1
|
Zimmerlin L, Angarita A, Park TS, Evans-Moses R, Thomas J, Yan S, Uribe I, Vegas I, Kochendoerfer C, Buys W, Leung AKL, Zambidis ET. Proteogenomic reprogramming to a functional human blastomere-like stem cell state via a PARP-DUX4 regulatory axis. Cell Rep 2025; 44:115671. [PMID: 40338744 DOI: 10.1016/j.celrep.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025] Open
Abstract
Here, we show that conventional human pluripotent stem cells cultured with non-specific tankyrase-PARP1-inhibited conditions underwent proteogenomic reprogramming to functional blastomere-like tankyrase/PARP inhibitor-regulated naive stem cells (TIRN-SC). TIRN-SCs concurrently expressed hundreds of pioneer factors in hybrid 2C-8C-morula-ICM programs that were augmented by induced expression of DUX4. Injection of TIRN-SCs into 8C-staged murine embryos equipotently differentiated human cells to the extra-embryonic and embryonic compartments of chimeric blastocysts and fetuses. Ectopic expression of murine-E-Cadherin in TIRN-SCs further enhanced interspecific chimeric tissue targeting. TIRN-SC-derived trophoblast stem cells efficiently generated placental chimeras. Proteome-ubiquitinome analyses revealed increased TNKS and reduced PARP1 levels and an ADP-ribosylation-deficient, hyper-ubiquitinated proteome that impacted expression of both tankyrase and PARP1 substrates. ChIP-seq of NANOG-SOX2-OCT4 and PARP1 (NSOP) revealed genome-wide NSOP co-binding at DUX4-accessible enhancers of embryonic lineage factors; suggesting a DUX4-NSOP axis regulated TIRN-SC lineage plasticity. TIRN-SCs may serve as valuable models for studying the proteogenomic regulation of pre-lineage human embryogenesis. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ariana Angarita
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca Evans-Moses
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Justin Thomas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sirui Yan
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Isabel Uribe
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Isabella Vegas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Clara Kochendoerfer
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Willem Buys
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony K L Leung
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
3
|
Kim D, Nam HJ, Baek SH. Ubiquitination of transcription factors in cancer: unveiling therapeutic potential. Mol Oncol 2025. [PMID: 40227962 DOI: 10.1002/1878-0261.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Transcription factors, pivotal in gene expression regulation, are essential in cancer progression. Their function is meticulously regulated by post-translational modifications, including ubiquitination. This process, which marks proteins for degradation, can either enhance or inhibit the function of transcription factors, contingent on the context. In cancers, dysregulated ubiquitination of transcription factors contributes to the hallmark of uncontrolled growth and survival of tumors. For example, tumor suppressors such as p53 might be degraded prematurely due to abnormal ubiquitination, causing genomic instability. On the other hand, oncogenic transcription factors may gain stability via ubiquitination, thus facilitating tumorigenesis. Targeting the ubiquitin-proteasome system (UPS) therefore could be a viable therapeutic approach in cancer. Emerging treatments aim to block the ubiquitination of oncogenic transcription factors or to stabilize tumor suppressors. This review underscores the critical impact of transcription factor-altered ubiquitination on cancer progression. Additionally, it outlines innovative therapeutic approaches that involve inhibitors or drugs directed at specific ubiquitin E3 ligases and deubiquitinases (DUBs) that regulate transcription factor activity.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Jin Nam
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Korea
| |
Collapse
|
4
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
5
|
Vuorinen A, Kennedy CR, McPhie KA, McCarthy W, Pettinger J, Skehel JM, House D, Bush JT, Rittinger K. Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation. Commun Chem 2025; 8:12. [PMID: 39809917 PMCID: PMC11732987 DOI: 10.1038/s42004-025-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs. Applying these approaches, we identify an enantioselective covalent fragment for OTUD7B, and validate it using chemoproteomics and biochemical DUB activity assays.
Collapse
Affiliation(s)
- Aini Vuorinen
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Cassandra R Kennedy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Katherine A McPhie
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - William McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | | | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK.
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Ding C, Cao L, Wang R, Wu Q, Li M, Zhang J, Thorne RF, Li J, Ma J, Wu M, Cang S. OTUD7B is a new deubiquitinase targeting p53. Theranostics 2025; 15:2121-2138. [PMID: 39990225 PMCID: PMC11840744 DOI: 10.7150/thno.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/04/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: The tumor suppressor p53 safeguards against cellular transformation, with its expression regulated by diverse post-translational modifications (PTMs). While polyubiquitination by Mdm2 principally drives its proteasomal degradation, the identity of p53 deubiquitinases (DUBs) remains less well defined. This study investigates the role of the deubiquitinase enzyme OTUD7B in hepatocellular carcinoma (HCC), where it is notably downregulated and proposed to function as a tumor suppressor. Methods: Mass spectrometry screening of immunoprecipitates from HCC cells was used to identify OTUD7B-binding proteins. Co-immunoprecipitation assays with endogenous, ectopic, and mutant forms of OTUD7B and p53 assessed binding interactions and p53 polyubiquitination levels, respectively. Regulatory mechanisms were explored via luciferase reporter and chromatin immunoprecipitation (ChIP) assays. OTUD7B function was evaluated in vitro and in xenograft models using shRNA knockdown, overexpression, and CRISPR-Cas9 knockout. OTUD7B expression in normal and HCC tissues was analyzed by immunohistochemistry and immunoblotting. Results: We identified p53 as a binding partner of OTUD7B, confirming interactions with both wild-type and mutant p53 in HCC cells. OTUD7B was shown to remove lysine-linked polyubiquitin chains in p53, including those mediated by Mdm2, thereby stabilizing p53 by inhibiting its proteasomal degradation. Overexpression of OTUD7B suppressed growth in HCC cultures and xenografts through p53-dependent mitochondrial apoptosis, marked by PUMA and BAX induction. Conversely, OTUD7B knockdown promoted tumor growth. These effects were absent in p53-null or CRISPR-knockout cells, underscoring p53 as a key OTUD7B substrate. Additionally, OTUD7B expression was found to be transcriptionally repressed via p53-dependent mechanisms. Bioinformatics and ex vivo analysis revealed a positive correlation between OTUD7B and p53 protein levels in HCC tissues. Conclusion: OTUD7B plays a critical role in stabilizing both wild-type and mutant p53 in HCC cells, with its expression regulated through a mutual feedback loop involving p53. By inhibiting cell growth, OTUD7B exhibits tumor-suppressive properties, underscored by its atypical downregulation in patient tissues and its positive correlation with p53 expression. These findings highlight the clinical significance of OTUD7B and position it as a promising therapeutic target for modulating the p53 pathway in HCC.
Collapse
Affiliation(s)
- Caoyuan Ding
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Leixi Cao
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Ruijie Wang
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Qichen Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Mengfan Li
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Jinjing Zhang
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Rick F. Thorne
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Jinming Li
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150081 Harbin, Heilongjiang, China
| | - Mian Wu
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| | - Shundong Cang
- Translational Research Institute, People's Hospital of Zhengzhou University, 450003 Zhengzhou, Henan, China
| |
Collapse
|
7
|
Ding X, Shao L, Wang J, Jin Y, Chen H, Li B. HADHA promotes esophageal cancer progression by activating mTOR signaling and the SP1/MDM2 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 57:378-388. [PMID: 39327932 PMCID: PMC11986453 DOI: 10.3724/abbs.2024139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 09/28/2024] Open
Abstract
Esophageal cancer (EC) is one of the most recalcitrant cancers, with a 5-year survival rate of < 30%. The hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) plays an essential role in long-chain fatty acid metabolism, and dysregulation of HADHA has been demonstrated to be involved in a series of metabolic diseases and cancers. However, its role in cancers remains controversial. HADHA has seldom been investigated in EC, and little is known about how HADHA regulates the malignant progression of EC. In this study, we find that HADHA is significantly upregulated in EC tissues and is correlated with poor survival. HADHA knockdown markedly inhibits EC cell proliferation both in vitro and in vivo. The loss of HADHA also induces EC cell apoptosis, causes cell cycle arrest and inhibits cell migration. Additionally, RNA profiling reveals that mTOR signaling is significantly suppressed after HADHA knockdown. Mechanistically, HADHA interacts with SP1 and induces MDM2 expression. In conclusion, both mTOR signaling and the SP1-MDM2 axis participate in the HADHA-induced malignant behavior of EC cells.
Collapse
Affiliation(s)
- Xusheng Ding
- Departments of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghai200032China
- Institute of Thoracic OncologyFudan UniversityShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Longlong Shao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghai200032China
- Institute of Thoracic OncologyFudan UniversityShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jie Wang
- Departments of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghai200032China
- Institute of Thoracic OncologyFudan UniversityShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yongwei Jin
- Department of Thoracic SurgeryFudan University Shanghai Cancer Center Xiamen HospitalXiamen361026China
| | - Haiqing Chen
- Departments of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghai200032China
- Institute of Thoracic OncologyFudan UniversityShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Bin Li
- Departments of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghai200032China
- Institute of Thoracic OncologyFudan UniversityShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
8
|
Varner LR, Chaya T, Maeda Y, Tsutsumi R, Zhou S, Tsujii T, Okuzaki D, Furukawa T. The deubiquitinase Otud7b suppresses cone photoreceptor degeneration in mouse models of retinal degenerative diseases. iScience 2024; 27:109380. [PMID: 38510130 PMCID: PMC10951987 DOI: 10.1016/j.isci.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Primary and secondary cone photoreceptor death in retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP), leads to severe visual impairment and blindness. Although the cone photoreceptor protection in retinal degenerative diseases is crucial for maintaining vision, the underlying molecular mechanisms are unclear. Here, we found that the deubiquitinase Otud7b/Cezanne is predominantly expressed in photoreceptor cells in the retina. We analyzed Otud7b-/- mice, which were subjected to light-induced damage, a dry AMD model, or were mated with an RP mouse model, and observed increased cone photoreceptor degeneration. Using RNA-sequencing and bioinformatics analysis followed by a luciferase reporter assay, we found that Otud7b downregulates NF-κB activity. Furthermore, inhibition of NF-κB attenuated cone photoreceptor degeneration in the light-exposed Otud7b-/- retina and stress-induced neuronal cell death resulting from Otud7b deficiency. Together, our findings suggest that Otud7b protects cone photoreceptors in retinal degenerative diseases by modulating NF-κB activity.
Collapse
Affiliation(s)
- Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shanshan Zhou
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Toshinori Tsujii
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
10
|
Wang H, Han S, Xiao J, Fu X, Chen W, Zhuo D. OTUD7B knockdown inhibits the proliferation and stemness of breast cancer cells by destabilizing FOXM1. Oncol Lett 2024; 27:102. [PMID: 38298430 PMCID: PMC10829069 DOI: 10.3892/ol.2024.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 10/16/2023] [Indexed: 02/02/2024] Open
Abstract
Breast cancer is a leading cause of cancer-related death in women worldwide; therefore, there is an urgent need to develop novel therapies and drugs that prolong the survival and improve the quality of life of patients with breast cancer. In the present study, the effects and underlying mechanisms of OTU domain-containing 7B (OTUD7B) knockdown on breast cancer were investigated using MDA-MB-468, MDA-MB-453 and MCF7 cell lines. The results of Cell Counting Kit 8, colony formation and tumor sphere formation experiments showed that OTUD7B knockdown caused a significant decrease in the proliferation and sphere formation ability of MDA-MB-468, MDA-MB-453 and MCF7 cells in vitro. Moreover, western blotting results showed that CD44, EpCAM, SOX2 and Nanog protein levels were significantly decreased following OTUD7B knockdown. These findings indicated that OTUD7B knockdown reduced the proliferation and stemness of breast cancer cells. Co-immunoprecipitation assays demonstrated that OTUD7B interacted with forkhead box protein M1 (FOXM1) and reduced the polyubiquitylation of FOXM1 in breast cancer cells; accordingly, FOXM1 protein levels were significantly decreased by OTUD7B knockdown. Furthermore, the overexpression of FOXM1 reduced the inhibitory effects of OTUD7B knockdown on breast cancer cells. The findings of the present study provide new insights into the oncogenic role of OTUD7B in breast cancer and indicate that OTUD7B may serve as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hebing Wang
- Department of Breast Surgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Sumei Han
- Department of Dermatology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Jian Xiao
- Department of Breast Surgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Xinghang Fu
- Department of Breast Surgery, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Wenfeng Chen
- Department of Dermatology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| | - Dexiang Zhuo
- Department of Laboratory Medicine, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian 365000, P.R. China
| |
Collapse
|
11
|
Xia J, Yang Y, Chen X, Song K, Ma G, Yang Y, Yao C, Du A. An apicoplast-localized deubiquitinase contributes to the cell growth and apicoplast homeostasis of Toxoplasma gondii. Vet Res 2024; 55:10. [PMID: 38233899 PMCID: PMC10795397 DOI: 10.1186/s13567-023-01261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Toxoplasma gondii is among the most important parasites worldwide. The apicoplast is a unique organelle shared by all Apicomplexan protozoa. Increasing lines of evidence suggest that the apicoplast possesses its own ubiquitination system. Deubiquitination is a crucial step executed by deubiquitinase (DUB) during protein ubiquitination. While multiple components of ubiquitination have been identified in T. gondii, the deubiquitinases involved remain unknown. The aim of the current study was to delineate the localization of TgOTU7 and elucidate its functions. TgOTU7 was specifically localized at the apicoplast, and its expression was largely regulated during the cell cycle. Additionally, TgOTU7 efficiently breaks down ubiquitin chains, exhibits linkage-nonspecific deubiquitinating activity and is critical for the lytic cycle and apicoplast biogenesis, similar to the transcription of the apicoplast genome and the nuclear genes encoding apicoplast-targeted proteins. Taken together, the results indicate that the newly described deubiquitinase TgOTU7 specifically localizes to the apicoplast and affects the cell growth and apicoplast homeostasis of T. gondii.
Collapse
Affiliation(s)
- Jie Xia
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yimin Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kaiyue Song
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis.
| | - Aifang Du
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
12
|
Ni H, Tang S, Yuan X, Xu J, Zheng F, Chen K, Liu X, Zhang H, Hu J, Xia D, Wu Y. Prolonged exposure of environmental concentration benzo[a]pyrene promoted cancer stemness through AhR/PKA/SOX2 dependent pathway in small cell lung cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167824. [PMID: 37839474 DOI: 10.1016/j.scitotenv.2023.167824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Benzo[a]pyrene (BaP) is commonly found in the environment as a result of incomplete combustion of organic materials and cigarette smoke. Epidemiological studies have consistently suggested that elderly smokers are at higher risk for small cell lung cancer (SCLC), with risks and clinical stages increasing with the intensity and duration of smoking. However, the underlying mechanism remains insufficiently investigated. Here, we established a positive correlation between smoking and BaP metabolite 3-hydroxybenzo[a]pyrene (3OH-BaP) in urine. The pooled standardized mean difference of urinary 3OH-BaP concentration for smokers versus nonsmokers was 5.18 (95 % CI 2.86-7.50). Clinical data suggested that smoking led to more lymph node metastasis, higher pathological N-stage, and worse overall survival in SCLC patients. We identified 75 genes that participate in BaP-associated cancer stemness of SCLC from Comparative Toxicogenomics Database and validated the expression of these candidate genes in SCLC patient samples. Protein kinase cAMP-activated catalytic subunit alpha (PRKACA) was found to be most upregulated in SCLC patients and in vitro experiments indicated that long-term exposure of SCLC cells to BaP, at the concentration equivalent to those detected in blood, increased PKA protein level. Further investigation revealed that PKA could directly interact with SOX2 and protect SOX2 from COP1-mediated ubiquitination and degradation. Upregulated SOX2 then contributed to the stemness and metastasis of SCLC cells while inhibition of aryl hydrocarbon receptor (AhR) signaling pathway abolished BaP induced PKA expression and downstream PKA/SOX2 axis. Our findings firstly pinpoint BaP exposure as a high-risk factor for SCLC and worse outcomes in patients, with the underlying mechanism being the activation of cancer stemness of SCLC via the AhR/PKA/SOX2 axis.
Collapse
Affiliation(s)
- Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Tang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Liu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Liu F, Cheng X, Zhao C, Zhang X, Liu C, Zhong S, Liu Z, Lin X, Qiu W, Zhang X. Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke. Neurosci Bull 2024; 40:65-78. [PMID: 37755676 PMCID: PMC10774469 DOI: 10.1007/s12264-023-01109-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/27/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Fangxi Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Chang Liu
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhouyang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyu Lin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xiuchun Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
14
|
Xie L, Qin J, Wang T, Zhang S, Luo M, Cheng X, Cao X, Wang H, Yao B, Xu D, Peng B. Impact of Prenatal Acetaminophen Exposure for Hippocampal Development Disorder on Mice. Mol Neurobiol 2023; 60:6916-6930. [PMID: 37516664 DOI: 10.1007/s12035-023-03515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used as analgesic agents. They have been detected in various environmental matrices. The degradation of environmental contaminants and the long-term adverse effects have become a major public concern. Prenatal exposure to acetaminophen can cause damage to the developing hippocampus. However, the molecular mechanisms behind hippocampal damage following prenatal acetaminophen exposure (PAcE) remain unclear. The present study shows an increased risk of adverse neurodevelopmental outcomes in offspring following exposure to acetaminophen during pregnancy on mice. The results revealed that different doses, timings, and duration of exposure to acetaminophen during pregnancy were associated with dose-dependent changes in the hippocampus of the offspring. Furthermore, exposure to high doses, multiple-treatment courses, and late pregnancy induced pathological changes, such as wrinkling and vacuolation, inhibited hippocampal proliferation and increased apoptosis. In addition, PAcE significantly decreased the expression of genes related to synaptic development in fetal hippocampal neurons and hippocampal astrocyte and microglia were also damaged to varying degrees. The significant reduction either in SOX2, an essential gene in regulating neural progenitor cell proliferation, and reduction of genes related to the SOX2/Notch pathway may suggest that the role of SOX2/Notch pathway in impaired hippocampal development in the offspring due to PAcE. In general, PAcE at high doses, multiple-treatment courses, and mid- and late gestation were associated with neurodevelopmental toxicity to the offspring.
Collapse
Affiliation(s)
- Lulu Xie
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Qin
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xuelei Cheng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xinrui Cao
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Biwen Peng
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
15
|
Kim WK, Son YS, Lim JH, Kim WH, Kang BJ. Neural stem/progenitor cells from adult canine cervical spinal cord have the potential to differentiate into neural lineage cells. BMC Vet Res 2023; 19:193. [PMID: 37803301 PMCID: PMC10557334 DOI: 10.1186/s12917-023-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND • Neural stem/progenitor cells (NSPCs) are multipotent self-renewing cells that can be isolated from the brain or spinal cord. As they need to be isolated from neural tissues, it is difficult to study human NSPCs. To facilitate NSPC research, we attempted to isolate NSPCs from dogs, as dogs share the environment and having many similar diseases with humans. We collected and established primary cultures of ependymal and subependymal cells from the central canal of the cervical spinal cord of adult dogs. To isolate pure NSPCs, we employed the monolayer culture and selective medium culture methods. We further tested the ability of the NSPCs to form neurospheres (using the suspension culture method) and evaluated their differentiation potential. RESULTS • The cells had the ability to grow as cultures for up to 10 passages; the growth curves of the cells at the 3rd, 6th, and 9th passages showed similar patterns. The NSPCs were able to grow as neurospheres as well as monolayers, and immunostaining at the 3rd, 6th, and 9th passages showed that these cells expressed NSPC markers such as nestin and SOX2 (immunofluorescent staining). Monolayer cultures of NSPCs at the 3rd, 6th, and 9th passages were cultured for approximately 14 days using a differentiation medium and were observed to successfully differentiate into neural lineage and glial cells (astrocytes, neurons, and oligodendrocytes) at all the three passages tested. CONCLUSION • It is feasible to isolate and propagate (up to at least 10 passages) canine cervical spinal cord-derived NSPCs with the capacity to differentiate into neuronal and glial cells. To the best of our knowledge this is the first study to successfully isolate, propagate, and differentiate canine NSPCs derived from cervical spinal cord in the adult canine, and we believe that these cells will contribute to the field of spinal cord regeneration in veterinary and comparative medicine.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea
| | - Yeon Sung Son
- Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Ji-Hey Lim
- Department of Neurology/Neurosurgery, College of Veterinary Medicine, University of Missouri, Columbia, 65211, USA
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
16
|
Zhang Y, Yang Y, Chen W, Mi C, Xu X, Shen Y, Zheng Z, Xu Z, Zhao J, Wan S, Wang X, Zhang H. BaP/BPDE suppressed endothelial cell angiogenesis to induce miscarriage by promoting MARCHF1/GPX4-mediated ferroptosis. ENVIRONMENT INTERNATIONAL 2023; 180:108237. [PMID: 37802009 DOI: 10.1016/j.envint.2023.108237] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Environmental benzo(a)pyrene (BaP) and its ultimate metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) are universal and inevitable persistent organic pollutants and endocrine disrupting chemicals. Angiogenesis in placental decidua plays a pivotal role in healthy pregnancy. Ferroptosis is a newly identified and iron-dependent cell death mode. However, till now, BaP/BPDE exposure, ferroptosis, defective angiogenesis, and miscarriage have never been correlated; and their regulatory mechanisms have been rarely explored. In this study, we used assays with BPDE-exposed HUVECs (human umbilical vein endothelial cells), decidual tissues and serum samples collected from unexplained recurrent miscarriage and their matched healthy control groups, and placental tissues of BaP-exposed mouse miscarriage model. We found that BaP/BPDE exposure caused ferroptosis and then directly suppressed angiogenesis and eventually induced miscarriage. In mechanism, BaP/BPDE exposure up-regulated free Fe2+ level and promoted lipid peroxidation and also up-regulated MARCHF1 (a novel E3 ligase of GPX4) level to promote the ubiquitination degradation of GPX4, both of which resulted in HUVEC ferroptosis. Furthermore, we also found that GPX4 protein down-regulated the protein levels of VEGFA and ANG-1, two key proteins function for angiogenesis, and thus suppressed HUVEC angiogenesis. In turn, supplement with GPX4 could suppress ferroptosis, recover angiogenesis, and alleviate miscarriage. Moreover, the levels of free Fe2+ and VEGFA in serum might predict the risk of miscarriage. Overall, this study uncovered the crosstalk among BaP/BPDE exposure, ferroptosis, angiogenesis, and miscarriage, discovering novel toxicological effects of BaP/BPDE on human reproductive health. This study also warned the public to avoid exposure to polycyclic aromatic hydrocarbons during pregnancy to effectively prevent adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Yang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaole Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yanqiu Shen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhaodian Zheng
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
17
|
Kang L, Liu Y, He J, Wang Y, Xue M, Wu X, Wang Z, Zhang Y, Chu M, Li J, Wei W, Li J, Li E, Liao L, Xiao J, Zhang R, Xu L, Wong J. GSK3β-driven SOX2 overexpression is a targetable vulnerability in esophageal squamous cell carcinoma. Oncogene 2023; 42:2297-2314. [PMID: 37349645 DOI: 10.1038/s41388-023-02748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest forms of human malignancy that currently lacks approved targeted therapeutics. Accumulating evidence suggests that SOX2 overexpression is a key driving factor for ESCC and various squamous cell carcinoma. Here, through screening a small-molecule kinase inhibitor library, we identified GSK3β as a kinase that is critically required for robust SOX2 expression in ESCC cells. GSK3β did not promote SOX2 transcriptionally but was required for SOX2 protein stability. We demonstrated that GSK3β interacts with and phosphorylates SOX2 at residue S251, which blocks SOX2 from ubiquitination and proteasome-dependent degradation instigated by ubiquitin E3 ligase CUL4ADET1-COP1. Pharmacological inhibition or knockdown of GSK3β by RNA interference selectively impaired SOX2-positive ESCC cell proliferation, cancer stemness, and tumor growth in mouse xenograft model, suggesting that GSK3β promotes ESCC tumorigenesis primarily by driving SOX2 overexpression. GSK3β was found to be frequently overexpressed in clinical esophageal tumors, and there was a positive correlation between GSK3β and SOX2 protein levels. Notably, we found that SOX2 enhanced GSK3β expression transcriptionally, suggesting the existence of a vicious cycle that drives a coordinated GSK3β and SOX2 overexpression in ESCC cells. Finally, we demonstrated in tumor xenograft model that GSK3β inhibitor AR-A014418 was effective in suppressing SOX2-positive ESCC tumor progression and inhibited tumor progression cooperatively with chemotherapeutic agent carboplatin. In conclusion, we uncovered a novel role for GSK3β in driving SOX2 overexpression and tumorigenesis and provided evidence that targeting GSK3β may hold promise for the treatment of recalcitrant ESCCs.
Collapse
Affiliation(s)
- Li Kang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai, China
| | - Yujie Liu
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianzhong He
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Yaling Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengyang Xue
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
| | - Xin Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunpeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Manyu Chu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai, China.
| |
Collapse
|
18
|
Kang L, Zhang H, Wang Y, Chu M, He J, Xue M, Pan L, Zhang Y, Wang Z, Chen Z, Huang Y, Chen Z, Li E, Li J, Xu L, Zhang R, Wong J. Control of SOX2 protein stability and tumorigenic activity by E3 ligase CHIP in esophageal cancer cells. Oncogene 2023; 42:2315-2328. [PMID: 37353616 DOI: 10.1038/s41388-023-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
SOX2 is highly expressed and controls tumor initiation and cancer stem cell function in various squamous cell carcinomas including esophageal squamous cancer. However, the molecular mechanism leading to SOX2 overexpression in cancer is incompletely understood. Here, we identified CHIP, a chaperone-associated ubiquitin E3 ligase, as a novel negative regulator of SOX2 protein stability and tumorigenic activity in esophageal squamous carcinoma cells. We showed that CHIP interacted with SOX2 primarily via chaperone HSP70, together they catalyzed SOX2 ubiquitination and degradation via proteasome. In contrast, HSP90 promoted SOX2 stability and inhibition of HSP90 activity induced SOX2 ubiquitination and degradation. Notably, unlike the case in normal esophageal tissues where CHIP was detected in both the cytoplasm and nucleus, CHIP in clinical esophageal tumor specimens was predominantly localized in the cytoplasm. Consistent with this observation, we observed increased expression of exportin-1/CRM-1 in clinical esophageal tumor specimens. We further demonstrated that CHIP catalyzed SOX2 ubiquitination and degradation primarily in the nuclear compartment. Taken together, our study has identified CHIP as a key suppressor of SOX2 protein stability and tumorigenic activity and revealed CHIP nuclear exclusion as a potential mechanism for aberrant SOX2 overexpression in esophageal cancer. Our study also suggests HSP90 inhibitors as potential therapeutic agents for SOX2-positive cancers.
Collapse
Affiliation(s)
- Li Kang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaling Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Manyu Chu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianzhong He
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Mengyang Xue
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
| | - Liu Pan
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinzhou Medical University, Liaoning, China
| | - Yunfeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zitai Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
19
|
Zhang J, Wang Z, Zhao H, Wei Y, Zhou Y, Zhang S, Zhao J, Li X, Lin Y, Liu K. The roles of the SOX2 protein in the development of esophagus and esophageal squamous cell carcinoma, and pharmacological target for therapy. Biomed Pharmacother 2023; 163:114764. [PMID: 37100016 DOI: 10.1016/j.biopha.2023.114764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
SOX2 is a transcription factor belonging to the SOX gene family, whose activity has been associated with the maintenance of the stemness and self-renewal of embryonic stem cells (ESCs), as well as the induction of differentiated cells into induced pluripotent stem cells (iPSCs). Moreover, accumulating studies have shown that SOX2 is amplified in various cancers, notably in esophageal squamous cell carcinoma (ESCC). In addition, SOX2 expression is linked to multiple malignant processes, including proliferation, migration, invasion, and drug resistance. Taken together, targeting SOX2 might shed light on novel approaches for cancer therapy. In this review, we aim to summarize the current knowledge regarding SOX2 in the development of esophagus and ESCC. We also highlight several therapeutic strategies for targeting SOX2 in different cancer types, which can provide new tools to treat cancers possessing abnormal levels of SOX2 protein.
Collapse
Affiliation(s)
- Jiaying Zhang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Life Science, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam 999077, Hong Kong, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Jing Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Xinxin Li
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yong Lin
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam 999077, Hong Kong, China; Fujian Health College, Fuzhou, Fujian, 350101, China.
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China.
| |
Collapse
|
20
|
Das S, Kundu M, Hassan A, Parekh A, Jena BC, Mundre S, Banerjee I, Yetirajam R, Das CK, Pradhan AK, Das SK, Emdad L, Mitra P, Fisher PB, Mandal M. A novel computational predictive biological approach distinguishes Integrin β1 as a salient biomarker for breast cancer chemoresistance. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166702. [PMID: 37044238 DOI: 10.1016/j.bbadis.2023.166702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin β1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.
Collapse
Affiliation(s)
- Subhayan Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Moumita Kundu
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atif Hassan
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Aditya Parekh
- Anant National University, Ahmedabad, Gujarat, India
| | - Bikash Ch Jena
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swati Mundre
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranil Banerjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Pharmacy, Sister Nivedita University (Techno India Group), Kolkata, West Bengal, India
| | - Rajesh Yetirajam
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandan K Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pralay Mitra
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
21
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
22
|
Domínguez-Castro M, Domínguez-Galicia A, Pérez-Pérez O, Hernández-Pineda J, Mancilla-Herrera I, Bazán-Tejeda ML, Rodríguez-Cruz L, González-Torres MC, Montoya-Estrada A, Reyes-Muñoz E, Romo-Yáñez J. Hyperglycemia affects neuronal differentiation and Nestin, FOXO1, and LMO3 mRNA expression of human Wharton's jelly mesenchymal stem cells of children from diabetic mothers. Biochem Biophys Res Commun 2022; 637:300-307. [DOI: 10.1016/j.bbrc.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
23
|
Jolly LA, Kumar R, Penzes P, Piper M, Gecz J. The DUB Club: Deubiquitinating Enzymes and Neurodevelopmental Disorders. Biol Psychiatry 2022; 92:614-625. [PMID: 35662507 PMCID: PMC10084722 DOI: 10.1016/j.biopsych.2022.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.
Collapse
Affiliation(s)
- Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia.
| | - Raman Kumar
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael Piper
- School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Xie ZQ, Li HX, Hou XJ, Huang MY, Zhu ZM, Wei LX, Tang CX. Capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of hepatic progenitor cells via SIRT1/SOX2 signaling pathway. Cancer Med 2022; 11:4283-4296. [PMID: 35674129 DOI: 10.1002/cam4.4777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND & AIMS Capsaicin, a functional component of chili pepper, possesses anti-inflammatory, analgesic, and anti-cancer properties. This study aimed to determine the property of capsaicin against hepatocarcinogenesis in vivo and investigate the role of the SIRT1/SOX2 pathway in the mode of action of capsaicin in hepatic progenitor cells (HPCs), which is related to hepatocarcinogenesis. MATERIALS & METHODS We prepared a diethylnitrosamine-induced liver cancer model in rats to examine hepatocarcinogenesis, and delivered liposomal capsaicin through the subcutaneous transposition of the spleen to the liver. Liver sections from rats and hepatocarcinoma patients were stained for the markers of HPCs or SIRT1/SOX2 signaling. SIRT1/SOX2 signalling expression was measured using immunoprecipitation and western blot. RESULTS We found that capsaicin significantly inhibited hepatocarcinogenesis. Notably, capsaicin inhibited HPCs activation in vivo but did not induce apoptosis in the normal hepatic progenitor cell line in rats in vitro. This suggests that capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of HPCs. Moreover, capsaicin can induce this inhibition by reducing the stability of SOX2. SIRT1 is overexpressed in liver cancer and acts as a tumor promoter via SOX2 deacetylation. Using immunoprecipitation, we identified direct binding between SIRT1 and SOX2. The capsaicin treatment resulted in SIRT1 downregulation which reduced deacetylation, and increased nuclear export as well as subsequent ubiquitous degradation of SOX2. CONCLUSIONS Altogether, we report that capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of HPCs via SIRT1/SOX2 signaling. It may serve as a promising therapeutic candidate for liver cancer.
Collapse
Affiliation(s)
- Zhi-Qin Xie
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, China
| | - Hong-Xia Li
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, China
| | - Xiao-Juan Hou
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai City, China
| | - Mei-Yuan Huang
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, China
| | - Ze-Min Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, China
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai City, China
| | - Cai-Xi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, China
| |
Collapse
|
25
|
Mercurio S, Serra L, Pagin M, Nicolis SK. Deconstructing Sox2 Function in Brain Development and Disease. Cells 2022; 11:cells11101604. [PMID: 35626641 PMCID: PMC9139651 DOI: 10.3390/cells11101604] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.
Collapse
|
26
|
Mahlokozera T, Patel B, Chen H, Desouza P, Qu X, Mao DD, Hafez D, Yang W, Taiwo R, Paturu M, Salehi A, Gujar AD, Dunn GP, Mosammaparast N, Petti AA, Yano H, Kim AH. Competitive binding of E3 ligases TRIM26 and WWP2 controls SOX2 in glioblastoma. Nat Commun 2021; 12:6321. [PMID: 34732716 PMCID: PMC8566473 DOI: 10.1038/s41467-021-26653-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
The pluripotency transcription factor SOX2 is essential for the maintenance of glioblastoma stem cells (GSC), which are thought to underlie tumor growth, treatment resistance, and recurrence. To understand how SOX2 is regulated in GSCs, we utilized a proteomic approach and identified the E3 ubiquitin ligase TRIM26 as a direct SOX2-interacting protein. Unexpectedly, we found TRIM26 depletion decreased SOX2 protein levels and increased SOX2 polyubiquitination in patient-derived GSCs, suggesting TRIM26 promotes SOX2 protein stability. Accordingly, TRIM26 knockdown disrupted the SOX2 gene network and inhibited both self-renewal capacity as well as in vivo tumorigenicity in multiple GSC lines. Mechanistically, we found TRIM26, via its C-terminal PRYSPRY domain, but independent of its RING domain, stabilizes SOX2 protein by directly inhibiting the interaction of SOX2 with WWP2, which we identify as a bona fide SOX2 E3 ligase in GSCs. Our work identifies E3 ligase competition as a critical mechanism of SOX2 regulation, with functional consequences for GSC identity and maintenance. SOX2 is required for the maintenance of glioblastoma stem cells (GSCs). Here the authors identify that the RING family E3 ubiquitin ligase TRIM26 promotes SOX2 stability in a non-canonical ligase-independent manner and thus, increases the tumorigenicity of GSCs.
Collapse
Affiliation(s)
- Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Chen
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Desouza
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuan Qu
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Diane D Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Hafez
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Yang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rukayat Taiwo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mounica Paturu
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Afshin Salehi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit D Gujar
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra A Petti
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA. .,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA. .,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Chen Z, Huang Y, Yu C, Liu Q, Qiu C, Wan G. Cochlear Sox2 + Glial Cells Are Potent Progenitors for Spiral Ganglion Neuron Reprogramming Induced by Small Molecules. Front Cell Dev Biol 2021; 9:728352. [PMID: 34621745 PMCID: PMC8490772 DOI: 10.3389/fcell.2021.728352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) relay the acoustic information to the central auditory circuits. Degeneration of SGNs is a major cause of sensorineural hearing loss and severely affects the effectiveness of cochlear implant therapy. Cochlear glial cells are able to form spheres and differentiate into neurons in vitro. However, the identity of these progenitor cells is elusive, and it is unclear how to differentiate these cells toward functional SGNs. In this study, we found that Sox2+ subpopulation of cochlear glial cells preserves high potency of neuronal differentiation. Interestingly, Sox2 expression was downregulated during neuronal differentiation and Sox2 overexpression paradoxically inhibited neuronal differentiation. Our data suggest that Sox2+ glial cells are potent SGN progenitor cells, a phenotype independent of Sox2 expression. Furthermore, we identified a combination of small molecules that not only promoted neuronal differentiation of Sox2– glial cells, but also removed glial cell identity and promoted the maturation of the induced neurons (iNs) toward SGN fate. In summary, we identified Sox2+ glial subpopulation with high neuronal potency and small molecules inducing neuronal differentiation toward SGNs.
Collapse
Affiliation(s)
- Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chaorong Yu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
29
|
Gong Z, Li A, Ding J, Li Q, Zhang L, Li Y, Meng Z, Chen F, Huang J, Zhou D, Hu R, Ye J, Liu W, You H. OTUD7B Deubiquitinates LSD1 to Govern Its Binding Partner Specificity, Homeostasis, and Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004504. [PMID: 34050636 PMCID: PMC8336515 DOI: 10.1002/advs.202004504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/03/2021] [Indexed: 05/26/2023]
Abstract
Genomic amplification of OTUD7B is frequently found across human cancers. But its role in tumorigenesis is poorly understood. Lysine-specific demethylase 1 (LSD1) is known to execute epigenetic regulation by forming corepressor complex with CoREST/histone deacetylases (HDACs). However, the molecular mechanisms by which cells maintain LSD1/CoREST complex integrity are unknown. Here, it is reported that LSD1 protein undergoes K63-linked polyubiquitination. OTUD7B is responsible for LSD1 deubiquitination at K226/277 residues, resulting in dynamic control of LSD1 binding partner specificity and cellular homeostasis. OTUD7B deficiency increases K63-linked ubiquitination of LSD1, which disrupts LSD1/CoREST complex formation and targets LSD1 for p62-mediated proteolysis. Consequently, OTUD7B deficiency impairs genome-wide LSD1 occupancy and enhances the methylation of H3K4/H3K9, therefore profoundly impacting global gene expression and abrogating breast cancer metastasis. Moreover, physiological fluctuation of OTUD7B modulates cell cycle-dependent LSD1 oscillation, ensuring the G1/S transition. Both OTUD7B and LSD1 proteins are overpresented in high-grade or metastatic human breast cancer, while dysregulation of either protein is associated with poor survival and metastasis. Thus, OTUD7B plays a unique partner-switching role in maintaining the integrity of LSD1/CoREST corepressor complex, LSD1 turnover, and breast cancer metastasis.
Collapse
Affiliation(s)
- Zhicheng Gong
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Aicun Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jiancheng Ding
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Qing Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhe Meng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Fei Chen
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Ronggui Hu
- State Key Laboratory of Molecular BiologyShanghai Science Research CenterCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Ye
- Department of PathologyXijing HospitalFourth Military Medical UniversityXi'anShanxi710032China
| | - Wen Liu
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Han You
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
30
|
Zhao Q, Li Y, Du X, Chen X, Jiao Q, Jiang H. Effects of deubiquitylases on the biological behaviors of neural stem cells. Dev Neurobiol 2021; 81:847-858. [PMID: 34241974 DOI: 10.1002/dneu.22844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
New neurons are generated throughout life in distinct regions of the mammalian brain due to the proliferation and differentiation of neural stem cells (NSCs). Ubiquitin, a post-translational modification of cellular proteins, is an important factor in regulating neurogenesis. Deubiquitination is a biochemical process that mediates the removal of ubiquitin moieties from ubiquitin-conjugated substrates. Recent studies have provided growing evidence that deubiquitylases (DUBs) which reverse ubiquitylation process play critical roles in NSCs maintenance, differentiation and maturation. This review mainly focused on the relationship of DUBs and NSCs, and further summarized recent advances in our understanding of DUBs on regulating NSCs biological behaviors.
Collapse
Affiliation(s)
- Qiqi Zhao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yixin Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
31
|
Tang J, Wu Z, Tian Z, Chen W, Wu G. OTUD7B stabilizes estrogen receptor α and promotes breast cancer cell proliferation. Cell Death Dis 2021; 12:534. [PMID: 34035221 PMCID: PMC8149656 DOI: 10.1038/s41419-021-03785-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common malignancy in women worldwide. Estrogen receptor α (ERα) is expressed in ∼70% of breast cancer cases and promotes estrogen-dependent cancer progression. In the present study, we identified OTU domain-containing 7B (OTUD7B), a deubiquitylase belonging to A20 subgroup of ovarian tumor protein superfamily, as a bona fide deubiquitylase of ERα in breast cancer. OTUD7B expression was found to be positively correlated with ERα in breast cancer and associated with poor prognosis. OTUD7B could interact with, deubiquitylate, and stabilize ERα in a deubiquitylation activity-dependent manner. Depletion of OTUD7B decreased ERα protein level, the expression of ERα target genes, and the activity of estrogen response element in breast cancer cells. In addition, OTUD7B depletion significantly decreased ERα-positive breast cancer cell proliferation and migration. Finally, overexpression of ERα could rescue the suppressive effect induced by OTUD7B depletion, suggesting that the ERα status was essential to the function of OTUD7B in breast carcinogenesis. In conclusion, our study revealed an interesting post-translational mechanism between ERα and OTUD7B in ERα-positive breast cancer. Targeting the OTUD7B–ERα complex may prove to be a potential approach to treat patients with ERα-positive breast cancer.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zeyu Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zelin Tian
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
32
|
4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep 2021; 11:6310. [PMID: 33737571 PMCID: PMC7973733 DOI: 10.1038/s41598-021-85491-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises in the setting of advanced liver fibrosis, a dynamic and complex inflammatory disease. The tumor microenvironment (TME) is a mixture of cellular components including cancer cells, cancer stem cells (CSCs), tumor-associated macrophages (TAM), and dendritic cells (DCs), which might drive to tumor progression and resistance to therapies. In this work, we study the effects of 4-methylumbelliferone (4Mu) on TME and how this change could be exploited to promote a potent immune response against HCC. First, we observed that 4Mu therapy induced a switch of hepatic macrophages (Mϕ) towards an M1 type profile, and HCC cells (Hepa129 cells) exposed to conditioned medium (CM) derived from Mϕ treated with 4Mu showed reduced expression of several CSCs markers and aggressiveness. HCC cells incubated with CM derived from Mϕ treated with 4Mu grew in immunosuppressed mice while presented delayed tumor progression in immunocompetent mice. HCC cells treated with 4Mu were more susceptible to phagocytosis by DCs, and when DCs were pulsed with HCC cells previously treated with 4Mu displayed a potent antitumoral effect in therapeutic vaccination protocols. In conclusion, 4Mu has the ability to modulate TME into a less hostile milieu and to potentiate immunotherapeutic strategies against HCC.
Collapse
|
33
|
Liu P, Chen S, Wang Y, Chen X, Guo Y, Liu C, Wang H, Zhao Y, Wu D, Shan Y, Zhang J, Wu C, Li D, Zhang Y, Zhou T, Chen Y, Liu X, Li C, Wang L, Jia B, Liu J, Feng B, Cai J, Pei D. Efficient induction of neural progenitor cells from human ESC/iPSCs on Type I Collagen. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2100-2113. [PMID: 33740188 DOI: 10.1007/s11427-020-1897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 10/21/2022]
Abstract
A stable, rapid and effective neural differentiation method is essential for the clinical applications of human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) in treating neurological disorders and diseases. Herein, we established a novel and robust monolayer differentiation method to produce functional neural progenitor cells (NPCs) from human ESC/iPSCs on Type I Collagen. The derived cells not only displayed the requisite markers, but also behaved similarly to classic NPCs both in vitro and in vivo. Upon transplantation into traumatic brain injury model, the derived NPCs facilitated recovery from injury. We also found that SMAD signaling stayed down throughout the differentiation process on Type I Collagen, and the pluripotent signals were rapidly downregulated along with raising up of neural early markers on the third day. Meanwhile, ATAC-seq data showed the related mediation of distinct transcriptome and global chromatin dynamics during NPC induction. Totally, our results thus provide a convenient way to generate NPCs from human ESC/iPSCs for neural diseases' treatment.
Collapse
Affiliation(s)
- Pengfei Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Ambulatory Surgical Center, The 2nd Clinical medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yaofeng Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xiaoming Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yiping Guo
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chunhua Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Haitao Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Di Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuman Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dongwei Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yaoyu Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Xiaobo Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Chenxu Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Bei Jia
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinglei Cai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
34
|
Sugiura A, Shimizu T, Kameyama T, Maruo T, Kedashiro S, Miyata M, Mizutani K, Takai Y. Identification of Sox2 and NeuN Double-Positive Cells in the Mouse Hypothalamic Arcuate Nucleus and Their Reduction in Number With Aging. Front Aging Neurosci 2021; 12:609911. [PMID: 33776740 PMCID: PMC7991304 DOI: 10.3389/fnagi.2020.609911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023] Open
Abstract
The hypothalamus plays a central role in homeostasis and aging. The hypothalamic arcuate nucleus (ARC) controls homeostasis of food intake and energy expenditure and retains adult neural stem cells (NSCs)/progenitor cells. Aging induces the loss of NSCs and the enhancement of inflammation, including the activation of glial cells in the ARC, but aging-associated alterations of the hypothalamic cells remain obscure. Here, we identified Sox2 and NeuN double-positive cells in a subpopulation of cells in the mouse ARC. These cells were reduced in number with aging, although NeuN-positive neuronal cells were unaltered in the total number. Diet-induced obesity mice fed with high-fat diet presented a similar hypothalamic alteration to aged mice. This study provides a new insight into aging-induced changes in the hypothalamus.
Collapse
Affiliation(s)
- Ayumu Sugiura
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuhiro Shimizu
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shin Kedashiro
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
35
|
Chen WW, Gong KK, Yang LJ, Dai JJ, Zhang Q, Wang F, Li XL, Xi SC, Du J. Scutellariabarbata D. Don extraction selectively targets stemness-prone NSCLC cells by attenuating SOX2/SMO/GLI1 network loop. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113295. [PMID: 32841701 DOI: 10.1016/j.jep.2020.113295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/02/2020] [Accepted: 08/16/2020] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellariabarbata D. Don extraction (SBE), a traditional Chinese medicine, has been proved effective against various malignant disorders in clinics with tolerable side-effects when administered alone or in combination with conventional chemotherapeutic regimens. AIM OF THIS STUDY Multi-drug resistance of cancer is attributed to existence of cancer stemness-prone cells that harbor aberrantly high activation of Sonic Hedgehog (SHH) cascade. Our previous study has demonstrated that SBE sensitized non-small cell lung cancer (NSCLC) cells to Cisplatin (DDP) treatment by downregulating SHH pathway. Yet, whether SBE could prohibit proliferation of cancer stemness-prone cells and its underlying molecular mechanisms remain to be investigated. In this article, we further investigated intervention of SBE on NSCLC cell stemness-associated phenotypes and its potential mode of action. MATERIALS AND METHODS CCK-8 and clonal formation detection were used to measure the anti-proliferative potency of SBE against NSCLC and normal epithelial cells. Sphere formation assay and RQ-PCR were used to detect proliferation of cancer stemness cells and associated marker expression upon SBE incubation. Mechanistically, DARTS-WB and SPR were used to unveil binding target of SBE. Immunodeficient mice were implanted with patient derived tumor bulk for in vivo validation of anti-cancer effect of SBE. RESULTS SBE selectively attenuated proliferation and stemness-like phenotypes of NSCLC cells rather than bronchial normal epithelial cells. Drug-protein interaction analysis revealed that SBE could directly bind with stem cell-specific transcription factor sex determining region Y-box 2 (SOX2) and interfere with the SOX2/SMO/GLI1 positive loop. In vivo assay using patient-derived xenografts (PDXs) model further proved that SBE diminished tumor growth and SOX2 expression in vivo. CONCLUSION Our data indicate that SBE represses stemness-related features of NSCLC cells via targeting SOX2 and may serve as an alternative therapeutic option for clinic treatment.
Collapse
Affiliation(s)
- Wei-Wei Chen
- Center Research Institute, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Kai-Kai Gong
- Center Research Institute, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Li-Juan Yang
- Center Research Institute, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Juan-Juan Dai
- Center Research Institute, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Xue-Lin Li
- Center Research Institute, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Si-Chuan Xi
- Center Research Institute, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
| | - Jing Du
- Center Research Institute, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
| |
Collapse
|
36
|
The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ 2021; 28:522-537. [PMID: 33432111 PMCID: PMC7862665 DOI: 10.1038/s41418-020-00696-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
Collapse
|
37
|
Affiliation(s)
- Shizhen Zhang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
38
|
Williams CAC, Soufi A, Pollard SM. Post-translational modification of SOX family proteins: Key biochemical targets in cancer? Semin Cancer Biol 2020; 67:30-38. [PMID: 31539559 PMCID: PMC7703692 DOI: 10.1016/j.semcancer.2019.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/23/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
Sox proteins are a family of lineage-associated transcription factors. They regulate expression of genes involved in control of self-renewal and multipotency in both developmental and adult stem cells. Overexpression of Sox proteins is frequently observed in many different human cancers. Despite their importance as therapeutic targets, Sox proteins are difficult to 'drug' using structure-based design. However, Sox protein localisation, activity and interaction partners are regulated by a plethora of post-translational modifications (PTMs), such as: phosphorylation, acetylation, sumoylation, methylation, and ubiquitylation. Here we review the various reported post-translational modifications of Sox proteins and their potential functional importance in guiding cell fate processes. The enzymes that regulate these PTMs could be useful targets for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Charles A C Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU, Edinburgh, United Kingdom
| | - Abdenour Soufi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU, Edinburgh, United Kingdom
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, EH16 4UU, Edinburgh, United Kingdom.
| |
Collapse
|
39
|
Xie J, Yang F, Wang J, Karikomi M, Yin Y, Sun J, Wen T, Nie Q. DNF: A differential network flow method to identify rewiring drivers for gene regulatory networks. Neurocomputing 2020; 410:202-210. [PMID: 34025035 PMCID: PMC8139126 DOI: 10.1016/j.neucom.2020.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Differential network analysis has become an important approach in identifying driver genes in development and disease. However, most studies capture only local features of the underlying gene-regulatory network topology. These approaches are vulnerable to noise and other changes which mask driver-gene activity. Therefore, methods are urgently needed which can separate the impact of true regulatory elements from stochastic changes and downstream effects. We propose the differential network flow (DNF) method to identify key regulators of progression in development or disease. Given the network representation of consecutive biological states, DNF quantifies the essentiality of each node by differences in the distribution of network flow, which are capable of capturing comprehensive topological differences from local to global feature domains. DNF achieves more accurate driver-gene identification than other state-of-the-art methods when applied to four human datasets from The Cancer Genome Atlas and three single-cell RNA-seq datasets of murine neural and hematopoietic differentiation. Furthermore, we predict key regulators of crosstalk between separate networks underlying both neuronal differentiation and the progression of neurodegenerative disease, among which APP is predicted as a driver gene of neural stem cell differentiation. Our method is a new approach for quantifying the essentiality of genes across networks of different biological states.
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Fuzhang Yang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mathew Karikomi
- Department of Mathematics, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-3875, USA
| | - Yiting Yin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Jiamin Sun
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qing Nie
- Department of Mathematics, Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-3875, USA
| |
Collapse
|
40
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
41
|
A single-cell Raman-based platform to identify developmental stages of human pluripotent stem cell-derived neurons. Proc Natl Acad Sci U S A 2020; 117:18412-18423. [PMID: 32694205 PMCID: PMC7414136 DOI: 10.1073/pnas.2001906117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We developed a label-free and noninvasive single-cell Raman microspectroscopy (SCRM)-based platform to identify neural cell lineages derived from clinically relevant human induced pluripotent stem cells (hiPSCs). Through large-scale Raman spectral analysis, we can distinguish hiPSCs and hiPSC-derived neural cells using their intrinsic biochemical profile. We identified glycogen as a Raman biomarker for neuronal differentiation and validated the results using conventional glycogen detection assays. The parameters obtained from SCRM were processed by a novel machine learning method based on t-distributed stochastic neighbor embedding (t-SNE)-enhanced ensemble stacking, enabling highly accurate and robust cell classification. The platform and the proposed biomarker should also be applicable to other cell types and can shed light on developmental biology and glycogen metabolism disorders. Stem cells with the capability to self-renew and differentiate into multiple cell derivatives provide platforms for drug screening and promising treatment options for a wide variety of neural diseases. Nevertheless, clinical applications of stem cells have been hindered partly owing to a lack of standardized techniques to characterize cell molecular profiles noninvasively and comprehensively. Here, we demonstrate that a label-free and noninvasive single-cell Raman microspectroscopy (SCRM) platform was able to identify neural cell lineages derived from clinically relevant human induced pluripotent stem cells (hiPSCs). By analyzing the intrinsic biochemical profiles of single cells at a large scale (8,774 Raman spectra in total), iPSCs and iPSC-derived neural cells can be distinguished by their intrinsic phenotypic Raman spectra. We identified a Raman biomarker from glycogen to distinguish iPSCs from their neural derivatives, and the result was verified by the conventional glycogen detection assays. Further analysis with a machine learning classification model, utilizing t-distributed stochastic neighbor embedding (t-SNE)-enhanced ensemble stacking, clearly categorized hiPSCs in different developmental stages with 97.5% accuracy. The present study demonstrates the capability of the SCRM-based platform to monitor cell development using high content screening with a noninvasive and label-free approach. This platform as well as our identified biomarker could be extensible to other cell types and can potentially have a high impact on neural stem cell therapy.
Collapse
|
42
|
Kornfeld SF, Cummings SE, Fathi S, Bonin SR, Kothary R. MiRNA-145-5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor. J Cell Physiol 2020; 236:997-1012. [PMID: 32602617 DOI: 10.1002/jcp.29910] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022]
Abstract
The roles of specific microRNAs (miRNA) in oligodendrocyte (OL) differentiation have been studied in depth. However, miRNAs in OL precursors and oligodendrocyte progenitor cells (OPCs) have been less extensively investigated. MiR-145-5p is highly expressed in OPCs relative to differentiating OLs, suggesting this miRNA may serve a function specifically in OPCs. Knockdown of miR-145-5p in primary OPCs led to spontaneous differentiation, as evidenced by an increased proportion of MAG+ cells, increased cell ramification, and upregulation of multiple myelin genes including MYRF, TPPP, and MAG, and OL cell cycle exit marker Cdkn1c. Supporting this transition to a differentiating state, proliferation was reduced in miR-145-5p knockdown OPCs. Further, knockdown of miR-145-5p in differentiating OLs showed enhanced differentiation, with increased branching, myelin membrane production, and myelin gene expression. We identified several OL-specific genes targeted by miR-145-5p that exhibited upregulation with miR-145-5p knockdown, including myelin gene regulatory factor (MYRF), that could be regulating the prodifferentiation phenotype in both miR-145 knockdown OPCs and OLs. Indeed, spontaneous differentiation with knockdown of miR-145-5p was fully rescued by concurrent knockdown of MYRF. However, proliferation rate was only partially rescued with MYRF knockdown, and overexpression of miR-145-5p in OPCs increased proliferation rate without affecting expression of already lowly expressed differentiation genes. Taken together, these data suggest that in OPCs miR-145-5p both prevents differentiation at least in part by preventing expression of MYRF and promotes proliferation via as-yet-unidentified mechanisms. These findings clarify the need for differential regulation of miR-145-5p between OPCs and OLs and may have further implications in demyelinating diseases such as multiple sclerosis where miR-145-5p is dysregulated.
Collapse
Affiliation(s)
- Samantha F Kornfeld
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Sarah E Cummings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Samaneh Fathi
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sawyer R Bonin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Canada
| |
Collapse
|
43
|
Ruan J, Schlüter D, Wang X. Deubiquitinating enzymes (DUBs): DoUBle-edged swords in CNS autoimmunity. J Neuroinflammation 2020; 17:102. [PMID: 32248814 PMCID: PMC7132956 DOI: 10.1186/s12974-020-01783-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune disease of the CNS. The etiology of MS is still unclear but it is widely recognized that both genetic and environmental factors contribute to its pathogenesis. Immune signaling and responses are critically regulated by ubiquitination, a posttranslational modification that is promoted by ubiquitinating enzymes and inhibited by deubiquitinating enzymes (DUBs). Genome-wide association studies (GWASs) identified that polymorphisms in or in the vicinity of two human DUB genes TNFAIP3 and USP18 were associated with MS susceptibility. Studies with experimental autoimmune encephalomyelitis (EAE), an animal model of MS, have provided biological rationale for the correlation between these DUBs and MS. Additional studies have shown that other DUBs are also involved in EAE by controlling distinct cell populations. Therefore, DUBs are emerging as crucial regulators of MS/EAE and might become potential therapeutic targets for the clinical treatment of MS.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Straße-1, 30626, Hannover, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan High Education Park, Wenzhou, 325035, China.
| |
Collapse
|
44
|
Dalmo E, Johansson P, Niklasson M, Gustavsson I, Nelander S, Westermark B. Growth-Inhibitory Activity of Bone Morphogenetic Protein 4 in Human Glioblastoma Cell Lines Is Heterogeneous and Dependent on Reduced SOX2 Expression. Mol Cancer Res 2020; 18:981-991. [PMID: 32234828 DOI: 10.1158/1541-7786.mcr-19-0638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/13/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme continues to have a dismal prognosis. Even though detailed information on the genetic aberrations in cell signaling and cell-cycle checkpoint control is available, no effective targeted treatment has been developed. Despite the advanced molecular defects, glioblastoma cells may have remnants of normal growth-inhibitory pathways, such as the bone morphogenetic protein (BMP) signaling pathway. We have evaluated the growth-inhibitory effect of BMP4 across a broad spectrum of patient samples, using a panel of 40 human glioblastoma initiating cell (GIC) cultures. A wide range of responsiveness was observed. BMP4 sensitivity was positively correlated with a proneural mRNA expression profile, high SOX2 activity, and BMP4-dependent upregulation of genes associated with inhibition of the MAPK pathway, as demonstrated by gene set enrichment analysis. BMP4 response in sensitive cells was mediated by the canonical BMP receptor pathway involving SMAD1/5/9 phosphorylation and SMAD4 expression. SOX2 was consistently downregulated in BMP4-treated cells. Forced expression of SOX2 attenuated the BMP4 sensitivity including a reduced upregulation of MAPK-inhibitory genes, implying a functional relationship between SOX2 downregulation and sensitivity. The results show an extensive heterogeneity in BMP4 responsiveness among GICs and identify a BMP4-sensitive subgroup, in which SOX2 is a mediator of the response. IMPLICATIONS: Development of agonists targeting the BMP signaling pathway in glioblastoma is an attractive avenue toward a better treatment. Our study may help find biomarkers that predict the outcome of such treatment and enable stratification of patients.
Collapse
Affiliation(s)
- Erika Dalmo
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrik Johansson
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Niklasson
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ida Gustavsson
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
45
|
Regulation of Stem Cells by Cullin-RING Ligase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:79-98. [PMID: 31898223 DOI: 10.1007/978-981-15-1025-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells can remain quiescent, self-renewal, and differentiate into many types of cells and even cancer stem cells. The coordination of these complex processes maintains the homeostasis of the organism. Ubiquitination is an important posttranslational modification process that regulates protein stability and activity. The ubiquitination levels of stem cell-associated proteins are closely related with stem cell characteristics. Cullin-RING Ligases (CRLs) are the largest family of E3 ubiquitin ligases, accounting for approximately 20% of proteins degraded by proteasome. In this review, we discuss the role of CRLs in stem cell homeostasis, self-renewal, and differentiation and expound their ubiquitination substrates. In addition, we also discuss the effect of CRLs on the formation of cancer stem cells that may provide promising therapy strategies for cancer.
Collapse
|
46
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
47
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
48
|
Mao FX, Luo CH, Chen HJ, Zhang YX, Zhang Q. CaSR is required for ischemia-induced proliferation and differentiation of white matter progenitor cells from neonatal rats. Brain Res Bull 2019; 154:116-126. [PMID: 31738973 DOI: 10.1016/j.brainresbull.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 10/06/2019] [Accepted: 11/09/2019] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate whether calcium-sensing receptor (CaSR) could induce immture white matter progenitor cells proliferation and differentiation into oligodendrocyte(OL) precursor cells after oxygen-glucose deprivation (OGD) in vitro. Progenitor cells of immature white matter originating from five-day-old newborn rats were divided into control, OGD, control + CaSR silencing, OGD + CaSR silencing, control + adenosine triphosphate magnesium chloride (ATP-MgCl2) and OGD + ATP-MgCl2 groups. Immunofluorescence, real-time RT-PCR, gene silencing, Hoechst 33342/propidium iodide (PI) and Flow cytometry tests were used to examine the proliferation, differentiation and survival of the white matter progenitor cells in the different treatment groups. The results showed that normal immature white matter progenitor cells have certain ability of self-proliferation and differentiation in vitro. OGD could further induce progenitor cells proliferation and differentiation into O4 + OL precursor cells by activating CaSR, but OGD also induced more necrosis and apoptosis of newborn cells and less MBP + OL formation. The addition of ATP-MgCl2 as an activating agent of CaSR further promoted cell proliferation and differentiation both under normal and OGD conditions and reduced OGD-induced apoptosis and necrosis, while CaSR silenced resulted in minimal cell proliferation, differentiation and survival. This study suggests that CaSR plays an important role in the induction of immature white matter progenitor cells proliferation and differentiation into OL precursor cells after OGD, which may provide a new angle to further study whether CaSR initiates the intrinsic repair potential of immature white matter after ischemia in vivo.
Collapse
Affiliation(s)
- Feng-Xia Mao
- The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China
| | - Cheng-Han Luo
- The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China
| | - Hui-Jin Chen
- Shanghai Institute for Pediatric Research, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Shanghai, 200092, China
| | - Yi-Xia Zhang
- The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China
| | - Qian Zhang
- The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci U S A 2019; 116:20528-20538. [PMID: 31548378 DOI: 10.1073/pnas.1905973116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SOX2 is a key transcription factor that plays critical roles in maintaining stem cell property and conferring drug resistance. However, the underlying mechanisms by which SOX2 level is precisely regulated remain elusive. Here we report that MLN4924, also known as pevonedistat, a small-molecule inhibitor of neddylation currently in phase II clinical trials, down-regulates SOX2 expression via causing accumulation of MSX2, a known transcription repressor of SOX2 expression. Mechanistic characterization revealed that MSX2 is a substrate of FBXW2 E3 ligase. FBXW2 binds to MSX2 and promotes MSX2 ubiquitylation and degradation. Likewise, FBXW2 overexpression shortens the protein half-life of MSX2, whereas FBXW2 knockdown extends it. We further identified hypoxia as a stress condition that induces VRK2 kinase to facilitate MSX2-FBXW2 binding and FBXW2-mediated MSX2 ubiquitylation and degradation, leading to SOX2 induction via derepression. Biologically, expression of FBXW2 or SOX2 promotes tumor sphere formation, which is blocked by MSX2 expression. By down-regulating SOX2 through inactivation of FBXW2 E3 ligase, MLN4924 sensitizes breast cancer cells to tamoxifen in both in vitro and in vivo cancer cell models. Thus, a negative cascade of the FBXW2-MSX2-SOX2 axis was established, which regulates stem cell property and drug resistance. Finally, an inverse correlation of expression was found between FBXW2 and MSX2 in lung and breast cancer tissues. Collectively, our study revealed an anticancer mechanism of MLN4924. By inactivating FBXW2, MLN4924 caused MSX2 accumulation to repress SOX2 expression, leading to suppression of stem cell property and sensitization of breast cancer cells to tamoxifen.
Collapse
|