1
|
Sun Y, Fang W, Peng J, Liu X, Wang C, Song L, Deng Z. Potential role of CFLAR in enhancing 5-FU sensitivity and modulating immune cell infiltration in breast cancer. Eur J Med Res 2025; 30:265. [PMID: 40211399 PMCID: PMC11983979 DOI: 10.1186/s40001-025-02532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Breast cancer (BRCA), the most common malignancy among women, is a highly heterogeneous disease. Chemoresistance is a major factor leading to treatment failure in BRCA. However, mechanisms underlying the development of chemoresistance remain unclear. METHODS In this study, we performed a comprehensive bioinformatic analysis to examine the role of cell death-associated genes in BRCA treatment. Specifically, we focused on caspase 8 and Fas-associated protein with death domain-like apoptosis regulator (CFLAR), which was identified as a co-differentially expressed cell death-associated molecule with potential prognostic values. We then validated these findings through in vitro experiments in BT- 549 and MDA-MB- 231 breast cancer cells. RESULTS Based on bioinformatics analysis, CFLAR expression was found to be downregulated in patients with BRCA, whereas its high expression was significantly associated with improved prognosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that aberrantly expressed CFLAR was potentially associated with oxidative phosphorylation, T cell receptor signaling, and NADH dehydrogenase (ubiquinone) activity. In vitro experiments demonstrated that overexpression of CFLAR inhibited the generation of reactive oxygen species (ROS), consequently promoting 5-fluorouracil (5-FU) sensitivity in BT- 549 and MDA-MB- 231 breast cancer cells. The expression of CFLAR was positively correlated with the abundance of several tumor-infiltrating immune cells, especially CD8 + T cells, further supporting the role of CFLAR in immune regulation. CONCLUSION In conclusion, this study reveals the novel roles of CFLAR in enhancing chemotherapy sensitivity and patient outcome in BRCA and underscores its potential as a therapeutic target. These results supported CFLAR as a therapeutic target and prognostic biomarker in BRCA patients.
Collapse
Affiliation(s)
- Yuwei Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weilun Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xingling Liu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Chunjiang Wang
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liying Song
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhenzhen Deng
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
2
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
3
|
Musiu C, Adamo A, Caligola S, Agostini A, Frusteri C, Lupo F, Boschi F, Busato A, Poffe O, Anselmi C, Vella A, Wang T, Dusi S, Piro G, Carbone C, Tortora G, Marzola P, D'Onofrio M, Crinò SF, Corbo V, Scarpa A, Salvia R, Malleo G, Lionetto G, Sartoris S, Ugel S, Bassi C, Bronte V, Paiella S, De Sanctis F. Local ablation disrupts immune evasion in pancreatic cancer. Cancer Lett 2025; 609:217327. [PMID: 39580047 DOI: 10.1016/j.canlet.2024.217327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is characterised by late diagnosis, tumour heterogeneity, and a peculiar immunosuppressive microenvironment, leading to poor clinical outcomes. Local ablative techniques have been proposed to treat unresectable PC patients, although their impact on activating the host immune system and overcoming resistance to immunotherapy remains elusive. METHODS We dissected the immune-modulatory abilities triggered by local ablation in mouse and human PC models and human specimens, integrating phenotypic and molecular technologies with functional assays. RESULTS Local ablation treatment performed in mice bearing orthotopic syngeneic PC tumours triggered tumour necrosis and a short-term inflammatory process characterised by the prompt increase of HMGB1 plasma levels, coupled with an enhanced amount of circulating and tumour infiltrating myeloid cells and increased MHCII expression in splenic myeloid antigen-presenting cells. Local ablation synergised with immunotherapy to restrict tumour progression and improved the survival of PC-bearing mice by evoking a T lymphocyte-dependent anti-tumour immune response. By integrating spatial transcriptomics with histological techniques, we pinpointed how combination therapy could reshape TME towards an anti-tumour milieu characterised by the preferential entrance and colocalization of activated T lymphocytes and myeloid cells endowed with antigen presentation features instead of T regulatory lymphocytes and CD206-expressing tumour-associated macrophages. In addition, treatment-dependent TME repolarization extended to neoplastic cells, promoting a shift from squamous to a more differentiated classical phenotype. Finally, we validated the immune regulatory properties induced by local ablation in PC patients and identified an association of the short-term treatment-dependent increase of neutrophils, NLR and HMGB1 with a longer time to progression. CONCLUSION Therefore, local ablation might overcome the current limitations of immunotherapy in PC.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | | | - Antonio Agostini
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristina Frusteri
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Alice Busato
- Assessment Department Aptuit S.r.l., an Evotec Company, Verona, Italy
| | - Ornella Poffe
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Cristina Anselmi
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Vella
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Tian Wang
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Geny Piro
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Radiology Section, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Francesco Crinò
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Gastroenterology and Digestive Endoscopy Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Pathological Anatomy Section, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Gabriella Lionetto
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| | - Claudio Bassi
- Department of Engineering for Innovative Medicine University of Verona Hospital Trust, Verona, Italy
| | | | - Salvatore Paiella
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona Hospital Trust, Verona, Italy.
| |
Collapse
|
4
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
5
|
Loeuillard EJ, Li B, Stumpf HE, Yang J, Willhite JR, Tomlinson JL, Rohakhtar FR, Simon VA, Graham RP, Smoot RL, Dong H, Ilyas SI. Noncanonical TRAIL Signaling Promotes Myeloid-Derived Suppressor Cell Abundance and Tumor Growth in Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:853-876. [PMID: 38219900 PMCID: PMC10981132 DOI: 10.1016/j.jcmgh.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND & AIMS Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL+ cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). METHODS Multiple immunocompetent syngeneic, orthotopic models of CCA were used. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of CD45+ cells in murine tumors from the different CCA models was conducted. RESULTS In multiple immunocompetent murine models of CCA, implantation of TRAIL+ murine cancer cells into Trail-r-/- mice resulted in a significant reduction in tumor volumes compared with wild-type mice. Tumor-bearing Trail-r-/- mice had a significant decrease in the abundance of MDSCs owing to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent nuclear factor-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of immune cells from murine tumors showed enrichment of a nuclear factor-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis owing to enhanced expression of cellular FLICE inhibitory protein, an inhibitor of proapoptotic TRAIL signaling. Accordingly, cellular FLICE inhibitory protein knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. CONCLUSIONS Our findings highlight the therapeutic potential of targeting TRAIL+ cancer cells for treatment of a poorly immunogenic cancer.
Collapse
Affiliation(s)
- Emilien J Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica R Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jennifer L Tomlinson
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
6
|
Andretto V, Dusi S, Zilio S, Repellin M, Kryza D, Ugel S, Lollo G. Tackling TNF-α in autoinflammatory disorders and autoimmune diseases: From conventional to cutting edge in biologics and RNA- based nanomedicines. Adv Drug Deliv Rev 2023; 201:115080. [PMID: 37660747 DOI: 10.1016/j.addr.2023.115080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Autoinflammatory disorders and autoimmune diseases result from abnormal deviations of innate and adaptive immunity that heterogeneously affect organs and clinical phenotypes. Despite having etiologic and phenotypic differences, these two conditions share the onset of an aberrant inflammatory process. Targeting the main drivers controlling inflammation is useful to treat both autoimmune and autoinflammatory syndromes. TNF-α is a major player in the inflammatory immune response, and anti-TNF-α antibodies have been a revolutionary treatment in many autoimmune disorders. However, production difficulties and high development costs hinder their implementation, and accessibility to their use is still limited. Innovative strategies aimed at overcoming the limitations associated with anti-TNF-α antibodies are being explored, including RNA-based therapies. Here we summarize the central role of TNF-α in immune disorders and how anti-TNF-based immunotherapies changed the therapeutic landscape, albeit with important limitations related to side effects, tolerance, and resistance to therapies. We then outline how nanotechnology has provided the final momentum for the use of nucleic acids in the treatment of autoimmune and autoinflammatory diseases, with a focus on inflammatory bowel diseases (IBDs). The example of IBDs allows the evaluation and discussion of the nucleic acids-based treatments that have been developed, to identify the role that innovative approaches possess in view of the treatment of autoinflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Silvia Dusi
- Istituto Oncologico Veneto IRCCS, Padova 35128, Italy
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; SATT Ouest Valorisation, 14C Rue du Patis Tatelin 35708, Rennes, France
| | - Mathieu Repellin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; PULSALYS SATT Lyon-Saint Etienne, 47 Boulevard du 11 Novembre 1918, 69625 Villeurbanne, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France; Hospices Civils de Lyon, 69437 Lyon, France
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
7
|
Adamo A, Frusteri C, Pilotto S, Caligola S, Belluomini L, Poffe O, Giacobazzi L, Dusi S, Musiu C, Hu Y, Wang T, Rizzini D, Vella A, Canè S, Sartori G, Insolda J, Sposito M, Incani UC, Carbone C, Piro G, Pettinella F, Qi F, Wang D, Sartoris S, De Sanctis F, Scapini P, Dusi S, Cassatella MA, Bria E, Milella M, Bronte V, Ugel S. Immune checkpoint blockade therapy mitigates systemic inflammation and affects cellular FLIP-expressing monocytic myeloid-derived suppressor cells in non-progressor non-small cell lung cancer patients. Oncoimmunology 2023; 12:2253644. [PMID: 37720688 PMCID: PMC10503454 DOI: 10.1080/2162402x.2023.2253644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer cells favor the generation of myeloid cells with immunosuppressive and inflammatory features, including myeloid-derived suppressor cells (MDSCs), which support tumor progression. The anti-apoptotic molecule, cellular FLICE (FADD-like interleukin-1β-converting enzyme)-inhibitory protein (c-FLIP), which acts as an important modulator of caspase-8, is required for the development and function of monocytic (M)-MDSCs. Here, we assessed the effect of immune checkpoint inhibitor (ICI) therapy on systemic immunological landscape, including FLIP-expressing MDSCs, in non-small cell lung cancer (NSCLC) patients. Longitudinal changes in peripheral immunological parameters were correlated with patients' outcome. In detail, 34 NSCLC patients were enrolled and classified as progressors (P) or non-progressors (NP), according to the RECIST evaluation. We demonstrated a reduction in pro-inflammatory cytokines such as IL-8, IL-6, and IL-1β in only NP patients after ICI treatment. Moreover, using t-distributed stochastic neighbor embedding (t-SNE) and cluster analysis, we characterized in NP patients a significant increase in the amount of lymphocytes and a slight contraction of myeloid cells such as neutrophils and monocytes. Despite this moderate ICI-associated alteration in myeloid cells, we identified a distinctive reduction of c-FLIP expression in M-MDSCs from NP patients concurrently with the first clinical evaluation (T1), even though NP and P patients showed the same level of expression at baseline (T0). In agreement with the c-FLIP expression, monocytes isolated from both P and NP patients displayed similar immunosuppressive functions at T0; however, this pro-tumor activity was negatively influenced at T1 in the NP patient cohort exclusively. Hence, ICI therapy can mitigate systemic inflammation and impair MDSC-dependent immunosuppression.
Collapse
Affiliation(s)
- Annalisa Adamo
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Cristina Frusteri
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Sara Pilotto
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Simone Caligola
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Lorenzo Belluomini
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Ornella Poffe
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Luca Giacobazzi
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Dusi
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Chiara Musiu
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Yushu Hu
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Tian Wang
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Davide Rizzini
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Vella
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Stefania Canè
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Giulia Sartori
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Jessica Insolda
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Marco Sposito
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Ursula Cesta Incani
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesca Pettinella
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Silvia Sartoris
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Francesco De Sanctis
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| | - Patrizia Scapini
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | - Stefano Dusi
- General Pathology section, Department of Medicine University of Verona, Verona, Italy
| | | | - Emilio Bria
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Michele Milella
- Oncology section, Department of Engineering for Innovative Medicine and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Bronte
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Stefano Ugel
- Immunology section, Department of Medicine University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
8
|
Iske J, Cao Y, Roesel MJ, Shen Z, Nian Y. Metabolic reprogramming of myeloid-derived suppressor cells in the context of organ transplantation. Cytotherapy 2023; 25:789-797. [PMID: 37204374 DOI: 10.1016/j.jcyt.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are naturally occurring leukocytes that develop from immature myeloid cells under inflammatory conditions that were discovered initially in the context of tumor immunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapies for transplant tolerance induction. Indeed, various pre-clinical studies have introduced in vivo expansion or adoptive transfer of MDSC as a promising therapeutic strategy leading to a profound extension of allograft survival due to suppression of alloreactive T cells. However, several limitations of cellular therapies using MDSCs remain to be addressed, including their heterogeneous nature and limited expansion capacity. Metabolic reprogramming plays a crucial role for differentiation, proliferation and effector function of immune cells. Notably, recent reports have focused on a distinct metabolic phenotype underlying the differentiation of MDSCs in an inflammatory microenvironment representing a regulatory target. A better understanding of the metabolic reprogramming of MDSCs may thus provide novel insights for MDSC-based treatment approaches in transplantation. In this review, we will summarize recent, interdisciplinary findings on MDSCs metabolic reprogramming, dissect the underlying molecular mechanisms and discuss the relevance for potential treatment approaches in solid-organ transplantation.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yu Cao
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Maximilian J Roesel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhongyang Shen
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yeqi Nian
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Zhou S, Zhao Z, Zhong H, Ren Z, Li Y, Wang H, Qiu Y. The role of myeloid-derived suppressor cells in liver cancer. Discov Oncol 2023; 14:77. [PMID: 37217620 DOI: 10.1007/s12672-023-00681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
MDSCs are immature myeloid immune cells, which accumulate in models of liver cancer to reduce effector immune cell activity, contribute to immune escape and treatment resistance. The accumulation of MDSCs suppresses the role of CTL and the killing effects of NK cells, induces the accumulation of Treg cells, and blocks the antigen presentation of DCs, thus promoting the progression of liver cancer. Recently, immunotherapy has emerged a valuable approach following chemoradiotherapy in the therapy of advanced liver cancer. A considerable increasing of researches had proved that targeting MDSCs has become one of the therapeutic targets to enhance tumor immunity. In preclinical study models, targeting MDSCs have shown encouraging results in both alone and in combination administration. In this paper, we elaborated immune microenvironment of the liver, function and regulatory mechanisms of MDSCs, and therapeutic approaches to target MDSCs. We also expect these strategies to supply new views for future immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Hao Zhong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Zehao Ren
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuye Li
- Binhai New Area Hospital of TCM, Tianjin, 300451, China.
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
10
|
Wang T, Hu Y, Dusi S, Qi F, Sartoris S, Ugel S, De Sanctis F. "Open Sesame" to the complexity of pattern recognition receptors of myeloid-derived suppressor cells in cancer. Front Immunol 2023; 14:1130060. [PMID: 36911674 PMCID: PMC9992799 DOI: 10.3389/fimmu.2023.1130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Pattern recognition receptors are primitive sensors that arouse a preconfigured immune response to broad stimuli, including nonself pathogen-associated and autologous damage-associated molecular pattern molecules. These receptors are mainly expressed by innate myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Recent investigations have revealed new insights into these receptors as key players not only in triggering inflammation processes against pathogen invasion but also in mediating immune suppression in specific pathological states, including cancer. Myeloid-derived suppressor cells are preferentially expanded in many pathological conditions. This heterogeneous cell population includes immunosuppressive myeloid cells that are thought to be associated with poor prognosis and impaired response to immune therapies in various cancers. Identification of pattern recognition receptors and their ligands increases the understanding of immune-activating and immune-suppressive myeloid cell functions and sheds light on myeloid-derived suppressor cell differences from cognate granulocytes and monocytes in healthy conditions. This review summarizes the different expression, ligand recognition, signaling pathways, and cancer relations and identifies Toll-like receptors as potential new targets on myeloid-derived suppressor cells in cancer, which might help us to decipher the instruction codes for reverting suppressive myeloid cells toward an antitumor phenotype.
Collapse
Affiliation(s)
- Tian Wang
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Yushu Hu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Dusi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Fang Qi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Semin Immunopathol 2022; 45:163-186. [PMID: 36161514 PMCID: PMC9513014 DOI: 10.1007/s00281-022-00965-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Tumour microenvironment is a complex ecosystem in which myeloid cells are the most abundant immune elements. This cell compartment is composed by different cell types, including neutrophils, macrophages, dendritic cells, and monocytes but also unexpected cell populations with immunosuppressive and pro-tumour roles. Indeed, the release of tumour-derived factors influences physiological haematopoiesis producing unconventional cells with immunosuppressive and tolerogenic functions such as myeloid-derived suppressor cells. These pro-tumour myeloid cell populations not only support immune escape directly but also assist tumour invasion trough non-immunological activities. It is therefore not surprising that these cell subsets considerably impact in tumour progression and cancer therapy resistance, including immunotherapy, and are being investigated as potential targets for developing a new era of cancer therapy. In this review, we discuss emerging strategies able to modulate the functional activity of these tumour-supporting myeloid cells subverting their accumulation, recruitment, survival, and functions. These innovative approaches will help develop innovative, or improve existing, cancer treatments.
Collapse
|
12
|
Bellone M, Brevi A, Bronte V, Dusi S, Ferrucci PF, Nisticò P, Rosato A, Russo V, Sica A, Toietta G, Colombo MP. Cancer bio-immunotherapy XVIII annual NIBIT-(Italian network for tumor biotherapy) meeting, October 15-16, 2020. Cancer Immunol Immunother 2022; 71:1787-1794. [PMID: 35034143 PMCID: PMC8761376 DOI: 10.1007/s00262-022-03145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Matteo Bellone
- Unit of Cellular Immunology, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Arianna Brevi
- Unit of Cellular Immunology, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Silvia Dusi
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Pier Francesco Ferrucci
- Unit of Tumor Biotherapy, Department of Experimental Oncology, I.R.C.C.S. European Institute of Oncology, Milan, Italy
| | - Paola Nisticò
- Unit Tumor Immunology and Immunotherapy, I.R.C.C.S. Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Veneto Institute of Oncology IOV-I.R.C.C.S., Padua, Italy
| | - Vincenzo Russo
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Antonio Sica
- Molecular Immunology Lab, I.R.C.C.S. Humanitas Clinical and Research Center, Rozzano, MI, Italy
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Gabriele Toietta
- Unit Tumor Immunology and Immunotherapy, I.R.C.C.S. Regina Elena National Cancer Institute, Rome, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione I.R.C.C.S. Istituto Nazionale Dei Tumori, Via Amadeo 42, 20068, Milan, Italy.
| |
Collapse
|
13
|
Zhang M, Wang L, Liu W, Wang T, De Sanctis F, Zhu L, Zhang G, Cheng J, Cao Q, Zhou J, Tagliabue A, Bronte V, Yan D, Wan X, Yu G. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. J Immunol Res 2022; 2022:2253436. [PMID: 35785030 PMCID: PMC9247850 DOI: 10.1155/2022/2253436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/20/2023] Open
Abstract
Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy such as anti-PD-L1 antibody in treating cancers, myeloid-derived suppressor cells (MDSCs) that lead to the formation of the protumor immunosuppressive microenvironment are one of the major contributors to ICB resistance. Therefore, inhibition of MDSC accumulation and function is critical for further enhancing the therapeutic efficacy of anti-PD-L1 antibody in a majority of cancer patients. Artemisinin (ART), the most effective antimalarial drug with tumoricidal and immunoregulatory activities, is a potential option for cancer treatment. Although ART is reported to reduce MDSC levels in 4T1 breast tumor model and improve the therapeutic efficacy of anti-PD-L1 antibody in T cell lymphoma-bearing mice, how ART influences MDSC accumulation, function, and molecular pathways as well as MDSC-mediated anti-PD-L1 resistance in melanoma or liver tumors remains unknown. Here, we reported that ART blocks the accumulation and function of MDSCs by polarizing M2-like tumor-promoting phenotype towards M1-like antitumor one. This switch is regulated via PI3K/AKT, mTOR, and MAPK signaling pathways. Targeting MDSCs by ART could significantly reduce tumor growth in various mouse models. More importantly, the ART therapy remarkably enhanced the efficacy of anti-PD-L1 immunotherapy in tumor-bearing mice through promoting antitumor T cell infiltration and proliferation. These findings indicate that ART controls the functional polarization of MDSCs and targeting MDSCs by ART provides a novel therapeutic strategy to enhance anti-PD-L1 cancer immunotherapy.
Collapse
Affiliation(s)
- Mengqi Zhang
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lulu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518036, China
| | - Wan Liu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tian Wang
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | | | - Lifang Zhu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guizhong Zhang
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jian Cheng
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Aldo Tagliabue
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Vincenzo Bronte
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xianchun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Shenzhen BinDeBioTech Co., Ltd., Shenzhen 518055, China
| | - Guang Yu
- School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
14
|
Caligola S, De Sanctis F, Canè S, Ugel S. Breaking the Immune Complexity of the Tumor Microenvironment Using Single-Cell Technologies. Front Genet 2022; 13:867880. [PMID: 35651929 PMCID: PMC9149246 DOI: 10.3389/fgene.2022.867880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Tumors are not a simple aggregate of transformed cells but rather a complicated ecosystem containing various components, including infiltrating immune cells, tumor-related stromal cells, endothelial cells, soluble factors, and extracellular matrix proteins. Profiling the immune contexture of this intricate framework is now mandatory to develop more effective cancer therapies and precise immunotherapeutic approaches by identifying exact targets or predictive biomarkers, respectively. Conventional technologies are limited in reaching this goal because they lack high resolution. Recent developments in single-cell technologies, such as single-cell RNA transcriptomics, mass cytometry, and multiparameter immunofluorescence, have revolutionized the cancer immunology field, capturing the heterogeneity of tumor-infiltrating immune cells and the dynamic complexity of tenets that regulate cell networks in the tumor microenvironment. In this review, we describe some of the current single-cell technologies and computational techniques applied for immune-profiling the cancer landscape and discuss future directions of how integrating multi-omics data can guide a new "precision oncology" advancement.
Collapse
Affiliation(s)
| | | | | | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Sorrentino A, Menevse AN, Michels T, Volpin V, Durst FC, Sax J, Xydia M, Hussein A, Stamova S, Spoerl S, Heuschneider N, Muehlbauer J, Jeltsch KM, Rathinasamy A, Werner-Klein M, Breinig M, Mikietyn D, Kohler C, Poschke I, Purr S, Reidell O, Martins Freire C, Offringa R, Gebhard C, Spang R, Rehli M, Boutros M, Schmidl C, Khandelwal N, Beckhove P. Salt-inducible kinase 3 protects tumor cells from cytotoxic T-cell attack by promoting TNF-induced NF-κB activation. J Immunother Cancer 2022; 10:jitc-2021-004258. [PMID: 35606086 PMCID: PMC9174898 DOI: 10.1136/jitc-2021-004258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.
Collapse
Affiliation(s)
- Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tillmann Michels
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Steffen Spoerl
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jasmin Muehlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Anchana Rathinasamy
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Melanie Werner-Klein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Marco Breinig
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-University Group 'Cell Plasticity and Epigenetic Remodeling', German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Damian Mikietyn
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian Kohler
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Isabel Poschke
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sabrina Purr
- Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivia Reidell
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | | | - Rienk Offringa
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Gebhard
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Rainer Spang
- Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michael Rehli
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Boutros
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schmidl
- Junior Group 'Epigenetic Immunooncology', Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nisit Khandelwal
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Holterhus M, Altvater B, Kailayangiri S, Rossig C. The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers (Basel) 2022; 14:cancers14092177. [PMID: 35565307 PMCID: PMC9105669 DOI: 10.3390/cancers14092177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Common pediatric solid cancers fail to respond to standard immuno-oncology agents relying on preexisting adaptive antitumor immune responses. The adoptive transfer of tumor-antigen specific T cells, such as CAR-gene modified T cells, is an attractive strategy, but its efficacy has been limited. Evidence is accumulating that local barriers in the tumor microenvironment prevent the infiltration of T cells and impede therapeutic immune responses. A thorough understanding of the components of the functional compartment of the tumor microenvironment and their interaction could inform effective combination therapies and novel engineered therapeutics, driving immunotherapy towards its full potential in pediatric patients. This review summarizes current knowledge on the cellular composition and significance of the tumor microenvironment in common extracranial solid cancers of childhood and adolescence, such as embryonal tumors and bone and soft tissue sarcomas, with a focus on myeloid cell populations that are often present in abundance in these tumors. Strategies to (co)target immunosuppressive myeloid cell populations with pharmacological anticancer agents and with selective antagonists are presented, as well as novel concepts aiming to employ myeloid cells to cooperate with antitumor T cell responses.
Collapse
|
17
|
Billmeier A, Khinvasara K, Lang F, Mohr J, Reidenbach D, Schork M, Yildiz I, Diken M. CIMT 2021: report on the 18th Annual Meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2022; 18:2024416. [PMID: 35130105 PMCID: PMC8993083 DOI: 10.1080/21645515.2021.2024416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After one year of absence, the 18th Annual Meeting of the Association for Cancer Immunotherapy (CIMT), Europe’s cancer immunotherapy meeting, took place virtually from 10 to 12 May 2021. Over 850 academic and clinical professionals from 30 countries met to discuss the recent advancements in cancer immunotherapy and the current progress in COVID19-related research. This meeting report summarizes the highlights of CIMT2021.
Collapse
Affiliation(s)
| | - Krutika Khinvasara
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Franziska Lang
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | | | - Daniel Reidenbach
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Maik Schork
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Ikra Yildiz
- TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Mustafa Diken
- BioNTech SE, Mainz, Germany.,TRON-Translational Oncology, University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| |
Collapse
|
18
|
Musiu C, Caligola S, Fiore A, Lamolinara A, Frusteri C, Del Pizzo FD, De Sanctis F, Canè S, Adamo A, Hofer F, Barouni RM, Grilli A, Zilio S, Serafini P, Tacconelli E, Donadello K, Gottin L, Polati E, Girelli D, Polidoro I, Iezzi PA, Angelucci D, Capece A, Chen Y, Shi ZL, Murray PJ, Chilosi M, Amit I, Bicciato S, Iezzi M, Bronte V, Ugel S. Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis. Cell Death Differ 2022; 29:420-438. [PMID: 34518653 PMCID: PMC8435761 DOI: 10.1038/s41418-021-00866-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state.
Collapse
Affiliation(s)
- Chiara Musiu
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Simone Caligola
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Alessandra Fiore
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy ,grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, Martinsried, Planegg, Germany
| | - Alessia Lamolinara
- grid.412451.70000 0001 2181 4941CAST - Center for Advanced Studies and Technology, Department of Neurosciences Imaging and Clinical Sciences, University of G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cristina Frusteri
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Francesco Domenico Del Pizzo
- grid.412451.70000 0001 2181 4941CAST - Center for Advanced Studies and Technology, Department of Neurosciences Imaging and Clinical Sciences, University of G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Francesco De Sanctis
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefania Canè
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Annalisa Adamo
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Hofer
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Roza Maria Barouni
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Grilli
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Zilio
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Paolo Serafini
- grid.26790.3a0000 0004 1936 8606Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Evelina Tacconelli
- grid.411475.20000 0004 1756 948XDivision of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Katia Donadello
- grid.411475.20000 0004 1756 948XIntensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Leonardo Gottin
- grid.411475.20000 0004 1756 948XIntensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Enrico Polati
- grid.411475.20000 0004 1756 948XIntensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Domenico Girelli
- grid.411475.20000 0004 1756 948XDivision of Internal Medicine, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Ildo Polidoro
- Complex Operational Unit of Forensic Medicine, Local Health Authority of Pescara, Pescara, Italy
| | - Piera Amelia Iezzi
- Complex Operational Unit of Forensic Medicine, Local Health Authority of Pescara, Pescara, Italy
| | - Domenico Angelucci
- Pathological Anatomy Unit, Local Health Authority of Lanciano-Vasto-Chieti, Vasto, Italy
| | - Andrea Capece
- Pathological Anatomy Unit, Local Health Authority of Lanciano-Vasto-Chieti, Vasto, Italy
| | - Ying Chen
- grid.439104.b0000 0004 1798 1925CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zheng-Li Shi
- grid.439104.b0000 0004 1798 1925CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei People’s Republic of China
| | - Peter J. Murray
- grid.418615.f0000 0004 0491 845XMax Planck Institute of Biochemistry, Martinsried, Planegg, Germany
| | - Marco Chilosi
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Ido Amit
- grid.13992.300000 0004 0604 7563Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silvio Bicciato
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Iezzi
- grid.412451.70000 0001 2181 4941CAST - Center for Advanced Studies and Technology, Department of Neurosciences Imaging and Clinical Sciences, University of G. D’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Bronte
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Ugel
- grid.411475.20000 0004 1756 948XImmunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
19
|
Ferraccioli G, Gremese E, Goletti D, Petrone L, Cantini F, Ugel S, Canè S, Bronte V. Immune-guided therapy of COVID-19. Cancer Immunol Res 2022; 10:384-402. [PMID: 35074758 DOI: 10.1158/2326-6066.cir-21-0675] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 01/20/2022] [Indexed: 01/08/2023]
|
20
|
De Sanctis F, Lamolinara A, Boschi F, Musiu C, Caligola S, Trovato R, Fiore A, Frusteri C, Anselmi C, Poffe O, Cestari T, Canè S, Sartoris S, Giugno R, Del Rosario G, Zappacosta B, Del Pizzo F, Fassan M, Dugnani E, Piemonti L, Bottani E, Decimo I, Paiella S, Salvia R, Lawlor RT, Corbo V, Park Y, Tuveson DA, Bassi C, Scarpa A, Iezzi M, Ugel S, Bronte V. Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer. J Immunother Cancer 2022; 10:e003549. [PMID: 35022194 PMCID: PMC8756272 DOI: 10.1136/jitc-2021-003549] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors owing to its robust desmoplasia, low immunogenicity, and recruitment of cancer-conditioned, immunoregulatory myeloid cells. These features strongly limit the success of immunotherapy as a single agent, thereby suggesting the need for the development of a multitargeted approach. The goal is to foster T lymphocyte infiltration within the tumor landscape and neutralize cancer-triggered immune suppression, to enhance the therapeutic effectiveness of immune-based treatments, such as anticancer adoptive cell therapy (ACT). METHODS We examined the contribution of immunosuppressive myeloid cells expressing arginase 1 and nitric oxide synthase 2 in building up a reactive nitrogen species (RNS)-dependent chemical barrier and shaping the PDAC immune landscape. We examined the impact of pharmacological RNS interference on overcoming the recruitment and immunosuppressive activity of tumor-expanded myeloid cells, which render pancreatic cancers resistant to immunotherapy. RESULTS PDAC progression is marked by a stepwise infiltration of myeloid cells, which enforces a highly immunosuppressive microenvironment through the uncontrolled metabolism of L-arginine by arginase 1 and inducible nitric oxide synthase activity, resulting in the production of large amounts of reactive oxygen and nitrogen species. The extensive accumulation of myeloid suppressing cells and nitrated tyrosines (nitrotyrosine, N-Ty) establishes an RNS-dependent chemical barrier that impairs tumor infiltration by T lymphocytes and restricts the efficacy of adoptive immunotherapy. A pharmacological treatment with AT38 ([3-(aminocarbonyl)furoxan-4-yl]methyl salicylate) reprograms the tumor microenvironment from protumoral to antitumoral, which supports T lymphocyte entrance within the tumor core and aids the efficacy of ACT with telomerase-specific cytotoxic T lymphocytes. CONCLUSIONS Tumor microenvironment reprogramming by ablating aberrant RNS production bypasses the current limits of immunotherapy in PDAC by overcoming immune resistance.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessia Lamolinara
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d'Annunzio University of Chieti Pescara, Chieti, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Chiara Musiu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Simone Caligola
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Rosalinda Trovato
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessandra Fiore
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Cristina Anselmi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Ornella Poffe
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Tiziana Cestari
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefania Canè
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | | | | | - Francesco Del Pizzo
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d'Annunzio University of Chieti Pescara, Chieti, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padova, Italy
- Veneto Institute of Oncology-Institute for Hospitalization and Care Scientific, Padova, Italy
| | - Erica Dugnani
- Diabetes Research Institute, San Raffaele Research Centre, Milano, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Research Centre, Milano, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milano, Italy
| | - Emanuela Bottani
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Ilaria Decimo
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, University of Verona, Verona, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery Unit, University of Verona, Verona, Italy
| | | | - Vincenzo Corbo
- ARC-NET, University of Verona, Verona, Italy
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Pancreatic Cancer Research Laboratory, Lustgarten Foundation, Cold Spring Harbor, New York, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Pancreatic Cancer Research Laboratory, Lustgarten Foundation, Cold Spring Harbor, New York, USA
| | - Claudio Bassi
- General and Pancreatic Surgery Unit, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-NET, University of Verona, Verona, Italy
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Manuela Iezzi
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d'Annunzio University of Chieti Pescara, Chieti, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Yapasert R, Khaw-on P, Banjerdpongchai R. Coronavirus Infection-Associated Cell Death Signaling and Potential Therapeutic Targets. Molecules 2021; 26:7459. [PMID: 34946543 PMCID: PMC8706825 DOI: 10.3390/molecules26247459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is the name of the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that occurred in 2019. The virus-host-specific interactions, molecular targets on host cell deaths, and the involved signaling are crucial issues, which become potential targets for treatment. Spike protein, angiotensin-converting enzyme 2 (ACE2), cathepsin L-cysteine peptidase, transmembrane protease serine 2 (TMPRSS2), nonstructural protein 1 (Nsp1), open reading frame 7a (ORF7a), viral main protease (3C-like protease (3CLpro) or Mpro), RNA dependent RNA polymerase (RdRp) (Nsp12), non-structural protein 13 (Nsp13) helicase, and papain-like proteinase (PLpro) are molecules associated with SARS-CoV infection and propagation. SARS-CoV-2 can induce host cell death via five kinds of regulated cell death, i.e., apoptosis, necroptosis, pyroptosis, autophagy, and PANoptosis. The mechanisms of these cell deaths are well established and can be disrupted by synthetic small molecules or natural products. There are a variety of compounds proven to play roles in the cell death inhibition, such as pan-caspase inhibitor (z-VAD-fmk) for apoptosis, necrostatin-1 for necroptosis, MCC950, a potent and specific inhibitor of the NLRP3 inflammasome in pyroptosis, and chloroquine/hydroxychloroquine, which can mitigate the corresponding cell death pathways. However, NF-κB signaling is another critical anti-apoptotic or survival route mediated by SARS-CoV-2. Such signaling promotes viral survival, proliferation, and inflammation by inducing the expression of apoptosis inhibitors such as Bcl-2 and XIAP, as well as cytokines, e.g., TNF. As a result, tiny natural compounds functioning as proteasome inhibitors such as celastrol and curcumin can be used to modify NF-κB signaling, providing a responsible method for treating SARS-CoV-2-infected patients. The natural constituents that aid in inhibiting viral infection, progression, and amplification of coronaviruses are also emphasized, which are in the groups of alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones. Natural constituents derived from medicinal herbs have anti-inflammatory and antiviral properties, as well as inhibitory effects, on the viral life cycle, including viral entry, replication, assembly, and release of COVID-19 virions. The phytochemicals contain a high potential for COVID-19 treatment. As a result, SARS-CoV-2-infected cell death processes and signaling might be of high efficacy for therapeutic targeting effects and yielding encouraging outcomes.
Collapse
Affiliation(s)
- Rittibet Yapasert
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patompong Khaw-on
- Faculty of Nursing, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
22
|
Hofer F, Di Sario G, Musiu C, Sartoris S, De Sanctis F, Ugel S. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells 2021; 10:cells10102700. [PMID: 34685679 PMCID: PMC8534848 DOI: 10.3390/cells10102700] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute a plastic and heterogeneous cell population among immune cells within the tumour microenvironment (TME) that support cancer progression and resistance to therapy. During tumour progression, cancer cells modify their metabolism to sustain an increased energy demand to cope with uncontrolled cell proliferation and differentiation. This metabolic reprogramming of cancer establishes competition for nutrients between tumour cells and leukocytes and most importantly, among tumour-infiltrating immune cells. Thus, MDSCs that have emerged as one of the most decisive immune regulators of TME exhibit an increase in glycolysis and fatty acid metabolism and also an upregulation of enzymes that catabolise essential metabolites. This complex metabolic network is not only crucial for MDSC survival and accumulation in the TME but also for enhancing immunosuppressive functions toward immune effectors. In this review, we discuss recent progress in the field of MDSC-associated metabolic pathways that could facilitate therapeutic targeting of these cells during cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Ugel
- Correspondence: ; Tel.: +39-045-8126451; Fax: +39-045-8126455
| |
Collapse
|
23
|
Ye Z, Ai X, Zhao L, Fei F, Wang P, Zhou S. Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics. Oncogene 2021; 40:6059-6070. [PMID: 34556813 DOI: 10.1038/s41388-021-02010-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant type of intracranial tumors with poor prognosis. Accumulating evidence suggests that phenotypic alterations of infiltrating myeloid cells in the tumor microenvironment are important for GBM progression. Conventional tumor immunotherapy commonly targets T-cells, while innate immunity as a therapeutic target is an emerging field. Targeting infiltrating myeloid cells that induce immune suppression in the TME provides a novel direction to improve the prognosis of patients with GBM. The factors released by tumor cells recruit myeloid cells into tumor bed and reprogram infiltrating myeloid cells into immunostimulatory/immunosuppressive phenotypes. Reciprocally, infiltrating myeloid cells, especially microglia/macrophages, regulate GBM progression and affect therapeutic efficacy. Herein, we revisited biological characteristics and functions of infiltrating myeloid cells and discussed the recent advances in immunotherapies targeting infiltrating myeloid cells in GBM. With an evolving understanding of the complex interactions between infiltrating myeloid cells and tumor cells in the tumor microenvironment, we will expand novel immunotherapeutic regimens targeting infiltrating myeloid cells in GBM treatment and improve the outcomes of GBM patients.
Collapse
Affiliation(s)
- Zengpanpan Ye
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaolin Ai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Fan Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
24
|
Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Cells 2021; 10:cells10051170. [PMID: 34065010 PMCID: PMC8150533 DOI: 10.3390/cells10051170] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The primary function of myeloid cells is to protect the host from infections. However, during cancer progression or states of chronic inflammation, these cells develop into myeloid-derived suppressor cells (MDSCs) that play a prominent role in suppressing anti-tumor immunity. Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. Therefore, understanding the mechanisms by which MDSCs promote tumor growth is essential for improving current immunotherapies and developing new ones. This review explores mechanisms by which MDSCs suppress T-cell immunity and how this impacts the efficacy of commonly used immunotherapies.
Collapse
|
25
|
Cai J, Cui Y, Yang J, Wang S. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Biochim Biophys Acta Rev Cancer 2021; 1876:188564. [PMID: 33974950 DOI: 10.1016/j.bbcan.2021.188564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population characterized by protumoral functions in the tumor immune network. An increasing number of studies have focused on the biological functions of MDSCs in tumor immunity. Epithelial-mesenchymal transition (EMT) is a cellular plasticity process accompanied by a loss of epithelial phenotypes and an acquisition of mesenchymal phenotypes. In general, tumor cells that undergo EMT are more likely to invade and metastasize. Recently, extensive evidence suggests that EMT is closely related to a highly immunosuppressive environment. This review will summarize the immunosuppressive capacities of MDSC subsets and their distinct role in tumor EMT and further discuss immunotherapy for tumor EMT by targeting MDSCs.
Collapse
Affiliation(s)
- Jingshan Cai
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yudan Cui
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
26
|
Cai QC, Chen CX, Liu HY, Zhang W, Han YF, Zhang Q, Zhou GF, Xu S, Liu T, Xiao W, Zhu QS, Luo KJ. Interactions of Vank proteins from Microplitis bicoloratus bracovirus with host Dip3 suppress eIF4E expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103994. [PMID: 33417999 DOI: 10.1016/j.dci.2021.103994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microplitis bicoloratus bracovirus (MbBV) inhibits the immune response of the host Spodoptera litura by disrupting nuclear factor (NF)-κB signaling and downstream gene expression. However, the underlying molecular mechanisms are not well understood. Herein, we report that viral ankyrin (Vank) proteins interacted with host dorsal-interacting protein 3 (Dip3) to selectively inhibit the transcription of eukaryotic translation initiation factor 4 E (eIF4E). Dip3 and Vank proteins were co-expressed and colocalized in the nucleus. Furthermore, ectopic expression of Dip3 rescued the transcription of some NF-κB-dependent genes suppressed by Vank proteins, including eIF4E. Co-immunoprecipitation and pull-down assays confirmed that Vank proteins interacted with and bound to full-length Dip3, which including MADF, DNA-binding protein, BESS, and protein-protein interaction motifs as well as non-motif sequences. In vivo, RNAi-mediated dip3 silencing decreased eIF4E levels and was accompanied by an immunosuppressive phenotype in S. litura. Our results provided novel insights into the regulation of host transcription during immune suppression by viral proteins that modulate nuclear NF-κB signaling.
Collapse
Affiliation(s)
- Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Wei Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Sha Xu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China
| | - Tian Liu
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Wei Xiao
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China.
| |
Collapse
|
27
|
Huang Y, Wang S, Huang F, Zhang Q, Qin B, Liao L, Wang M, Wan H, Yan W, Chen D, Liu F, Jiang B, Ji D, Xia X, Huang J, Xiong K. c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway. Ann Anat 2021; 235:151672. [PMID: 33434657 DOI: 10.1016/j.aanat.2020.151672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, shows remarkable similarities to caspase-8, which plays a key role in the cleavage of gasdermin D (GSDMD). It has been reported that the oxygen-glucose deprivation/recovery (OGD/R) model and lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment could induce inflammation and pyroptosis. However, the regulatory role of c-FLIP in the pyroptotic death of retinal neurons is unclear. In this study, we hypothesized that c-FLIP might regulate retinal neuronal pyroptosis by GSDMD cleavage. To investigate this hypothesis, we induced retinal neuronal damage in vitro (OGD/R and LPS/ATP) and in vivo (acute high intraocular pressure [aHIOP]). Our results demonstrated that the three injuries triggered the up-regulation of pyroptosis-related proteins, and c-FLIP could cleave GSDMD to generate a functional N-terminal (NT) domain of GSDMD, causing retinal neuronal pyroptosis. In addition, c-FLIP knockdown in vivo ameliorated the already established visual impairment mediated by acute IOP elevation. Taken together, these findings revealed that decreased c-FLIP expression protected against pyroptotic death of retinal neurons possibly by inhibiting GSDMD-NT generation. Therefore, c-FLIP might provide new insights into the pathogenesis of pyroptosis-related diseases and help to elucidate new therapeutic targets and potential treatment strategies.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuchao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha 410013, China
| | - Fei Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Bo Qin
- Department of Anatomy, Medical College of Hubei Polytechnic University, Huang shi 435003, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
28
|
Ugel S, Canè S, De Sanctis F, Bronte V. Monocytes in the Tumor Microenvironment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:93-122. [PMID: 33497262 DOI: 10.1146/annurev-pathmechdis-012418-013058] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy has revolutionized cancer treatment over the past decade. Nonetheless, prolonged survival is limited to relatively few patients. Cancers enforce a multifaceted immune-suppressive network whose nature is progressively shaped by systemic and local cues during tumor development. Monocytes bridge innate and adaptive immune responses and can affect the tumor microenvironment through various mechanisms that induce immune tolerance, angiogenesis, and increased dissemination of tumor cells. Yet monocytes can also give rise to antitumor effectors and activate antigen-presenting cells. This yin-yang activity relies on the plasticity of monocytes in response to environmental stimuli. In this review, we summarize current knowledge of the ontogeny, heterogeneity, and functions of monocytes and monocyte-derived cells in cancer, pinpointing the main pathways that are important for modeling the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| | - Vincenzo Bronte
- Section of Immunology, Department of Medicine, University of Verona, Verona 37134, Italy;
| |
Collapse
|
29
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
30
|
Bost P, De Sanctis F, Canè S, Ugel S, Donadello K, Castellucci M, Eyal D, Fiore A, Anselmi C, Barouni RM, Trovato R, Caligola S, Lamolinara A, Iezzi M, Facciotti F, Mazzariol A, Gibellini D, De Nardo P, Tacconelli E, Gottin L, Polati E, Schwikowski B, Amit I, Bronte V. Deciphering the state of immune silence in fatal COVID-19 patients. Nat Commun 2021. [PMID: 33674591 DOI: 10.1101/2020.08.10.20170894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Since the beginning of the SARS-CoV-2 pandemic, COVID-19 appeared as a unique disease with unconventional tissue and systemic immune features. Here we show a COVID-19 immune signature associated with severity by integrating single-cell RNA-seq analysis from blood samples and broncho-alveolar lavage fluids with clinical, immunological and functional ex vivo data. This signature is characterized by lung accumulation of naïve lymphoid cells associated with a systemic expansion and activation of myeloid cells. Myeloid-driven immune suppression is a hallmark of COVID-19 evolution, highlighting arginase-1 expression with immune regulatory features of monocytes. Monocyte-dependent and neutrophil-dependent immune suppression loss is associated with fatal clinical outcome in severe patients. Additionally, our analysis shows a lung CXCR6+ effector memory T cell subset is associated with better prognosis in patients with severe COVID-19. In summary, COVID-19-induced myeloid dysregulation and lymphoid impairment establish a condition of 'immune silence' in patients with critical COVID-19.
Collapse
Affiliation(s)
- Pierre Bost
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris, France
- Sorbonne Universite, Complexite du vivant, Paris, France
| | - Francesco De Sanctis
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefania Canè
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Katia Donadello
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Monica Castellucci
- The Center for Technological Platforms, University of Verona, Verona, Italy
| | - David Eyal
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alessandra Fiore
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Cristina Anselmi
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Roza Maria Barouni
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Rosalinda Trovato
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Simone Caligola
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Alessia Lamolinara
- CAST- Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- CAST- Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Annarita Mazzariol
- Microbiology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Pasquale De Nardo
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Leonardo Gottin
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Enrico Polati
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris, France
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|
31
|
Bost P, De Sanctis F, Canè S, Ugel S, Donadello K, Castellucci M, Eyal D, Fiore A, Anselmi C, Barouni RM, Trovato R, Caligola S, Lamolinara A, Iezzi M, Facciotti F, Mazzariol A, Gibellini D, De Nardo P, Tacconelli E, Gottin L, Polati E, Schwikowski B, Amit I, Bronte V. Deciphering the state of immune silence in fatal COVID-19 patients. Nat Commun 2021; 12:1428. [PMID: 33674591 PMCID: PMC7935849 DOI: 10.1038/s41467-021-21702-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
Since the beginning of the SARS-CoV-2 pandemic, COVID-19 appeared as a unique disease with unconventional tissue and systemic immune features. Here we show a COVID-19 immune signature associated with severity by integrating single-cell RNA-seq analysis from blood samples and broncho-alveolar lavage fluids with clinical, immunological and functional ex vivo data. This signature is characterized by lung accumulation of naïve lymphoid cells associated with a systemic expansion and activation of myeloid cells. Myeloid-driven immune suppression is a hallmark of COVID-19 evolution, highlighting arginase-1 expression with immune regulatory features of monocytes. Monocyte-dependent and neutrophil-dependent immune suppression loss is associated with fatal clinical outcome in severe patients. Additionally, our analysis shows a lung CXCR6+ effector memory T cell subset is associated with better prognosis in patients with severe COVID-19. In summary, COVID-19-induced myeloid dysregulation and lymphoid impairment establish a condition of 'immune silence' in patients with critical COVID-19.
Collapse
Affiliation(s)
- Pierre Bost
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris, France
- Sorbonne Universite, Complexite du vivant, Paris, France
| | - Francesco De Sanctis
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefania Canè
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Katia Donadello
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Monica Castellucci
- The Center for Technological Platforms, University of Verona, Verona, Italy
| | - David Eyal
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alessandra Fiore
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Cristina Anselmi
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Roza Maria Barouni
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Rosalinda Trovato
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Simone Caligola
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Alessia Lamolinara
- CAST- Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- CAST- Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Annarita Mazzariol
- Microbiology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Pasquale De Nardo
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Leonardo Gottin
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Enrico Polati
- Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris, France
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Vincenzo Bronte
- Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|
32
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
33
|
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol 2020; 11:584626. [PMID: 33324403 PMCID: PMC7724774 DOI: 10.3389/fimmu.2020.584626] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial–mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marina Chiara Garassino
- Medical Oncology Department, Istituto Nazionale dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, Novara, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
34
|
Marigo I, Trovato R, Hofer F, Ingangi V, Desantis G, Leone K, De Sanctis F, Ugel S, Canè S, Simonelli A, Lamolinara A, Iezzi M, Fassan M, Rugge M, Boschi F, Borile G, Eisenhaure T, Sarkizova S, Lieb D, Hacohen N, Azzolin L, Piccolo S, Lawlor R, Scarpa A, Carbognin L, Bria E, Bicciato S, Murray PJ, Bronte V. Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discov 2020; 10:1758-1773. [PMID: 32651166 DOI: 10.1158/2159-8290.cd-20-0036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are regulators of extracellular matrix (ECM) remodeling and metastatic progression, the main cause of cancer-associated death. We found that disabled homolog 2 mitogen-responsive phosphoprotein (DAB2) is highly expressed in tumor-infiltrating TAMs and that its genetic ablation significantly impairs lung metastasis formation. DAB2-expressing TAMs, mainly localized along the tumor-invasive front, participate in integrin recycling, ECM remodeling, and directional migration in a tridimensional matrix. DAB2+ macrophages escort the invasive dissemination of cancer cells by a mechanosensing pathway requiring the transcription factor YAP. In human lobular breast and gastric carcinomas, DAB2+ TAMs correlated with a poor clinical outcome, identifying DAB2 as potential prognostic biomarker for stratification of patients with cancer. DAB2 is therefore central for the prometastatic activity of TAMs. SIGNIFICANCE: DAB2 expression in macrophages is essential for metastasis formation but not primary tumor growth. Mechanosensing cues, activating the complex YAP-TAZ, regulate DAB2 in macrophages, which in turn controls integrin recycling and ECM remodeling in 3-D tissue matrix. The presence of DAB2+ TAMs in patients with cancer correlates with worse prognosis.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Rosalinda Trovato
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.
| | - Francesca Hofer
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | | | | | - Kevin Leone
- Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefania Canè
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Anna Simonelli
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology (CAST), University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center for Advanced Studies and Technology (CAST), University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Fassan
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Massimo Rugge
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova, Italy
- Institute of Pediatric Research Città della Speranza, Padova, Italy
| | | | | | - David Lieb
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- IFOM, The FIRC Institute for Molecular Oncology, Padova, Italy
| | - Rita Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Luisa Carbognin
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Peter J Murray
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.
| |
Collapse
|
35
|
Proietti E, Rossini S, Grohmann U, Mondanelli G. Polyamines and Kynurenines at the Intersection of Immune Modulation. Trends Immunol 2020; 41:1037-1050. [PMID: 33055013 DOI: 10.1016/j.it.2020.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Polyamines (i.e., putrescine, spermidine, and spermine) are bioactive polycations capable of binding nucleic acids and proteins and modulating signaling pathways. Polyamine functions have been studied most extensively in tumors, where they can promote cell transformation and proliferation. Recently, spermidine was found to exert protective effects in an experimental model of multiple sclerosis (MS) and to confer immunoregulatory properties on dendritic cells (DCs), via the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. IDO1 converts l-tryptophan into metabolites, collectively known as kynurenines, endowed with several immunoregulatory effects via activation of the arylhydrocarbon receptor (AhR). Because AhR activation increases polyamine production, the emerging scenario has identified polyamines and kynurenines as actors of an immunoregulatory circuitry with potential implications for immunotherapy in autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Elisa Proietti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Sofia Rossini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
36
|
Jansig E, Geissler S, Rieckmann V, Kuenemund A, Hietel B, Schenk M, Wussow S, Kreideweiss P, Panzner S, Reinsch C, Cynis H. Viromers as carriers for mRNA-mediated expression of therapeutic molecules under inflammatory conditions. Sci Rep 2020; 10:15090. [PMID: 32934311 PMCID: PMC7494895 DOI: 10.1038/s41598-020-72004-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
Therapeutic mRNA delivery has been described for several treatment options, such as vaccination and cancer immunotherapy. However, mRNA delivery has to be accompanied by the development and testing of suitable carrier materials due to the instability of mRNAs in human body fluids. In the present study, we investigated the ability of recently developed Viromers to deliver mRNAs in a classical inflammatory setting. We tested mRNAs coding for active components of preclinical (7ND) and approved (sTNF-RII) biologics, in vitro and in vivo. 7ND is an established blocker of the CCR2 axis, whereas sTNF-RII is the active component of the approved drug Etanercept. Viromer/mRNA complexes were transfected into murine macrophages in vitro. Protein expression was analysed using Luciferase reporter expression and mainly identified in spleen, blood and bone marrow in vivo. 7ND-mRNA delivery led to efficient blockage of monocytes infiltration in thioglycolate-induced peritonitis in mice, underlining the ability of Viromers to deliver a therapeutic mRNA cargo without overt toxicity. Therefore, we propose Viromer-based mRNA delivery as a suitable option for the treatment of inflammatory disorders beyond infusion of biological molecules.
Collapse
Affiliation(s)
- Edith Jansig
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Stefanie Geissler
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Vera Rieckmann
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Anja Kuenemund
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Benjamin Hietel
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Mathias Schenk
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Sebastian Wussow
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | | | - Steffen Panzner
- BioNTech Delivery Technologies GmbH, Weinbergweg 23, 06120, Halle, Germany
| | - Christian Reinsch
- BioNTech Delivery Technologies GmbH, Weinbergweg 23, 06120, Halle, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany.
| |
Collapse
|
37
|
Mondanelli G, Di Battista V, Pellanera F, Mammoli A, Macchiarulo A, Gargaro M, Mavridou E, Matteucci C, Ruggeri L, Orabona C, Volpi C, Grohmann U, Mecucci C. A novel mutation of indoleamine 2,3-dioxygenase 1 causes a rapid proteasomal degradation and compromises protein function. J Autoimmun 2020; 115:102509. [PMID: 32605792 DOI: 10.1016/j.jaut.2020.102509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) - the enzyme catalyzing the rate-limiting step of tryptophan catabolism along the kynurenine pathway - belongs to the class of inhibitory immune checkpoint molecules. Such regulators of the immune system are crucial for maintaining self-tolerance and thus, when properly working, preventing autoimmunity. A dysfunctional IDO1 has recently been associated with a specific single nucleotide polymorphism (SNP) and with the occurrence of autoimmune diabetes and multiple sclerosis. Many genetic alterations of IDO1 have been proposed being related with dysimmune disorders. However, the molecular and functional meaning of variations in IDO1 exomes as well as the promoter region remains a poorly explored field. In the present study, we identified a rare missense variant (rs751360195) at the IDO1 gene in a patient affected by coeliac disease, thyroiditis, and selective immunoglobulin A deficiency. Molecular and functional studies demonstrated that the substitution of lysine (K) at position 257 with a glutamic acid (E) results in an altered IDO1 protein that undergoes a rapid protein turnover. This genotype-to-phenotype relation is produced by peripheral blood mononuclear cells (PBMCs) of the patient bearing this variation and is associated with a specific phenotype (i.e., impaired tryptophan catabolism and defective mechanisms of immune tolerance). Thus decoding functional mutations of the IDO1 exome may provide clinically relevant information exploitable to personalize therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Andrea Mammoli
- Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, Jin W, Gao X. The Emerging Role of Myeloid-Derived Suppressor Cells in the Glioma Immune Suppressive Microenvironment. Front Immunol 2020; 11:737. [PMID: 32391020 PMCID: PMC7193311 DOI: 10.3389/fimmu.2020.00737] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid progenitor and precursor cells at different stages of differentiation, which play an important role in tumor immunosuppression. Glioma is the most common and deadliest primary malignant tumor of the brain, and ample evidence supports key contributions of MDSCs to the immunosuppressive tumor microenvironment, which is a key factor stimulating glioma progression. In this review, we summarize the source and characterization of MDSCs, discuss their immunosuppressive functions, and current approaches that target MDSCs for tumor control. Overall, the review provides insights into the roles of MDSC immunosuppression in the glioma microenvironment and suggests that MDSC control is a powerful cellular therapeutic target for currently incurable glioma tumors.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Zhifang Hu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Key Lab for Thin Film and Microfabrication Technology, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J 2020; 287:4246-4260. [PMID: 32096279 PMCID: PMC7586951 DOI: 10.1111/febs.15260] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Possessing structural homology with their active enzyme counterparts but lacking catalytic activity, pseudoenzymes have been identified for all major enzyme groups. Caspases are a family of cysteine‐dependent aspartate‐directed proteases that play essential roles in regulating cell death and inflammation. Here, we discuss the only human pseudo‐caspase, FLIP(L), a paralog of the apoptosis‐initiating caspases, caspase‐8 and caspase‐10. FLIP(L) has been shown to play a key role in regulating the processing and activity of caspase‐8, thereby modulating apoptotic signaling mediated by death receptors (such as TRAIL‐R1/R2), TNF receptor‐1 (TNFR1), and Toll‐like receptors. In this review, these canonical roles of FLIP(L) are discussed. Additionally, a range of nonclassical pseudoenzyme roles are described, in which FLIP(L) functions independently of caspase‐8. These nonclassical pseudoenzyme functions enable FLIP(L) to play key roles in the regulation of a wide range of biological processes beyond its canonical roles as a modulator of cell death.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Tamas Sessler
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
40
|
Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F. The Engagement Between MDSCs and Metastases: Partners in Crime. Front Oncol 2020; 10:165. [PMID: 32133298 PMCID: PMC7040035 DOI: 10.3389/fonc.2020.00165] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor metastases represent the major cause of cancer-related mortality, confirming the urgent need to identify key molecular pathways and cell-associated networks during the early phases of the metastatic process to develop new strategies to either prevent or control distal cancer spread. Several data revealed the ability of cancer cells to establish a favorable microenvironment, before their arrival in distant organs, by manipulating the cell composition and function of the new host tissue where cancer cells can survive and outgrow. This predetermined environment is termed “pre-metastatic niche” (pMN). pMN development requires that tumor-derived soluble factors, like cytokines, growth-factors and extracellular vesicles, genetically and epigenetically re-program not only resident cells (i.e., fibroblasts) but also non-resident cells such as bone marrow-derived cells. Indeed, by promoting an “emergency” myelopoiesis, cancer cells switch the steady state production of blood cells toward the generation of pro-tumor circulating myeloid cells defined as myeloid-derived suppressor cells (MDSCs) able to sustain tumor growth and dissemination. MDSCs are a heterogeneous subset of myeloid cells with immunosuppressive properties that sustain metastatic process. In this review, we discuss current understandings of how MDSCs shape and promote metastatic dissemination acting in each fundamental steps of cancer progression from primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Rosalinda Trovato
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
41
|
Bellone M, Brevi A, Bruzzì S, Consonni M, De Santis F, Di Lullo G, Majorini MT, Pastò A, Amadori A, Bregni M, Di Nicola M, Calabrò L, Ferrucci PF, Proietti E, Colombo MP, Russo V. Cancer bio-immunotherapy XVI annual NIBIT-(Italian Network for Tumor Biotherapy) meeting, October 11-13 2018, Milan, Italy. Cancer Immunol Immunother 2020; 69:1141-1151. [PMID: 32025818 DOI: 10.1007/s00262-020-02502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Matteo Bellone
- Unit of Cellular Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Arianna Brevi
- Unit of Cellular Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefania Bruzzì
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michela Consonni
- Unit of Experimental Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca De Santis
- Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giulia Di Lullo
- Unit of Tumor Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Teresa Majorini
- Unit of Molecular Immunology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Anna Pastò
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Marco Bregni
- Oncology Unit, ASST Valle Olona, Ospedale di Circolo di Busto Arsizio, Busto Arsizio, Italy
| | - Massimo Di Nicola
- Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luana Calabrò
- Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | | | - Enrico Proietti
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Mario Paolo Colombo
- Unit of Molecular Immunology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Vincenzo Russo
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
42
|
Trovato R, Fiore A, Sartori S, Canè S, Giugno R, Cascione L, Paiella S, Salvia R, De Sanctis F, Poffe O, Anselmi C, Hofer F, Sartoris S, Piro G, Carbone C, Corbo V, Lawlor R, Solito S, Pinton L, Mandruzzato S, Bassi C, Scarpa A, Bronte V, Ugel S. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 2019; 7:255. [PMID: 31533831 PMCID: PMC6751612 DOI: 10.1186/s40425-019-0734-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with an overall 5-year survival rate of less than 8%. New evidence indicates that PDAC cells release pro-inflammatory metabolites that induce a marked alteration of normal hematopoiesis, favoring the expansion and accumulation of myeloid-derived suppressor cells (MDSCs). We report here that PDAC patients show increased levels of both circulating and tumor-infiltrating MDSC-like cells. METHODS The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in three independent cohorts of PDAC patients (total analyzed patients, n = 117). Frequency of circulating MDSCs was correlated with overall survival of PDAC patients. We also analyzed the frequency of tumor-infiltrating MDSC and the immune landscape in fresh biopsies. Purified myeloid cell subsets were tested in vitro for their T-cell suppressive capacity. RESULTS Correlation with clinical data revealed that MDSC frequency was significantly associated with a shorter patients' overall survival and metastatic disease. However, the immunosuppressive activity of purified MDSCs was detectable only in some patients and mainly limited to the monocytic subset. A transcriptome analysis of the immunosuppressive M-MDSCs highlighted a distinct gene signature in which STAT3 was crucial for monocyte re-programming. Suppressive M-MDSCs can be characterized as circulating STAT3/arginase1-expressing CD14+ cells. CONCLUSION MDSC analysis aids in defining the immune landscape of PDAC patients for a more appropriate diagnosis, stratification and treatment.
Collapse
Affiliation(s)
- Rosalinda Trovato
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessandra Fiore
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
- Present Address: Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sara Sartori
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefania Canè
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Salvatore Paiella
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Ornella Poffe
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Cristina Anselmi
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Francesca Hofer
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Geny Piro
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmine Carbone
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Corbo
- Department of Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Rita Lawlor
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Samantha Solito
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
- Present Address: Centro Piattaforme Tecnologiche (CPT), University of Verona, Verona, Italy
| | - Laura Pinton
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Susanna Mandruzzato
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Claudio Bassi
- General and Pancreatic Surgery, Pancreas Institute, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Department of Diagnostic and Public Health, University of Verona, Verona, Italy
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Bronte
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- University Hospital and Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
43
|
The emerging role of IMD 0354 on bone homeostasis by suppressing osteoclastogenesis and bone resorption, but without affecting bone formation. Cell Death Dis 2019; 10:654. [PMID: 31506437 PMCID: PMC6737093 DOI: 10.1038/s41419-019-1914-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Osteoporosis is caused by an imbalance between bone formation and bone resorption. Receptor activator of nuclear factor-κB ligand (RANKL) promotes the activity and differentiation of osteoclasts via activating the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. IMD 0354 is a selective molecular inhibitor of inhibitor of NF-κB kinase subunit beta (IKKβ) and effective for treatment of acute and subacute inflammatory diseases through the suppression of NF-κB activation. However, the effect of IMD 0354 on bone homeostasis is unknown. In this study, we demonstrated that IMD 0354 significantly attenuated ovariectomy-induced bone loss and inhibited osteoclastogenesis in mice, whereas bone formation was not affected. Additionally, IMD 0354 dramatically inhibited osteoclast differentiation and function induced by RANKL and macrophage colony-stimulating factor in bone marrow monocytes as verified by tartrate-resistant acid phosphatase (TRAP) staining as well as bone resorption assay in vitro. Subsequently, we found that activation of NF-κB signaling and the ERK/c-Fos axis were blunted during osteoclast formation induced by RANKL. Transcription factors nuclear factor of activated T cells c1 (NFATc1) and c-Fos were suppressed with the decreased expression of osteoclast-related genes by IMD 0354. Our findings suggest that IMD 0354 could be a potential preventive and therapeutic drug for osteoporosis.
Collapse
|
44
|
Canè S, Ugel S, Trovato R, Marigo I, De Sanctis F, Sartoris S, Bronte V. The Endless Saga of Monocyte Diversity. Front Immunol 2019; 10:1786. [PMID: 31447834 PMCID: PMC6691342 DOI: 10.3389/fimmu.2019.01786] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer immunotherapy relies on either restoring or activating the function of adaptive immune cells, mainly CD8+ T lymphocytes. Despite impressive clinical success, cancer immunotherapy remains ineffective in many patients due to the establishment of tumor resistance, largely dependent on the nature of tumor microenvironment. There are several cellular and molecular mechanisms at play, and the goal is to identify those that are clinically significant. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-tumoral function. Indeed, monocytes are involved in several cancer-associated processes such as immune-tolerance, metastatic spread, neoangiogenesis, and chemotherapy resistance; on the other hand, by presenting cancer-associated antigens, they can also promote and sustain anti-tumoral T cell response. Recently, by high throughput technologies, new findings have revealed previously underappreciated, profound transcriptional, epigenetic, and metabolic differences among monocyte subsets, which complement and expand our knowledge on the monocyte ontogeny, recruitment during steady state, and emergency hematopoiesis, as seen in cancer. The subdivision into discrete monocytes subsets, both in mice and humans, appears an oversimplification, whereas continuum subsets development is best for depicting the real condition. In this review, we examine the evidences sustaining the existence of a monocyte heterogeneity along with functional activities, at the primary tumor and at the metastatic niche. In particular, we describe how tumor-derived soluble factors and cell-cell contact reprogram monocyte function. Finally, we point out the role of monocytes in preparing and shaping the metastatic niche and describe relevant targetable molecules altering monocyte activities. We think that exploiting monocyte complexity can help identifying key pathways important for the treatment of cancer and several conditions where these cells are involved.
Collapse
Affiliation(s)
- Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Rosalinda Trovato
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Vincenzo Bronte
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Characterization of Myeloid-derived Suppressor Cells in a Patient With Lung Adenocarcinoma Undergoing Durvalumab Treatment: A Case Report. Clin Lung Cancer 2019; 20:e514-e516. [PMID: 31122866 DOI: 10.1016/j.cllc.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 11/23/2022]
|
46
|
Safa AR, Kamocki K, Saadatzadeh MR, Bijangi-Vishehsaraei K. c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer's Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target. BIOMARKERS JOURNAL 2019; 5:4. [PMID: 32352084 PMCID: PMC7189798 DOI: 10.36648/2472-1646.5.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer's disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer's disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer's disease, and COPD.
Collapse
Affiliation(s)
- Ahmad R Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - Krzysztof Kamocki
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| | - M Reza Saadatzadeh
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
47
|
Ochando J, Conde P, Utrero-Rico A, Paz-Artal E. Tolerogenic Role of Myeloid Suppressor Cells in Organ Transplantation. Front Immunol 2019; 10:374. [PMID: 30894860 PMCID: PMC6414442 DOI: 10.3389/fimmu.2019.00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells of myeloid origin with a specific immune inhibitory function that negatively regulates the adaptive immune response. Since MDSC participate in the promotion of tolerance in the context of organ transplantation, therapeutic strategies that regulate the induction and development of MDSC have been the center of scientist attention. Here we review literature regarding induction of MDSC with demonstrated suppressive function among different types of allografts and their mechanism of action. While manipulation of MDSC represents a potential therapeutic approach for the promotion of donor specific tolerance in solid organ transplantation, further characterization of their specific phenotype, which distinguishes MDSC from non-suppressive myeloid cells, and detailed evaluation of the inhibitory mechanism that determines their suppressive function, is necessary for the realistic application of MDSC as biomarkers in health and disease and their potential use as immune cell therapy in organ transplantation.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Conde
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Utrero-Rico
- Grupo de Inmunodeficiencias e Inmunología del Trasplante, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Grupo de Inmunodeficiencias e Inmunología del Trasplante, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|