1
|
Yarava JR, Gautam I, Jacob A, Fu R, Wang T. Proton-Detected Solid-State NMR for Deciphering Structural Polymorphism and Dynamic Heterogeneity of Cellular Carbohydrates in Pathogenic Fungi. J Am Chem Soc 2025; 147:17416-17432. [PMID: 40328234 DOI: 10.1021/jacs.5c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Carbohydrate polymers in their cellular context display highly polymorphic structures and dynamics essential to their diverse functions, yet they are challenging to analyze biochemically. Proton-detection solid-state NMR spectroscopy offers high isotopic abundance and sensitivity, enabling the rapid and high-resolution structural characterization of biomolecules. Here, an array of 2D/3D 1H-detection solid-state NMR techniques are tailored to investigate polysaccharides in fully protonated or partially deuterated cells of three prevalent pathogenic fungi: Rhizopus delemar, Aspergillus fumigatus, and Candida albicans, representing filamentous species and yeast forms. Selective detection of acetylated carbohydrates reveals 15 forms of N-acetylglucosamine units in R. delemar chitin, which coexists with chitosan, and associates with proteins only at limited sites. This is supported by distinct order parameters and effective correlation times of their motions, analyzed through relaxation measurements and model-free analysis. Five forms of α-1,3-glucan with distinct structural origins and dynamics were identified in A. fumigatus, important for this buffering polysaccharide to perform diverse roles of supporting wall mechanics and regenerating a soft matrix under antifungal stress. Eight α-1,2-mannan side chain variants in C. albicans were resolved, highlighting the crucial role of mannan side chains in maintaining interactions with other cell wall polymers to preserve structural integrity. These methodologies provide novel insights into the functional structures of key fungal polysaccharides and create new opportunities for exploring carbohydrate biosynthesis and modifications across diverse organisms.
Collapse
Affiliation(s)
- Jayasubba Reddy Yarava
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Martins PA, Bourmaud CL, Luterbacher JS, Agger JW. Glucuronoyl esterases improve cellulose hydrolysis by lignocellulose degrading enzymes and enhance lignin extraction. Int J Biol Macromol 2025; 314:144218. [PMID: 40381790 DOI: 10.1016/j.ijbiomac.2025.144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Glucuronoyl esterases (GEs) catalyze cleavage of ester linkages between lignin and hemicellulose. This study investigates the role of GEs in the conversion of lignocellulosic biomass in combination with a minimal set of monocomponent cellulases (endo-1,4-glucanase, cellobiohydrolases 1 and 2, and beta-glucosidase) and a GH10 endo-xylanase. We clearly demonstrate how these enzymes promote the disassembly of lignocellulose by breaking some of the covalent bonds between lignin and xylan. By cleaving the ester-linked lignin-carbohydrate complexes, we demonstrate enhanced cellulose hydrolysis of untreated lignocellulosic biomass (hardwood, softwood, and cereals). The increase in glucose production from hydrolysis of untreated lignocellulose suggests an improvement in cellulase accessibility to cellulose fibers associated with ester bond cleavage and highlights how GEs complement cellulases and xylanases in breaking down the complex lignocellulosic matrix. Furthermore, we demonstrate how GEs facilitate lignin extraction in mild aldehyde-assisted fractionation, which results in a higher yield of aldehyde-protected lignins, which is desirable for high-value applications. This is the first direct evidence of improve lignin extraction by the action of GEs. GEs are important enzymes for the efficient deconstruction of lignocellulosic biomass and that the integration of GEs with other enzymes may lead to more sustainable and economically viable biomass conversion processes alongside extraction of high-quality lignin.
Collapse
Affiliation(s)
- Pedro A Martins
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads 221, Kgs Lyngby DK-2800, Denmark
| | - Claire L Bourmaud
- Laboratory of Sustainable and Catalytic Processing (LPDC), Institute of Chemicals Sciences and Engineering (ISIC), School of Basic Sciences (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing (LPDC), Institute of Chemicals Sciences and Engineering (ISIC), School of Basic Sciences (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jane W Agger
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Søltofts Plads 221, Kgs Lyngby DK-2800, Denmark.
| |
Collapse
|
3
|
Sotome-Yukisada H, Hiratsuka K, Noguchi K, Ashida J, Kato T, Shikinaka K, Matsushita Y, Otsuka Y, Tominaga Y. Quantitative Characterization of Modified Lignin Using Solid-State 13C NMR Spectroscopy. Anal Chem 2025; 97:9512-9517. [PMID: 40273013 DOI: 10.1021/acs.analchem.5c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy with magic angle spinning (MAS) and direct polarization (DP) techniques is a valuable tool for quantitative and reliable characterization of lignin derivatives, specifically for determining these chemical structures and the degree of substitution upon chemical modification. In this study, the DPMAS 13C NMR spectroscopy was used in a quantitative study of the esterifying reaction in lignin derivatives, which allowed the whole lignin structure to be determined. This quantitative evaluation system using DPMAS 13C NMR spectroscopy can be widely utilized for lignin characterization without a specific chemical treatment or decomposition of lignin.
Collapse
Affiliation(s)
- Haruka Sotome-Yukisada
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Kentaro Hiratsuka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Jun Ashida
- JEOL Ltd., Akishima, Tokyo 196-8558, Japan
| | - Toshiyo Kato
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Kazuhiro Shikinaka
- National Institute of Advanced Industrial Science and Technology, Miyagi 983-8551, Japan
| | - Yasuyuki Matsushita
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 184-8509, Japan
| | - Yuichiro Otsuka
- Forestry and Forest Products Research Institute, Ibaraki 305-8687, Japan
| | - Yoichi Tominaga
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Wu S, Tian L, Guo S, Lei H, Zhao X, Hao X, Li S, Xie Z, Hu W, Huang L, Tan Y, Long X, Li D. OsLC1, a transaldolase, regulates cell patterning and leaf morphology through modulation of secondary metabolism. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1751-1767. [PMID: 39950420 PMCID: PMC12018812 DOI: 10.1111/pbi.70004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 04/25/2025]
Abstract
Leaf morphogenesis is a crucial process in plants that governs essential physiological functions such as photosynthesis and transpiration. Despite significant advances in understanding leaf development, the mechanism of intricate cellular patterning remains elusive. We characterize the OsLC1 mutant, which displays a curly leaf phenotype alongside reductions in plant height and tiller number, which are indicative of multiple morphological abnormalities. Through map-based cloning, we identified OsLC1 as encoding a transaldolase (TA) protein, whose genetic variations in OsLC1 lead to the disruptions of cell patterning across the vasculature, bundle sheath cells, mesophyll, stomata, bulliform cells and sclerenchyma cells. OsLC1 exhibited TA activity and modulated metabolic flux to the shikimic pathway, thereby affecting phenylpropanoid metabolism. This regulation influenced lignin and flavonoid biosynthesis, ultimately modulating cellular pattern formation through perturbations to flavonoid-mediated auxin or lignin homeostasis. Notably, loss of OsLC1 function led to a reduction in leaf water status, which, along with abnormal cellular patterns in oslc1, caused leaf curling. Overall, our findings provide insights into the regulatory mechanisms underlying cell patterning in the leaf and offer valuable perspectives on leaf morphogenesis in rice.
Collapse
Affiliation(s)
- Sha Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Lianfu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Shasha Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Han Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xinjie Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xiaohua Hao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
- College of Life and Environmental ScienceHunan University of Arts and ScienceChangdeChina
| | - Shaozhuang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Zijing Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural BiogenomicsChangsha Medical UniversityChangshaHunanChina
| | - Wenli Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan ProvinceCollege of Life Sciences, Hainan Normal UniversityHaikouHainanChina
| | - Liqun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Ying Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xueying Long
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Dongping Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| |
Collapse
|
5
|
Ju M, Liu Y, Sun X, Zheng Y, Xia R, Zheng K, Cui Y, Li Z, Wang H, Wang Q. Efficient bamboo biorefining based on liquid hot water pretreatment: Co-production of xylo-oligosaccharides and lignin-containing cellulose nanofiber films. Int J Biol Macromol 2025; 307:141906. [PMID: 40068743 DOI: 10.1016/j.ijbiomac.2025.141906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Liquid hot water (LHW) pretreatment is an environmentally friendly that uses hot water under certain pressure to break down biomass in the absence of chemicals. In this paper, bamboo was used as the substrate to prepare the lignin-containing cellulose nanofibers (LCNFs) and xylo-oligosaccharides (XOS) using LHW strategy. The results showed that a total xylose yield of 63.95 % was achieved in only 20 min, with a high total xylose selectivity of 96.6 %. Meanwhile, a cellulose retention rate of 99.7 % was also achieved. The optimal conditions obtained from the 100 mL reactor were validated through three parallel experiments using the 2 L reactor, and the residue was treated with 1.5 wt% NaOH to reduce the lignin content. LCNF was obtained through ball milling and ultrasonic treatment, and the LCNF film was prepared using an evaporation-induced self-assembly approach, which showed excellent mechanical properties, including tensile strength (109.4 MPa), Young's modulus (1.4 GPa) and elongation at break (28.3 %). Additionally, the LCNF films exhibited effective UV-shielding capacity. This study achieved the full component utilization of bamboo for the co-production of high value-added chemicals and biomass-based materials.
Collapse
Affiliation(s)
- Miaomiao Ju
- School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Yunyun Liu
- School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xinlong Sun
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanqing Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Rundong Xia
- School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Kexin Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yanran Cui
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China
| | - Zhenglong Li
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Hongkun Wang
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China.
| | - Qiong Wang
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Addison B, Dickwella Widange MC, Pu Y, Ragauskas AJ, Harman-Ware AE. Solid-state NMR at natural isotopic abundance for bioenergy applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:46. [PMID: 40296123 PMCID: PMC12039142 DOI: 10.1186/s13068-025-02648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Lignocellulosic biomass offers a vast and renewable resource for biofuel production and carbon management solutions. The effective conversion of lignocellulosic biomass into economically competitive biofuels and bioproducts demands a comprehensive understanding of its complex structure and composition, often requiring a range of analytical tools to achieve meaningful insights. However, for the analysis of rigid solids, many traditional methods necessitate dissolution or chemical/physical modification of the sample, which limit our ability to capture an intact view of its structural components. This highlights the need for non-destructive approaches, such as solid-state nuclear magnetic resonance (ssNMR), which preserves the sample's natural state while providing deep, molecular-level insights. While advanced multi-dimensional ssNMR on 13C-enriched materials has recently proven exceptionally valuable for elucidating the complex macrostructure of biomass, isotopic enrichment is expensive, laborious and is clearly infeasible at large scales. In this review, we explore the role of solid-state NMR methods at natural isotopic abundance as essential tools for the non-destructive, in-depth characterization of lignocellulosic biomass and bioenergy materials in their native and unaltered state. After a brief introduction to the basic principles of solid-state NMR, we first describe the acquisition and interpretation of routine 1D 13C ssNMR spectra of lignocellulose and other related biopolymers and products. We then delve into more advanced ssNMR approaches, including key spectral editing techniques, probing polymer dynamics, and various 2D methods applicable at natural abundance. Understanding of domain miscibility as observed from proton-based spin diffusion effects is a theme throughout. Our aim is to highlight key examples where ssNMR provides valuable insights into the composition, structure, dynamics, and morphology of rigid biomaterials relevant to the bioenergy economy, revealing both the native structures and fundamental transformations that occur across conversion and decomposition pathways. We hope that this review encourages a broader adoption of ssNMR methods in bioenergy research, where it can serve as a pivotal analytical tool for achieving sustainable biomass utilization and advancing a carbon-efficient bioeconomy.
Collapse
Affiliation(s)
- Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Malitha C Dickwella Widange
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arthur J Ragauskas
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, 37996-2200, USA
- Center for Renewable Carbon, The University of Tennessee Knoxville, Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| |
Collapse
|
7
|
Zhang L, Gao C, Gao Y, Yang H, Jia M, Wang X, Zhang B, Zhou Y. New insights into plant cell wall functions. J Genet Genomics 2025:S1673-8527(25)00122-5. [PMID: 40287129 DOI: 10.1016/j.jgg.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The plant cell wall is an extremely complicated natural nanoscale structure composed of cellulose microfibrils embedded in a matrix of noncellulosic polysaccharides, further reinforced by the phenolic compound lignins in some cell types. Such network formed by the interactions of multiscale polymers actually reflects functional form of cell wall to meet the requirements of plant cell functionalization. Therefore, how plants assemble cell wall functional structure is fundamental in plant biology and critical for crop trait formation and domestication as well. Due to the lack of effective analytical techniques to characterize this fundamental but complex network, it remains difficult to establish direct links between cell-wall genes and phenotypes. The roles of plant cell walls are often underestimated as indirect. Over the past decades, many genes involved in cell wall biosynthesis, modification, and remodeling have been identified. The application of a variety of state-of-the-art techniques has made it possible to reveal the fine cell wall networks and polymer interactions. Hence, many exciting advances in cell wall biology have been achieved in recent years. This review provides an updated overview of the mechanistic and conceptual insights in cell wall functionality, and prospects the opportunities and challenges in this field.
Collapse
Affiliation(s)
- Lanjun Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Mi L, Liu Y, Huang Q, Zhao L, Qin X, Sun Y, Li B. Elucidation of the mechanism by which the foliar application of triacontanol enhances Cd enrichment in Tagetes patula L. through morphological, metabolomic, and transcriptomic analyses. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1041-1053. [PMID: 40123477 DOI: 10.1039/d4em00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Phytoremediation is an effective technology for removing heavy metal cadmium (Cd) from soil without harming the soil; however, it is limited by its long remediation time and low efficiency. In this study, a plant growth regulator (PGR), triacontanol, was sprayed on the leaves of the hyperaccumulator Tagetes patula L. at different growth stages to enhance the accumulation of soil Cd, thereby ultimately enhancing the efficiency of phytoremediation. Results showed that leaves were the main site of Cd accumulation in T. patula, and foliar application of triacontanol increased the leaf biomass and Cd content, with maximum values of 14.69% and 15.44%, respectively. Furthermore, the Cd removal rate in the soil increased to 11.53%. The effect of a single application of triacontanol on Cd accumulation was better than that of two applications, and the bloom period was found to be the best application stage. The proportion of Cd in the cell walls increased, enhancing Cd fixation ability. The photosynthetic efficiency and antioxidant capacity of T. patula improved significantly. In the roots, metabolomic and transcriptomic analyses indicated that triacontanol promoted the metabolism of low-molecular-weight organic acids, leading to an increase in the available and exchangeable Cd in soil, with maximum values of 14.72% and 2.29%, respectively. The upregulation of Cd transport-related genes and pathways in the roots strengthened their ability to absorb Cd and resist Cd stress. These findings systematically elucidated the molecular mechanism of triacontanol-enhanced Cd accumulation in T. patula and provide technical support for its wide application.
Collapse
Affiliation(s)
- Luqi Mi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yetong Liu
- Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Qingqing Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lijie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xu Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuebing Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Boyan Li
- Agro-Ecological Environment Monitoring and Agricultural Products Quality Inspection Center of Tianjin, Tianjin 300193, China
| |
Collapse
|
9
|
Khani SH, Amer KO, Remy N, Lebas B, Habrant A, Faraj A, Malandain G, Paës G, Refahi Y. A distinct autofluorescence distribution pattern marks enzymatic deconstruction of plant cell wall. N Biotechnol 2025; 88:46-60. [PMID: 40194596 DOI: 10.1016/j.nbt.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Achieving an economically viable transformation of plant cell walls into bioproducts requires a comprehensive understanding of enzymatic deconstruction. Microscale quantitative analysis offers a relevant approach to enhance our understanding of cell wall hydrolysis, but becomes challenging under high deconstruction conditions. This study comprehensively addresses the challenges of quantifying the impact of extensive enzymatic deconstruction on plant cell wall at microscale. Investigation of highly deconstructed spruce wood provided spatial profiles of cell walls during hydrolysis with remarkable precision. A distinct cell wall autofluorescence distribution pattern marking enzymatic hydrolysis along with an asynchronous impact of hydrolysis on cell wall structure, with cell wall volume reduction preceding cell wall accessible surface area decrease, were revealed. This study provides novel insights into enzymatic deconstruction of cell wall at under-investigated cell scale, and a robust computational pipeline applicable to diverse biomass species and pretreatment types for assessing hydrolysis impact and efficiency.
Collapse
Affiliation(s)
| | - Khadidja Ould Amer
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | - Noah Remy
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | - Berangère Lebas
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | - Anouck Habrant
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | - Ali Faraj
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | | | - Gabriel Paës
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France.
| | - Yassin Refahi
- Université de Reims-Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France.
| |
Collapse
|
10
|
Wang Z, Ye X, Huang L, Yuan Y. Modulation of morphogenesis and metabolism by plant cell biomechanics: from model plants to traditional herbs. HORTICULTURE RESEARCH 2025; 12:uhaf011. [PMID: 40093376 PMCID: PMC11908831 DOI: 10.1093/hr/uhaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/05/2025] [Indexed: 03/19/2025]
Abstract
The quality of traditional herbs depends on organ morphogenesis and the accumulation of active pharmaceutical ingredients. While recent research highlights the significance of cell mechanobiology in model plant morphogenesis, our understanding of mechanical signal initiation and transduction in traditional herbs remains incomplete. Recent studies reveal a close correlation between cell wall (CW) biosynthesis and active ingredient production, yet the role of cell mechanics in balancing morphogenesis and secondary metabolism is often overlooked. This review explores how the cell wall, plasma membrane, cytoskeleton, and vacuole collaborate to regulate cell mechanics and respond to mechanical changes. We propose CW biosynthesis as a hub in connecting cell mechanics with secondary metabolism and emphasize that understanding the relationship between mechanical remodeling and secondary metabolism could provide new insights into plant cell mechanobiology and the breeding of high-quality herbs.
Collapse
Affiliation(s)
- Zhengpeng Wang
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoming Ye
- Peking University Health Science Center, Peking University, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Yuan
- Experimental Research Center, China Academy of Chinese Medical Science, Beijing 100700, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences (CACMS), Beijing 100700, China
| |
Collapse
|
11
|
Delugeau L, Camy A, Alembik L, Poulin P, Gounel S, Mano N, Peruch F, Grelier S. Homogeneous Polymerization of Kraft Lignin Using an Alkaliphilic Multi-Copper Oxidase (Bilirubin Oxidase) in a Borate Buffer. Polymers (Basel) 2025; 17:779. [PMID: 40292664 PMCID: PMC11944997 DOI: 10.3390/polym17060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025] Open
Abstract
Enzymatic modification of Kraft lignin under alkaline conditions was investigated using bilirubin oxidase (BOD) in borate buffer (pH 10). Control solubilization without enzyme addition revealed a notable increase in molar mass (up to 1.7-fold) and potential borate complexation with lignin hydroxyl groups, as evidenced by thermogravimetric and 11B NMR analyses. BOD treatments induced substantial polymerization, with molar mass increases of up to 4-fold for insoluble fractions after 24 h, while soluble fractions exhibited progressive increases over 5 days. Quantitative 31P NMR showed reductions in aliphatic and phenolic hydroxyl groups by 20%, suggesting oxidative coupling reactions, particularly through 4-O-5' and 5-5' linkages. Solid-state 13C NMR confirmed structural changes associated with polymerization. Dynamic light scattering (DLS) indicated the presence of colloidal aggregates, potentially explaining challenges in HSQC NMR signal acquisition. These findings highlight the efficacy of bilirubin oxidase in catalyzing lignin polymerization and underscore the structural impact of borate-lignin interactions in alkaline media, paving the way for advanced lignin valorization strategies.
Collapse
Affiliation(s)
- Lou Delugeau
- Laboratoire de Chimie des Polymères Organiques (LCPO), University Bordeaux, CNRS, Bordeaux INP, UMR 5629, F-33600 Pessac, France; (L.D.); (A.C.); (L.A.)
| | - Aurèle Camy
- Laboratoire de Chimie des Polymères Organiques (LCPO), University Bordeaux, CNRS, Bordeaux INP, UMR 5629, F-33600 Pessac, France; (L.D.); (A.C.); (L.A.)
- Centre De Recherche Paul Pascal (CRPP), UMR CNRS 5301, University Bordeaux, F-33600 Pessac, France; (P.P.); (S.G.); (N.M.)
| | - Léna Alembik
- Laboratoire de Chimie des Polymères Organiques (LCPO), University Bordeaux, CNRS, Bordeaux INP, UMR 5629, F-33600 Pessac, France; (L.D.); (A.C.); (L.A.)
| | - Philippe Poulin
- Centre De Recherche Paul Pascal (CRPP), UMR CNRS 5301, University Bordeaux, F-33600 Pessac, France; (P.P.); (S.G.); (N.M.)
| | - Sébastien Gounel
- Centre De Recherche Paul Pascal (CRPP), UMR CNRS 5301, University Bordeaux, F-33600 Pessac, France; (P.P.); (S.G.); (N.M.)
| | - Nicolas Mano
- Centre De Recherche Paul Pascal (CRPP), UMR CNRS 5301, University Bordeaux, F-33600 Pessac, France; (P.P.); (S.G.); (N.M.)
| | - Frédéric Peruch
- Laboratoire de Chimie des Polymères Organiques (LCPO), University Bordeaux, CNRS, Bordeaux INP, UMR 5629, F-33600 Pessac, France; (L.D.); (A.C.); (L.A.)
| | - Stéphane Grelier
- Laboratoire de Chimie des Polymères Organiques (LCPO), University Bordeaux, CNRS, Bordeaux INP, UMR 5629, F-33600 Pessac, France; (L.D.); (A.C.); (L.A.)
| |
Collapse
|
12
|
Yarava JR, Gautam I, Jacob A, Fu R, Wang T. Proton-Detected Solid-State NMR for Deciphering Structural Polymorphism and Dynamic Heterogeneity of Cellular Carbohydrates in Pathogenic Fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642223. [PMID: 40161786 PMCID: PMC11952318 DOI: 10.1101/2025.03.09.642223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Carbohydrate polymers in their cellular context display highly polymorphic structures and dynamics essential to their diverse functions, yet they are challenging to analyze biochemically. Proton-detection solid-state NMR spectroscopy offers high isotopic abundance and sensitivity, enabling rapid and high-resolution structural characterization of biomolecules. Here, an array of 2D/3D 1H-detection solid-state NMR techniques are tailored to investigate polysaccharides in fully protonated or partially deuterated cells of three prevalent pathogenic fungi: Rhizopus delemar, Aspergillus fumigatus, and Candida albicans, representing filamentous species and yeast forms. Selective detection of acetylated carbohydrates reveals fifteen forms of N-acetylglucosamine units in R. delemar chitin, which coexists with chitosan as separate domains or polymers and associates with proteins only at limited sites. This is supported by distinct order parameters and effective correlation times of their motions, analyzed through relaxation measurements and model-free analysis. Five forms of α-1,3-glucan with distinct structural origins and dynamics were identified in A. fumigatus, important for this buffering polysaccharide to perform diverse roles of supporting wall mechanics and regenerating soft matrix under antifungal stress. Eight α-1,2-mannan sidechain variants in C. albicans were resolved, highlighting the crucial role of mannan sidechains in maintaining interactions with other cell wall polymers to preserve structural integrity. These methodologies provide novel insights into the functional structures of key fungal polysaccharides and create new opportunities for exploring carbohydrate biosynthesis and modifications across diverse organisms.
Collapse
Affiliation(s)
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Kundu T, Smith JC, Gupta M. Effect of Acetylation Patterns of Xylan on Interactions with Cellulose. Biomacromolecules 2025; 26:1659-1671. [PMID: 40015992 DOI: 10.1021/acs.biomac.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The present study demonstrates that the change in the degree of xylan acetylation significantly alters the 2-fold screw population that effectively interacts with the (100) hydrophobic cellulose, while such effects are less prominent for the (110) hydrophilic surface. All of the acetylated xylans reveal an ≈10-40% higher 2-fold population on the hydrophobic cellulose due to higher xylan-cellulose contacts. Deviations from periodic acetylation result in much lower 2-fold conformations, despite a comparable number of xylan-cellulose hydrogen bonds and contacts. Thus, it can be hypothesized that a specific and unique set of xylan: cellulose interactions mediate the formation of 2-fold xylan to interact with cellulose, which is also a 2-fold screw. Highly acetylated xylans desorb from cellulose, while low acetylated xylans show dependence on the topology of the cellulose surface. These findings provide additional insights into plant cell wall microstructure dynamics and inform future strategies for efficient biomass deconstruction in biofuel production.
Collapse
Affiliation(s)
- Tripti Kundu
- Computational Biophysics Lab, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Madhulika Gupta
- Computational Biophysics Lab, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
14
|
Qaseem MF, Zhang W, Dupree P, Wu AM. Xylan structural diversity, biosynthesis, and functional regulation in plants. Int J Biol Macromol 2025; 291:138866. [PMID: 39719228 DOI: 10.1016/j.ijbiomac.2024.138866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
Xylan is a vital component of plant cell walls, contributing to their structural integrity and flexibility through interactions with other polymers. Its structure varies among plant species, influencing the mechanical properties of cell walls. Xylan also has significant industrial potential, including in biofuels, biomaterials, food, and pharmaceuticals, due to its ability to be converted into valuable bioproducts. However, key aspects of xylan biosynthesis, regulation, and structural impact on plant growth and structures remain unclear. This review highlights current researches on xylan biosynthesis, modification, and applications, identifying critical gaps in knowledge. Meanwhile the review proposes new approaches to regulate xylan synthesis and understand its role in cell wall assembly and interactions with other polymers. Addressing these gaps could unlock the full industrial potential of xylan, leading to more sustainable applications.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Sardari M, Ghanati F, Mobasheri H, Hajnorouzi A. Short-term airborne ultrasound induced cell death in tobacco cells and changed their wall components. Sci Rep 2025; 15:3509. [PMID: 39875541 PMCID: PMC11775165 DOI: 10.1038/s41598-025-87762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US. Homogeneous suspension-cultured tobacco cells (Nicotiana tabacum L. cv Burley 21) were subjected to airborne US at 24 kHz in two pulsatile and continuous modes for 10 and 20 s. The study's outcome revealed that airborne US triggered the production of H2O2, elevated internal calcium concentration, and reduced antioxidant capacity upon cavitation. Alteration of covalently bound peroxidase and other wall-modifying enzyme activities was accompanied by reduced cellulose, pectin, and hemicellulose B but increased lignin and hemicellulose A. The biomass and viability of tobacco cells were also significantly decreased by airborne US, which ultimately resulting in PCD and secondary necrosis. The results highlight the potential risks of even short-time exposure to the airborne US on plant physiology and cell wall chemical composition raising significant concerns about its implications.
Collapse
Affiliation(s)
- Mahsa Sardari
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Abazar Hajnorouzi
- Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
16
|
Javaid T, Venkataraghavan A, Bhattarai M, Debnath D, Zhao W, Wang T, Faik A. A simple and highly efficient protocol for 13C-labeling of plant cell wall for structural and quantitative analyses via solid-state nuclear magnetic resonance. PLANT METHODS 2025; 21:5. [PMID: 39827139 PMCID: PMC11743006 DOI: 10.1186/s13007-024-01310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Plant cell walls are made of a complex network of interacting polymers that play a critical role in plant development and responses to environmental changes. Thus, improving plant biomass and fitness requires the elucidation of the structural organization of plant cell walls in their native environment. The 13C-based multi-dimensional solid-state nuclear magnetic resonance (ssNMR) has been instrumental in revealing the structural information of plant cell walls through 2D and 3D correlation spectral analyses. However, the requirement of enriching plants with 13C limits the applicability of this method. To our knowledge, there is only a very limited set of methods currently available that achieve high levels of 13C-labeling of plant materials using 13CO2, and most of them require large amounts of 13CO2 in larger growth chambers. RESULTS In this study, a simplified protocol for 13C-labeling of plant materials is introduced that allows ca 60% labeling of the cell walls, as quantified by comparison with commercially labeled samples. This level of 13C-enrichment is sufficient for all conventional 2D and 3D correlation ssNMR experiments for detailed analysis of plant cell wall structure. The protocol is based on a convenient and easy setup to supply both 13C-labeled glucose and 13CO2 using a vacuum-desiccator. The protocol does not require large amounts of 13CO2. CONCLUSION This study shows that our 13C-labeling of plant materials can make the accessibility to ssNMR technique easy and affordable. The derived high-resolution 2D and 3D correlation spectra are used to extract structural information of plant cell walls. This helps to better understand the influence of polysaccharide-polysaccharide interaction on plant performance and allows for a more precise parametrization of plant cell wall models.
Collapse
Affiliation(s)
- Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, 30605, GA, USA
| | | | - Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
- Integrated Lipid Biofuels LLC, Spokane, Washington, USA
| | - Debkumar Debnath
- The Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Wancheng Zhao
- The Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tuo Wang
- The Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
17
|
Huang Y, Liao K, Yang Z, Tian S, Yuan X, Sun X, Li Z, Han L. Novel CRM cosine similarity mapping strategy for simultaneous in-situ visual profiling lignocellulose in plant cell walls. Carbohydr Polym 2025; 348:122904. [PMID: 39567139 DOI: 10.1016/j.carbpol.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale.
Collapse
Affiliation(s)
- Yuanping Huang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Keke Liao
- College of Engineering, China Agricultural University, Beijing 100083, China; College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zengling Yang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Sicong Tian
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangru Yuan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xingming Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zichao Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
18
|
Koshani R, Pitcher ML, Yu J, Mahajan CL, Kim SH, Sheikhi A. Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications. NANO-MICRO LETTERS 2025; 17:103. [PMID: 39777633 PMCID: PMC11711842 DOI: 10.1007/s40820-024-01569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025]
Abstract
Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin. Micro- and nanofabrication of plant CW-like composites, characterization techniques, and in silico studies are reviewed, with a brief overview of current and potential applications. Micro-/nanofabrication approaches include bacterial growth and impregnation, layer-by-layer assembly, film casting, 3-dimensional templating microcapsules, and particle coating. Various characterization techniques are necessary for the comprehensive mechanical, chemical, morphological, and structural analyses of plant CWs and CW-like materials. CW-like materials demonstrate versatility in real-life applications, including biomass conversion, pulp and paper, food science, construction, catalysis, and reaction engineering. This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials, with the goal of advancing the development of innovative soft materials and elucidating the complex structure-property relationships inherent in native CWs.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mica L Pitcher
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jingyi Yu
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christine L Mahajan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
19
|
Zhao W, Thomas EC, Debnath D, Scott FJ, Mentink-Vigier F, White JR, Cook RL, Wang T. Enriched Molecular-Level View of Saline Wetland Soil Carbon by Sensitivity-Enhanced Solid-State NMR. J Am Chem Soc 2025; 147:519-531. [PMID: 39700415 PMCID: PMC11726556 DOI: 10.1021/jacs.4c11830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Soil organic matter (SOM) plays a major role in mitigating greenhouse gas emission and regulating earth's climate, carbon cycle, and biodiversity. Wetland soils account for one-third of all SOM; however, globally, coastal wetland soils are eroding faster due to increasing sea-level rise. Our understanding of carbon sequestration dynamics in wetlands lags behind that of upland soils. Here, we employ solid-state nuclear magnetic resonance (ssNMR) to investigate the molecular-level structure of biopolymers in wetland soils spanning 11 centuries. High-resolution multidimensional spectra, enabled by dynamic nuclear polarization (DNP), demonstrate enduring preservation of molecular structures within herbaceous plant cores, notably condensing aromatic motifs and carbohydrates, even over a millennium, with the preserved cores constituting a decreasing minority among molecules from decomposition and repolymerization with depth and age. Such preserved cores occur alongside molecules from the decomposition of loosely packed parent biopolymers. These findings emphasize the relative vulnerability of coastal wetland SOM when exposed to oxygenated water due to geological and anthropogenic changes.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elizabeth C. Thomas
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Debkumar Debnath
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Faith J. Scott
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 23310, United States
| | - Frederic Mentink-Vigier
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 23310, United States
| | - John R. White
- Department
of Oceanography & Coastal Sciences, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
- Coastal
Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Robert L. Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tuo Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Broda M, Plaza NZ, Jakes JE, Baez C, Pingali SV, Bras W. Effect of alkali treatment and fungal degradation on the nanostructure and cellulose arrangement in Scots pine cell walls - A neutron and X-ray scattering study. Carbohydr Polym 2025; 347:122733. [PMID: 39486963 DOI: 10.1016/j.carbpol.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 11/04/2024]
Abstract
Research on new conservation treatments for historical wood requires considerable amounts of appropriate wood material, which is hard to acquire. Thus, we produced biologically and chemically degraded model wood that could be used as a representative material in future research on consolidating agents. Using chemical composition determinations, we found that fungal decay targeted mainly polysaccharides, while alkaline treatment mostly reduced hemicelluloses and lignin content. X-ray and neutron scattering showed that all decayed samples had increased disorder in microfibril alignment and larger elementary fibril cross-sections, and alkaline-treated samples had much larger elementary fibril spacing compared to those decayed by fungi. These nanoscale and chemical differences correlate with physical property changes. For example, decreased cellulose crystallinity and increased disorder of the microfibrils in degraded cell walls likely contribute to the lower elastic moduli measured for these cell walls. The obtained data improves understanding of how degradation alters wood structures and properties across length scales and will be valuable for future studies focusing on archeological wood. Moreover, it leads to the conclusion that it is more appropriate to develop treatments that consider not only spatial variability and degree of wood degradation but also the corresponding molecular and nanoscale changes in the cell walls.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznan, Poland.
| | - Nayomi Z Plaza
- Forest Products Laboratory, Forest Service, United States Department of Agriculture, Madison, WI 53726, USA.
| | - Joseph E Jakes
- Forest Products Laboratory, Forest Service, United States Department of Agriculture, Madison, WI 53726, USA
| | - Carlos Baez
- Forest Products Laboratory, Forest Service, United States Department of Agriculture, Madison, WI 53726, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
21
|
Wang J, Gao J, Guo J, Ma L, Jiang X, Yu H, Li J, Hu Y, Daniel G, Yin Y. Dynamic changes of heterogeneous cell wall macromolecules in differentiating conifer xylem using cytochemical localization. Int J Biol Macromol 2025; 284:138150. [PMID: 39613068 DOI: 10.1016/j.ijbiomac.2024.138150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Tracing dynamic changes of heterogeneous cell wall components during xylem differentiation is essential for understanding the intricate architecture of wood cell walls at the individual secondary cell wall layer level. Here we employ histochemical- and immunological approaches to visualize the deposition of cellular polymers during xylem differentiation in Pinus bungeana. In axial tracheids, deposition of crystalline cellulose and glucomannan preceded xylan and lignin. Lignification was initiated in primary cell wall corners during development of the S1 layer and intensified with cell wall thickening. Immunofluorescence labeling showed an earlier deposition of glucomannan than xylan with strong presence in S1 layer corner regions at early stages of differentiation. Quantification of immunogold-labeled xylan and glucomannan showed distinct increasing trends during thickening of tracheid wall layers with xylan labeling of the S1 and S2 layers at the S3 stage greater than the S2 stage. Differential cell wall polymer deposition was evident in mature tracheid areas with glucomannan absent in warty layers. Pectins were highly concentrated in unlignified primary cell walls but decreased with axial tracheid wall differentiation. The sequence of polymer deposition in ray cells was similar but lagged behind axial tracheids with ray parenchyma remaining unlignified with thinner cell walls than ray tracheids.
Collapse
Affiliation(s)
- Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden; Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Jie Gao
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Juan Guo
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Lingyu Ma
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Hong Yu
- Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China
| | - Jiatao Li
- Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China
| | - Yao Hu
- Chengdu Product Quality Supervision, Inspection and Research Institute, Chengdu 610100, China
| | - Geoffrey Daniel
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| |
Collapse
|
22
|
Wen Z, Xu Z, Zhang L, Xue Y, Wang H, Jian L, Ma J, Liu Z, Yang H, Huang S, Kang X, Zhou Y, Zhang B. XYLAN O-ACETYLTRANSFERASE 6 promotes xylan synthesis by forming a complex with IRX10 and governs wall formation in rice. THE PLANT CELL 2024; 37:koae322. [PMID: 39663842 DOI: 10.1093/plcell/koae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Xylan, a pivotal polymer with diversified structures, is indispensable for cell wall integrity and contributes to plant growth and biomass recalcitrance. Xylan is synthesized by multienzyme complexes named xylan synthase complexes (XSCs). However, the biochemical mechanism of XSCs and the functions of core components within XSC remain unclear. Here, we report that rice (Oryza sativa) XYLAN O-ACETYLTRANSFERASE 6 (XOAT6) and the xylan synthase IRREGULAR XYLEM10 (IRX10) represent core components of the XSC, acting together to biosynthesize acetyl-xylans. Co-fractionation mass spectrometry and protein-protein interaction analyses revealed that IRX10 and XOAT6 physically interact within XSC, corroborated by similar xylan defects in xoat6 and irx10 mutants. Biochemical assays showed that XOAT6 is an O-acetyltransferase of the xylan backbone and facilitates chain polymerization catalyzed by IRX10. Fluorescence correlation spectroscopy further visualized the xylooligomer polymerization process at a single-molecule level. Solid-state NMR analysis, electron microscopy observations, and nanoindentation examinations identified the altered xylan conformation, disorganized cellulosic structure, and increased wall rigidity and cellulose accessibility in the mutants, leading to brittleness and improved saccharification efficiency. Our findings provide insights into the assembly of XSCs and xylan biosynthesis and offer a framework for tailoring xylans to improve crop traits and biomass.
Collapse
Affiliation(s)
- Zhao Wen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Lanjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hang Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Jian
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianing Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuolin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlei Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaohui Huang
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yihua Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
24
|
Zhang J, Liu M, Landry NBJ, Duan Y, Li X, Zhou X. The impact of Ricinus straw on tomato growth and soil microbial community. Front Microbiol 2024; 15:1499302. [PMID: 39687867 PMCID: PMC11646993 DOI: 10.3389/fmicb.2024.1499302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Returning straw can alter the soil microbial community, reduce the occurrence of soilborne diseases, and promote plant growth. In this study, we aimed to evaluate the effects of Ricinus straw on tomato growth and rhizosphere microbial community. We carried out microcosm experiments to investigate the effects of Ricinus straw with different dosages (0, 1, and 3%) on tomato dry biomass and rhizosphere bacterial and fungal communities. The results indicated that the dry biomass of tomato seedlings with 1% addition of Ricinus straw increased by 53.98%. In addition, Ricinus straw also changed the abundance, diversities, and composition of tomato rhizosphere microbial communities. In detail, the addition of 1% Ricinus straw increased the relative abundance of putative beneficial bacteria and fungi in straw decomposition, such as Ramlibacter sp., Azohydromonas sp., Schizothecium sp., and Acaulium sp., and decreased the relative abundance of Fusarium sp. Meanwhile, Ricinus straw inhibited the growth of putative pathogenic microorganisms. The correlation analysis showed that the changes in fungal community operational taxonomic units stimulated by the addition of Ricinus straw may play a crucial positive regulatory role in tomato growth. Finally, the representative fungal strain Fusarium oxysporum f. sp. Lycopersici (FOL), named TF25, was isolated and cultured. We found that Ricinus straw extract inhibited the growth of TF25 in an in vitro experiment with an inhibition rate of 34.95-51.91%. Collectively, Ricinus straw promoted plant growth by changing the rhizosphere microbial community composition and inhibiting FOL growth, which provides new evidence for understanding the improvement of key microorganism composition in improving crop growth and the sustainability of agriculture.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Minghao Liu
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - N’da Brou Jean Landry
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yaping Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xin Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Byeon CH, Hansen KH, DePas W, Akbey Ü. High-resolution 2D solid-state NMR provides insights into nontuberculous mycobacteria. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101970. [PMID: 39312837 DOI: 10.1016/j.ssnmr.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
We present a high-resolution magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize nontuberculous mycobacteria (NTM). We studied two different NTM strains, Mycobacterium smegmatis, a model, non-pathogenic strain, and Mycobacterium abscessus, an emerging and important human pathogen. Hydrated NTM samples were studied at natural abundance without isotope-labelling, as whole-cells versus cell envelope isolates, and native versus fixed sample preparations. We utilized 1D13C and 2D 1H-13C ssNMR spectra and peak deconvolution to identify NTM cell-wall chemical sites. More than ∼100 distinct 13C signals were identified in the ssNMR spectra. We provide tentative assignments for ∼30 polysaccharides by using well resolved 1H/13C chemical shifts from the 2D INEPT-based 1H-13C ssNMR spectrum. The signals originating from both the flexible and rigid fractions of the whole-cell bacteria samples were selectively analyzed by utilizing either CP or INEPT based 13C ssNMR spectra. CP buildup curves provide insights into the dynamical similarity of the cell-wall components for NTM strains. Signals from peptidoglycan, arabinogalactan and mycolic acid were identified. The majority of the 13C signals were not affected by fixation of the whole cell samples. The isolated cell envelope NMR spectrum overlap with the whole-cell spectrum to a large extent, where the latter has more signals. As an orthogonal way of characterizing these bacteria, electron microscopy (EM) was used to provide spatial information. ssNMR and EM data suggest that the M. abscessus cell-wall is composed of a smaller peptidoglycan layer which is more flexible compared to M. smegmatis, which may be related to its higher pathogenicity. Here in this work, we used high-resolution 2D ssNMR first time to characterize NTM strains and identify chemical sites. These results will aid the development of structure-based approaches to combat NTM infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - William DePas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States.
| |
Collapse
|
26
|
Duong K, Moss E, Reichhardt C. Solid-state NMR compositional analysis of sputum from people with cystic fibrosis. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101975. [PMID: 39489104 DOI: 10.1016/j.ssnmr.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
People with the genetic disease cystic fibrosis (CF) often have chronic airway infections and produce airway secretions called sputum. A better understanding of sputum composition is desired in order to track changes in response to CF therapeutics and to improve laboratory models for the study of CF airway infections. The glycosylated protein mucin is a primary component. Along with extracellular DNA, mucin gives rise to the high viscoelasticity of sputum, which inhibits airway clearance and is thought to promote chronic airway infections in people with CF. Past studies of sputum composition identified additional biomolecular components of sputum including other proteins, both glycosylated and not glycosylated, free amino acids, and lipids. Typically, studies of sputum, as well as other complex biological materials, have focused on soluble or isolated components. Solid-state NMR is not limited to the study of soluble components. Instead, it can provide molecular-level information about insoluble biological samples. Additionally, solid-state NMR can provide information about sample composition without requiring any processing of the sample, eliminating the possibility of misestimating certain components due to insolubility or potential sample loss in isolation steps. In this study, we used both 13C and 31P CPMAS to investigate the total composition of sputum samples obtained from six people with CF. We compared these spectra to those of commercially available mucin, DNA, and phospholipid samples. Lastly, we performed complementary biochemical analyses to identify specific proteins present in the sputum samples. Overall, our findings provide insight into the composition of unprocessed sputum samples from people with CF, which can be used as a benchmark for future investigations of CF and infections in the airways of people with CF. Further, this study provides opportunities to expand the solid-state NMR approach to include dynamic nuclear polarization (DNP) to obtain high-resolution information of sputum and similar biological samples that are not feasible to isotopically enrich.
Collapse
Affiliation(s)
- Kathy Duong
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Evan Moss
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Courtney Reichhardt
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States.
| |
Collapse
|
27
|
Li S, Cao Y, Wang B, Fan W, Hu S. Bio-organic fertilizer affects secondary cell wall biosynthesis of Dendrocalamus farinosus by inhibiting the phenylpropanoid metabolic pathway. BMC PLANT BIOLOGY 2024; 24:1112. [PMID: 39578723 PMCID: PMC11583417 DOI: 10.1186/s12870-024-05825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Bamboo, as a timber plant, holds significant environmental and economic value. Dendrocalamus farinosus is particularly valuable as it serves both as a source of bamboo shoots and timber, offering high yield, strong disease resistance, and superior fiber quality. Our previous study demonstrated that bio-organic fertilizers promoted the growth of D. farinosus and significantly altered the cellulose and lignin content, key components of the secondary cell wall in culms. However, the underlying regulatory mechanisms remain unclear. In this study, we used metabolomic and transcriptomic analyses to uncover the potential mechanisms by which bio-organic fertilizers affect the secondary cell wall biosynthesis in D. farinosus. A total of 1,437 metabolites were identified, with 20 differential metabolites significantly enriched in the phenylpropanoid metabolic pathway in bamboo shoots (7 upregulated; 13 downregulated). We identified 8,075 differentially expressed genes in bamboo shoots, including 72 genes potentially involved in lignin and flavonoid biosynthesis (6 upregulated; 66 downregulated). In internodes, we identified 5,324 differentially expressed genes, including 83 genes potentially involved in secondary cell wall biosynthesis (43 upregulated; 39 downregulated). Quantitative real-time PCR (qRT-PCR) validated the expression patterns of 8 key genes in internodes. The results suggest that bio-organic fertilizers may affect secondary cell wall biosynthesis in internodes by inhibiting the phenylpropanoid metabolic pathway in D. farinosus shoots. Our study offers insights into the efficient utilization of bamboo and lignocellulosic biomass, serving as a valuable resource for future research.
Collapse
Affiliation(s)
- Shangmeng Li
- Bamboo Research Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang, China
| | - Ying Cao
- Bamboo Research Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang, China
| | - Boya Wang
- Bamboo Research Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang, China
| | - Wei Fan
- Bamboo Research Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang, China.
| | - Shanglian Hu
- Bamboo Research Institute, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang, China.
| |
Collapse
|
28
|
Chen X, Yang S, Ouyang S, Yuan X, Song J, Ding S, Sha Y, Zhai R. Tuning Structural Characteristics of Corn Stover Through Ammonium and Sodium Sulfite (ASS) Pretreatment for Enhanced Enzymatic Hydrolysis. Appl Biochem Biotechnol 2024; 196:7940-7953. [PMID: 38668842 DOI: 10.1007/s12010-024-04964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
The ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass offers a significant advantage in terms of obtaining high glucan conversion, with the added benefit of ammonia being fully recyclable. However, despite the high efficiency of AFEX in pretreating lignocellulose, relatively high enzyme loading is still required for effective cellulose conversions. In this study, we have updated the AFEX pretreatment method; ammonia and sodium sulfite (ASS) can be used to produce a more digestible substrate. The results demonstrate that ASS-pretreated corn stover (CS) yields a higher fermentable sugar yield compared with AFEX pretreatment, even at lower enzyme loadings. Specifically, at an enzyme loading of 12 mg protein/g glucan, ASS-CS achieved 88.8% glucose and 80.6% xylose yield. Characterization analysis reveals that lignin underwent sulfonation during ASS pretreatment. This modification results in a more negative zeta potential for ASS-CS, indicating a reduction in nonproductive adsorption between lignin and cellulase through increased electrostatic repulsion.
Collapse
Affiliation(s)
- Xiangxue Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Shizhong Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Shuiping Ouyang
- School of Advanced Materials Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing, 314001, China
| | - Xinchuan Yuan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Junlin Song
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Shuai Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China.
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China.
| |
Collapse
|
29
|
He Y, Liu Y, Zhang M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int J Biol Macromol 2024; 280:135657. [PMID: 39299428 DOI: 10.1016/j.ijbiomac.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hemicellulose, a complex polysaccharide abundantly found in plant cell walls, has garnered significant attention for its versatile applications in various fields including biomedical, food packaging, environmental, and material sciences. This review systematically explores the composition, extraction methods, and diverse applications of hemicellulose-derived materials. Various extraction techniques such as organic acid, organic base, enzyme-assisted, and hydrothermal methods are discussed in detail, highlighting their efficacy and potential drawbacks. The applications of hemicellulose encompass biodegradable films, edible coatings, advanced hydrogels, and emulsion stabilizers, each offering unique properties suitable for different industrial needs. Current challenges in hemicellulose research include extraction efficiency, scalability of production processes, and optimization of material properties. Opportunities for future research are outlined, emphasizing the exploration of new applications and interdisciplinary approaches to harness the full potential of hemicellulose. This comprehensive review aims to provide valuable insights for researchers and industry professionals interested in utilizing hemicellulose as a sustainable and functional biomaterial.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, 100125 Beijing, China
| |
Collapse
|
30
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
31
|
Singh D, Zhao H, Gupta SK, Kumar Y, Kim J, Pawar PAM. Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14618. [PMID: 39542838 DOI: 10.1111/ppl.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Glucuronoxylan is present mainly in the dicot of the secondary cell walls, often O-acetylated, which stabilizes cell structure by maintaining interaction with cellulose and other cell wall components. Some members of the Golgi localized Trichome Birefringence-Like (TBL) family function as xylan O-acetyl transferase (XOAT). The primary XOAT in the stem of Arabidopsis is ESKIMO1/TBL29, and its disruption results in decreased xylan acetylation, stunted plant growth, and collapsed xylem vessels. To elucidate the effect on metabolic reprogramming and identify the underlying cause of the stunted growth in eskimo1, we performed transcriptomic, targeted, and untargeted metabolome analysis, mainly in the inflorescence stem tissue. RNA sequencing analysis revealed that the genes involved in the biosynthesis, regulation, and transport of aliphatic glucosinolates (GSLs) were upregulated, whereas those responsible for indolic GSL metabolism were unaffected in the eskimo1 inflorescence stem. Consistently, aliphatic GSLs, such as 4-methylsulfinylbutyl (4MSOB), were increased in stem tissues and seeds. This shift in the profile of aliphatic GSLs in eskimo1 was further supported by the quantification of the soluble acetate, decrease in accumulation of GSL precursor, i.e., methionine, and increase in the level of jasmonic acid.
Collapse
Affiliation(s)
- Deepika Singh
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
32
|
Ahmed RI, Ren A, Alshaya DS, Fiaz S, Kong Y, Liaqat S, Ali N, Saddique MAB, Attia KA, Taga MUH. Identification, charectrization and genetic transformation of lignin and pectin polysaccharides through CRISPR/Cas9 in Nicotiana tobacum. Funct Integr Genomics 2024; 24:188. [PMID: 39400746 DOI: 10.1007/s10142-024-01472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
CRISPR/Cas9 system has been successfully implemented in animals and plants is a second-generation genome editing tool. We are able to optimize a Cas9 system to edited Ntab06050 and Ntab0857410 genes in HD and K326 tobacco cultivars respectively. The gene Ntab06050 is related to lignin synthesis while the gene Ntab0857410 belongs to pectin synthesis by utilizing Agrobacterium-mediated leaf disc method. We have constructed total eight different constructs for the lignin related gene family CCoAMT, out of which three constructs have been selected from Ntab0184090, two constructs from Ntab0392460 while one construct from each Ntab0540120, Ntab0857410 and Ntab0135940 gene. To study the Cas9 system in pectin related genes, total five constructs have been utilized under Cas9 system and multiple target sites were selected by identifying PAM sequences. Out of which three constructs were targeted from NtabGAE1and NtabGAE6 homologous while two were targeted from NtabGAUT4 homologous. Where as, UDP-D-glucuronate 4-epimerase gene family is a Golgi localized, might have a role in the interconvertion of UDP-D-GlcA and UDP-D-GalA in pectin synthesis. We have succeeded in the mutation of pectin related NtabGAUT4 and lignin related NtabCCoAMT genes with 6.2% and 9.4% mutation frequency.
Collapse
Affiliation(s)
- Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Regional Agricultural Research Institute, Bahawalpur, 63100, Pakistan
| | - Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, China
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266108, China
| | | | - Naushad Ali
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan
| | | | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
33
|
Pfaff SA, Wagner ER, Cosgrove DJ. The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis. THE PLANT CELL 2024; 36:4309-4322. [PMID: 39163271 PMCID: PMC11449099 DOI: 10.1093/plcell/koae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.
Collapse
Affiliation(s)
- Sarah A Pfaff
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Edward R Wagner
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Zhang X, Liu J, Wang X, Fan W, Chen M. Integrated production of xylose and docosahexaenoic acid from hemicellulose and cellulose in corncob. Int J Biol Macromol 2024; 277:134176. [PMID: 39096834 DOI: 10.1016/j.ijbiomac.2024.134176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Exploring efficient and comprehensive utilization of agricultural waste to produce high value-added products has been global research hotspot. In this study, a novel process for integrated production of xylose and docosahexaenoic acid (DHA) from hemicellulose and cellulose in corncob was developed. Corncob was treated with dilute H2SO4 at 121 °C for 1 h and xylose was readily produced with a recovery yield of 79.35 %. The corncob residue was then subject to alkali pretreatment under optimized conditions of 0.1 g NaOH/g dry solid, 60 °C for 2 h, and the contents of cellulose, hemicellulose, and lignin in the resulting residue were 87.49 %, 7.58 % and 2.31 %, respectively. The cellulose in the residue was easily hydrolyzed by cellulase, yielding 74.87 g/L glucose with hydrolysis efficiency of 77.02 %. Remarkably, the corncob residue hydrolysate supported cell growth and DHA production in Schizochytrium sp. ATCC 20888 well, and the maximum biomass of 32.71 g/L and DHA yield of 4.63 g/L were obtained, with DHA percentage in total fatty acids of 36.89 %. This study demonstrates that the corncob residue generated during xylose production, rich in cellulose, can be effectively utilized for DHA production by Schizochytrium sp., offering a cost-effective and sustainable alternative to pure glucose.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingwen Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Wang
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Weiwei Fan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
35
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
36
|
Byeon CH, Kinney T, Saricayir H, Hansen KH, Scott F, Srinivasa S, Wells MK, Mentink-Vigier F, Kim W, Akbey Ü. High-Sensitivity Analysis of Native Bacterial Biofilms Using Dynamic Nuclear Polarization-Enhanced Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614951. [PMID: 39386544 PMCID: PMC11463664 DOI: 10.1101/2024.09.25.614951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial biofilms cause persistent infections that are difficult to treat and contribute greatly to antimicrobial resistance. However, high-resolution structural information on native bacterial biofilms remain very limited. This limitation is primarily due to methodological constraints associated with analyzing complex native samples. Although solid-state NMR (ssNMR) is a promising method in this regard, its conventional applications typically suffer from sensitivity limitations, particularly for unlabeled native samples. Through the use of Dynamic Nuclear Polarization (DNP), we applied sensitivity enhanced ssNMR to characterize native Pseudomonas fluorescens colony biofilms. The increased ssNMR sensitivity by DNP enabled ultrafast structural characterization of the biofilm samples without isotope-labelling, and chemical or physical modification. We collected 1D 13 C and 15 N, and 2D 1 H- 13 C, 1 H- 15 N and 13 C- 13 C ssNMR spectra within seconds/minutes or hours, respectively which enabled us to identify biofilm components as polysaccharides, proteins, and eDNA effectively. This study represents the first application of ultrasensitive DNP ssNMR to characterize a native bacterial biofilm and expands the technical scope of ssNMR towards obtaining insights into the composition and structure of a wide array of in vitro and ex vivo biofilm applications. Such versatility should greatly boost efforts to develop structure-guided approaches for combating infections caused by biofilm-forming microbes.
Collapse
|
37
|
Yoshida K, Sakamoto S, Mitsuda N. Synthetic-biology approach for plant lignocellulose engineering. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:213-230. [PMID: 40115770 PMCID: PMC11921142 DOI: 10.5511/plantbiotechnology.24.0630a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/30/2024] [Indexed: 03/23/2025]
Abstract
Plant biomass is an abundant, renewable resource that offers multiple advantages for the production of green chemicals and recombinant proteins. However, the adoption of plant-based systems by industry is hindered because mammalian and other cell cultures are well-established and better characterized in an industrial setting, and thus it is difficult for plant-based processes to gain a foothold in the marketplace. Therefore, additional benefits of plant-based systems may be essential to tip the balance in favor of sustainable plant-derived products. A crucial factor in biomass valorization is to design mid- to high-value co-products that can be derived cost-effectively from the residual lignocellulose (LC). However, the utility of LC remains limited because LCs are, in general, too recalcitrant for industries to utilize their components (lignin, cellulose, and hemicelluloses). To overcome this issue, in planta engineering to reduce LC recalcitrance has been ongoing in recent decades, with essential input from synthetic biology owing to the complexity of LC pathways and the massive number of genes involved. In this review, we describe recent advances in LC manipulation and eight strategies for redesigning the pathways for lignin and structural glycans to reduce LC recalcitrance while mitigating against the growth penalty associated with yield loss.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei Corporation, Yokohama, Kanagawa 245-0051, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutaka Mitsuda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
38
|
Shi R, Liu W, Liu J, Li X, Zeb A, Wang Q, Wang J, Sun Y. Earthworms Enhance Crop Resistance to Insects Under Microplastic Stress by Mobilizing Physical and Chemical Defenses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16282-16290. [PMID: 39236339 DOI: 10.1021/acs.est.4c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To assess the ecological risk of microplastics (MPs) in agricultural systems, it is critical to simultaneously focus on MP-mediated single-organism response and different trophic-level organism interaction. Herein, we placed earthworms in soils contaminated with different concentrations (0.02% and 0.2% w/w) of polyethylene (PE) and polypropylene (PP) MPs to investigate the effect of earthworms on tomato against Helicoverpa armigera (H. armigera) under MPs stress. We found that earthworms alleviated the inhibitory effects of MPs stress on tomato growth and disrupted H. armigera growth. Compared to individual MPs exposure, earthworm incorporation significantly increased the silicon and lignin content in herbivore-damaged tomato leaves by 19.1% and 57.6%, respectively. Metabolites involved in chemical defense (chlorogenic acid) and phytohormones (jasmonic acid) were also activated by earthworm incorporation. Furthermore, earthworms effectively reduced oxidative damage induced by H. armigera via promoting antioxidant metabolism. Overall, our results suggest that utilizing earthworms to regulate above- and below-ground interactions could be a promising strategy for promoting green agriculture.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin, MARA 300191, China
| |
Collapse
|
39
|
Wu X, Lian H, Xia C, Deng J, Li X, Zhang C. Mechanistic insights and applications of lignin-based ultraviolet shielding composites: A comprehensive review. Int J Biol Macromol 2024; 280:135477. [PMID: 39250986 DOI: 10.1016/j.ijbiomac.2024.135477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Lignin is a green aromatic polymer constructed from repeating phenylpropane units, incorporating features such as phenolic hydroxyl groups, carbonyl groups, and conjugated double bonds that serve as chromophores. These structural attributes enable it to absorb a wide spectrum of ultraviolet radiation within the 250-400 nm range. The resulting properties make lignin a material of considerable interest for its potential applications in polymers, packaging, architectural decoration, and beyond. By examining the structure of lignin, this research delves into the structural influence on its UV-shielding capabilities. Through a comparative analysis of lignin's use in various UV-shielding applications, the study explores the interplay between lignin's structure and its interactions with other materials. This investigation aims to elucidate the UV-shielding mechanism, thereby offering insights that could inform the development of high-value applications for lignin in UV-shielding composite materials.
Collapse
Affiliation(s)
- Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junqian Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changhang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
40
|
Pan X, Li X, Wang Z, Ni Y, Wang Q. Nanolignin-Facilitated Robust Hydrogels. ACS NANO 2024; 18:24095-24104. [PMID: 39150717 DOI: 10.1021/acsnano.4c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Recently, certain challenges and accompanying drawbacks have emerged in the preparation of high-strength and tough polymer hydrogels. Insights from wood science highlight the role of the intertwined molecular structure of lignin and crystalline cellulose in contributing to wood's strength. Herein, we immersed prestretched poly(vinyl alcohol) (PVA) polymer hydrogels into a solution of nanosized lignosulfonate sodium (LS), a water-soluble anionic polyelectrolyte, to creatively reconstruct this similar structure at the molecular scale in hydrogels. The nanosized LS effectively fixed and bundled the prestretched PVA polymers while inducing the formation of dense crystalline domains within the polymer matrix. Consequently, the interwoven structure of crystalline PVA and LS conferred good strength to the composite hydrogels, exhibiting a tensile strength of up to ∼23 MPa, a fracture strain of ∼350%, Young's modulus of ∼17 MPa, toughness of ∼47 MJ/m3, and fracture energy of ∼42 kJ/m2. This hydrogel far outperformed previous hydrogels composed directly of lignin and PVA (tensile strength <1.5 MPa). Additionally, the composite hydrogels demonstrated excellent antifreezing properties (<-80 °C). Notably, the LS-assisted reconstruction technology offers opportunities for the secondary fixation of PVA hydrogel shapes and high-strength welding of hydrogel components. This work introduces an approach for the high-value utilization of LS, a green byproduct of pulp production. LS's profound biomimetic strategy will be applied in multifunctional hydrogel fields.
Collapse
Affiliation(s)
- Xiaofeng Pan
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P.R. China
| | - Xiang Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Qinhua Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
41
|
Yang D, Liu H, Li X, Zhang Y, Zhang X, Yang H, Liu M, Koch KE, McCarty DR, Li S, Tan BC. A sucrose ferulate cycle linchpin for ferulyolation of arabinoxylans in plant commelinids. NATURE PLANTS 2024; 10:1389-1399. [PMID: 39232219 DOI: 10.1038/s41477-024-01781-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
A transformation in plant cell wall evolution marked the emergence of grasses, grains and related species that now cover much of the globe. Their tough, less digestible cell walls arose from a new pattern of cross-linking between arabinoxylan polymers with distinctive ferulic acid residues. Despite extensive study, the biochemical mechanism of ferulic acid incorporation into cell walls remains unknown. Here we show that ferulic acid is transferred to arabinoxylans via an unexpected sucrose derivative, 3,6-O-diferuloyl sucrose (2-feruloyl-O-α-D-glucopyranosyl-(1'→2)-3,6-O-feruloyl-β-D-fructofuranoside), formed by a sucrose ferulate cycle. Sucrose gains ferulate units through sequential transfers from feruloyl-CoA, initially at the O-3 position of sucrose catalysed by a family of BAHD-type sucrose ferulic acid transferases (SFT1 to SFT4 in maize), then at the O-6 position by a feruloyl sucrose feruloyl transferase (FSFT), which creates 3,6-O-diferuloyl sucrose. An FSFT-deficient mutant of maize, disorganized wall 1 (dow1), sharply decreases cell wall arabinoxylan ferulic acid content, causes accumulation of 3-O-feruloyl sucrose (α-D-glucopyranosyl-(1'→2)-3-O-feruloyl-β-D-fructofuranoside) and leads to the abortion of embryos with defective cell walls. In vivo, isotope-labelled ferulic acid residues are transferred from 3,6-O-diferuloyl sucrose onto cell wall arabinoxylans. This previously unrecognized sucrose ferulate cycle resolves a long-standing mystery surrounding the evolution of the distinctive cell wall characteristics of cereal grains, biofuel crops and related commelinid species; identifies an unexpected role for sucrose as a ferulate group carrier in cell wall biosynthesis; and reveals a new paradigm for modifying cell wall polymers through ferulic acid incorporation.
Collapse
Affiliation(s)
- Dalin Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Hui Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xiaojie Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yafeng Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huanhuan Yang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Karen E Koch
- Hoirticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Donald R McCarty
- Hoirticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China.
| |
Collapse
|
42
|
Zhang Y, Huang C, Xiong R. Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 160:100821. [DOI: 10.1016/j.mser.2024.100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Rampratap P, Lasorsa A, Arunachalam A, Kamperman M, Walvoort MTC, van der Wel PCA. Resolving Atomic-Level Dynamics and Interactions of High-Molecular-Weight Hyaluronic Acid by Multidimensional Solid-State NMR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43317-43328. [PMID: 39121380 PMCID: PMC11345730 DOI: 10.1021/acsami.4c08428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
High-molecular-weight (HMW) hyaluronic acid (HA) is a highly abundant natural polysaccharide and a fundamental component of the extracellular matrix (ECM). Its size and concentration regulate tissues' macro- and microenvironments, and its upregulation is a hallmark feature of certain tumors. Yet, the conformational dynamics of HMW-HA and how it engages with the components of the ECM microenvironment remain poorly understood at the molecular level. Probing the molecular structure and dynamics of HMW polysaccharides in a hydrated, physiological-like environment is crucial and also technically challenging. Here, we deploy advanced magic-angle spinning (MAS) solid-state NMR spectroscopy in combination with isotopic enrichment to enable an in-depth study of HMW-HA to address this challenge. This approach resolves multiple coexisting HA conformations and dynamics as a function of environmental conditions. By combining 13C-labeled HA with unlabeled ECM components, we detect by MAS NMR HA-specific changes in global and local conformational dynamics as a consequence of hydration and ECM interactions. These measurements reveal atom-specific variations in the dynamics and structure of the N-acetylglucosamine moiety of HA. We discuss possible implications for interactions that stabilize the structure of HMW-HA and facilitate its recognition by HA-binding proteins. The described methods apply similarly to the studies of the molecular structure and dynamics of HA in tumor contexts and in other biological tissues as well as HMW-HA hydrogels and nanoparticles used for biomedical and/or pharmaceutical applications.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Abinaya Arunachalam
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
44
|
Xue Y, Yu C, Kang X. Quantitative and Structural Characterization of Native Lignin in Hardwood and Softwood Bark via Solid-State NMR Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18056-18066. [PMID: 39087645 DOI: 10.1021/acs.jafc.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A major factor limiting bark's industrial use is its greater recalcitrance compared to wood. While lignin is widely recognized as a significant contributor, precise characterization of lignin in bark remains sparse, presenting a crucial gap that impedes understanding of its impact. In this study, we employed advanced solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze bark samples from various species, including willow, poplar, and pine. We established and verified that lignin methoxy peak at 56 ppm serves as a reliable quantitative metric to assess lignin content, with which we calculated the lignin contents in bark are significantly reduced by more than 70% compared to those in wood. Furthermore, in situ characterization revealed significant reduction of β-ether linkage in bark lignin across species, revealing a more condensed and resistant structural configuration. Our results have substantially advanced our comprehension of the composition and structure of native lignin in tree bark.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Yu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
45
|
Bourmaud CL, Bertella S, Bosch Rico A, Karlen SD, Ralph J, Luterbacher JS. Quantification of Native Lignin Structural Features with Gel-Phase 2D-HSQC 0 Reveals Lignin Structural Changes During Extraction. Angew Chem Int Ed Engl 2024; 63:e202404442. [PMID: 38738591 DOI: 10.1002/anie.202404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Our ability to study and valorize the lignin fraction of biomass is hampered by the fundamental and still unmet challenge of precisely quantifying native lignin's structural features. Here, we developed a rapid elevated-temperature 1H-13C Heteronuclear Single-Quantum Coherence Zero (HSQC0) NMR method that enables this precise quantification of native lignin structural characteristics even with whole plant cell wall (WPCW) NMR spectroscopy, overcoming fast spin relaxation in the gel phase. We also formulated a Gaussian fitting algorithm to perform automatic and reliable spectral integration. By combining HSQC0 measurements with yield measurements following depolymerisation, we can confirm the combinatorial nature of radical coupling reactions during biosynthesis leading to a random sequential organization of linkages within a largely linear lignin chain. Such analyses illustrate how this analytical method can greatly facilitate the study of native lignin structure, which can then be used for fundamental studies or to understand lignin depolymerization methods like reductive catalytic fractionation or aldehyde-assisted fractionation.
Collapse
Affiliation(s)
- Claire L Bourmaud
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Stefania Bertella
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anna Bosch Rico
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Steven D Karlen
- U.S. Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - John Ralph
- U.S. Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
46
|
Ali MAS, Abdel-Moein NM, Owis AS, Ahmed SE, Hanafy EA. Eco-friendly lignin nanoparticles as antioxidant and antimicrobial material for enhanced textile production. Sci Rep 2024; 14:17470. [PMID: 39080332 PMCID: PMC11289415 DOI: 10.1038/s41598-024-67449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Natural polymers are bioactive compounds that are used in the treatment of several disorders. Natural lignin, an amorphous polymer, offers significant potential for use as a building block in the production of bio-renovation materials. This study used an alkaline solvent technique to extract lignin from two Egyptian cotton cultivar byproducts, Giza 86 and 90. We then created nano-lignin to recycle cotton stalks into an environmentally beneficial product. The characterization of L86, L90, LNP86, and LNP90 was carried out using particle size, zeta potential, FT-IR, and TEM. Antioxidant activity using the DPPH assay and antimicrobial activity were determined for lignin and nano-lignin. Seven pathogenic bacteria (Bacillus cereus, Staphylococcus aureus, Staphylococcus sciuri, Salmonella typhi, Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa) and five mycotoxigenic fungi (Aspergillus flavus, Aspergillus ochraceus, Aspergillus niger, Fusarium proliferatum and Penicillium verrucosum) were used for antimicrobial activity. The results showed high antioxidant efficiency for LNP90, with an IC50 of 10.38 µg/mL. The antimicrobial activity showed positive growth inhibition for all studied microorganisms, with significant differences in nano-lignin compared to ordinary lignin. lignin and nano-lignin were effectively applied to treated textiles for medical purposes. The study concluded that single-use medical textiles with anti-microbial and anti-oxidant properties, made from lignin and nano-lignin, could benefit patients intolerant to antibiotics.
Collapse
Affiliation(s)
| | | | - Amal Saber Owis
- Agricultural Research Center, Cotton Research Institute, Giza, Egypt
| | | | - Eman Ahmed Hanafy
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
47
|
van der Cruijsen K, Al Hassan M, van Erven G, Kollerie N, van Lent B, Dechesne A, Dolstra O, Paulo MJ, Trindade LM. Salt stress alters the cell wall components and structure in Miscanthus sinensis stems. PHYSIOLOGIA PLANTARUM 2024; 176:e14430. [PMID: 38981734 DOI: 10.1111/ppl.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.
Collapse
Affiliation(s)
| | - Mohamad Al Hassan
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs van Erven
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Nicole Kollerie
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas van Lent
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Annemarie Dechesne
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Oene Dolstra
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
48
|
Ponnuchamy V, Sandak A, Sandak J. Advanced Molecular Dynamics Model for Investigating Biological-Origin Microfibril Structures. ACS OMEGA 2024; 9:25646-25654. [PMID: 38911769 PMCID: PMC11191132 DOI: 10.1021/acsomega.3c08853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024]
Abstract
Understanding the atomic-scale structure of wood microfibrils is essential for establishing fundamental properties in various wood-based research aspects, including moisture impact, wood modification, and pretreatment. In this study, we employed molecular dynamics simulations to investigate the arrangement of wood polymers, including cellulose, hemicellulose, and lignin, with a primary focus on the composition of softwood, specifically Norway Spruce wood. We assessed the accuracy of our molecular dynamics model by comparing it with available experimental data, such as density, Young's modulus, and glass transition temperature, which ensures the reliability of our approach. A key aspect of our study involved modeling the active sorption site for water interaction with wood polymers. Our findings revealed that the interaction between water and hemicellulose, particularly within the hemicellulose-cellulose interphase, was the most prominent binding site. This observation aligns with prior research in this field, further strengthening the validity of our results.
Collapse
Affiliation(s)
- Veerapandian Ponnuchamy
- InnoRenew
CoE, Livade 6a, 6310 Izola, Slovenia
- University
of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia
| | - Anna Sandak
- InnoRenew
CoE, Livade 6a, 6310 Izola, Slovenia
- University
of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Jakub Sandak
- InnoRenew
CoE, Livade 6a, 6310 Izola, Slovenia
- University
of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia
| |
Collapse
|
49
|
Costello WN, Xiao Y, Mentink-Vigier F, Kragelj J, Frederick KK. DNP-assisted solid-state NMR enables detection of proteins at nanomolar concentrations in fully protonated cellular milieu. JOURNAL OF BIOMOLECULAR NMR 2024; 78:95-108. [PMID: 38520488 PMCID: PMC11572114 DOI: 10.1007/s10858-024-00436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/09/2024] [Indexed: 03/25/2024]
Abstract
With the sensitivity enhancements conferred by dynamic nuclear polarization (DNP), magic angle spinning (MAS) solid state NMR spectroscopy experiments can attain the necessary sensitivity to detect very low concentrations of proteins. This potentially enables structural investigations of proteins at their endogenous levels in their biological contexts where their native stoichiometries with potential interactors is maintained. Yet, even with DNP, experiments are still sensitivity limited. Moreover, when an isotopically-enriched target protein is present at physiological levels, which typically range from low micromolar to nanomolar concentrations, the isotope content from the natural abundance isotopes in the cellular milieu can outnumber the isotope content of the target protein. Using isotopically enriched yeast prion protein, Sup35NM, diluted into natural abundance yeast lysates, we optimized sample composition. We found that modest cryoprotectant concentrations and fully protonated environments support efficient DNP. We experimentally validated theoretical calculations of the limit of specificity for an isotopically enriched protein in natural abundance cellular milieu. We establish that, using pulse sequences that are selective for adjacent NMR-active nuclei, proteins can be specifically detected in cellular milieu at concentrations in the hundreds of nanomolar. Finally, we find that maintaining native stoichiometries of the protein of interest to the components of the cellular environment may be important for proteins that make specific interactions with cellular constituents.
Collapse
Affiliation(s)
- Whitney N Costello
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
| | | | - Jaka Kragelj
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA
- Slovenian NMR centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Kendra K Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390-8816, USA.
- Center for Alzheimer's and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
50
|
Chaudhari AA, Sharma AM, Rastogi L, Dewangan BP, Sharma R, Singh D, Sah RK, Das S, Bhattacharjee S, Mellerowicz EJ, Pawar PAM. Modifying lignin composition and xylan O-acetylation induces changes in cell wall composition, extractability, and digestibility. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:73. [PMID: 38822388 PMCID: PMC11141020 DOI: 10.1186/s13068-024-02513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Lignin and xylan are important determinants of cell wall structure and lignocellulosic biomass digestibility. Genetic manipulations that individually modify either lignin or xylan structure improve polysaccharide digestibility. However, the effects of their simultaneous modifications have not been explored in a similar context. Here, both individual and combinatorial modification in xylan and lignin was studied by analysing the effect on plant cell wall properties, biotic stress responses and integrity sensing. RESULTS Arabidopsis plant co-harbouring mutation in FERULATE 5-HYDROXYLASE (F5H) and overexpressing Aspergillus niger acetyl xylan esterase (35S:AnAXE1) were generated and displayed normal growth attributes with intact xylem architecture. This fah1-2/35S:AnAXE1 cross was named as hyper G lignin and hypoacetylated (HrGHypAc) line. The HrGHypAc plants showed increased crystalline cellulose content with enhanced digestibility after chemical and enzymatic pre-treatment. Moreover, both parents and HrGHypAc without and after pre-treating with glucuronyl esterase and alpha glucuronidase exhibited an increase in xylose release after xylanase digestion as compared to wild type. The de-pectinated fraction in HrGHypAc displayed elevated levels of xylan and cellulose. Furthermore, the transcriptomic analysis revealed differential expression in cell wall biosynthetic, transcription factors and wall-associated kinases genes implying the role of lignin and xylan modification on cellular regulatory processes. CONCLUSIONS Simultaneous modification in xylan and lignin enhances cellulose content with improved saccharification efficiency. These modifications loosen cell wall complexity and hence resulted in enhanced xylose and xylobiose release with or without pretreatment after xylanase digestion in both parent and HrGHypAc. This study also revealed that the disruption of xylan and lignin structure is possible without compromising either growth and development or defense responses against Pseudomonas syringae infection.
Collapse
Affiliation(s)
- Aniket Anant Chaudhari
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Anant Mohan Sharma
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Lavi Rastogi
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Bhagwat Prasad Dewangan
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Raunak Sharma
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Deepika Singh
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Rajan Kumar Sah
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Shouvik Das
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Saikat Bhattacharjee
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umea Plant Science Centre, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Prashant Anupama-Mohan Pawar
- Regional Centre for Biotechnology, Laboratory of Plant Cell Wall Biology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|