of tree species, prevalence of managed conditions, frequency of disturbances, and relatively rapid change driven by a warm, humid climate. We examine growth and mortality rates, identify transitions to downed dead wood/litter and removal via harvest, and describe implications of these processes focusing on key species groups (i.e., loblolly pine, post oak, and water oak) and size classes (i.e., saplings, small and large trees). Growth and mortality rates fluctuated differently over time by species and stem sizes in response to large-scale disturbances, namely the 2011 drought in Texas. Tree-fall rates were highest in saplings and snag-fall rates trended higher in smaller trees. For removal rates, different stem sizes generally followed similar patterns within each species group. Forest demographics from the field-based US NFI are informative for identifying diffuse lagged mortality, species- and size-specific effects, and management effects. Moreover, researchers continually seek to employ ancillary data and develop new statistical methods to enhance understanding of forest resource changes from field-based inventories.
Collapse
Affiliation(s)
- Paul A Klockow
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N., Saint Paul, MN, 55108, USA.
- USDA Forest Service, Rocky Mountain Research Station, 4919 S. 1500 W., Riverdale, UT, 84405, USA.
| | - Christopher B Edgar
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave. N., Saint Paul, MN, 55108, USA
| | - Grant M Domke
- USDA Forest Service, Northern Research Station, 1992 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Christopher W Woodall
- USDA Forest Service, Northern Research Station, 271 Mast Road, Durham, NH, 03824, USA
| | - Matthew B Russell
- Arbor Custom Analytics LLC, 180 Bangor Mall Blvd #1035, Bangor, ME, 04401, USA
| |
Collapse
|
14
|
Zhang Q, Wang Y, Guan P, Zhang P, Mo X, Yin G, Qu B, Xu S, He C, Shi Q, Zhang G, Dittmar T, Wang J. Temperature Thresholds of Pyrogenic Dissolved Organic Matter in Heating Experiments Simulating Forest Fires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17291-17301. [PMID: 37916767 DOI: 10.1021/acs.est.3c05265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Heating temperature (HT) during forest fires is a critical factor in regulating the quantity and quality of pyrogenic dissolved organic matter (DOM). However, the temperature thresholds at which maximum amounts of DOM are produced (TTmax) and at which the DOC gain turns into net DOC loss (TT0) remain unidentified on a component-specific basis. Here, based on solid-state 13C nuclear magnetic resonance, absorbance and fluorescence spectroscopies, and Fourier transform ion cyclotron resonance mass spectrometry, we analyzed variations in DOM composition in detritus and soil with HT (150-500 °C) and identified temperature thresholds for components on structural, fluorophoric, and molecular formula levels. TTmax was similar for detritus and soil and ranged between 225 and 250 °C for bulk dissolved organic carbon (DOC) and most DOM components. TT0 was consistently lower in detritus than in soil. Moreover, temperature thresholds differed across the DOM components. As the HT increased, net loss was observed initially in molecular formulas tentatively associated with carbohydrates and aliphatics, then proteins, peptides, and polyphenolics, and ultimately condensed aromatics. Notably, at temperatures lower than TT0, particularly at TTmax, burning increased the DOC quantity and thus might increase labile substrates to fuel soil microbial community. These composition-specific variations of DOM with temperature imply nonlinear and multiple temperature-dependent wildfire impacts on soil organic matter properties.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
| | - Ping Guan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Peng Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohan Mo
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Gege Yin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shujun Xu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg 26129, Germany
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Patacca M, Lindner M, Lucas‐Borja ME, Cordonnier T, Fidej G, Gardiner B, Hauf Y, Jasinevičius G, Labonne S, Linkevičius E, Mahnken M, Milanovic S, Nabuurs G, Nagel TA, Nikinmaa L, Panyatov M, Bercak R, Seidl R, Ostrogović Sever MZ, Socha J, Thom D, Vuletic D, Zudin S, Schelhaas M. Significant increase in natural disturbance impacts on European forests since 1950. GLOBAL CHANGE BIOLOGY 2023; 29:1359-1376. [PMID: 36504289 PMCID: PMC10107665 DOI: 10.1111/gcb.16531] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 05/26/2023]
Abstract
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3 /year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.
Collapse
Affiliation(s)
- Marco Patacca
- Wageningen Environmental ResearchWageningen University and ResearchWageningenThe Netherlands
- Forest Ecology and Forest Management GroupWageningen University and ResearchWageningenThe Netherlands
| | | | | | | | - Gal Fidej
- Department for Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Barry Gardiner
- Institut Européen De La Forêt CultivéeCestasFrance
- Department of Forestry Economics and Forest PlanningAlbert‐Ludwigs‐ University FreiburgFreiburg im BreisgauGermany
| | - Ylva Hauf
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz AssociationPotsdamGermany
| | | | - Sophie Labonne
- INRAE, UR LESSEM, University of Grenoble AlpesGrenobleFrance
| | - Edgaras Linkevičius
- Faculty of Forest Sciences and Ecology, Agriculture AcademyVytautas Magnus UniversityKaunasLithuania
| | - Mats Mahnken
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz AssociationPotsdamGermany
- Chair of Forest Growth and Woody Biomass ProductionTU DresdenTharandtGermany
| | - Slobodan Milanovic
- Department of ForestryUniversity of Belgrade Faculty of ForestryBelgradeSerbia
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Gert‐Jan Nabuurs
- Wageningen Environmental ResearchWageningen University and ResearchWageningenThe Netherlands
- Forest Ecology and Forest Management GroupWageningen University and ResearchWageningenThe Netherlands
| | - Thomas A. Nagel
- Department for Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Laura Nikinmaa
- European Forest InstituteBonnGermany
- Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
| | | | - Roman Bercak
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesSuchdolCzech Republic
| | - Rupert Seidl
- School of Life SciencesTechnical University of MunichFreisingGermany
- Berchtesgaden National ParkBerchtesgadenGermany
| | | | - Jaroslaw Socha
- Department of Forest Resources Management, Faculty of ForestryUniversity of Agriculture in KrakowKrakówPoland
| | - Dominik Thom
- Dendrology DepartmentUniversity of ForestrySofiaBulgaria
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVermontUSA
| | | | | | - Mart‐Jan Schelhaas
- Wageningen Environmental ResearchWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
16
|
Tutland NJ, Rodman KC, Andrus RA, Hart SJ. Overlapping outbreaks of multiple bark beetle species are rarely more severe than single‐species outbreaks. Ecosphere 2023. [DOI: 10.1002/ecs2.4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
17
|
Liu G, Li J, Ren L, Lu H, Wang J, Zhang Y, Zhang C, Zhang C. Identification of Socio-Economic Impacts as the Main Drivers of Carbon Stocks in China's Tropical Rainforests: Implications for REDD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14891. [PMID: 36429609 PMCID: PMC9690435 DOI: 10.3390/ijerph192214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Active incentives or compensation measures plus conservation, sustainable management of forests, and enhancement of forest carbon stocks (denoted together as "REDD+") should be adopted in developing countries to reduce the greenhouse gas emissions caused by deforestation and forest degradation. Identification and analysis of the driving forces behind carbon stocks are crucial for the implementation of REDD+. In this study, the principal component model and the stepwise linear regression model were used to analyze the social and economic driving forces of stocks in three important types of forest change: deforestation, forestland transformation, and forest degradation in China's tropical rainforests of Xishuangbanna, based on the combination of satellite imagery and the normalized difference vegetation index. The findings show that there are different key driving forces that lead to carbon stock changes in the forest land conversion of Xishuangbanna. In particular, the agricultural development level is the main cause of emissions from deforestation, whereas poor performance of protection policies is the main cause of emissions from forest degradation. In contrast, the rural economic development interventions are significantly positive for emissions from forestland transformation. It is crucial to pay attention to distinguishing the driving forces behind carbon stock changes from forest degradation, deforestation, and transformation for optimizing REDD+ implementation and ensuring the effectiveness of REDD+.
Collapse
Affiliation(s)
- Guifang Liu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng 475004, China
| | - Jie Li
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Liang Ren
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Heli Lu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Kaifeng 475004, China
| | - Jingcao Wang
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Yaxing Zhang
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Cheng Zhang
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Chuanrong Zhang
- Department of Geography & Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269-4148, USA
| |
Collapse
|
18
|
Korznikov K, Kislov D, Doležal J, Petrenko T, Altman J. Tropical cyclones moving into boreal forests: Relationships between disturbance areas and environmental drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156931. [PMID: 35772527 DOI: 10.1016/j.scitotenv.2022.156931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Tropical cyclones (TCs) are common disturbance agents in tropical and subtropical latitudes. With global warming, TCs began to move to northern latitudes, with devastating effects on boreal forests. However, it remains unclear where and when these extraordinary events occur and how they affect forest structure and ecosystem functioning. Hence knowing which geomorphological features, landforms, and forest types are most susceptible to severe wind disturbance is vital to better predict the future impacts of intensifying tropical cyclones on boreal forests. In October 2015, catastrophic TC Dujuan hit the island of Sakhalin in the Russian Far East. With a wind speed of 63 m·s-1, it became the strongest wind recorded in Sakhalin, damaging >42,000 ha of native forests with different levels of severity. We used high-resolution RGB satellite images, DEM-derived geomorphological patterns, and the U-Net-like convolutional neural network to quantify the damaged area in specific landform, forest type, and windthrow patch size categories. We found that large gaps (>1 ha) represent >40 % of the damaged area while small gaps (<0.1 ha) only 20 %. The recorded canopy gaps are very large for the southern boreal forest. We found that the aspect (slope exposure) is the most important in explaining the damaged area, followed by canopy closure and landform type. Closed-canopy coniferous forests on steep, west-facing slopes (typical of convex reliefs such as ridges, spurs, and peaks) are at a much higher risk of being disturbed by TCs than open-canopy mountain birch forests or coniferous forests and broadleaved riparian forests in concave reliefs such as valley bottoms. We suggest that the projected ongoing poleward migration of TCs will lead to an unprecedentedly large area of disturbed forest, which results in complex changes in forest dynamics and ecosystem functioning. Our findings are crucial for the development of mitigation and adaptation strategies under future changes in TC activity.
Collapse
Affiliation(s)
- Kirill Korznikov
- Institute of Botany, the Czech Academy of Sciences, Třeboň 379 01, Czech Republic; Botanical Garden-Institute, the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690024, Russia.
| | - Dmitry Kislov
- Botanical Garden-Institute, the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690024, Russia
| | - Jiří Doležal
- Institute of Botany, the Czech Academy of Sciences, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Tatyana Petrenko
- Botanical Garden-Institute, the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690024, Russia
| | - Jan Altman
- Institute of Botany, the Czech Academy of Sciences, Třeboň 379 01, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague 6 -, Suchdol 165 21, Czech Republic
| |
Collapse
|
19
|
Senf C. Seeing the System from Above: The Use and Potential of Remote Sensing for Studying Ecosystem Dynamics. Ecosystems 2022. [DOI: 10.1007/s10021-022-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractRemote sensing techniques are increasingly used for studying ecosystem dynamics, delivering spatially explicit information on the properties of Earth over large spatial and multi-decadal temporal extents. Yet, there is still a gap between the more technology-driven development of novel remote sensing techniques and their applications for studying ecosystem dynamics. Here, I review the existing literature to explore how addressing these gaps might enable recent methods to overcome longstanding challenges in ecological research. First, I trace the emergence of remote sensing as a major tool for understanding ecosystem dynamics. Second, I examine recent developments in the field of remote sensing that are of particular importance for studying ecosystem dynamics. Third, I consider opportunities and challenges for emerging open data and software policies and suggest that remote sensing is at its most powerful when it is theoretically motivated and rigorously ground-truthed. I close with an outlook on four exciting new research frontiers that will define remote sensing ecology in the upcoming decade.
Collapse
|
20
|
Brucker CP, Livneh B, Minear JT, Rosario-Ortiz FL. A review of simulation experiment techniques used to analyze wildfire effects on water quality and supply. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1110-1132. [PMID: 35789241 DOI: 10.1039/d2em00045h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review addresses the critical knowledge gap of techniques simulating combustion and heating characteristics present in natural wildfires and their use in assessing postfire impacts on water quality and quantity. Our assessment includes both laboratory and plot-scale techniques with burn and rainfall simulation components. Studies included focus on advancing understanding of changes in chemical and physical properties of soil, as well as subsequent runoff changes. Advantages of simulation experiments include: overcoming logistical challenges of collecting in situ wildfire data, reducing the high spatial variability observed in natural settings (i.e., the heterogeneity of burn intensity and the underlying vegetation and soil properties), and controlling the magnitude of key drivers of wildfire impacts. In sum, simulation experiments allow for more direct attribution of water quality and quantity responses to specific drivers than experiments conducted in situ. Drawbacks of simulation techniques include the limitation of observing only local-scale processes, the potential misrepresentation of natural settings (i.e., lack of spatial variability in vegetation, soil structure, burn intensity, etc.), uncertainty introduced through experimental error, and subsequent challenges in upscaling results to larger scales relevant for water management. This review focuses primarily on simulation techniques, with the goal of providing a foundation of knowledge for the design of future simulation experiments.
Collapse
Affiliation(s)
- Carli P Brucker
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Ben Livneh
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA
- Western Water Assessment, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - J Toby Minear
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Environmental Engineering Program, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
21
|
Barrile GM, Chalfoun AD, Estes‐Zumpf WA, Walters AW. Wildfire influences individual growth and breeding dispersal, but not survival and recruitment in a montane amphibian. Ecosphere 2022. [DOI: 10.1002/ecs2.4212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gabriel M. Barrile
- Wyoming Cooperative Fish and Wildlife Research Unit, Program in Ecology, Department of Zoology and Physiology University of Wyoming Laramie Wyoming USA
| | - Anna D. Chalfoun
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| | | | - Annika W. Walters
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie Wyoming USA
| |
Collapse
|
22
|
Lindenmayer DB, Blanchard W, Bowd E, Scheele BC, Foster C, Lavery T, McBurney L, Blair D. Rapid bird species recovery following high‐severity wildfire but in the absence of early successional specialists. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- David B. Lindenmayer
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| | - Wade Blanchard
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| | - Elle Bowd
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| | - Ben C. Scheele
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| | - Claire Foster
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| | - Tyrone Lavery
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| | - Lachlan McBurney
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| | - David Blair
- Fenner School of Environment and Society The Australian National University Acton Australian Capital Territory Australia
| |
Collapse
|
23
|
Olenici N, Duduman ML, Popa I, Isaia G, Paraschiv M. Geographical Distribution of Three Forest Invasive Beetle Species in Romania. INSECTS 2022; 13:insects13070621. [PMID: 35886797 PMCID: PMC9316972 DOI: 10.3390/insects13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Ips duplicatus (Sahlberg, 1836), Xylosandrus germanus (Blandford, 1894) and Neoclytus acuminatus (Fabricius, 1775) are invasive species reported in Romania, but their current distribution is poorly known. The research aim was to provide new information on this issue. A survey was conducted over the period 2015–2017 in 82 locations, using flight-interception traps and bottle traps, baited with different attractants. Data obtained in our other unpublished studies were also taken into account. A total of 35,136 I. duplicatus beetles were collected in 30 survey locations. The highest captures were in the log yards of some factories processing logs of Norway spruce (Picea abies (L.) H. Karst.). Considering all known records so far, most of these are in the eastern part of Romania, where an outbreak took place during the years 2005–2014, mainly in spruce stands growing outside their natural range. During the survey, 4259 specimens of X. germanus were collected in 35 locations, but in our other studies the species was found in 13 additional places. It was collected at altitudes of 18–1200 m, and the largest catches were from beech stands, growing at 450–950 m. N. acuminatus was found in only six locations, in the western and southern parts of the country, at low altitudes, in tree stands composed of Fraxinus excelsior L., Quercus spp. and other broadleaf species, as well as in broadleaf log yards. The results suggest that I. duplicatus is established in most parts of the Norway spruce’s range, X. germanus is still spreading in the country, with some areas having quite high populations, while N. acuminatus is present only in the warmest regions of the country.
Collapse
Affiliation(s)
- Nicolai Olenici
- National Institute for Research and Development in Forestry “Marin Drăcea”, Campulung Moldovenesc Station, Calea Bucovinei 73 bis, 725100 Campulung Moldovenesc, Romania; (N.O.); (I.P.)
| | - Mihai-Leonard Duduman
- Applied Ecology Laboratory, Forestry Faculty, “Ștefan cel Mare” University of Suceava, Universității Street 13, 720229 Suceava, Romania
- Correspondence:
| | - Ionel Popa
- National Institute for Research and Development in Forestry “Marin Drăcea”, Campulung Moldovenesc Station, Calea Bucovinei 73 bis, 725100 Campulung Moldovenesc, Romania; (N.O.); (I.P.)
| | - Gabriela Isaia
- Faculty of Silviculture and Forest Engineering, “Transilvania” University of Brasov, Șirul Beethoven 1, 500123 Brașov, Romania;
| | - Marius Paraschiv
- National Institute for Research and Development in Forestry “Marin Dracea”, Brasov Station, Closca 13, 500040 Brasov, Romania;
| |
Collapse
|
24
|
Viljur ML, Abella SR, Adámek M, Alencar JBR, Barber NA, Beudert B, Burkle LA, Cagnolo L, Campos BR, Chao A, Chergui B, Choi CY, Cleary DFR, Davis TS, Dechnik-Vázquez YA, Downing WM, Fuentes-Ramirez A, Gandhi KJK, Gehring C, Georgiev KB, Gimbutas M, Gongalsky KB, Gorbunova AY, Greenberg CH, Hylander K, Jules ES, Korobushkin DI, Köster K, Kurth V, Lanham JD, Lazarina M, Leverkus AB, Lindenmayer D, Marra DM, Martín-Pinto P, Meave JA, Moretti M, Nam HY, Obrist MK, Petanidou T, Pons P, Potts SG, Rapoport IB, Rhoades PR, Richter C, Saifutdinov RA, Sanders NJ, Santos X, Steel Z, Tavella J, Wendenburg C, Wermelinger B, Zaitsev AS, Thorn S. The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biol Rev Camb Philos Soc 2022; 97:1930-1947. [PMID: 35808863 DOI: 10.1111/brv.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.
Collapse
Affiliation(s)
- Mari-Liis Viljur
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Scott R Abella
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154-4004, USA
| | - Martin Adámek
- Department of GIS and Remote Sensing, Institute of Botany of the CAS, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
| | - Janderson Batista Rodrigues Alencar
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de pós-graduação em Ciências Biológicas (Entomologia), Manaus, AM, 0000-0001-9482-7866, Brazil
| | - Nicholas A Barber
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | | | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Luciano Cagnolo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Vélez Sarsfield 1611, 5000, Córdoba, Argentina
| | - Brent R Campos
- Point Blue Conservation Science, Petaluma, CA, 94954, USA
| | - Anne Chao
- Institute of Statistics, National Tsing Hua University, Hsin-Chu, 30043, Taiwan
| | - Brahim Chergui
- LESCB URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Chang-Yong Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel F R Cleary
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Thomas Seth Davis
- Forest & Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yanus A Dechnik-Vázquez
- Estudios Ambientales, Centro de Anteproyectos del Golfo, Comisión Federal de Electricidad, Nueva Era, Boca del Río, Veracruz, C.P, 94295, Mexico
| | - William M Downing
- Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, Corvallis, OR, 97331, USA
| | - Andrés Fuentes-Ramirez
- Laboratorio de Biometría, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile.,Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Catherine Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kostadin B Georgiev
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Mark Gimbutas
- Institute of Mathematics and Statistics, University of Tartu, Narva mnt. 18, 51009, Tartu, Estonia
| | - Konstantin B Gongalsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Anastasiya Y Gorbunova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Cathryn H Greenberg
- USDA Forest Service, Southern Research Station, Bent Creek Experimental Forest, 1577 Brevard Road, Asheville, NC, 28806, USA
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Science, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Erik S Jules
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Daniil I Korobushkin
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Kajar Köster
- Department of Environmental and Biological Sciences, Faculty of Sciences and Forestry, University of Eastern Finland, PL 111, 80101, Joensuu, Finland
| | - Valerie Kurth
- Montana Department of Natural Resources and Conservation, Helena, MT, 59601, USA
| | - Joseph Drew Lanham
- Department of Forest Resources, Clemson University, 261 Lehotsky Hall, Clemson, SC, 29634, USA
| | - Maria Lazarina
- Laboratory of Biogeography & Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | | | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | | | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda, Madrid, Palencia, Spain
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, Mexico
| | - Marco Moretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Hyun-Young Nam
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Martin K Obrist
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Theodora Petanidou
- Laboratory of Biogeography & Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | - Pere Pons
- Departament de Ciències Ambientals, University of Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading, RG6 6AR, UK
| | - Irina B Rapoport
- Tembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, I. Armand, 37a, Nalchik, Russia
| | - Paul R Rhoades
- Idaho State Department of Agriculture, Coeur d'Alene, ID 83854, USA
| | - Clark Richter
- Science Department, Staten Island Academy, Staten Island, NY, USA
| | - Ruslan A Saifutdinov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109-1085, USA
| | - Xavier Santos
- CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Zachary Steel
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Julia Tavella
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Vélez Sarsfield 1611, 5000, Córdoba, Argentina.,Facultad de Agronomía, Cátedra de Botánica General, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara Wendenburg
- Departament de Ciències Ambientals, University of Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Beat Wermelinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Health and Biotic Interactions-Forest Entomology, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Andrey S Zaitsev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany.,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| |
Collapse
|
25
|
Nolè A, Rita A, Spatola MF, Borghetti M. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153807. [PMID: 35150679 DOI: 10.1016/j.scitotenv.2022.153807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Wildfires have large-scale and profound effects on forest ecosystems, and they force burned forest areas toward a wide range of post-fire successional trajectories from simple reduction of ecosystem functions to transitions to other stable non-forest states. Fire disturbances represent a key driver of changes in forest structure and composition due to post-fire succession processes, thus contributing to modify ecosystem resilience to subsequent disturbances. Here, we aimed to provide useful insights into wildfire severity and post-fire recovery processes at the European continental scale, contributing to improved description and interpretation of large-scale wildfire spatial patterns and their effects on forest ecosystems in the context of climate change. We analyzed fire severity and short-term post-fire vegetation recovery patterns across the European forests between 2004 and 2015 using Corine Land Cover Forest classes and bioregions, based on MODIS-derived spectral metrics of the relativized burn ratio (RBR), normalized difference vegetation index (NDVI) and relative recovery indicator (RRI). The RBR-based fire severity showed geographic differences and interannual variability in the Boreal bioregion compared to that in other biogeographic regions. The NBR-based RRI showed a slower post-fire vegetation recovery rate with respect to the NDVI, highlighting the differential sensitivities of the analyzed remote sensing-spectral metrics. Moreover, the RRI showed a significant decreasing trend during the observation period, suggesting a growing lag in post-fire vegetation recovery across European forests.
Collapse
Affiliation(s)
- Angelo Nolè
- Scuola SAFE, Università degli Studi della Basilicata, viale dell'Ateneo lucano 10, 85100 Potenza, Italy.
| | - Angelo Rita
- Dipartimento di Agraria, Università di Napoli Federico II, via Università 100, 80055 Portici, NA, Italy.
| | - Maria Floriana Spatola
- Scuola SAFE, Università degli Studi della Basilicata, viale dell'Ateneo lucano 10, 85100 Potenza, Italy.
| | - Marco Borghetti
- Scuola SAFE, Università degli Studi della Basilicata, viale dell'Ateneo lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
26
|
Brabcová V, Tláskal V, Lepinay C, Zrůstová P, Eichlerová I, Štursová M, Müller J, Brandl R, Bässler C, Baldrian P. Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate. Front Microbiol 2022; 13:835274. [PMID: 35495708 PMCID: PMC9045801 DOI: 10.3389/fmicb.2022.835274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fine woody debris (FWD) represents the majority of the deadwood stock in managed forests and serves as an important biodiversity hotspot and refuge for many organisms, including deadwood fungi. Wood decomposition in forests, representing an important input of nutrients into forest soils, is mainly driven by fungal communities that undergo continuous changes during deadwood decomposition. However, while the assembly processes of fungal communities in long-lasting coarse woody debris have been repeatedly explored, similar information for the more ephemeral habitat of fine deadwood is missing. Here, we followed the fate of FWD of Fagus sylvatica and Abies alba in a Central European forest to describe the assembly and diversity patterns of fungal communities over 6 years. Importantly, the effect of microclimate on deadwood properties and fungal communities was addressed by comparing FWD decomposition in closed forests and under open canopies because the large surface-to-volume ratio of FWD makes it highly sensitive to temperature and moisture fluctuations. Indeed, fungal biomass increases and pH decreases were significantly higher in FWD under closed canopy in the initial stages of decomposition indicating higher fungal activity and hence decay processes. The assembly patterns of the fungal community were strongly affected by both tree species and microclimatic conditions. The communities in the open/closed canopies and in each tree species were different throughout the whole succession with only limited convergence in time in terms of both species and ecological guild composition. Decomposition under the open canopy was characterized by high sample-to-sample variability, showing the diversification of fungal resources. Tree species-specific fungi were detected among the abundant species mostly during the initial decomposition, whereas fungi associated with certain canopy cover treatments were present evenly during decomposition. The species diversity of forest stands and the variability in microclimatic conditions both promote the diversity of fine woody debris fungi in a forest.
Collapse
Affiliation(s)
- Vendula Brabcová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Clémentine Lepinay
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Zrůstová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Eichlerová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany.,Bavarian Forest National Park, Grafenau, Germany
| | - Roland Brandl
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Claus Bässler
- Bavarian Forest National Park, Grafenau, Germany.,Department of Conservation Biology, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
27
|
Remotely sensed effectiveness assessments of protected areas lack a common framework: A review. Ecosphere 2022. [DOI: 10.1002/ecs2.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Numbers matter: how irruptive bark beetles initiate transition to self-sustaining behavior during landscape-altering outbreaks. Oecologia 2022; 198:681-698. [DOI: 10.1007/s00442-022-05129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
29
|
Lloret F, Jaime LA, Margalef-Marrase J, Pérez-Navarro MA, Batllori E. Short-term forest resilience after drought-induced die-off in Southwestern European forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150940. [PMID: 34699836 DOI: 10.1016/j.scitotenv.2021.150940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Drought-induced die-off in forests is becoming a widespread phenomenon across biomes, but the factors determining potential shifts in taxonomic and structural characteristics following mortality are largely unknown. We report on short-term patterns of resilience after drought-induced episodes of tree mortality across 48 monospecific forests from Morocco to Slovenia. Field surveys recorded plants growing beneath a canopy of dead, defoliated and healthy trees. Site-level structural characteristics and management legacy were also recorded. Resilience was assessed with reference to forest composition (self-replacement), structure, and changes in the climatic suitability of the replacing community relative to the climatic suitability of the dominant pre-drought species. Species climatic suitability was estimated from species distribution models calculated for the baseline 1970-2000 period. Short-term resilience decreased under higher levels of drought-induced damage to the dominant species and with evidences of management legacy. Greater resilience of structural features (fewer gaps, greater canopy height) was observed overall in forests with a larger basal area. Less gaps were also associated with greater woody species richness after drought. Overall, Fagaceae-dominated forests exhibited greater structural resilience than conifer-dominated ones. On those sites that were more climatically suited to the dominant pre-drought species, replacing communities tended to exhibit lower climatic suitability than pre-drought dominant species. There was a greater loss of climatic suitability under a legacy of management and drought intensity, but less so in the replacing communities with higher woody species richness. Our study reveals that short-term forest resilience is determined by pre-drought stand characteristics, often reflecting previous management legacies, and by the impact of drought on both the dominant pre-drought species and post-drought replacing species in terms of their climatic suitability.
Collapse
Affiliation(s)
- F Lloret
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain; Unitat d'Ecologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - L A Jaime
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - J Margalef-Marrase
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - M A Pérez-Navarro
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - E Batllori
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193 Cerdanyola del Vallès, Barcelona, Spain; Unitat de Botànica i Micologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
30
|
Marini L, Ayres MP, Jactel H. Impact of Stand and Landscape Management on Forest Pest Damage. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:181-199. [PMID: 34606366 DOI: 10.1146/annurev-ento-062321-065511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.
Collapse
Affiliation(s)
- Lorenzo Marini
- DAFNAE, University of Padova, 35020 Legnaro, Padova, Italy;
| | - Matthew P Ayres
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, F-33610 Cestas, France
| |
Collapse
|
31
|
Gardner A, Ellsworth DS, Crous KY, Pritchard J, MacKenzie AR. Is photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old Quercus robur? TREE PHYSIOLOGY 2022; 42:130-144. [PMID: 34302175 PMCID: PMC8754963 DOI: 10.1093/treephys/tpab090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/07/2021] [Indexed: 05/15/2023]
Abstract
Current carbon cycle models attribute rising atmospheric CO2 as the major driver of the increased terrestrial carbon sink, but with substantial uncertainties. The photosynthetic response of trees to elevated atmospheric CO2 is a necessary step, but not the only one, for sustaining the terrestrial carbon uptake, but can vary diurnally, seasonally and with duration of CO2 exposure. Hence, we sought to quantify the photosynthetic response of the canopy-dominant species, Quercus robur, in a mature deciduous forest to elevated CO2 (eCO2) (+150 μmol mol-1 CO2) over the first 3 years of a long-term free air CO2 enrichment facility at the Birmingham Institute of Forest Research in central England (BIFoR FACE). Over 3000 measurements of leaf gas exchange and related biochemical parameters were conducted in the upper canopy to assess the diurnal and seasonal responses of photosynthesis during the 2nd and 3rd year of eCO2 exposure. Measurements of photosynthetic capacity via biochemical parameters, derived from CO2 response curves, (Vcmax and Jmax) together with leaf nitrogen concentrations from the pre-treatment year to the 3rd year of eCO2 exposure, were examined. We hypothesized an initial enhancement in light-saturated net photosynthetic rates (Asat) with CO2 enrichment of ≈37% based on theory but also expected photosynthetic capacity would fall over the duration of the study. Over the 3-year period, Asat of upper-canopy leaves was 33 ± 8% higher (mean and standard error) in trees grown in eCO2 compared with ambient CO2 (aCO2), and photosynthetic enhancement decreased with decreasing light. There were no significant effects of CO2 treatment on Vcmax or Jmax, nor leaf nitrogen. Our results suggest that mature Q. robur may exhibit a sustained, positive response to eCO2 without photosynthetic downregulation, suggesting that, with adequate nutrients, there will be sustained enhancement in C assimilated by these mature trees. Further research will be required to understand the location and role of the additionally assimilated carbon.
Collapse
Affiliation(s)
- A Gardner
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, UK
- School of Biological Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - D S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - K Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - J Pritchard
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, UK
- School of Biological Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | |
Collapse
|
32
|
MacDonald C, Pinheiro HT, Shepherd B, Phelps TAY, Rocha LA. Disturbance and distribution gradients influence resource availability and feeding behaviours in corallivore fishes following a warm-water anomaly. Sci Rep 2021; 11:23656. [PMID: 34880357 PMCID: PMC8654952 DOI: 10.1038/s41598-021-03061-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding interactions between spatial gradients in disturbances, species distributions and species’ resilience mechanisms is critical to identifying processes that mediate environmental change. On coral reefs, a global expansion of coral bleaching is likely to drive spatiotemporal pulses in resource quality for obligate coral associates. Using technical diving and statistical modelling we evaluated how depth gradients in coral distribution, coral bleaching, and competitor density interact with the quality, preference and use of coral resources by corallivore fishes immediately following a warm-water anomaly. Bleaching responses varied among coral genera and depths but attenuated substantially between 3 and 47 m for key prey genera (Acropora and Pocillopora). While total coral cover declined with depth, the cover of pigmented corals increased slightly. The abundances of three focal obligate-corallivore butterflyfish species also decreased with depth and were not related to spatial patterns in coral bleaching. Overall, all species selectively foraged on pigmented corals. However, the most abundant species avoided feeding on bleached corals more successfully in deeper waters, where bleaching prevalence and conspecific densities were lower. These results suggest that, as coral bleaching increases, energy trade-offs related to distributions and resource acquisition will vary with depth for some coral-associated species.
Collapse
Affiliation(s)
- Chancey MacDonald
- Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 90118, USA.
| | - Hudson T Pinheiro
- Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 90118, USA.,Center of Marine Biology, University of São Paulo, Rod. Dr. Manoel Hipólito do Rego, km 131.5, São Sebastião, SP, 11612-109, Brazil
| | - Bart Shepherd
- Steinhart Aquarium, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 90118, USA
| | - Tyler A Y Phelps
- Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 90118, USA.,Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Luiz A Rocha
- Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 90118, USA
| |
Collapse
|
33
|
Buma B. Disturbance ecology and the problem of
n
= 1: A proposed framework for unifying disturbance ecology studies to address theory across multiple ecological systems. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brian Buma
- Department of Integrative Biology University of Colorado Denver CO USA
| |
Collapse
|
34
|
A multidimensional stability framework enhances interpretation and comparison of carbon cycling response to disturbance. Ecosphere 2021. [DOI: 10.1002/ecs2.3800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
35
|
Buřivalová Z, Hart SJ, Radeloff VC, Srinivasan U. Early warning sign of forest loss in protected areas. Curr Biol 2021; 31:4620-4626.e3. [PMID: 34411528 DOI: 10.1016/j.cub.2021.07.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023]
Abstract
As humanity is facing the double challenge of species extinctions and climate change, designating parts of forests as protected areas is a key conservation strategy.1-4 Protected areas, encompassing 14.9% of the Earth's land surface and 19% of global forests, can prevent forest loss but do not do so perfectly everywhere.5-12 The reasons why protection only works in some areas are difficult to generalize: older and newer parks, protected areas with higher and lower suitability for agriculture, and more and less strict protection can be more effective at preventing forest loss than their counterparts.6,8,9,12-16 Yet predicting future forest loss within protected areas is crucial to proactive conservation. Here, we identify an early warning sign of subsequent forest loss, based on forest loss patterns in strict protected areas and their surrounding landscape worldwide, from 2000 to 2018.17,18 We found that a low level in the absolute forest cover immediately outside of a protected area signals a high risk of future forest loss inside the protected area itself. When the amount of forest left outside drops to <20%, the protected area is likely to experience rates of forest loss matching those in the wider landscape, regardless of its protection status (e.g., 5% loss outside will be matched by 5% loss inside). This knowledge could be used to direct funding to protected areas threatened by imminent forest loss, helping to proactively bolster protection to prevent forest loss, especially in countries where detailed information is lacking.
Collapse
Affiliation(s)
- Zuzana Buřivalová
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sarah J Hart
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
| | - Volker C Radeloff
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Umesh Srinivasan
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
36
|
Bae S, Müller J, Förster B, Hilmers T, Hochrein S, Jacobs M, Leroy BML, Pretzsch H, Weisser WW, Mitesser O. Tracking the temporal dynamics of insect defoliation by high‐resolution radar satellite data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soyeon Bae
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
- Bavarian Forest National Park Grafenau Germany
| | - Bernhard Förster
- Chair for Strategic Landscape Planning and Management Technical University of Munich Freising Germany
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
| | - Sophia Hochrein
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| | - Martin Jacobs
- Chair for Forest Growth and Yield Science School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
| | - Benjamin M. L. Leroy
- Terrestrial Ecology Research Group Department of Ecology and Ecosystem Management Technical University of Munich Freising Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group Department of Ecology and Ecosystem Management Technical University of Munich Freising Germany
| | - Oliver Mitesser
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| |
Collapse
|
37
|
Wood ants as biological control of the forest pest beetles Ips spp. Sci Rep 2021; 11:17931. [PMID: 34504119 PMCID: PMC8429415 DOI: 10.1038/s41598-021-96990-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Climate change is one of the major threats to biodiversity, but its impact varies among the species. Bark beetles (Ips spp.), as well as other wood-boring pests of European forests, show escalating numbers in response to the changes driven by climate change and seriously affect the survival of the forests through the massive killing of trees. Many methods were developed to control these wood-boring beetles, however, their implementation can be detrimental for other forest specialists. Ants are widely used for biological pest-control, so in our study, we aimed to test the effect of Formica polyctena on the control of the wood-boring beetles. The results show that the proportion of infested trees is significantly reduced by the increase of the number of F. polyctena nests, with a strong effect on those infested by Ips species. We also show that the boring beetle community is shaped by different biotic and abiotic factors, including the presence of F. polyctena nests. However, the boring beetle infestation was not related to the latitude, altitude and age of the forests. Based on our results, we assert the effectiveness of the red wood ants as biological pest control and the importance of their conservation to keep the health of the forests.
Collapse
|
38
|
Rammer W, Braziunas KH, Hansen WD, Ratajczak Z, Westerling AL, Turner MG, Seidl R. Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire. GLOBAL CHANGE BIOLOGY 2021; 27:4339-4351. [PMID: 34213047 DOI: 10.1111/gcb.15726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Changing climate and disturbance regimes are increasingly challenging the resilience of forest ecosystems around the globe. A powerful indicator for the loss of resilience is regeneration failure, that is, the inability of the prevailing tree species to regenerate after disturbance. Regeneration failure can result from the interplay among disturbance changes (e.g., larger and more frequent fires), altered climate conditions (e.g., increased drought), and functional traits (e.g., method of seed dispersal). This complexity makes projections of regeneration failure challenging. Here we applied a novel simulation approach assimilating data-driven fire projections with vegetation responses from process modeling by means of deep neural networks. We (i) quantified the future probability of regeneration failure; (ii) identified spatial hotspots of regeneration failure; and (iii) assessed how current forest types differ in their ability to regenerate under future climate and fire. We focused on the Greater Yellowstone Ecosystem (2.9 × 106 ha of forest) in the Rocky Mountains of the USA, which has experienced large wildfires in the past and is expected to undergo drastic changes in climate and fire in the future. We simulated four climate scenarios until 2100 at a fine spatial grain (100 m). Both wildfire activity and unstocked forest area increased substantially throughout the 21st century in all simulated scenarios. By 2100, between 28% and 59% of the forested area failed to regenerate, indicating considerable loss of resilience. Areas disproportionally at risk occurred where fires are not constrained by topography and in valleys aligned with predominant winds. High-elevation forest types not adapted to fire (i.e., Picea engelmannii-Abies lasiocarpa as well as non-serotinous Pinus contorta var. latifolia forests) were especially vulnerable to regeneration failure. We conclude that changing climate and fire could exceed the resilience of forests in a substantial portion of Greater Yellowstone, with profound implications for carbon, biodiversity, and recreation.
Collapse
Affiliation(s)
- Werner Rammer
- Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Freising, Germany
| | - Kristin H Braziunas
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Winslow D Hansen
- Earth Institute, Columbia University, New York City, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Zak Ratajczak
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | - Monica G Turner
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Rupert Seidl
- Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
| |
Collapse
|
39
|
Rawat B, Gairola S, Tewari LM, Rawal RS. Long-term forest vegetation dynamics in Nanda Devi Biosphere Reserve, Indian west Himalaya: evidence from repeat studies on compositional patterns. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:459. [PMID: 34216278 DOI: 10.1007/s10661-021-09227-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
It has been established that resurvey of historical vegetation stands, even those not marked permanently, could foster our understanding of vegetation dynamics and changes in structure and composition over time. However, such studies are poorly available, particularly in remote landscapes of the Indian Himalaya. There exists a complete lack of resurveys, which has limited our ability to provide reliable evidence of changes over the decades. This study, for the first time in the Indian Himalaya, considered repeat surveys (nearly after 25 years) of vegetation stands in eleven forest communities of the buffer zone of NDBR (Nanda Devi Biosphere Reserve). Thirty historical forest stands, earlier studied in 1988-1990, were revisited during 2012-2014 and investigated using the same survey methods as used in the previous study. We found that previously reported dominant tree species, i.e., Alnus nepalensis, Acer cappadocicum, Quercus floribunda, Quercus semecarpifolia, Hippophae salicifolia, and Betula utilis, in nine out of eleven communities in the study area are continuing to exhibit dominance in the community. However, a significant increase in species richness and density in the seedling and sapling layer in Quercus floribunda, Quercus semecarpifolia, Rhododendron arboreum, and Abies pindrow is indicative of the ongoing process of change in forest composition. The compositional features of plant communities, when analyzed through Community Change Sensitivity (CCS) approach, identified Quercus floribunda, mixed Quercus-deciduous spp., Hippophae salicifolia, and Abies pindrow as the most change-sensitive communities in the study area and thus can be prioritized as the long-term ecological monitoring sites in the west Himalaya to understand intensity and patterns of changes. The potential changes based on the ecological information from two time period compositional data sets, having conservation and management implications, should be accommodated in the long-term perspective plans of the reserve.
Collapse
Affiliation(s)
- Balwant Rawat
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, India.
| | - Sanjay Gairola
- Sharjah Seed Bank & Herbarium, Sharjah Research Academy, P.O. Box 60999, Sharjah, UAE
| | | | - Ranbeer Singh Rawal
- G.B.Pant, National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India
| |
Collapse
|
40
|
Bowd EJ, McBurney L, Blair DP, Lindenmayer DB. Temporal patterns of forest seedling emergence across different disturbance histories. Ecol Evol 2021; 11:9254-9292. [PMID: 34306621 PMCID: PMC8293764 DOI: 10.1002/ece3.7568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 11/06/2022] Open
Abstract
Forest ecosystems experience a myriad of natural and anthropogenic disturbances that shape ecological communities. Seedling emergence is a critical, preliminary stage in the recovery of forests post disturbance and is triggered by a series of abiotic and biotic changes. However, the long-term influence of different disturbance histories on patterns of seedling emergence is poorly understood.Here, we address this research gap by using an 11-year dataset gathered between 2009 and 2020 to quantify the influence of different histories of natural (wildfire) and anthropogenic (clearcut and postfire salvage logging) disturbances on emerging seedlings in early-successional Mountain Ash forests in southeastern Australia. We also describe patterns of seedling emergence across older successional forests varying in stand age (stands that regenerated in <1900s, 1939, 1970-90, and 2007-11).Seedling emergence was highest in the first three years post disturbance. Stand age and disturbance history significantly influenced the composition and abundance of plant seedlings. Specifically, in salvage-logged forests, plant seedlings were the most different from similarly aged forests with other disturbance histories. For instance, relative to clearcut and unlogged, burnt forests of the same age, salvage logging had the lowest overall richness, the lowest counts of Acacia seedlings, and an absence of common species including Acacia obliquinervia, Acacia frigescens, Cassinia arcuealta, Olearia argophylla, Pimelea axiflora, Polyscias sambucifolia, and Prosanthera melissifolia over the survey period. Synthesis: Our findings provide important new insights into the influence of different disturbance histories on regenerating forests and can help predict plant community responses to future disturbances, which may influence forest recovery under altered disturbance regimes.
Collapse
Affiliation(s)
- Elle J. Bowd
- Fenner School of Environment and SocietyCollege of ScienceThe Australian National UniversityCanberraACTAustralia
| | - Lachlan McBurney
- Fenner School of Environment and SocietyCollege of ScienceThe Australian National UniversityCanberraACTAustralia
| | - David P. Blair
- Fenner School of Environment and SocietyCollege of ScienceThe Australian National UniversityCanberraACTAustralia
| | - David B. Lindenmayer
- Fenner School of Environment and SocietyCollege of ScienceThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
41
|
Sebald J, Thrippleton T, Rammer W, Bugmann H, Seidl R. Mixing tree species at different spatial scales: The effect of alpha, beta and gamma diversity on disturbance impacts under climate change. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Julius Sebald
- Department of Forest‐ and Soil Sciences Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU) Vienna Vienna Austria
- Ecosystem Dynamics and Forest Management Group School of Life Sciences Technical University of Munich Freising Germany
| | - Timothy Thrippleton
- Department of Environmental Systems Science, Forest Ecology Swiss Federal Institute of Technology (ETH Zurich) Zürich Switzerland
- Forest Resources and Management Sustainable Forestry Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Werner Rammer
- Ecosystem Dynamics and Forest Management Group School of Life Sciences Technical University of Munich Freising Germany
| | - Harald Bugmann
- Department of Environmental Systems Science, Forest Ecology Swiss Federal Institute of Technology (ETH Zurich) Zürich Switzerland
| | - Rupert Seidl
- Department of Forest‐ and Soil Sciences Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU) Vienna Vienna Austria
- Ecosystem Dynamics and Forest Management Group School of Life Sciences Technical University of Munich Freising Germany
- Berchtesgaden National Park Berchtesgaden Germany
| |
Collapse
|
42
|
Yuan Z, Ali A, Loreau M, Ding F, Liu S, Sanaei A, Zhou W, Ye J, Lin F, Fang S, Hao Z, Wang X, Le Bagousse-Pinguet Y. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. GLOBAL CHANGE BIOLOGY 2021; 27:2883-2894. [PMID: 33742479 DOI: 10.1111/gcb.15606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Biodiversity plays a fundamental role in provisioning and regulating forest ecosystem functions and services. Above-ground (plants) and below-ground (soil microbes) biodiversity could have asynchronous change paces to human-driven land-use impacts. Yet, we know very little how they affect the provision of multiple forest functions related to carbon accumulation, water retention capacity and nutrient cycling simultaneously (i.e. ecosystem multifunctionality; EMF). We used a dataset of 22,000 temperate forest trees from 260 plots within 11 permanent forest sites in Northeastern China, which are recovering from three post-logging disturbances. We assessed the direct and mediating effects of multiple attributes of plant biodiversity (taxonomic, phylogenetic, functional and stand structure) and soil biodiversity (bacteria and fungi) on EMF under the three disturbance levels. We found the highest EMF in highly disturbed rather than undisturbed mature forests. Plant taxonomic, phylogenetic, functional and stand structural diversity had both positive and negative effects on EMF, depending on how the EMF index was quantified, whereas soil microbial diversity exhibited a consistent positive impact. Biodiversity indices explained on average 45% (26%-58%) of the variation in EMF, whereas climate and disturbance together explained on average 7% (0.4%-15%). Our result highlighted that the tremendous effect of biodiversity on EMF, largely overpassing those of both climate and disturbance. While above- (β = 0.02-0.19) and below-ground (β = 0.16-0.26) biodiversity had direct positive effects on EMF, their opposite mediating effects (β = -0.22 vs. β = 0.35 respectively) played as divergent pathways to human disturbance impacts on EMF. Our study sheds light on the need for integrative frameworks simultaneously considering above- and below-ground attributes to grasp the global picture of biodiversity effects on ecosystem functioning and services. Suitable management interventions could maintain both plant and soil microbial biodiversity, and thus guarantee a long-term functioning and provisioning of ecosystem services in an increasing disturbance frequency world.
Collapse
Affiliation(s)
- Zuoqiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Arshad Ali
- Department of Forest Resources Management, College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France
| | - Fang Ding
- College of Land and Environment, Shenyang Agriculture University, Shenyang, China
| | - Shufang Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Anvar Sanaei
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wangming Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhanqing Hao
- School of Ecology and Environment, Northernwest Polytechnical University, Xi'an, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yoann Le Bagousse-Pinguet
- Aix Marseille Univ, CNRS, Avignon Université, IRD, IMBE, Technopôle Arbois-Méditerranée Bât. Villemin - BP 80, Aix-en-Provence cedex 04, France
| |
Collapse
|
43
|
Jaime L, Hart SJ, Lloret F, Veblen TT, Andrus R, Rodman K, Batllori E. Species Climatic Suitability Explains Insect–Host Dynamics in the Southern Rocky Mountains, USA. Ecosystems 2021. [DOI: 10.1007/s10021-021-00643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Huang C, He HS, Liang Y, Hawbaker TJ, Henne PD, Xu W, Gong P, Zhu Z. The changes in species composition mediate direct effects of climate change on future fire regimes of boreal forests in northeastern China. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Huang
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Hong S. He
- School of Natural Resources University of Missouri Columbia MO USA
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains Ministry of Education School of Geographical Sciences Northeast Normal University Changchun China
| | - Yu Liang
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Todd J. Hawbaker
- U.S. Geological Survey, Geosciences and Environmental Change Science Center Denver CO USA
| | - Paul D. Henne
- U.S. Geological Survey, Geosciences and Environmental Change Science Center Denver CO USA
| | - Wenru Xu
- School of Natural Resources University of Missouri Columbia MO USA
| | - Peng Gong
- Ministry of Education Key Laboratory for Earth System Modeling Department of Earth System Science Tsinghua University Beijing China
| | | |
Collapse
|
45
|
Brackhane S, Reif A, Zin E, Schmitt CB. Are natural disturbances represented in strictly protected areas in Germany? Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances around Protected Area, Zeya State Nature Reserve, in the Russian Far East. REMOTE SENSING 2021. [DOI: 10.3390/rs13071285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Boreal forest areas in the Russian Far East contained very large intact forests. This particular area is considered one of the most productive and diverse forests in the boreal biome of the world, and it is also home to many endangered species. Zeya State Nature Reserve is located at the southern margin of the boreal forest area in the Russian Far East and has rich fauna and flora. However, the forest in the region faced large-scale forest fires and clearcutting for timber recently. The information of disturbances is rarely understood. This study aimed to explore the effects of disturbance and forest dynamics around the reserve. Our study used two-year overlaid Landsat images from Landsat 5 Thematic Mapper (TM) and 8 Operational Land Imager (OLI), to generate forest-cover-change maps of 1988–1999, 1999–2010, and 2010–2016. In this paper, we analyze the direction of forest successional stages, to demonstrate the effectiveness of this protected area in terms of preventing human-based deforestation on the vegetation indices. The vegetation indices included the normalized burn ratio (NBR), the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI). The study provided information on the pattern of forest-cover change and disturbance area around the reserve. The NDWI was used to differentiate between water and non-water areas. The mean values of NBR and NDVI were calculated and determine the forest successional stages between burn, vegetation recovery, grass, mixed forest, oak forest, and birch and larch forest. The accuracy was assessed by using field measurements, field photos, and high-resolution images as references. Overall, our classification results have high accuracy for all three periods. The most disturbed area occurred during 2010–2016. The reserve was highly protected, with no human-disturbance activity. However, large areas from fire disturbance were found (137 km2) during 1999–2010. The findings also show a large area of disturbance, mostly located outside of the reserve. Mixed disturbance increased to almost 50 km2 during 2010–2016, in the buffer zone and outside of the reserve. We recommend future works to apply our methods to other ecosystems, to compare the forest dynamics and disturbance inside and outside the protected area.
Collapse
|
47
|
Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U.S.A. REMOTE SENSING 2021. [DOI: 10.3390/rs13061089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) have affected coniferous forests throughout Europe and North America, driving changes in carbon storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a crucial tool for quantifying the effects of these disturbances across broad landscapes. In particular, Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are rarely informed by detailed field validation. Here we used spatial and temporal information from LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative tree mortality throughout the region, an important yet poorly understood concept in beetle-affected forests. RF models using LTS products to predict presence and severity performed well, with 80.3% correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 km2 of subalpine forest area (39.5% of the study area) was affected by bark beetles and 19.3% of the study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indicated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size distributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to inform an understanding of the variable effects of bark beetle outbreaks across complex forested regions and provide insight into patterns of disturbance legacies, landscape connectivity, and susceptibility to future disturbance.
Collapse
|
48
|
Emergent vulnerability to climate-driven disturbances in European forests. Nat Commun 2021; 12:1081. [PMID: 33623030 PMCID: PMC7902618 DOI: 10.1038/s41467-021-21399-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
Forest disturbance regimes are expected to intensify as Earth’s climate changes. Quantifying forest vulnerability to disturbances and understanding the underlying mechanisms is crucial to develop mitigation and adaptation strategies. However, observational evidence is largely missing at regional to continental scales. Here, we quantify the vulnerability of European forests to fires, windthrows and insect outbreaks during the period 1979–2018 by integrating machine learning with disturbance data and satellite products. We show that about 33.4 billion tonnes of forest biomass could be seriously affected by these disturbances, with higher relative losses when exposed to windthrows (40%) and fires (34%) compared to insect outbreaks (26%). The spatial pattern in vulnerability is strongly controlled by the interplay between forest characteristics and background climate. Hotspot regions for vulnerability are located at the borders of the climate envelope, in both southern and northern Europe. There is a clear trend in overall forest vulnerability that is driven by a warming-induced reduction in plant defence mechanisms to insect outbreaks, especially at high latitudes. Natural disturbances imperil healthy and productive forests, but quantifying their effects at large scales is challenging. Here the authors apply machine learning to disturbance records and satellite data to quantify and map European forest vulnerability to fires, windthrows, and insect outbreaks through 1979-2018.
Collapse
|
49
|
Lindenmayer D, Bowd E, McBurney L. Long-Term Empirical Studies Highlight Multiple Drivers of Temporal Change in Bird Fauna in the Wet Forests of Victoria, South-Eastern Australia. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.610147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Birds are high profile elements of the vertebrate biota in almost all terrestrial ecosystems worldwide. Many studies have uncovered evidence of a decline in bird biodiversity, but temporal patterns of change vary among ecosystems and among bird species with different life history traits. Ecosystem-specific, long-term studies are critical for identifying patterns of temporal change in bird biodiversity and the drivers of that change. Here we present a case study of drivers of temporal change in the bird fauna of the Mountain Ash and Alpine Ash eucalypt forests of south-eastern Australia. Using insights from observational studies and experiments conducted over the past 18 years, we discuss the direct and interactive effects of fire and logging on birds. The extent and severity of wildfires have major negative effects on almost all bird species, and have persisted for more than a decade after the last major conflagration (in 2009). Logging has markedly different effects on birds than those quantified for fire, and may have resulted in elevated levels of site occupancy in remaining uncut areas in the landscape. Both fire and logging have led to marked losses in the extent of old growth forest in Mountain Ash and Alpine Ash ecosystems. This is a concern given the strong association of most species of birds with old forest relative to younger age cohorts. Based on an understanding of the effects of fire and logging as drivers of change, we propose a series of inter-related management actions designed to enhance the conservation of avifauna in Mountain Ash and Alpine Ash ecosystems. A particular focus of management must be on increasing the interval between fires and limiting the spatial extent of wildfires and, in turn, significantly expanding the extent of old growth forest. This is because old growth forest is where most bird species are most likely to occur, and in the event of future wildfires, where fire severity will be lowest. Expansion of the old growth estate will require commercial logging operations to be excluded from large parts of Mountain Ash and Alpine Ash forests.
Collapse
|
50
|
Sommerfeld A, Rammer W, Heurich M, Hilmers T, Müller J, Seidl R. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? THE JOURNAL OF ECOLOGY 2021; 109:737-749. [PMID: 33664526 PMCID: PMC7894307 DOI: 10.1111/1365-2745.13502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/27/2020] [Indexed: 06/12/2023]
Abstract
Bark beetle outbreaks have intensified in many forests around the globe in recent years. Yet, the legacy of these disturbances for future forest development remains unclear. Bark beetle disturbances are expected to increase further because of climate change. Consequently, feedbacks within the disturbance regime are of growing interest, for example, whether bark beetle outbreaks are amplifying future bark beetle activity (through the initiation of an even-aged cohort of trees) or dampening it (through increased structural and compositional diversity).We studied bark beetle-vegetation-climate interactions in the Bavarian Forest National Park (Germany), an area characterised by unprecedented bark beetle activity in the recent past. We simulated the effect of future bark beetle outbreaks on forest structure and composition and analysed how disturbance-mediated forest dynamics influence future bark beetle activity under different scenarios of climate change. We used process-based simulation modelling in combination with machine learning to disentangle the long-term interactions between vegetation, climate and bark beetles at the landscape scale.Disturbances by the European spruce bark beetle were strongly amplified by climate change, increasing between 59% and 221% compared to reference climate. Bark beetle outbreaks reduced the dominance of Norway spruce (Picea abies (L.) Karst.) on the landscape, increasing compositional diversity. Disturbances decreased structural diversity within stands (α diversity) and increased structural diversity between stands (β diversity). Overall, disturbance-mediated changes in forest structure and composition dampened future disturbance activity (a reduction of up to -67%), but were not able to fully compensate for the amplifying effect of climate change. Synthesis. Our findings indicate that the recent disturbance episode at the Bavarian Forest National Park was caused by a convergence of highly susceptible forest structures with climatic conditions favourable for bark beetle outbreaks. While future climate is increasingly conducive to massive outbreaks, the emerging landscape structure is less and less likely to support them. This study improves our understanding of the long-term legacies of ongoing bark beetle disturbances in Central Europe. It indicates that increased diversity provides an important dampening feedback, and suggests that preventing disturbances or homogenizing post-disturbance forests could elevate the future susceptibility to large-scale bark beetle outbreaks.
Collapse
Affiliation(s)
- Andreas Sommerfeld
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Werner Rammer
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ecosystem Dynamics and Forest Management GroupSchool of Life SciencesTechnical University of MunichFreisingGermany
| | - Marco Heurich
- Bavarian Forest National ParkGrafenauGermany
- Chair of Wildlife Ecology and Wildlife ManagementUniversity of FreiburgFreiburgGermany
| | - Torben Hilmers
- Chair of Forest Growth and Yield ScienceSchool of Life Sciences WeihenstephanTechnical University of MunichFreisingGermany
| | - Jörg Müller
- Bavarian Forest National ParkGrafenauGermany
- Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
| | - Rupert Seidl
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Ecosystem Dynamics and Forest Management GroupSchool of Life SciencesTechnical University of MunichFreisingGermany
- Berchtesgaden National ParkBerchtesgadenGermany
| |
Collapse
|