1
|
Huysentruyt J, Steels W, Ruiz Pérez M, Verstraeten B, Divert T, Flies K, Lemeire K, Takahashi N, De Bruyn E, Joossens M, Brown AS, Lambrecht BN, Declercq W, Vanden Berghe T, Maelfait J, Vandenabeele P, Tougaard P. RIPK1 ablation in T cells results in spontaneous enteropathy and TNF-driven villus atrophy. EMBO Rep 2025:10.1038/s44319-025-00441-5. [PMID: 40307618 DOI: 10.1038/s44319-025-00441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
RIPK1 is a crucial regulator of cell survival, inflammation and cell death. Human RIPK1 deficiency leads to early-onset intestinal inflammation and peripheral T cell imbalance, though its role in αβT cell-mediated intestinal homeostasis remains unclear. In this study, we demonstrate that mice with RIPK1 ablation in conventional αβT cells (Ripk1ΔCD4) developed a severe small intestinal pathology characterized by small intestinal elongation, crypt hyperplasia, and duodenum-specific villus atrophy. Using mixed bone marrow chimeras reveals a survival disadvantage of αβT cells compared to γδT cells in the small intestine. Broad-spectrum antibiotic treatment ameliorates crypt hyperplasia and prevents intestinal elongation, though villus atrophy persists. Conversely, crossing Ripk1ΔCD4 with TNF receptor 1 Tnfr1-/- knockout mice rescues villus atrophy but not intestinal elongation. Finally, combined ablation of Ripk1∆CD4 and Casp8∆CD4 fully rescues intestinal pathology, revealing that αβT cell apoptosis in Ripk1∆CD4 drives the enteropathy. These findings demonstrate that RIPK1-mediated survival of αβT cells is essential for proximal small intestinal homeostasis. In Ripk1∆CD4 mice, the imbalanced T cell compartment drives microbiome-mediated intestinal elongation and TNF-driven villus atrophy.
Collapse
Affiliation(s)
- Jelle Huysentruyt
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wolf Steels
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mario Ruiz Pérez
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kayleigh Flies
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Lemeire
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elke De Bruyn
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Andrew S Brown
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wim Declercq
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Edwards M, Brockmann L. Microbiota-dependent modulation of intestinal anti-inflammatory CD4 + T cell responses. Semin Immunopathol 2025; 47:23. [PMID: 40167791 DOI: 10.1007/s00281-025-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025]
Abstract
Barrier organs such as the gastrointestinal tract, lungs, and skin are colonized by diverse microbial strains, including bacteria, viruses, and fungi. These microorganisms, collectively known as the commensal microbiota, play critical roles in maintaining health by defending against pathogens, metabolizing nutrients, and providing essential metabolites. In the gut, commensal-derived antigens are frequently sensed by the intestinal immune system. Maintaining tolerance toward these beneficial microbial species is crucial, as failure to do so can lead to chronic inflammatory conditions like inflammatory bowel disease (IBD) and can even affect systemic immune or metabolic health. The immune system carefully regulates responses to commensals through various mechanisms, including the induction of anti-inflammatory CD4⁺ T cell responses. Foxp3⁺ regulatory T cells (Foxp3+ Tregs) and Type 1 regulatory T cells (Tr1) play a major role in promoting tolerance, as both cell types can produce the anti-inflammatory cytokine IL-10. In addition to these regulatory T cells, effector T cell subsets, such as Th17 cells, also adopt anti-inflammatory functions within the intestine in response to the microbiota. This process of anti-inflammatory CD4+ T cell induction is heavily influenced by the microbiota and their metabolites. Microbial metabolites affect intestinal epithelial cells, promoting the secretion of anti-inflammatory mediators that create a tolerogenic environment. They also modulate intestinal dendritic cells (DCs) and macrophages, inducing a tolerogenic state, and can interact directly with T cells to drive anti-inflammatory CD4⁺ T cell functionality. The disrupted balance of these signals may result in chronic inflammation, with broader implications for systemic health. In this review, we highlight the intricate interplays between commensal microorganisms and the immune system in the gut. We discuss how the microbiota influences the differentiation of commensal-specific anti-inflammatory CD4⁺ T cells, such as Foxp3⁺ Tregs, Tr1 cells, and Th17 cells, and explore the mechanisms through which microbial metabolites modulate these processes. We further discuss the innate signals that prime and commit these cells to an anti-inflammatory fate.
Collapse
Affiliation(s)
- Madeline Edwards
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Leonie Brockmann
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, 108-8345, Japan.
| |
Collapse
|
3
|
Patra S, Chaudhary S, Samal SC, Ayyanar P, Padhi S, Nayak HK, Satapathy AK, Nayak S, Sahu A, Parida T, Shahin M. FoxP3-positive T regulatory cells and its effector mechanisms in Crohn's disease: an immunohistochemical and image morphometric analysis on endoscopic mucosal biopsies. Eur J Gastroenterol Hepatol 2025:00042737-990000000-00509. [PMID: 40207496 DOI: 10.1097/meg.0000000000002971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Crohn's disease (CD) is an immune inflammatory disorder of the gastrointestinal tract arising from a complex interplay of genetic, environmental, microbiome, and immune factors. Regulatory T cells (Tregs), characterized by FoxP3 expression, are crucial for maintaining immune homeostasis through PD-1/PD-L1 interaction, interleukin (IL)-10 release, and granzyme (GrB) production. This study aimed to elucidate the role of FoxP3 positive (+) Tregs in CD. METHODS Segmental colonoscopic biopsies from 46 treatment-naive CD cases (34 adults and 12 children) categorized into noninflamed [n = 32; Nancy histologic index (NHI) 0, 1] and inflamed (n = 100; NHI 2-4) mucosae using NHI. CD4, FoxP3, PD-1, IL-10, and GrB immunoexpression were analyzed by eyeballing and image morphometry. Findings were correlated with activity, granulomas, and skip lesions; and compared with site-matched non-inflammatory bowel disease (IBD) controls (n = 30). RESULTS FoxP3+ Tregs, IL-10, PD-1, and GrB expressions were significantly higher in NHI 3-4 mucosae than in NHI 0-1 and controls (P < 0.05). No significant differences were observed between adults and children, whereas those with granulomas had increased expression (P = 0.045). The FoxP3 : CD4 ratio positively correlated with IL-10 (Spearman, r = 0.307, P = 0.002), GrB (r = 0.302, P = 0.002), but not with PD-1 (r = 0.98, P = 0.33). CONCLUSIONS Our findings point to the possibility of a qualitative defect in FoxP3+ Tregs in CD. The functional arms of Tregs in CD need to be elucidated further in larger prospective cohorts to validate our observations and pave the way for future immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Saurav Nayak
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Ajit Sahu
- Department of Pathology and Laboratory Medicine
| | | | | |
Collapse
|
4
|
Choi JK, Mbanefo EC, Yadav MK, Alhakeem SA, Nagarajan V, Nunes NS, Kanakry CG, Egwuagu CE. Interleukin 35-producing B cells prolong the survival of GVHD mice by secreting exosomes with membrane-bound IL-35 and upregulating PD-1/LAG-3 checkpoint proteins. Theranostics 2025; 15:3610-3626. [PMID: 40093899 PMCID: PMC11905137 DOI: 10.7150/thno.105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for aggressive hematologic malignancies. However, the risk of developing graft-versus-host disease (GVHD) is a significant barrier to allo-HSCT. GVHD is a debilitating condition with high mortality rates and current therapeutic options for GVHD are limited, with corticosteroids being the standard treatment. However, the adverse effects of steroids make prolonged use difficult, necessitating the development of safer therapies. IL-35-producing B-cells (i35-Bregs) have emerged as critical regulators of immunity during autoimmune diseases. In this study, we investigated whether i35-Bregs immunotherapy can suppress and mitigate GVHD. Methods: We administered a single dose of i35-Bregs (1.5×106) to mice undergoing allo-HSCT and monitored disease severity and survival of GVHD mice over 90 days post-transplantation. We discovered that i35-Bregs secrete exosomes containing membrane-bound IL-35 (i35-Exosomes) and investigated whether ex-vivo generated i35-exosomes can be used as stand-alone immunotherapy for GVHD. i35-Breg-induced expression of cytokines or checkpoint proteins (PD-1, LAG-3, CTLA-4) was analyzed by Flow cytometry, ELISA, and RNA-seq analysis. Characterization of membrane-bound IL-35 was by Proximity ligation assay (PLA), immunohistochemistry/Confocal microscopy and Alpha Fold-Multimer modeling. Results: A single dose of 1.5×106 i35-Breg reduced severity of GVHD and prolonged GVHD survival, with more than 70% i35-Breg-treated mice surviving beyond day-90 post-transplantation while observing 100% mortality among untreated mice by day-45. Contrary to the view that IL-35 is secreted cytokine, we show here that i35-Bregs mitigate GVHD via membrane-bound IL-35 and by secreting i35-exosomes. Furthermore, i35-Bregs or ex-vivo generated i35-exosomes induce alloreactive T-cells to upregulate checkpoint proteins associated with T-cell exhaustion and anergy, inhibiting alloreactive responses and propagating infectious-tolerance mechanisms that suppress GVHD. Importantly, i35-Bregs or i35-exosomes suppresses GVHD by increasing bystander lymphocytes coated with immunosuppressive i35-exosomes. Conclusions: This study demonstrates that i35-Bregs and i35-exosomes play a critical role in mitigating GVHD. The combination of i35-Breg and i35-exosome immunotherapy may be an effective strategy for treating GVHD and other inflammatory diseases.
Collapse
Affiliation(s)
- Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Evaristus C. Mbanefo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Manoj Kumar Yadav
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Sahar A. Alhakeem
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Vijayaraj Nagarajan
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| | - Natalia S. Nunes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, United States of America
| | - Christopher G. Kanakry
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, United States of America
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States of America (USA)
| |
Collapse
|
5
|
Ou W, Du P, Bai X, He Y. Genetic insights into the relationship between immune cell traits and abnormal uterine bleeding: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41609. [PMID: 39993130 PMCID: PMC11856939 DOI: 10.1097/md.0000000000041609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Abnormal uterine bleeding (AUB) is an inflammatory response involving immune cells, but the relationship between immune cell traits and AUB is highly complex and still largely unclear. This study utilized genetic data from a genome-wide association study of European participants. Mendelian randomization (MR) analysis methods, including inverse variance weighted (IVW) as the primary approach, weighted median, MR Egger regression, and Mendelian randomization pleiotropy residual sum and outlier, were employed for forward and reverse analyses. Sensitivity analyses validated the stability and reliability of the results. The IVW method indicated a potential causal relationship between CD45 on granulocyte (odds ratio [OR] = 0.916, 95% CI: 0.880-0.954, P = 1.974 × 10-5) with a decreased risk of menorrhagia. Two immune cell traits with P values < .001 were worthy of attention, CD25 on naive-mature B cell (OR = 0.935, 95% CI: 0.901-0.970, P = 3.882 × 10-4) may be associated with a decreased risk of menorrhagia, while human leukocyte antigen DR on plasmacytoid dendritic cell (OR = 1.089, 95% CI: 1.038-1.143, P = 5.126 × 10-4) may be associated with an increased risk of amenorrhea. No reverse causation was observed. Sensitivity analysis suggested no heterogeneity or horizontal pleiotropy (P > .05). No immune cell traits associated with or potentially related to oligomenorrhea were found. This MR study highlights the complex relationship between immune cell traits and AUB, offering insights into AUB's pathogenesis and potential biomarkers. Further clinical and in vitro validation is needed to assess these findings, with future research exploring immune modulation therapies for early diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Wenting Ou
- Department of Respiratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Pan Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Xueling Bai
- Department of Respiratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Yue He
- Nursing School of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Nursing, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
6
|
Li Y, Lv X, Lin J, Li S, Lin G, Huang Z, Chen D, Han L, Zhan L, Lv X. Examination of the causal role of immune cells in non-alcoholic fatty liver disease by a bidirectional Mendelian randomization study. Open Med (Wars) 2025; 20:20251154. [PMID: 39989616 PMCID: PMC11843165 DOI: 10.1515/med-2025-1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a globally widespread disease. Recent investigations have highlighted a close association between immunity and NAFLD, but the causality between them has not been thoroughly examined. Methods A total of 731 immunological traits and NAFLD cohorts were derived from genome-wide association study summary data, and single nucleotide polymorphisms significantly associated with immune traits were identified as instrumental variables. Moreover, 731 phenotypes include absolute cell counts, median fluorescence intensity (MFI), morphological parameters, and relative cell counts. The bidirectional two-sample Mendelian randomization (MR) was performed primarily using the inverse-variance weighted methods, and sensitivity analysis was carried out simultaneously. Results Four immunophenotypes were identified to exert a protective effect against NAFLD, including HLA-DR+ CD4+ %lymphocytes, SSC-A on CD4+, CD24 MFI on IgD-CD38-, and CD8 MFI on CD28-CD8br. Seven immunophenotypes were identified to be hazardous, including CD28+ CD45RA+ CD8dim%CD8dim, CD127 MFI on CD28+ DN (CD4-CD8-), CD20 MFI on IgD+ CD38br, CD20 MFI on transitional, IgD MFI on transitional, CD3 MFI on central memory CD8br, and CD45 MFI on CD33brHLA-DR+ CD14-. However, reverse MR showed NAFLD had no causal effect on immunophenotypes. Conclusion The study demonstrated a potential causal link between several immunophenotypes and NAFLD, which contributes to advancing research and treatment of NAFLD based on immune-mediated mechanisms.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Deyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lichun Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
7
|
Ding S, Ye T, Azad MAK, Zhu Q, Liu Y, Tan B, Kong X. Effects of maternal-offspring supplementation of probiotics and synbiotics on the immunity of offspring Bama mini-pigs. Front Immunol 2025; 16:1507080. [PMID: 40018037 PMCID: PMC11864950 DOI: 10.3389/fimmu.2025.1507080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Maternal nutrition is one of the main factors regulating the growth and immunity of piglets. This study aimed to investigate the effects of maternal or maternal-offspring supplementation of antibiotics, probiotics, and synbiotics on the immunity of offspring (21, 65, and 125 day-old) in Bama mini-pigs. The results showed that adding antibiotics to maternal diets increased the plasma IFN-γ level of offspring piglets at 21 day-old. Compared with maternal supplementation, maternal-offspring supplementation of antibiotics decreased the IL-10 level in the spleen, probiotics decreased IL-2, IL-10, and TNF-α levels in the ileum, and synbiotics decreased IL-10 and IFN-γ levels in the ileum of offspring piglets. Moreover, maternal-offspring antibiotics supplementation increased the IL-1β level in the ileum, while probiotics supplementation increased the IL-1β level in the spleen of offspring piglets. Maternal antibiotics supplementation increased the TNF-α level in the ileum at 95 day-old compared with maternal probiotics and synbiotics supplementation. Maternal-offspring antibiotics supplementation increased the IL-1β level in the ileum compared with the probiotics supplementation, while synbiotics supplementation increased the IL-6 level in the ileum than the probiotics and antibiotics supplementation at 95 day-old. Moreover, maternal-offspring probiotics supplementation increased the IL-1β level in the spleen of offspring pigs, which was higher than the maternal probiotics supplementation. These findings suggest that the immune function of the offspring piglets varied depending on the specific approach used for probiotics and synbiotics supplementation.
Collapse
Affiliation(s)
- Sujuan Ding
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ting Ye
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Neurath MF, Sands BE, Rieder F. Cellular immunotherapies and immune cell depleting therapies in inflammatory bowel diseases: the next magic bullet? Gut 2024; 74:9-14. [PMID: 39025492 PMCID: PMC11671923 DOI: 10.1136/gutjnl-2024-332919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Despite significant advances in biologic and small molecule treatments and the emergence of combination therapies to treat inflammatory bowel diseases (IBD) a large unmet need remains to control intestinal inflammation. New approaches targeting several pathways simultaneously with a favorable safety profile and agents that trigger anti-inflammatory pathways to drive durable resolution of inflammation are needed. This article discusses novel cellular immunotherapies and immune cell depleting therapies in IBD, including CAR-T cell approaches, Tr1 and T regulatory (Treg) cells and cell depleting antibodies such as rosnilimab. These novel approaches have the potential to overcome current therapeutic limitations in the treatment of IBD.
Collapse
Affiliation(s)
- Markus Friedrich Neurath
- Department of Medicine 1, Kussmaul Research Campus & Ludwig Demling Endoscopy Center of Excellence, Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bruce Eric Sands
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases Institute; Department of Inflammation and Immunity, Lerner Research Institute, Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
10
|
Branchett WJ, Saraiva M, O'Garra A. Regulation of inflammation by Interleukin-10 in the intestinal and respiratory mucosa. Curr Opin Immunol 2024; 91:102495. [PMID: 39357078 DOI: 10.1016/j.coi.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Intricate immune regulation is required at mucosal surfaces to allow tolerance to microbiota and harmless allergens and to prevent overexuberant inflammatory responses to pathogens. The cytokine Interleukin-10 (IL-10) is a key mediator of mucosal immune regulation. While IL-10 can be produced by virtually all cells of the immune system, many of its in vivo functions depend upon its production by regulatory or effector T cell populations and its signalling to macrophages, dendritic cells and specific T cell subsets. In this review, we discuss our current understanding of the role of IL-10 in regulation of immune responses, with a focus on its context-specific roles in intestinal homeostasis, respiratory infection and asthma. We highlight the importance of appropriate production and function of IL-10 for balancing pathogen clearance, control of microbiota and host tissue damage, and that precise modulation of IL-10 functions in vivo could present therapeutic opportunities.
Collapse
Affiliation(s)
- William J Branchett
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Götz T, Cong X, Rauber S, Angeli M, Lang E, Ramming A, Schmidkonz C. A novel Slide-seq based image processing software to identify gene expression at the single cell level. J Pathol Inform 2024; 15:100384. [PMID: 39027045 PMCID: PMC11254742 DOI: 10.1016/j.jpi.2024.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
Analysis of gene expression at the single-cell level could help predict the effectiveness of therapies in the field of chronic inflammatory diseases such as arthritis. Here, we demonstrate an adopted approach for processing images from the Slide-seq method. Using a puck, which consists of about 50,000 DNA barcode beads, an RNA sequence of a cell is to be read. The pucks are repeatedly brought into contact with liquids and then recorded with a conventional epifluorescence microscope. The image analysis initially consists of stitching the partial images of a sequence recording, registering images from different sequences, and finally reading out the bases. The new method enables the use of an inexpensive epifluorescence microscope instead of a confocal microscope.
Collapse
Affiliation(s)
- Th.I. Götz
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
- Department of Industrial Engineering and Health, Technical University of Applied Sciences Amberg-Weiden, Weiden, Germany
| | - X. Cong
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - S. Rauber
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - M. Angeli
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - E.W. Lang
- CIML Group, Biophysics, University of Regensburg, 93040 Regensburg, Germany
| | - A. Ramming
- Department of Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - C. Schmidkonz
- Department of Nuclear Medicine, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Industrial Engineering and Health, Technical University of Applied Sciences Amberg-Weiden, Weiden, Germany
| |
Collapse
|
12
|
Złotkowska D, Markiewicz LH, Ogrodowczyk AM, Wróblewska B, Wasilewska E. Enhanced Effect of β-Lactoglobulin Immunization in Mice with Mild Intestinal Deterioration Caused by Low-Dose Dextran Sulphate Sodium: A New Experimental Approach to Allergy Studies. Nutrients 2024; 16:3430. [PMID: 39458426 PMCID: PMC11510979 DOI: 10.3390/nu16203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cow's milk allergy is one of the most common food allergies in children, and its pathomechanism is still under investigation. Recently, an increasing number of studies have linked food allergy to intestinal barrier dysfunction. The present study aimed to investigate changes in the intestinal microenvironment during the development of β-lactoglobulin (β-lg) allergy under conditions of early intestinal dysfunction. METHODS BALB/c mice received intraperitoneal β-lg with Freund's adjuvant, followed by oral β-lg while receiving dextran sulphate sodium salt (DSS) in their drinking water (0.2% w/v). The immunized group without DSS and the groups receiving saline, oral β-lg, or DSS served as controls. RESULTS The study showed that the immunization effect was greater in mice with mild intestinal barrier dysfunction. Although DSS did not affect the mice's humoral response to β-lg, in combination with β-lg, it significantly altered their cellular response, affecting the induction and distribution of T cells in the inductive and peripheral tissues and the activation of immune mediators. Administration of β-lg to sensitized mice receiving DSS increased disease activity index (DAI) scores and pro-inflammatory cytokine activity, altered the distribution of claudins and zonulin 1 (ZO-1) in the colonic tissue, and negatively affected the balance and activity of the gut microbiota. CONCLUSIONS The research model used appears attractive for studying food allergen sensitization, particularly in relation to the initial events leading to mucosal inflammation and the development of food hypersensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| |
Collapse
|
13
|
Ugwu AO, Chukwuanukwu RC, Ehiaghe FA, Ugwu EO. The role of immune-inflammatory markers in children with complicated and uncomplicated malaria in Enugu, Nigeria. BMC Immunol 2024; 25:47. [PMID: 39039450 PMCID: PMC11265479 DOI: 10.1186/s12865-024-00642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND There is currently insufficient data regarding immune parameters and relationship with severity of malaria infection in Enugu, Nigeria where the economic and social costs of the disease and its management are extremely high. This study was conducted to determine the relationship between malaria severity and some immune-inflammatory markers among malaria-infected children in Enugu, Nigeria. METHODS The study adopted a case control design. Eligible children were categorized into three groups - complicated, uncomplicated and healthy children. Pro-inflammatory cytokines -interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α); and anti-inflammatory cytokine - interleukin-10 (IL-10) were assayed using enzyme-linked immunosorbent assay (ELISA) technique, while immune cell ratios - neutrophil lymphocyte ratio (NLR) and monocyte lymphocyte ratio (MLR) were calculated from full blood count results. RESULTS The overall mean age of the participants was 7.3 ± 3.4 (range: 6 months - 12 years) and the male-female ratio was 1:1. There was no significant difference between the ages of the three groups (P = 0.44). The Mean levels of IFN-γ, TNF-α, and NLR were higher in complicated than uncomplicated malaria (266.9 ± 66.3pg/ml vs. 62.5 ± 6.4pg/ml, p < 0.001; 140.3 ± 30.0pg/ml vs. 42.0 ± 9.0pg/ml, p < 0.001; and 32.9 ± 16.2pg/ml vs. 17.8 ± 6.0pg/ml, p < 0.001, respectively); and higher in uncomplicated malaria than healthy children (62.5 ± 6.4pg/ml vs. 40.6 ± 9.1pg/ml, p < 0.001; 42.0 ± 9.0pg/ml vs. 105.7 ± 32.1, p < 0.001; 17.8 ± 6.0pg/ml vs. 18.7 ± 6.2pg/ml, p < 0.001, respectively). On the other hand, the mean level of IL-10 is higher in uncomplicated than complicated malaria (105.73 ± 32.06pg/ml vs. 40.60 ± 9.11pg/ml, p < 0.001). There was a positive correlation between NLR and IFN-γ (r = 0.815; p = 0.003), as well as NLR and TNF-α (r = 0.745; p = 0.002). CONCLUSION Complicated malaria is associated with higher levels of pro-inflammatory cytokines while uncomplicated malaria is associated with higher levels of anti-inflammatory cytokines. NLR correlates positively with pro-inflammatory cytokines, and could be useful in evaluation for the severity of malaria infection.
Collapse
Affiliation(s)
- Angela Ogechukwu Ugwu
- Department of Haematology and Immunology, Faculty of Basic Clinical Sciences, College of Medicine, University of Nigeria Nsukka, Enugu, Enugu State, 400001, Nigeria.
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University Nnewi Campus, Nnewi, Anambra State, 420001, Nigeria.
| | - Rebecca Chinyelu Chukwuanukwu
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University Nnewi Campus, Nnewi, Anambra State, 420001, Nigeria
| | - Friday Alfred Ehiaghe
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University Nnewi Campus, Nnewi, Anambra State, 420001, Nigeria
| | - Emmanuel Onyebuchi Ugwu
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medicine, University of Nigeria Nsukka, Enugu, Enugu state, 40001, Nigeria
| |
Collapse
|
14
|
Wørzner K, Zimmermann J, Buhl R, Desoi A, Christensen D, Dietrich J, Nguyen NDNT, Lindenstrøm T, Woodworth JS, Alhakeem RS, Yu S, Ødum N, Mortensen R, Ashouri JF, Pedersen GK. Repeated immunization with ATRA-containing liposomal adjuvant transdifferentiates Th17 cells to a Tr1-like phenotype. J Autoimmun 2024; 144:103174. [PMID: 38377868 DOI: 10.1016/j.jaut.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.
Collapse
Affiliation(s)
- Katharina Wørzner
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.
| | - Julie Zimmermann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Regitze Buhl
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anna Desoi
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Thomas Lindenstrøm
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Joshua S Woodworth
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Steven Yu
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Denmark
| | - Rasmus Mortensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Judith F Ashouri
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Zhang T, Wang J, Wang Y, He L, Lv S, Wang Y, Li W. Wenyang-Tianjing-Jieyu Decoction Improves Depression Rats of Kidney Yang Deficiency Pattern by Regulating T Cell Homeostasis and Inflammation Level. Neuropsychiatr Dis Treat 2024; 20:631-647. [PMID: 38545129 PMCID: PMC10966763 DOI: 10.2147/ndt.s445636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE Chronic inflammation is one of the key mechanisms of depression. Wenyang-Tianjin-Jie Decoction (WTJD) is an effective antidepressant found in the course of diagnosis and treatment, but the mechanism of therapeutic effect is not clear. The study aimed to evaluate the efficacy of WTJD in the kidney yang deficiency (KYD) type of depression rats and reveal its mechanisms. MATERIALS AND METHODS We selected forty 6-week-old male Sprague-Dawley rats for the study. We established a KYD [Phellodendron amurense Rupr (Huangbai) solution oral gavage and 4°C environments; 8 weeks] type of depression (chronic unpredictable mild stimulus; 6 weeks) rat model first. After successful modeling, we used WTJD or fluoxetine on rats for 3 weeks. Then we evaluated the depression and KYD behavior. Finally, we observed the expression of key inflammatory factors and proteins in peripheral blood and hippocampus, and further investigated the immune balance of Th17/Treg and Th1/Th2 cells and the activity of their main regulatory pathways JAK2/STAT3 and TLR4/TRAF6/NF-κB. RESULTS The imbalance of Th17/Treg and Th1/Th2 cells in rats were related to KYD and depressive symptoms. Through this study, we found that WTJD can inhibit the activity of JAK2/STAT3 and TLR4/TRAF6/NF-κB pathways, balance Th17/Treg and Th1/Th2 cell homeostasis, regulate the levels of inflammatory factors in the hippocampus and peripheral blood, and reverse KYD and depression. CONCLUSION This study confirmed that WTJD had a reliable effect on depression rats with KYD, and its mechanism was to regulate the immune homeostasis of hippocampal T cells and related inflammatory factors to improve KYD and depression symptoms in rats.
Collapse
Affiliation(s)
- Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jiexin Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Linxi He
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Shangbin Lv
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yiran Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
16
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Edwards CL, Engel JA, de Labastida Rivera F, Ng SS, Corvino D, Montes de Oca M, Frame TC, Chauhan SB, Singh SS, Kumar A, Wang Y, Na J, Mukhopadhyay P, Lee JS, Nylen S, Sundar S, Kumar R, Engwerda CR. A molecular signature for IL-10-producing Th1 cells in protozoan parasitic diseases. JCI Insight 2023; 8:e169362. [PMID: 37917177 PMCID: PMC10807716 DOI: 10.1172/jci.insight.169362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.
Collapse
Affiliation(s)
- Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | | | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | | | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | | | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Jason S. Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanne Nylen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
18
|
Soukou-Wargalla S, Kilian C, Velasquez LN, Machicote A, Letz P, Tran HB, Domanig S, Bertram F, Stumme F, Bedke T, Giannou A, Kempski J, Sabihi M, Song N, Paust HJ, Borchers A, Garcia Perez L, Pelczar P, Liu B, Ergen C, Steglich B, Muscate F, Huber TB, Panzer U, Gagliani N, Krebs CF, Huber S. Tr1 Cells Emerge and Suppress Effector Th17 Cells in Glomerulonephritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1669-1679. [PMID: 37850963 PMCID: PMC10656435 DOI: 10.4049/jimmunol.2300305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet. To address these questions, we used a mouse model of experimental crescentic GN and double Foxp3mRFP IL-10eGFP reporter mice. We found that Foxp3neg IL-10-producing CD4+ T cells infiltrate the kidneys during GN progression. Using single-cell RNA sequencing, we could show that these cells express the core transcriptional factors characteristic of Tr1 cells. In line with this, Tr1 cells showed a strong suppressive activity ex vivo and were protective in experimental crescentic GN in vivo. Finally, we could also identify Tr1 cells in the kidneys of patients with antineutrophil cytoplasmic autoantibody-associated GN and define their transcriptional profile. Tr1 cells are currently used in several immune-mediated inflammatory diseases, such as T-cell therapy. Thus, our study provides proof of concept for Tr1 cell-based therapies in experimental GN.
Collapse
Affiliation(s)
- Shiwa Soukou-Wargalla
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kilian
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lis N. Velasquez
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andres Machicote
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philine Letz
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Huu Ban Tran
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Domanig
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Bertram
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Stumme
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Bedke
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios Giannou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morsal Sabihi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ning Song
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Borchers
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Garcia Perez
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beibei Liu
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Can Ergen
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Babett Steglich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Muscate
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Wang Y, De Labastida Rivera F, Edwards CL, Frame TC, Engel JA, Bukali L, Na J, Ng SS, Corvino D, Montes de Oca M, Bunn PT, Soon MS, Andrew D, Loughland JR, Zhang J, Amante FH, Barber BE, McCarthy JS, Lopez JA, Boyle MJ, Engwerda CR. STING activation promotes autologous type I interferon-dependent development of type 1 regulatory T cells during malaria. J Clin Invest 2023; 133:e169417. [PMID: 37781920 PMCID: PMC10541195 DOI: 10.1172/jci169417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.
Collapse
Affiliation(s)
- Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | | | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Luzia Bukali
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Marcela Montes de Oca
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Jia Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - James S. McCarthy
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | - Michelle J. Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Life Sciences Division, Burnet Institute, Melbourne, Australia
| | | |
Collapse
|
20
|
Abbott CA, Freimayer EL, Tyllis TS, Norton TS, Alsharifi M, Heng AHS, Pederson SM, Qu Z, Armstrong M, Hill GR, McColl SR, Comerford I. Determination of Tr1 cell populations correlating with distinct activation states in acute IAV infection. Mucosal Immunol 2023; 16:606-623. [PMID: 37321403 DOI: 10.1016/j.mucimm.2023.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Type I regulatory (Tr1) cells are defined as FOXP3-IL-10-secreting clusters of differentiation (CD4+) T cells that contribute to immune suppression and typically express the markers LAG-3 and CD49b and other co-inhibitory receptors. These cells have not been studied in detail in the context of the resolution of acute infection in the lung. Here, we identify FOXP3- interleukin (IL)-10+ CD4+ T cells transiently accumulating in the lung parenchyma during resolution of the response to sublethal influenza A virus (IAV) infection in mice. These cells were dependent on IL-27Rα, which was required for timely recovery from IAV-induced weight loss. LAG-3 and CD49b were not generally co-expressed by FOXP3- IL-10+ CD4+ T cells in this model and four populations of these cells based on LAG-3 and CD49b co-expression were apparent [LAG-3-CD49b- (double negative), LAG-3+CD49b+ (double positive), LAG-3+CD49b- (LAG-3+), LAG-3-CD49b+ (CD49b+)]. However, each population exhibited suppressive potential consistent with the definition of Tr1 cells. Notably, differences between these populations of Tr1 cells were apparent including differential dependence on IL-10 to mediate suppression and expression of markers indicative of different activation states and terminal differentiation. Sort-transfer experiments indicated that LAG-3+ Tr1 cells exhibited the capacity to convert to double negative and double positive Tr1 cells, indicative of plasticity between these populations. Together, these data determine the features and suppressive potential of Tr1 cells in the resolution of IAV infection and identify four populations delineated by LAG-3 and CD49b, which likely correspond to different Tr1 cell activation states.
Collapse
Affiliation(s)
- Caitlin A Abbott
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Emily L Freimayer
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Timona S Tyllis
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Todd S Norton
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | - Aaron H S Heng
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Black Ochre Data Laboratories, Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
| | - Zhipeng Qu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mark Armstrong
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, USA; Division of Medical Oncology, University of Washington, Seattle, USA
| | - Shaun R McColl
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
21
|
Angelats E, Santamaria P. Lineage origin and transcriptional control of autoantigen-specific T-regulatory type 1 cells. Front Immunol 2023; 14:1267697. [PMID: 37818381 PMCID: PMC10560755 DOI: 10.3389/fimmu.2023.1267697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
T Regulatory type-1 (TR1) cells represent an immunosuppressive T cell subset, discovered over 25 years ago, that produces high levels of interleukin-10 (IL-10) but, unlike its FoxP3+ T regulatory (Treg) cell counterpart, does not express FoxP3 or CD25. Experimental evidence generated over the last few years has exposed a promising role for TR1 cells as targets of therapeutic intervention in immune-mediated diseases. The discovery of cell surface markers capable of distinguishing these cells from related T cell types and the application of next generation sequencing techniques to defining their transcriptional make-up have enabled a more accurate description of this T cell population. However, the developmental biology of TR1 cells has long remained elusive, in particular the identity of the cell type(s) giving rise to bona fide TR1 cells in vivo. Here, we review the fundamental phenotypic, transcriptional and functional properties of this T cell subset, and summarize recent lines of evidence shedding light into its ontogeny.
Collapse
Affiliation(s)
- Edgar Angelats
- Pathogenesis and Treatment of Autoimmunity Group, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Pathogenesis and Treatment of Autoimmunity Group, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Krzikalla D, Laschtowitz A, Leypoldt L, Gottwick C, Averhoff P, Weidemann S, Lohse AW, Huber S, Schramm C, Schwinge D, Herkel J, Carambia A. IFNγ and CTLA-4 Drive Hepatic CD4 T-Cell Tolerance and Protection From Autoimmunity in Mice. Cell Mol Gastroenterol Hepatol 2023; 17:79-91. [PMID: 37734595 PMCID: PMC10665921 DOI: 10.1016/j.jcmgh.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND & AIMS The liver has a distinct capacity to induce immune tolerance to hepatic antigens. Although liver tolerance can be advantageous for preventing autoimmune and inflammatory diseases, it also can be detrimental by preventing immune surveillance of infected or malignant cells. Here, we investigated the immune mechanisms that establish hepatic tolerance. METHODS Tolerance was investigated in C-reactive protein (CRP)-myelin basic protein (MBP) mice expressing the neuroantigen MBP in hepatocytes, providing profound resistance to MBP-induced neuroinflammation. Tolerance induction was studied after transfer of MBP-specific CD4 T cells into CRP-MBP mice, and tolerance mechanisms were tested using depleting or blocking antibodies. RESULTS Although tolerant CRP-MBP mice display increased numbers of forkhead box P3+ regulatory T cells, we here found them not essential for the maintenance of hepatic tolerance. Instead, upon MBP recognition in the liver, MBP-specific T cells became activated to produce interferon (IFN)γ, which, in turn, induced local up-regulation of recruitment molecules, including Chemokine (C-X-C motif) ligand9 and its receptor C-X-C motif chemokine receptor3, facilitating endothelial translocation and redirection of MBP-specific T cells into the hepatic parenchyma. There, the translocated MBP-specific CD4 T cells partly converted into interleukin 10-producing type 1 regulatory T cells, and significantly up-regulated the expression of immune checkpoint molecules, notably cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Intriguingly, although liver tolerance was not affected by impairment of interleukin 10 signaling, concomitant blockade of IFNγ and CTLA-4 abrogated hepatic tolerance induction to MBP, resulting in neuroinflammatory autoimmune disease in these mice. CONCLUSIONS IFNγ-mediated redirection of autoreactive CD4 T cells into the liver and up-regulation of checkpoint molecules, including CTLA-4, were essential for tolerance induction in the liver, hence representing a potential treatment target for boosting or preventing liver tolerance.
Collapse
Affiliation(s)
- Daria Krzikalla
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Laschtowitz
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Leypoldt
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Gottwick
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pia Averhoff
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Antonella Carambia
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Siracusa F, Schaltenberg N, Kumar Y, Lesker TR, Steglich B, Liwinski T, Cortesi F, Frommann L, Diercks BP, Bönisch F, Fischer AW, Scognamiglio P, Pauly MJ, Casar C, Cohen Y, Pelczar P, Agalioti T, Delfs F, Worthmann A, Wahib R, Jagemann B, Mittrücker HW, Kretz O, Guse AH, Izbicki JR, Lassen KG, Strowig T, Schweizer M, Villablanca EJ, Elinav E, Huber S, Heeren J, Gagliani N. Short-term dietary changes can result in mucosal and systemic immune depression. Nat Immunol 2023; 24:1473-1486. [PMID: 37580603 PMCID: PMC10457203 DOI: 10.1038/s41590-023-01587-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.
Collapse
Affiliation(s)
- Francesco Siracusa
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Nicola Schaltenberg
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Kumar
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Liwinski
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Filippo Cortesi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Frommann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Phillip Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedericke Bönisch
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mira J Pauly
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Flemming Delfs
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bettina Jagemann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Health Service Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kara G Lassen
- Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
24
|
Park SY, Ter-Saakyan S, Faraci G, Lee HY. Immune cell identifier and classifier (ImmunIC) for single cell transcriptomic readouts. Sci Rep 2023; 13:12093. [PMID: 37495649 PMCID: PMC10372073 DOI: 10.1038/s41598-023-39282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
Single cell RNA sequencing has a central role in immune profiling, identifying specific immune cells as disease markers and suggesting therapeutic target genes of immune cells. Immune cell-type annotation from single cell transcriptomics is in high demand for dissecting complex immune signatures from multicellular blood and organ samples. However, accurate cell type assignment from single-cell RNA sequencing data alone is complicated by a high level of gene expression heterogeneity. Many computational methods have been developed to respond to this challenge, but immune cell annotation accuracy is not highly desirable. We present ImmunIC, a simple and robust tool for immune cell identification and classification by combining marker genes with a machine learning method. With over two million immune cells and half-million non-immune cells from 66 single cell RNA sequencing studies, ImmunIC shows 98% accuracy in the identification of immune cells. ImmunIC outperforms existing immune cell classifiers, categorizing into ten immune cell types with 92% accuracy. We determine peripheral blood mononuclear cell compositions of severe COVID-19 cases and healthy controls using previously published single cell transcriptomic data, permitting the identification of immune cell-type specific differential pathways. Our publicly available tool can maximize the utility of single cell RNA profiling by functioning as a stand-alone bioinformatic cell sorter, advancing cell-type specific immune profiling for the discovery of disease-specific immune signatures and therapeutic targets.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Sonia Ter-Saakyan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
25
|
Clement M, Ladell K, Miners KL, Marsden M, Chapman L, Cardus Figueras A, Scott J, Andrews R, Clare S, Kriukova VV, Lupyr KR, Britanova OV, Withers DR, Jones SA, Chudakov DM, Price DA, Humphreys IR. Inhibitory IL-10-producing CD4 + T cells are T-bet-dependent and facilitate cytomegalovirus persistence via coexpression of arginase-1. eLife 2023; 12:e79165. [PMID: 37440306 PMCID: PMC10344424 DOI: 10.7554/elife.79165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2023] [Indexed: 07/14/2023] Open
Abstract
Inhibitory CD4+ T cells have been linked with suboptimal immune responses against cancer and pathogen chronicity. However, the mechanisms that underpin the development of these regulatory cells, especially in the context of ongoing antigen exposure, have remained obscure. To address this knowledge gap, we undertook a comprehensive functional, phenotypic, and transcriptomic analysis of interleukin (IL)-10-producing CD4+ T cells induced by chronic infection with murine cytomegalovirus (MCMV). We identified these cells as clonally expanded and highly differentiated TH1-like cells that developed in a T-bet-dependent manner and coexpressed arginase-1 (Arg1), which promotes the catalytic breakdown of L-arginine. Mice lacking Arg1-expressing CD4+ T cells exhibited more robust antiviral immunity and were better able to control MCMV. Conditional deletion of T-bet in the CD4+ lineage suppressed the development of these inhibitory cells and also enhanced immune control of MCMV. Collectively, these data elucidated the ontogeny of IL-10-producing CD4+ T cells and revealed a previously unappreciated mechanism of immune regulation, whereby viral persistence was facilitated by the site-specific delivery of Arg1.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Lucy Chapman
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Anna Cardus Figueras
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Jake Scott
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Valeriia V Kriukova
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of KielKielGermany
| | - Ksenia R Lupyr
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Olga V Britanova
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of KielKielGermany
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Abu Dhabi Stem Cell CenterAl MuntazahUnited Arab Emirates
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
26
|
Lin D, Zhu RC, Tang C, Li FF, Gao ML, Wang YQ. Association of TIM-3 with anterior uveitis and associated systemic immune diseases: a Mendelian randomization analysis. Front Med (Lausanne) 2023; 10:1183326. [PMID: 37396905 PMCID: PMC10313383 DOI: 10.3389/fmed.2023.1183326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/08/2023] [Indexed: 07/04/2023] Open
Abstract
Background We aimed to investigate the causal association between TIM-3, an immune checkpoint inhibitor, and anterior uveitis (AU), as well as associated systemic immune diseases. Materials and methods We performed two-sample Mendelian randomization (MR) analyses to estimate the causal effects of TIM-3 on AU and three associated systemic diseases, namely ankylosing spondylitis (AS), Crohn's disease (CD), and ulcerative colitis (UC). Single-nucleotide polymorphisms (SNPs) associated with AU, AS, CD, and UC were selected as the outcomes: AU GWAS with 2,752 patients with acute AU accompanied with AS (cases) and 3,836 AS patients (controls), AS GWAS with 968 cases and 336,191 controls, CD GWAS with 1,032 cases and 336,127 controls, and UC GWAS with 2,439 cases and 460,494 controls. The TIM-3 dataset was used as the exposure (n = 31,684). Four MR methods, namely, inverse-variance weighting (IVW), MR-Egger regression, weighted median, and weighted mode, were used in this study. Comprehensive sensitivity analyses were conducted to estimate the robustness of identified associations and the potential impact of horizontal pleiotropy. Results Our studies show that TIM-3 is significantly associated with CD using the IVW method (OR = 1.001, 95% CI = 1.0002-1.0018, P-value = 0.011). We also found that TIM-3 may be a protective factor for AU although these results lacked significance (OR = 0.889, 95% CI = 0.631-1.252, P-value = 0.5). No association was observed between the genetic predisposition to particular TIM-3 and susceptibility to AS or UC in this study. No potential heterogeneities or directional pleiotropies were observed in our analyses. Conclusion According to our study, a small correlation was observed between TIM-3 expression and CD susceptibility. Additional studies in different ethnic backgrounds will be necessary to further explore the potential roles and mechanisms of TIM-3 in CD.
Collapse
Affiliation(s)
- Dan Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rong-Cheng Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chun Tang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fen-Fen Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mei-Ling Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qin Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Zhou X, Gu Y, Wang H, Zhou W, Zou L, Li S, Hua C, Gao S. From bench to bedside: targeting lymphocyte activation gene 3 as a therapeutic strategy for autoimmune diseases. Inflamm Res 2023:10.1007/s00011-023-01742-y. [PMID: 37314518 DOI: 10.1007/s00011-023-01742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Immune checkpoints negatively regulate immune response, thereby playing an important role in maintaining immune homeostasis. Substantial studies have confirmed that blockade or deficiency of immune checkpoint pathways contributes to the deterioration of autoimmune diseases. In this context, focusing on immune checkpoints might provide alternative strategies for the treatment of autoimmunity. Lymphocyte activation gene 3 (LAG3), as a member of immune checkpoint, is critical in regulating immune responses as manifested in multiple preclinical studies and clinical trials. Recent success of dual-blockade of LAG3 and programmed death-1 in melanoma also supports the notion that LAG3 is a crucial regulator in immune tolerance. METHODS We wrote this review article by searching the PubMed, Web of Science and Google Scholar databases. CONCLUSION In this review, we summarize the molecular structure and the action mechanisms of LAG3. Additionally, we highlight its roles in diverse autoimmune diseases and discuss how the manipulation of the LAG3 pathway can serve as a promising therapeutic strategy as well as its specific mechanism with the aim of filling the gaps from bench to bedside.
Collapse
Affiliation(s)
- Xueyin Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yiming Gu
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huihong Wang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zhou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zou
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
28
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
29
|
Chen GR, Zhang YB, Zheng SF, Xu YW, Lin P, Shang-Guan HC, Lin YX, Kang DZ, Yao PS. Decreased SPTBN2 expression regulated by the ceRNA network is associated with poor prognosis and immune infiltration in low‑grade glioma. Exp Ther Med 2023; 25:253. [PMID: 37153896 PMCID: PMC10161196 DOI: 10.3892/etm.2023.11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 05/10/2023] Open
Abstract
The majority of low-grade gliomas (LGGs) in adults invariably progress to glioblastoma over time. Spectrin β non-erythrocytic 2 (SPTBN2) is detected in numerous tumors and is involved in tumor occurrence and metastasis. However, the specific roles and detailed mechanisms of SPTBN2 in LGG are largely unknown. The present study performed pan-cancer analysis for the expression and prognosis of SPTBN2 in LGG using The Cancer Genome Atlas and The Genotype-Tissue Expression. Western blotting was used to detect the amount of SPTBN2 between glioma tissues and normal brain tissues. Subsequently, based on expression, prognosis, correlation and immune infiltration, non-coding RNAs (ncRNAs) were identified that regulated SPTBN2 expression. Finally, tumor immune infiltrates associated with SPTBN2 and prognosis were performed. Lower expression of SPTBN2 was correlated with an unfavorable outcome in LGG. A significant correlation between the low SPTBN2 mRNA expression and poor clinicopathological features was observed, including wild-type isocitrate dehydrogenase status (P<0.001), 1p/19q non-codeletion (P<0.001) and elders (P=0.019). The western blotting results revealed that, compared with normal brain tissues, the amount of SPTBN2 was significantly lower in LGG tissues (P=0.0266). Higher expression of five microRNAs (miRs/miRNAs), including hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-34c-5p and hsa-miR-424-5p, correlated with poor prognosis by targeting SPTBN2 in LGG. Subsequently, four long ncRNAs (lncRNAs) [ARMCX5-GPRASP2, BASP1-antisense RNA 1 (AS1), EPB41L4A-AS1 and LINC00641] were observed in the regulation of SPTBN2 via five miRNAs. Moreover, the expression of SPTBN2 was significantly correlated with tumor immune infiltration, immune checkpoint expression and biomarkers of immune cells. In conclusion, SPTBN2 was lowly expressed and correlated with an unfavorable prognosis in LGG. A total of six miRNAs and four lncRNAs were identified as being able to modulate SPTBN2 in a lncRNA-miRNA-mRNA network of LGG. Furthermore, the current findings also indicated that SPTBN2 possessed anti-tumor roles by regulating tumor immune infiltration and immune checkpoint expression.
Collapse
Affiliation(s)
- Guo-Rong Chen
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yi-Bin Zhang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
30
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
31
|
Solé P, Yamanouchi J, Garnica J, Uddin MM, Clarke R, Moro J, Garabatos N, Thiessen S, Ortega M, Singha S, Mondal D, Fandos C, Saez-Rodriguez J, Yang Y, Serra P, Santamaria P. A T follicular helper cell origin for T regulatory type 1 cells. Cell Mol Immunol 2023; 20:489-511. [PMID: 36973489 PMCID: PMC10202951 DOI: 10.1038/s41423-023-00989-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/12/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic antigenic stimulation can trigger the differentiation of antigen-experienced CD4+ T cells into T regulatory type 1 (TR1) cells, a subset of interleukin-10-producing Treg cells that do not express FOXP3. The identities of the progenitor(s) and transcriptional regulators of this T-cell subset remain unclear. Here, we show that the peptide-major histocompatibility complex class II (pMHCII) monospecific immunoregulatory T-cell pools that arise in vivo in different genetic backgrounds in response to pMHCII-coated nanoparticles (pMHCII-NPs) are invariably comprised of oligoclonal subpools of T follicular helper (TFH) and TR1 cells with a nearly identical clonotypic composition but different functional properties and transcription factor expression profiles. Pseudotime analyses of scRNAseq data and multidimensional mass cytometry revealed progressive downregulation and upregulation of TFH and TR1 markers, respectively. Furthermore, pMHCII-NPs trigger cognate TR1 cell formation in TFH cell-transfused immunodeficient hosts, and T-cell-specific deletion of Bcl6 or Irf4 blunts both the TFH expansion and TR1 formation induced by pMHCII-NPs. In contrast, deletion of Prdm1 selectively abrogates the TFH-to-TR1 conversion. Bcl6 and Prdm1 are also necessary for anti-CD3 mAb-induced TR1 formation. Thus, TFH cells can differentiate into TR1 cells in vivo, and BLIMP1 is a gatekeeper of this cellular reprogramming event.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Josep Garnica
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Muhammad Myn Uddin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Clarke
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joel Moro
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Shari Thiessen
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mireia Ortega
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Santiswarup Singha
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - César Fandos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2023; 13:1125497. [PMID: 36761160 PMCID: PMC9903213 DOI: 10.3389/fimmu.2022.1125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
[This corrects the article .].
Collapse
|
33
|
Woestemeier A, Scognamiglio P, Zhao Y, Wagner J, Muscate F, Casar C, Siracusa F, Cortesi F, Agalioti T, Müller S, Sagebiel A, Konczalla L, Wahib R, Karstens KF, Giannou AD, Duprée A, Wolter S, Wong MN, Mühlig AK, Bielecka AA, Bansal V, Zhang T, Mann O, Puelles VG, Huber TB, Lohse AW, Izbicki JR, Palm NW, Bonn S, Huber S, Gagliani N. Multicytokine-producing CD4+ T cells characterize the livers of patients with NASH. JCI Insight 2023; 8:e153831. [PMID: 36625344 PMCID: PMC9870087 DOI: 10.1172/jci.insight.153831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
A role of CD4+ T cells during the progression from nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH) has been suggested, but which polarization state of these cells characterizes this progression and the development of fibrosis remain unclear. In addition, a gut-liver axis has been suggested to play a role in NASH, but the role of CD4+ T cells in this axis has just begun to be investigated. Combining single-cell RNA sequencing and multiple-parameter flow cytometry, we provide the first cell atlas to our knowledge focused on liver-infiltrating CD4+ T cells in patients with NAFLD and NASH, showing that NASH is characterized by a population of multicytokine-producing CD4+ T cells. Among these cells, only those with a Th17 polarization state were enriched in patients with advanced fibrosis. In parallel, we observed that Bacteroides appeared to be enriched in the intestine of NASH patients and to correlate with the frequency of multicytokine-producing CD4+ T cells. In short, we deliver a CD4+ T cell atlas of NAFLD and NASH, providing the rationale to target CD4+ T cells with a Th17 polarization state to block fibrosis development. Finally, our data offer an early indication to test whether multicytokine-producing CD4+ T cells are part of the gut-liver axis characterizing NASH.
Collapse
Affiliation(s)
| | | | - Yu Zhao
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Jonas Wagner
- Department for General, Visceral and Thoracic Surgery
| | | | - Christian Casar
- Department for General, Visceral and Thoracic Surgery
- Bioinformatics Core, and
| | | | | | | | - Simone Müller
- Department for General, Visceral and Thoracic Surgery
| | | | | | - Ramez Wahib
- Department for General, Visceral and Thoracic Surgery
| | | | | | - Anna Duprée
- Department for General, Visceral and Thoracic Surgery
| | - Stefan Wolter
- Department for General, Visceral and Thoracic Surgery
| | - Milagros N. Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne K. Mühlig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University’s Children Hospital, UKE Hamburg, Hamburg, Germany
| | - Agata A. Bielecka
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Vikas Bansal
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Tianran Zhang
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Oliver Mann
- Department for General, Visceral and Thoracic Surgery
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Noah W. Palm
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | | | - Nicola Gagliani
- Department for General, Visceral and Thoracic Surgery
- I Department of Medicine
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Edwards CL, Ng SS, de Labastida Rivera F, Corvino D, Engel JA, Montes de Oca M, Bukali L, Frame TC, Bunn PT, Chauhan SB, Singh SS, Wang Y, Na J, Amante FH, Loughland JR, Soon MS, Waddell N, Mukhopadhay P, Koufariotis LT, Johnston RL, Lee JS, Kuns R, Zhang P, Boyle MJ, Hill GR, McCarthy JS, Kumar R, Engwerda CR. IL-10-producing Th1 cells possess a distinct molecular signature in malaria. J Clin Invest 2023; 133:e153733. [PMID: 36594463 PMCID: PMC9797345 DOI: 10.1172/jci153733] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/18/2022] [Indexed: 01/04/2023] Open
Abstract
Control of intracellular parasites responsible for malaria requires host IFN-γ+T-bet+CD4+ T cells (Th1 cells) with IL-10 produced by Th1 cells to mitigate the pathology induced by this inflammatory response. However, these IL-10-producing Th1 (induced type I regulatory [Tr1]) cells can also promote parasite persistence or impair immunity to reinfection or vaccination. Here, we identified molecular and phenotypic signatures that distinguished IL-10-Th1 cells from IL-10+Tr1 cells in Plasmodium falciparum-infected people who participated in controlled human malaria infection studies, as well as C57BL/6 mice with experimental malaria caused by P. berghei ANKA. We also identified a conserved Tr1 cell molecular signature shared between patients with malaria, dengue, and graft-versus-host disease. Genetic manipulation of primary human CD4+ T cells showed that the transcription factor cMAF played an important role in the induction of IL-10, while BLIMP-1 promoted the development of human CD4+ T cells expressing multiple coinhibitory receptors. We also describe heterogeneity of Tr1 cell coinhibitory receptor expression that has implications for targeting these molecules for clinical advantage during infection. Overall, this work provides insights into CD4+ T cell development during malaria that offer opportunities for creation of strategies to modulate CD4+ T cell functions and improve antiparasitic immunity.
Collapse
Affiliation(s)
- Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | | | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | | | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Luzia Bukali
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - Jason S. Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rachel Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
| | | | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
| | - James S. McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
35
|
Arteaga-Cruz S, Cortés-Hernández A, Alvarez-Salazar EK, Rosas-Cortina K, Aguilera-Sandoval C, Morales-Buenrostro LE, Alberú-Gómez JM, Soldevila G. Highly purified and functionally stable in vitro expanded allospecific Tr1 cells expressing immunosuppressive graft-homing receptors as new candidates for cell therapy in solid organ transplantation. Front Immunol 2023; 14:1062456. [PMID: 36911743 PMCID: PMC9998667 DOI: 10.3389/fimmu.2023.1062456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The development of new strategies based on the use of Tr1 cells has taken relevance to induce long-term tolerance, especially in the context of allogeneic stem cell transplantation. Although Tr1 cells are currently identified by the co-expression of CD49b and LAG-3 and high production of interleukin 10 (IL-10), recent studies have shown the need for a more exhaustive characterization, including co-inhibitory and chemokines receptors expression, to ensure bona fide Tr1 cells to be used as cell therapy in solid organ transplantation. Moreover, the proinflammatory environment induced by the allograft could affect the suppressive function of Treg cells, therefore stability of Tr1 cells needs to be further investigated. Here, we establish a new protocol that allows long-term in vitro expansion of highly purified expanded allospecific Tr1 (Exp-allo Tr1). Our expanded Tr1 cell population becomes highly enriched in IL-10 producers (> 90%) and maintains high expression of CD49b and LAG-3, as well as the co-inhibitory receptors PD-1, CTLA-4, TIM-3, TIGIT and CD39. Most importantly, high dimensional analysis of Exp-allo Tr1 demonstrated a specific expression profile that distinguishes them from activated conventional T cells (T conv), showing overexpression of IL-10, CD39, CTLA-4 and LAG-3. On the other hand, Exp-allo Tr1 expressed a chemokine receptor profile relevant for allograft homing and tolerance induction including CCR2, CCR4, CCR5 and CXCR3, but lower levels of CCR7. Interestingly, Exp-allo Tr1 efficiently suppressed allospecific but not third-party T cell responses even after being expanded in the presence of proinflammatory cytokines for two extra weeks, supporting their functional stability. In summary, we demonstrate for the first time that highly purified allospecific Tr1 (Allo Tr1) cells can be efficiently expanded maintaining a stable phenotype and suppressive function with homing potential to the allograft, so they may be considered as promising therapeutic tools for solid organ transplantation.
Collapse
Affiliation(s)
- Saúl Arteaga-Cruz
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Evelyn Katy Alvarez-Salazar
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Katya Rosas-Cortina
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico
| | | | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | - Gloria Soldevila
- Department of Immunology, Biomedical Research Institute, Mexico City, Mexico.,The National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
36
|
Solé P, Parras D, Yamanouchi J, Garnica J, Garabatos N, Moro J, Montaño J, Mondal D, Fandos C, Yang Y, Serra P, Santamaria P. Transcriptional re-programming of insulin B-chain epitope-specific T-follicular helper cells into anti-diabetogenic T-regulatory type-1 cells. Front Immunol 2023; 14:1177722. [PMID: 37153608 PMCID: PMC10154693 DOI: 10.3389/fimmu.2023.1177722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Systemic delivery of nanoparticles (NPs) coated with mono-specific autoimmune disease-relevant peptide-major histocompatibility complex class II (pMHCII) molecules can resolve organ inflammation in various disease models in a disease-specific manner without impairing normal immunity. These compounds invariably trigger the formation and systemic expansion of cognate pMHCII-specific T-regulatory type 1 (TR1) cells. By focusing on type 1 diabetes (T1D)-relevant pMHCII-NP types that display an epitope from the insulin B-chain bound to the same MHCII molecule (IAg7) on three different registers, we show that pMHCII-NP-induced TR1 cells invariably co-exist with cognate T-Follicular Helper (TFH)-like cells of quasi-identical clonotypic composition and are oligoclonal, yet transcriptionally homogeneous. Furthermore, these three different TR1 specificities have similar diabetes reversal properties in vivo despite being uniquely reactive against the peptide MHCII-binding register displayed on the NPs. Thus, pMHCII-NP treatment using nanomedicines displaying different epitope specificities results in the simultaneous differentiation of multiple antigen-specific TFH-like cell clones into TR1-like cells that inherit the fine antigenic specificity of their precursors while acquiring a defined transcriptional immunoregulatory program.
Collapse
Affiliation(s)
- Patricia Solé
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Daniel Parras
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Josep Garnica
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Nahir Garabatos
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joel Moro
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Javier Montaño
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - César Fandos
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Department of Liver, Digestive System and Metabolism, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Pere Santamaria,
| |
Collapse
|
37
|
Tiemeijer BM, Heester S, Sturtewagen AYW, Smits AIPM, Tel J. Single-cell analysis reveals TLR-induced macrophage heterogeneity and quorum sensing dictate population wide anti-inflammatory feedback in response to LPS. Front Immunol 2023; 14:1135223. [PMID: 36911668 PMCID: PMC9998924 DOI: 10.3389/fimmu.2023.1135223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
The role of macrophages in controlling tissue inflammation is indispensable to ensure a context-appropriate response to pathogens whilst preventing excessive tissue damage. Their initial response is largely characterized by high production of tumor necrosis factor alpha (TNFα) which primes and attracts other immune cells, thereafter, followed by production of interleukin 10 (IL-10) which inhibits cell activation and steers towards resolving of inflammation. This delicate balance is understood at a population level but how it is initiated at a single-cell level remains elusive. Here, we utilize our previously developed droplet approach to probe single-cell macrophage activation in response to toll-like receptor 4 (TLR4) stimulation, and how single-cell heterogeneity and cellular communication affect macrophage-mediated inflammatory homeostasis. We show that only a fraction of macrophages can produce IL-10 in addition to TNFα upon LPS-induced activation, and that these cells are not phenotypically different from IL-10 non-producers nor exhibit a distinct transcriptional pathway. Finally, we demonstrate that the dynamics of TNFα and IL-10 are heavily controlled by macrophage density as evidenced by 3D hydrogel cultures suggesting a potential role for quorum sensing. These exploratory results emphasize the relevance of understanding the complex communication between macrophages and other immune cells and how these amount to population-wide responses.
Collapse
Affiliation(s)
- Bart M Tiemeijer
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sebastiaan Heester
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ashley Y W Sturtewagen
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anthal I P M Smits
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands.,Laboratory of Soft Tissue Engineering and Mechanobiology, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
38
|
Liefaard L, Hajduk E, van den Berg F, Panoilia E, Bouma G, Lisi E, Srinivasan N, Cui Y, Gross AS, Tarzi R, Marks DJB. Randomized Trial of the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of GSK2831781 in Healthy Japanese and White Participants. Clin Pharmacol Drug Dev 2022; 11:1284-1293. [PMID: 36088650 DOI: 10.1002/cpdd.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023]
Abstract
This study investigated ethnic differences in the safety, tolerability, pharmacokinetics, and pharmacodynamics of GSK2831781, an anti-lymphocyte activation gene 3 (LAG3) monoclonal antibody, in healthy participants, and determined local tolerability and bioavailability following subcutaneous (SC) administration. A double-blind, randomized study of (A) single intravenous (IV) doses of GSK2831781 450 mg or placebo in Japanese and White participants; and (B) single SC doses of GSK2831781 150 or 450 mg, or placebo in White participants, was conducted. Blood samples for analyses were collected before dosing and over 112 days after dosing. GSK2831781 was well tolerated in Japanese and White participants after both IV and SC doses, with the adverse event profile in Japanese being consistent with other populations. There were no injection site adverse events. There was no evidence of differences in systemic exposure among Japanese and White participants. Systemic exposure did not vary with body weight. SC bioavailability was 76.5%, as estimated using population pharmacokinetic modeling. Full and sustained target engagement and evidence of LAG3+ cell depletion (≈53%-66%) were observed in both populations and after both administration routes. No evidence of reduced circulating regulatory T cells (CD4+ CD25+ CD127low FoxP3+ ) was observed. Following IV and SC administration, GSK2831781 depleted circulating LAG3+ T cells with no interethnic difference observed. There were no major impacts on circulating regulatory T cells.
Collapse
Affiliation(s)
- Lia Liefaard
- Clinical Pharmacology Modelling and Simulation, GSK, Stevenage, UK
| | - Eva Hajduk
- Global Clinical Sciences and Delivery, GSK, Brentford, UK
| | | | - Eirini Panoilia
- Clinical Pharmacology Modelling and Simulation, GSK, Stevenage, UK
| | - Gerben Bouma
- Clinical Pharmacology and Experimental Medicine, GSK, Stevenage, UK
| | | | | | - Yi Cui
- Global Safety, GSK, Brentford, UK
| | - Annette S Gross
- Clinical Pharmacology Modelling and Simulation, GSK, Sydney, Australia
| | | | - Daniel J B Marks
- Clinical Pharmacology and Experimental Medicine, GSK, Stevenage, UK
| |
Collapse
|
39
|
Freeborn RA, Strubbe S, Roncarolo MG. Type 1 regulatory T cell-mediated tolerance in health and disease. Front Immunol 2022; 13:1032575. [PMID: 36389662 PMCID: PMC9650496 DOI: 10.3389/fimmu.2022.1032575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 09/02/2023] Open
Abstract
Type 1 regulatory T (Tr1) cells, in addition to other regulatory cells, contribute to immunological tolerance to prevent autoimmunity and excessive inflammation. Tr1 cells arise in the periphery upon antigen stimulation in the presence of tolerogenic antigen presenting cells and secrete large amounts of the immunosuppressive cytokine IL-10. The protective role of Tr1 cells in autoimmune diseases and inflammatory bowel disease has been well established, and this led to the exploration of this population as a potential cell therapy. On the other hand, the role of Tr1 cells in infectious disease is not well characterized, thus raising concern that these tolerogenic cells may cause general immune suppression which would prevent pathogen clearance. In this review, we summarize current literature surrounding Tr1-mediated tolerance and its role in health and disease settings including autoimmunity, inflammatory bowel disease, and infectious diseases.
Collapse
Affiliation(s)
- Robert A. Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
40
|
Morgan DM, Shreffler WG, Love JC. Revealing the heterogeneity of CD4+ T cells through single-cell transcriptomics. J Allergy Clin Immunol 2022; 150:748-755. [DOI: 10.1016/j.jaci.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
41
|
Aliyu M, Zohora FT, Anka AU, Ali K, Maleknia S, Saffarioun M, Azizi G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int Immunopharmacol 2022; 111:109130. [PMID: 35969896 DOI: 10.1016/j.intimp.2022.109130] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/19/2022]
Abstract
Several studies have shown that interleukin 6 (IL-6) is a multifunctional cytokine with both pro-inflammatory and anti-inflammatory activity, depending on the immune response context. Macrophages are among several cells that secrete IL-6, which they express upon activation by antigens, subsequently inducing fever and production of acute-phase proteins from the liver. Moreover, IL-6 induces the final maturation of B cells into memory B cells and plasma cells as well as an adaptive role for short-term energy allocation. Activation of IL-6 receptors results in the intracellular activation of the JAK/STAT pathway with resultant production of inflammatory cytokines. Several mechanisms-controlled IL-6 expression, but aberrant production was shown to be crucial in the pathogenesis of many diseases, which include autoimmune and chronic inflammatory diseases. IL-6 in combination with transforming growth factor β (TGF-β) induced differentiation of naïve T cells to Th17 cells, which is the cornerstone in autoimmune diseases. Recently, IL-6 secretion was shown to form the backbone of hypercytokinemia seen in the Coronavirus disease 2019 (COVID-19)-associated hyperinflammation and multiorgan failure. There are two classes of approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., tocilizumab) and anti-IL-6 monoclonal antibodies (i.e., siltuximab). These drugs have been evaluated in patients with rheumatoid arthritis, juvenile idiopathic arthritis, cytokine release syndrome, and COVID-19 who have systemic inflammation. JAK/STAT pathway blockers were also successfully used in dampening IL-6 signal transduction. A better understanding of different mechanisms that modulate IL-6 expression will provide the much-needed solution with excellent safety and efficacy profiles for the treatment of autoimmune and inflammatory diseases in which IL-6 derives their pathogenesis.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran; Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Kashif Ali
- Department of Pharmacy Abdul Wali, Khan University Mardan, Pakistan
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
42
|
Negera E, Bobosha K, Aseffa A, Dockrell HM, Lockwood DNJ, Walker SL. Regulatory T cells in erythema nodosum leprosum maintain anti-inflammatory function. PLoS Negl Trop Dis 2022; 16:e0010641. [PMID: 35867720 PMCID: PMC9348709 DOI: 10.1371/journal.pntd.0010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/03/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The numbers of circulating regulatory T cells (Tregs) are increased in lepromatous leprosy (LL) but reduced in erythema nodosum leprosum (ENL), the inflammatory complication of LL. It is unclear whether the suppressive function of Tregs is intact in both these conditions.
Methods
A longitudinal study recruited participants at ALERT Hospital, Ethiopia. Peripheral blood samples were obtained before and after 24 weeks of prednisolone treatment for ENL and multidrug therapy (MDT) for participants with LL. We evaluated the suppressive function of Tregs in the peripheral blood mononuclear cells (PBMCs) of participants with LL and ENL by analysis of TNFα, IFNγ and IL-10 responses to Mycobacterium leprae (M. leprae) stimulation before and after depletion of CD25+ cells.
Results
30 LL participants with ENL and 30 LL participants without ENL were recruited. The depletion of CD25+ cells from PBMCs was associated with enhanced TNFα and IFNγ responses to M. leprae stimulation before and after 24 weeks treatment of LL with MDT and of ENL with prednisolone. The addition of autologous CD25+ cells to CD25+ depleted PBMCs abolished these responses. In both non-reactional LL and ENL groups mitogen (PHA)-induced TNFα and IFNγ responses were not affected by depletion of CD25+ cells either before or after treatment. Depleting CD25+ cells did not affect the IL-10 response to M. leprae before and after 24 weeks of MDT in participants with LL. However, depletion of CD25+ cells was associated with an enhanced IL-10 response on stimulation with M. leprae in untreated participants with ENL and reduced IL-10 responses in treated individuals with ENL. The enhanced IL-10 in untreated ENL and the reduced IL-10 response in prednisolone treated individuals with ENL was abolished by addition of autologous CD25+ cells.
Conclusion
The findings support the hypothesis that the impaired cell-mediated immune response in individuals with LL is M. leprae antigen specific and the unresponsiveness can be reversed by depleting CD25+ cells. Our results suggest that the suppressive function of Tregs in ENL is intact despite ENL being associated with reduced numbers of Tregs. The lack of difference in IL-10 response in control PBMCs and CD25+ depleted PBMCs in individuals with LL and the increased IL-10 response following the depletion of CD25+ cells in individuals with untreated ENL suggest that the mechanism of immune regulation by Tregs in leprosy appears independent of IL-10 or that other cells may be responsible for IL-10 production in leprosy. The present findings highlight mechanisms of T cell regulation in LL and ENL and provide insights into the control of peripheral immune tolerance, identifying Tregs as a potential therapeutic target.
Collapse
Affiliation(s)
- Edessa Negera
- London School of Hygiene and Tropical Medicine, Department of Clinical Research, London, United Kingdom
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- * E-mail:
| | - Kidist Bobosha
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- World Health Organization, TDR, the Special Programme for Research and Training in Tropical Diseases, Geneva, Switzerland
| | - Hazel M. Dockrell
- London School of Hygiene and Tropical Medicine, Department of Clinical Research, London, United Kingdom
| | - Diana N. J. Lockwood
- London School of Hygiene and Tropical Medicine, Department of Clinical Research, London, United Kingdom
| | - Stephen L. Walker
- London School of Hygiene and Tropical Medicine, Department of Clinical Research, London, United Kingdom
| |
Collapse
|
43
|
Brandi J, Riehn M, Hadjilaou A, Jacobs T. Increased Expression of Multiple Co-Inhibitory Molecules on Malaria-Induced CD8 + T Cells Are Associated With Increased Function Instead of Exhaustion. Front Immunol 2022; 13:878320. [PMID: 35874786 PMCID: PMC9301332 DOI: 10.3389/fimmu.2022.878320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Activated cytotoxic CD8+ T cells can selectively kill target cells in an antigen-specific manner. However, their prolonged activation often has detrimental effects on tissue homeostasis and function. Indeed, overwhelming cytotoxic activity of CD8+ T cells can drive immunopathology, and therefore, the extent and duration of CD8+ T cell effector function needs to be tightly regulated. One way to regulate CD8+ T cell function is their suppression through engagement of co-inhibitory molecules to their cognate ligands (e.g., LAG-3, PD-1, TIM-3, TIGIT and CTLA-4). During chronic antigen exposure, the expression of co-inhibitory molecules is associated with a loss of T cell function, termed T cell exhaustion and blockade of co-inhibitory pathways often restores T cell function. We addressed the effect of co-inhibitory molecule expression on CD8+ T cell function during acute antigen exposure using experimental malaria. To this end, we infected OT-I mice with a transgenic P. berghei ANKA strain that expresses ovalbumin (PbTG), which enables the characterization of antigen-specific CD8+ T cell responses. We then compared antigen-specific CD8+ T cell populations expressing different levels of the co-inhibitory molecules. High expression of LAG-3 correlated with high expression of PD-1, TIGIT, TIM-3 and CTLA-4. Contrary to what has been described during chronic antigen exposure, antigen-specific CD8+ T cells with the highest expression of LAG-3 appeared to be fully functional during acute malaria. We evaluated this by measuring IFN-γ, Granzyme B and Perforin production and confirmed the results by employing a newly developed T cell cytotoxicity assay. We found that LAG-3high CD8+ T cells are more cytotoxic than LAG-3low or activated but LAG-3neg CD8+ T cells. In conclusion, our data imply that expression of co-inhibitory molecules in acute malaria is not necessarily associated with functional exhaustion but may be associated with an overwhelming T cell activation. Taken together, our findings shed new light on the induction of co-inhibitory molecules during acute T cell activation with ramifications for immunomodulatory therapies targeting these molecules in acute infectious diseases.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Alexandros Hadjilaou
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
44
|
CD4 + T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector T cell survival. Cell Rep 2022; 38:110565. [PMID: 35354043 DOI: 10.1016/j.celrep.2022.110565] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation. During neuroinflammation, both CNS-resident and -infiltrating cells produce IL-10; yet, as IL-10 has a pleotropic function, the exact contribution of the different cellular sources is not fully understood. We find that T-cell-derived IL-10, but not other relevant IL-10 sources, can promote inflammation in experimental autoimmune encephalomyelitis. Furthermore, in the CNS, T-cell-derived IL-10 acts on effector T cells, promoting their survival and thereby enhancing inflammation and CNS autoimmunity. Our data indicate a pro-inflammatory role of T-cell-derived IL-10 in the CNS.
Collapse
|
45
|
High levels of extracellular ATP lead to different inflammatory responses in COVID-19 patients according to the severity. J Mol Med (Berl) 2022; 100:645-663. [PMID: 35249135 PMCID: PMC8898096 DOI: 10.1007/s00109-022-02185-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023]
|
46
|
Moog MT, Hinze C, Bormann T, Aschenbrenner F, Knudsen L, DeLuca DS, Jonigk D, Neubert L, Welte T, Gauldie J, Kolb M, Maus UA. B Cells Are Not Involved in the Regulation of Adenoviral TGF-β1- or Bleomycin-Induced Lung Fibrosis in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1259-1271. [PMID: 35149532 DOI: 10.4049/jimmunol.2100767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible, age-related diffuse parenchymal lung disease of poorly defined etiology. Many patients with IPF demonstrate distinctive lymphocytic interstitial infiltrations within remodeled lung tissue with uncertain pathogenetic relevance. Histopathological examination of explant lung tissue of patients with IPF revealed accentuated lymphoplasmacellular accumulations in close vicinity to, or even infiltrating, remodeled lung tissue. Similarly, we found significant accumulations of B cells interfused with T cells within remodeled lung tissue in two murine models of adenoviral TGF-β1 or bleomycin (BLM)-induced lung fibrosis. Such B cell accumulations coincided with significantly increased lung collagen deposition, lung histopathology, and worsened lung function in wild-type (WT) mice. Surprisingly, B cell-deficient µMT knockout mice exhibited similar lung tissue remodeling and worsened lung function upon either AdTGF-β1 or BLM as for WT mice. Comparative transcriptomic profiling of sorted B cells collected from lungs of AdTGF-β1- and BLM-exposed WT mice identified a large set of commonly regulated genes, but with significant enrichment observed for Gene Ontology terms apparently not related to lung fibrogenesis. Collectively, although we observed B cell accumulations in lungs of IPF patients as well as two experimental models of lung fibrosis, comparative profiling of characteristic features of lung fibrosis between WT and B cell-deficient mice did not support a major involvement of B cells in lung fibrogenesis in mice.
Collapse
Affiliation(s)
- Marie T Moog
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Christopher Hinze
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - David S DeLuca
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
| | - Danny Jonigk
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Lavinia Neubert
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany; and
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany;
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
| |
Collapse
|
47
|
Old and New Biomarkers for Infection, Inflammation, and Autoimmunity in Treatment-Resistant Affective and Schizophrenic Spectrum Disorders. Pharmaceuticals (Basel) 2022; 15:ph15030299. [PMID: 35337097 PMCID: PMC8949012 DOI: 10.3390/ph15030299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affective (AF) and Schizophrenic (SZ) Spectrum disorders manifest with risk factors, involving inflammatory processes linked to infections and autoimmunity. This study searched for novel biomarkers in cerebrospinal fluid (CSF) and peripheral blood. A total of 29 AF and 39 SZ patients with treatment-resistant disease were included. In CSF, the chemokine IL-8 was significantly elevated in AF and SZ patients. IL-8 promotes chemotaxis by neutrophils and may originate from different tissues. S100B, a glia-derived brain damage marker, was higher in CSF from AF than SZ patients. Among the plasma-derived biomarkers, ferritin was elevated in AF and SZ. Soluble CD25, indicating Treg dysfunction, was higher in SZ than in AF patients. Interferon-γ, implying virus-specific immune activation, was positive in selective AF patients, only. Both groups showed elevated expression of immunosuppressive CD33 on monocytes, but higher amounts of CD123+ plasmacytoid dendritic cells were restricted to SZ. In conclusion, chemotactic IL-8 indicates neuronal stress and inflammation in the CSF of both groups. Novel plasma-derived biomarkers such as sCD25 and monocytic CD33 distinguish SZ from AF with an autoimmune phenotype.
Collapse
|
48
|
Lory NC, Nawrocki M, Corazza M, Schmid J, Schumacher V, Bedke T, Menzel S, Koch-Nolte F, Guse AH, Huber S, Mittrücker HW. TRPM2 Is Not Required for T-Cell Activation and Differentiation. Front Immunol 2022; 12:778916. [PMID: 35095852 PMCID: PMC8795911 DOI: 10.3389/fimmu.2021.778916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022] Open
Abstract
Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.
Collapse
Affiliation(s)
- Niels C Lory
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikolaj Nawrocki
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Corazza
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Schmid
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valéa Schumacher
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Bedke
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Meng H, Zheng S, Zhou Q, Gao Y, Ni Y, Liang H, Chen S. FoxP3 - Tr1 Cell in Generalized Myasthenia Gravis and Its Relationship With the Anti-AChR Antibody and Immunomodulatory Cytokines. Front Neurol 2022; 12:755356. [PMID: 34975721 PMCID: PMC8718513 DOI: 10.3389/fneur.2021.755356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction: The changes in the number and function of regulatory T cells (Tregs) are thought to play important roles in the pathogenesis of generalized myasthenia gravis (gMG). Previous studies have suggested the decrease of FoxP3+ Treg cells in the MG development. However, there is no study on the pathophysiological mechanism of FoxP3−Treg, especially Tr1 cells, in gMG patients. Therefore, this study was conducted to reveal the effect of Tr1 cells to the pathophysiology of gMG. Methods: Thirteen patients with gMG and twelve healthy volunteers were enrolled in this study. The titer of anti-AChR Ab was measured by ELISA. The separated PBMCs were labeled for CD4, CD25, CD49b, LAG3 and FoxP3. The CD4+ T cell count, FoxP3+ Treg to CD4+ T cell ratio and Tr1 cell to CD4+ T cell ratio were measured by flow cytometry. Based on the FoxP3+ Treg and Tr1 cell to CD4+ T cell ratios, the patients' Tr1 cell to FoxP3+ Treg ratios were calculated. The IL-6, IL-7, IL-10, TGF-β and IFN-γ concentration in the serum of MG patients and normal controls (NCs) were measured via ELISA. Results: We found a significantly positive correlation between the Tr1 cell/CD4+ T cell ratio and the anti-AChR Ab (r = 0.6889 ± 0.4414, p = 0.0401). Although there were no significant differences in the relationship between FoxP3+ Treg cells and anti-AChR Ab, a positive correlation between the Tr1 cell/FoxP3+ Treg cell ratio and the anti-AChR Ab (r = 0.7110 ± 0.4227, p = 0.0318) was observed. In addition, the Tr1 cell/CD4+ T cell ratio but not the proportion of FoxP3+ Tregs was positively correlated with IL-10 (p = 0.048). These results suggested that in the process of the immunomodulatory effect of Tr1 cells in patients with gMG, IL-10 and other cytokines may be involved, but the specific mechanism needs further study. Conclusion: This is the first study of the immunoregulatory mechanism of Tr1 cells in gMG. We conducted this study to elucidate the significance of Tr1 cells in the pathogenesis of MG. We believe that in patients with gMG, Tr1 cells may play an immunomodulatory role in counteracting AChR-related autoimmune responses. In this process, IL-10 and other immunomodulatory cytokines may be involved.
Collapse
Affiliation(s)
- Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyu Zheng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Brain Injury Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huafeng Liang
- Department of Neurology, Xinrui Hospital, Wuxi, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Ahlers J, Mantei A, Lozza L, Stäber M, Heinrich F, Bacher P, Hohnstein T, Menzel L, Yüz SG, Alvarez-Simon D, Bickenbach AR, Weidinger C, Mockel-Tenbrinck N, Kühl AA, Siegmund B, Maul J, Neumann C, Scheffold A. A Notch/STAT3-driven Blimp-1/c-Maf-dependent molecular switch induces IL-10 expression in human CD4 + T cells and is defective in Crohn´s disease patients. Mucosal Immunol 2022; 15:480-490. [PMID: 35169232 PMCID: PMC9038525 DOI: 10.1038/s41385-022-00487-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Immunosuppressive Interleukin (IL)-10 production by pro-inflammatory CD4+ T cells is a central self-regulatory function to limit aberrant inflammation. Still, the molecular mediators controlling IL-10 expression in human CD4+ T cells are largely undefined. Here, we identify a Notch/STAT3 signaling-module as a universal molecular switch to induce IL-10 expression across human naïve and major effector CD4+ T cell subsets. IL-10 induction was transient, jointly controlled by the transcription factors Blimp-1/c-Maf and accompanied by upregulation of several co-inhibitory receptors, including LAG-3, CD49b, PD-1, TIM-3 and TIGIT. Consistent with a protective role of IL-10 in inflammatory bowel diseases (IBD), effector CD4+ T cells from Crohn's disease patients were defective in Notch/STAT3-induced IL-10 production and skewed towards an inflammatory Th1/17 cell phenotype. Collectively, our data identify a Notch/STAT3-Blimp-1/c-Maf axis as a common anti-inflammatory pathway in human CD4+ T cells, which is defective in IBD and thus may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Jonas Ahlers
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany ,grid.420214.1Present Address: Sanofi Pasteur, Sanofi-Aventis Deutschland GmbH, Berlin, Germany
| | - Andrej Mantei
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Laura Lozza
- Cell Biology, Precision for Medicine GmbH, Berlin, Germany
| | - Manuela Stäber
- Central Lab Service, Max-Plack-Institute for Infection Biology, Berlin, Germany
| | - Frederik Heinrich
- grid.413453.40000 0001 2224 3060German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Petra Bacher
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany ,grid.9764.c0000 0001 2153 9986Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Thordis Hohnstein
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Menzel
- grid.419491.00000 0001 1014 0849Translational Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simge G. Yüz
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Daniel Alvarez-Simon
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Anne Rieke Bickenbach
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Carl Weidinger
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Mockel-Tenbrinck
- grid.59409.310000 0004 0552 5033Miltenyi Biotec B.V. & Co.KG, Bergisch-Gladbach, Nordrhein-Westfalen Germany
| | - Anja A. Kühl
- grid.6363.00000 0001 2218 4662iPATH, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Maul
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany ,Gastroenterologie am Bayerischen Platz, Berlin, Germany
| | - Christian Neumann
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Scheffold
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|