1
|
Payet JM, Baratta MV, Christianson JP, Lowry CA, Hale MW. Modulation of dorsal raphe nucleus connectivity and serotonergic signalling to the insular cortex in the prosocial effects of chronic fluoxetine. Neuropharmacology 2025; 272:110406. [PMID: 40081797 DOI: 10.1016/j.neuropharm.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Long-term exposure to fluoxetine and other selective serotonin reuptake inhibitors alters social and anxiety-related behaviours, including social withdrawal, which is a symptom of several neuropsychiatric disorders. Adaptive changes in serotonergic neurotransmission likely mediate this delayed effect, although the exact mechanisms are still unclear. Here we investigated the functional circuitry underlying the biphasic effects of fluoxetine on social approach-avoidance behaviour and explored the place of serotonergic dorsal raphe nucleus (DR) ensembles in this network, using c-Fos-immunoreactivity as a correlate of activity. Graph theory-based network analysis revealed changes in patterns of functional connectivity and identified neuronal populations in the insular cortex (IC) and serotonergic populations in the DR as central targets to the prosocial effects of chronic fluoxetine. To determine the role of serotonergic projections to the IC, a retrograde tracer was micro-injected in the IC prior to fluoxetine treatment and social behaviour testing. Chronic fluoxetine increased c-Fos immunoreactivity in insula-projecting neurons of the rostral, ventral part of the DR (DRV). Using a virally delivered Tet-Off platform for temporally-controlled marking of neuronal activation, we observed that chronic fluoxetine may affect social behaviour by influencing independent but interconnected populations of serotonergic DR ensembles. These findings suggest that sustained fluoxetine exposure causes adaptive changes in functional connectivity due to altered serotonergic neurotransmission in DR projection targets, and the increased serotonergic signalling to the IC likely mediates some of the therapeutic effects of fluoxetine on social behaviour.
Collapse
Affiliation(s)
- Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Yao Y, Cui C, Shi Y, Lei J, Li T, Li M, Peng X, Yang X, Ren K, Yang J, Luo G, Du J, Chen S, Zhang P, Tian B. DRN-SNc serotonergic circuit drives stress-induced motor deficits and Parkinson's disease vulnerability. Neuropsychopharmacology 2025; 50:1051-1062. [PMID: 40097739 DOI: 10.1038/s41386-025-02080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Stress is a recognized risk factor for Parkinson's disease (PD), but the mechanisms by which stress exacerbates PD symptoms through the serotonergic system are not fully understood. This study investigates the role of serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) in mediating stress-induced motor deficits and PD progression. Acute and chronic stress were induced in mice using an elevated platform (EP) and combined with MPTP administration to model early-stage PD. Acute EP stress caused transient motor deficits and significant activation of DRN5-HT neurons projecting to substantia nigra compacta (SNc) dopaminergic (DA) neurons. Manipulating the DRN-SNc pathway with optogenetics and chemogenetics confirmed its critical role in stress-induced motor deficits. Activation of the SNc 5-HT2C receptor with an agonist replicated these deficits, while receptor inhibition prevented them, underscoring its importance. Chronic EP stress worsened MPTP-induced deficits and caused significant SNcDA neurons loss, suggesting it accelerates PD progression. Prolonged chemogenetic inhibition of the DRN-SNc circuit mitigated chronic stress effects in MPTP-treated mice. These findings highlight the crucial role of the DRN-SNc serotonergic circuit and 5-HT2C receptors in stress-related motor deficits, suggesting potential targets for therapies aimed at treating both stress-related motor disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Yibo Yao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yulong Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xueke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Gangan Luo
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Junsong Du
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Sitong Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, PR China.
| | - Bo Tian
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
Hsu LM, Cerri DH, Carelli RM, Shih YYI. Optogenetic stimulation of cell bodies versus axonal terminals generate comparable activity and functional connectivity patterns in the brain. Brain Stimul 2025; 18:822-828. [PMID: 40090667 DOI: 10.1016/j.brs.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025] Open
Abstract
Optogenetic techniques are often employed to dissect neural pathways with presumed specificity for targeted projections. In this study, we used optogenetic fMRI to investigate the effective landscape of stimulating the cell bodies versus one of its projection terminals. Specifically, we selected a long-range unidirectional projection from the ventral subiculum (vSUB) to the nucleus accumbens shell (NAcSh) and placed two stimulating fibers-one at the vSUB cell bodies and the other at the vSUB terminals in the NAcSh. Contrary to the conventional view that terminal stimulation confines activity to the feedforward stimulated pathway, our findings reveal that terminal stimulation induces brain activity and connectivity patterns remarkably similar to those of vSUB cell body stimulation. This observation suggests that the specificity of optogenetic terminal stimulation may induce antidromic activation, leading to broader network involvement than previously acknowledged.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal MRI, University of North Carolina at Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, United States; Department of Radiology, University of North Carolina at Chapel Hill, United States.
| | - Domenic H Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, United States; Department of Neurology, University of North Carolina at Chapel Hill, United States
| | - Regina M Carelli
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, United States; Department of Neurology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
4
|
Hsu LM, Shih YYI. Neuromodulation in Small Animal fMRI. J Magn Reson Imaging 2025; 61:1597-1617. [PMID: 39279265 PMCID: PMC11903207 DOI: 10.1002/jmri.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
The integration of functional magnetic resonance imaging (fMRI) with advanced neuroscience technologies in experimental small animal models offers a unique path to interrogate the causal relationships between regional brain activity and brain-wide network measures-a goal challenging to accomplish in human subjects. This review traces the historical development of the neuromodulation techniques commonly used in rodents, such as electrical deep brain stimulation, optogenetics, and chemogenetics, and focuses on their application with fMRI. We discuss their advantageousness roles in uncovering the signaling architecture within the brain and the methodological considerations necessary when conducting these experiments. By presenting several rodent-based case studies, we aim to demonstrate the potential of the multimodal neuromodulation approach in shedding light on neurovascular coupling, the neural basis of brain network functions, and their connections to behaviors. Key findings highlight the cell-type and circuit-specific modulation of brain-wide activity patterns and their behavioral correlates. We also discuss several future directions and feature the use of mediation and moderation analytical models beyond the intuitive evoked response mapping, to better leverage the rich information available in fMRI data with neuromodulation. Using fMRI alongside neuromodulation techniques provide insights into the mesoscopic (relating to the intermediate scale between single neurons and large-scale brain networks) and macroscopic fMRI measures that correlate with specific neuronal events. This integration bridges the gap between different scales of neuroscience research, facilitating the exploration and testing of novel therapeutic strategies aimed at altering network-mediated behaviors. In conclusion, the combination of fMRI with neuromodulation techniques provides crucial insights into mesoscopic and macroscopic brain dynamics, advancing our understanding of brain function in health and disease. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill
- Departments of Radiology, The University of North Carolina at Chapel Hill
| | - Yen-Yu Ian Shih
- Center for Animal Magnetic Resonance Imaging, The University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill
- Departments of Neurology, The University of North Carolina at Chapel Hill
| |
Collapse
|
5
|
Vrooman RM, van den Berg M, Desrosiers-Gregoire G, van Engelenburg WA, Galteau ME, Lee SH, Veltien A, Barrière DA, Cash D, Chakravarty MM, Devenyi GA, Gozzi A, Gröhn O, Hess A, Homberg JR, Jelescu IO, Keliris GA, Scheenen T, Shih YYI, Verhoye M, Wary C, Zwiers M, Grandjean J. fMRI data acquisition and analysis for task-free, anesthetized rats. Nat Protoc 2025:10.1038/s41596-024-01110-y. [PMID: 39875591 DOI: 10.1038/s41596-024-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies. Here, we outline a procedure for the acquisition of fMRI datasets in rats and describe animal handling, MRI sequence parameters, data conversion, preprocessing, quality control and data analysis. The procedure is designed to be generalizable across laboratories, has been validated by using datasets across 20 research centers with different scanners and field strengths ranging from 4.7 to 17.2 T and can be used in studies in which it is useful to compare functional connectivity measures across an extensive range of datasets. The MRI procedure requires 1 h per rat to complete and can be carried out by users with limited expertise in rat handling, MRI and data processing.
Collapse
Affiliation(s)
- Roël M Vrooman
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Monica van den Berg
- Bio-imaging lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Gabriel Desrosiers-Gregoire
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | - Marie E Galteau
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sung-Ho Lee
- Center for Animal MRI, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David A Barrière
- UMR INRAE/CNRS 7247 Physiologie des Comportements et de la Reproduction, Physiologie de la reproduction et des comportements, Centre de recherche INRA de Nouzilly, Tours, France
| | - Diana Cash
- Biomarker Research And Imaging in Neuroscience (BRAIN) Centre, Department of Neuroimaging, King's College London, London, UK
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Olli Gröhn
- Biomedical Imaging Unit, A.I.V. Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Ileana O Jelescu
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Georgios A Keliris
- Institute for Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Tom Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yen-Yu Ian Shih
- Center for Animal MRI, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marleen Verhoye
- Bio-imaging lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | | | - Marcel Zwiers
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Barzan R, Bozkurt B, Nejad MM, Süß ST, Surdin T, Böke H, Spoida K, Azimi Z, Grömmke M, Eickelbeck D, Mark MD, Rohr L, Siveke I, Cheng S, Herlitze S, Jancke D. Gain control of sensory input across polysynaptic circuitries in mouse visual cortex by a single G protein-coupled receptor type (5-HT 2A). Nat Commun 2024; 15:8078. [PMID: 39277631 PMCID: PMC11401874 DOI: 10.1038/s41467-024-51861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
Response gain is a crucial means by which modulatory systems control the impact of sensory input. In the visual cortex, the serotonergic 5-HT2A receptor is key in such modulation. However, due to its expression across different cell types and lack of methods that allow for specific activation, the underlying network mechanisms remain unsolved. Here we optogenetically activate endogenous G protein-coupled receptor (GPCR) signaling of a single receptor subtype in distinct mouse neocortical subpopulations in vivo. We show that photoactivation of the 5-HT2A receptor pathway in pyramidal neurons enhances firing of both excitatory neurons and interneurons, whereas 5-HT2A photoactivation in parvalbumin interneurons produces bidirectional effects. Combined photoactivation in both cell types and cortical network modelling demonstrates a conductance-driven polysynaptic mechanism that controls the gain of visual input without affecting ongoing baseline levels. Our study opens avenues to explore GPCRs neuromodulation and its impact on sensory-driven activity and ongoing neuronal dynamics.
Collapse
Affiliation(s)
- Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- MEDICE Arzneimittel Pütter GmbH & Co. KG, Iserlohn, Germany
| | - Beyza Bozkurt
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Mohammadreza M Nejad
- Computational Neuroscience, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Sandra T Süß
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Spoida
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dennis Eickelbeck
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Computational Neuroscience, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
7
|
Natsubori A, Kwon S, Honda Y, Kojima T, Karashima A, Masamoto K, Honda M. Serotonergic regulation of cortical neurovascular coupling and hemodynamics upon awakening from sleep in mice. J Cereb Blood Flow Metab 2024; 44:1591-1607. [PMID: 38477254 PMCID: PMC11418750 DOI: 10.1177/0271678x241238843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiko Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Kazuto Masamoto
- Dept. Mechanical and Intelligent Systems Engineering, Univ. of Electro-Communications, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Drossel G, Heilbronner SR, Zimmermann J, Zilverstand A. Neuroimaging of the effects of drug exposure or self-administration in rodents: A systematic review. Neurosci Biobehav Rev 2024; 164:105823. [PMID: 39094280 PMCID: PMC11374361 DOI: 10.1016/j.neubiorev.2024.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
A systematic review of functional neuroimaging studies on drug (self-) administration in rodents is lacking. Here, we summarized effects of acute or chronic drug administration of various classes of drugs on brain function and determined consistency with human literature. We performed a systematic literature search and identified 125 studies on in vivo rodent resting-state functional magnetic resonance imaging (n = 84) or positron emission tomography (n = 41) spanning depressants (n = 27), opioids (n = 23), stimulants (n = 72), and cannabis (n = 3). Results primarily showed alterations in the striatum, consistent with the human literature. The anterior cingulate cortex and (nonspecific) prefrontal cortex were also frequently implicated. Upregulation was most often found after shorter administration and downregulation after long chronic administration, particularly in the striatum. Importantly, results were consistent across study design, administration models, imaging method, and animal states. Results provide evidence of altered resting-state brain function in rodents upon drug administration, implicating the brain's reward network analogous to human studies. However, alterations were more dynamic than previously known, with dynamic adaptation depending on the length of drug administration.
Collapse
Affiliation(s)
- Gunner Drossel
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA; Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Desrosiers-Grégoire G, Devenyi GA, Grandjean J, Chakravarty MM. A standardized image processing and data quality platform for rodent fMRI. Nat Commun 2024; 15:6708. [PMID: 39112455 PMCID: PMC11306392 DOI: 10.1038/s41467-024-50826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Functional magnetic resonance imaging in rodents holds great potential for advancing our understanding of brain networks. Unlike the human community, there remains no standardized resource in rodents for image processing, analysis and quality control, posing significant reproducibility limitations. Our software platform, Rodent Automated Bold Improvement of EPI Sequences, is a pipeline designed to address these limitations for preprocessing, quality control, and confound correction, along with best practices for reproducibility and transparency. We demonstrate the robustness of the preprocessing workflow by validating performance across multiple acquisition sites and both mouse and rat data. Building upon a thorough investigation into data quality metrics across acquisition sites, we introduce guidelines for the quality control of network analysis and offer recommendations for addressing issues. Taken together, this software platform will allow the emerging community to adopt reproducible practices and foster progress in translational neuroscience.
Collapse
Affiliation(s)
- Gabriel Desrosiers-Grégoire
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Yan C, Liu Z. The role of periaqueductal gray astrocytes in anxiety-like behavior induced by acute stress. Biochem Biophys Res Commun 2024; 720:150073. [PMID: 38754161 DOI: 10.1016/j.bbrc.2024.150073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.
Collapse
Affiliation(s)
- Chuanting Yan
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai, 201210, China
| | - Zhiqiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, 710062, China.
| |
Collapse
|
11
|
Boillot M, ter Horst J, López JR, Di Fazio I, Steens ILM, Cohen MX, Homberg JR. Serotonin transporter knockout in rats reduces beta- and gamma-band functional connectivity between the orbitofrontal cortex and amygdala during auditory discrimination. Cereb Cortex 2024; 34:bhae334. [PMID: 39128940 PMCID: PMC11317204 DOI: 10.1093/cercor/bhae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/27/2024] [Indexed: 08/13/2024] Open
Abstract
The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.
Collapse
Affiliation(s)
- Morgane Boillot
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Jordi ter Horst
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - José Rey López
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Ilaria Di Fazio
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Indra L M Steens
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Michael X Cohen
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| |
Collapse
|
12
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. Brain Stimul 2024; 17:947-957. [PMID: 39096961 PMCID: PMC11364984 DOI: 10.1016/j.brs.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using functional magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examination of cell-type specific STN feedforward neural activity. Unilateral optogenetic STN DBS elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, this modulation effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetic DBS induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Biomedical Engineering, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiu Yu
- Department of Biomedical Engineering, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen W Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoa Do
- Department of Biomedical Engineering, USA
| | - Hyeon-Joong Kim
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| | - Warren M Grill
- Department of Biomedical Engineering, USA; Department of Electrical and Computer Engineering, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
14
|
Zou Y, Tong C, Peng W, Qiu Y, Li J, Xia Y, Pei M, Zhang K, Li W, Xu M, Liang Z. Cell-type-specific optogenetic fMRI on basal forebrain reveals functional network basis of behavioral preference. Neuron 2024; 112:1342-1357.e6. [PMID: 38359827 DOI: 10.1016/j.neuron.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
The basal forebrain (BF) is a complex structure that plays key roles in regulating various brain functions. However, it remains unclear how cholinergic and non-cholinergic BF neurons modulate large-scale functional networks and their relevance in intrinsic and extrinsic behaviors. With an optimized awake mouse optogenetic fMRI approach, we revealed that optogenetic stimulation of four BF neuron types evoked distinct cell-type-specific whole-brain BOLD activations, which could be attributed to BF-originated low-dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT, and PV neurons in the BF modulated the preference for locomotion, exploration, and grooming, respectively. Furthermore, we uncovered the functional network basis of the above BF-modulated behavioral preference through a decoding model linking the BF-modulated BOLD activation, low-dimensional structural networks, and behavioral preference. To summarize, we decoded the functional network basis of differential behavioral preferences with cell-type-specific optogenetic fMRI on the BF and provided an avenue for investigating mouse behaviors from a whole-brain view.
Collapse
Affiliation(s)
- Yijuan Zou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Chuanjun Tong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wanling Peng
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yue Qiu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200032, China
| | - Jiangxue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xia
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengchao Pei
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaiwei Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weishuai Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhifeng Liang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
15
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
16
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581627. [PMID: 38464010 PMCID: PMC10925223 DOI: 10.1101/2024.02.22.581627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
|
17
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
18
|
Li X, Feng D, Ma S, Li M, Zhao S, Tang M. Ventral hippocampus is more sensitive to fluoxetine-induced changes in extracellular 5-HT concentration, membrane 5-HT transporter level and immobility times. Neuropharmacology 2024; 242:109766. [PMID: 37858884 DOI: 10.1016/j.neuropharm.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Hippocampal responses to selective 5-HT reuptake inhibitor (SSRI) have long been studied. However, its sub-regional involvements in mediating SSRI's pharmacological effects have not been fully addressed. The current study sought to investigate neurochemical, neurobiological and neurobehavioral changes in response to direct fluoxetine perfusion into the ventral and dorsal sub-regions of the hippocampus in C57BL/6 mice. Following fluoxetine perfusion, time courses of dialysate 5-HT, 5-HT transporter (5-HTT) protein (total, membrane and cytoplasmic fractions), locomotion, and immobility times in the forced swim test (FST) and tail suspension test (TST) were determined. At baseline, 5-HT uptake efficiency assessed by the no-net-flux microdialysis, and 5-HTT protein were measured as well. Results show that fluoxetine dose-dependently increased dialysate 5-HT, lowered membrane 5-HTT protein and increased cytoplasmic fraction without changing the total level, decreased immobility times in both the FST and TST, with greater responses all detected in the ventral sub-region compared to the dorsal sub-region. Fluoxetine didn't affect locomotor activity, ruling out the possibility that fluoxetine's effects on immobility maybe due to alteration in locomotion. Besides, lower 5-HT uptake efficiency and lower membrane 5-HTT protein level were found in the ventral sub-region at baseline. Together, the sub-regional differences at baseline and in responses to fluoxetine added powerful evidence to support the existence of two distinct 5-HT sub-systems in the hippocampus, with greater changes to fluoxetine detected in the ventral sub-system.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Dan Feng
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Man Tang
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
19
|
Pagani M, Gutierrez-Barragan D, de Guzman AE, Xu T, Gozzi A. Mapping and comparing fMRI connectivity networks across species. Commun Biol 2023; 6:1238. [PMID: 38062107 PMCID: PMC10703935 DOI: 10.1038/s42003-023-05629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - A Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ting Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
20
|
Joo MK, Kim DH. Vagus nerve-dependent effects of fluoxetine on anxiety- and depression-like behaviors in mice. Eur J Pharmacol 2023:175862. [PMID: 37331682 DOI: 10.1016/j.ejphar.2023.175862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The vagus nerve is a major pathway in the body that is responsible for regulating the activity of the parasympathetic nervous system, which plays an important role in mood disorders including anxiety and depression. Fluoxetine, also known as Prozac, is widely used to treat depression. Nevertheless, there are few studies on the vagus nerve-mediated action of fluoxetine. In this study, we aimed to investigate the vagus nerve-dependent actions of fluoxetine in mice with restraint stress-induced or antibiotics-induced anxiety- and depression-like behaviors. Compared to sham operation, vagotomy alone did not exhibit significant effects on behavioral changes and serotonin-related biomarkers in mice not exposed to stress, antibiotics, or fluoxetine. Oral administration of fluoxetine significantly alleviated anxiety- and depression-like behaviors. However, celiac vagotomy significantly attenuated the anti-depressive effects of fluoxetine. The vagotomy also inhibited the effect of fluoxetine to attenuate restraint stress- or cefaclor-induced reduction in serotonin levels and Htr1a mRNA expression in the hippocampus. These findings suggest that the vagus nerve may regulate the efficacy of fluoxetine for depression.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
21
|
Zhang Q, Jing W, Wu S, Zhu M, Jiang J, Liu X, Yu D, Cheng L, Feng B, Wen J, Xiong F, Lu Y, Du H. Development of a synchronous recording and photo-stimulating electrode in multiple brain neurons. Front Neurosci 2023; 17:1195095. [PMID: 37383109 PMCID: PMC10293621 DOI: 10.3389/fnins.2023.1195095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
The investigation of brain networks and neural circuits involves the crucial aspects of observing and modulating neurophysiological activity. Recently, opto-electrodes have emerged as an efficient tool for electrophysiological recording and optogenetic stimulation, which has greatly facilitated the analysis of neural coding. However, implantation and electrode weight control have posed significant challenges in achieving long-term and multi-regional brain recording and stimulation. To address this issue, we have developed a mold and custom-printed circuit board-based opto-electrode. We report successful opto-electrode placement and high-quality electrophysiological recordings from the default mode network (DMN) of the mouse brain. This novel opto-electrode facilitates synchronous recording and stimulation in multiple brain regions and holds promise for advancing future research on neural circuits and networks.
Collapse
Affiliation(s)
- Qingping Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jing
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Shiping Wu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzheng Zhu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jingrui Jiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Yu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Long Cheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Feng
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbin Wen
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xiong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, National Center for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| |
Collapse
|
22
|
Kim S, Moon HS, Vo TT, Kim CH, Im GH, Lee S, Choi M, Kim SG. Whole-brain mapping of effective connectivity by fMRI with cortex-wide patterned optogenetics. Neuron 2023; 111:1732-1747.e6. [PMID: 37001524 DOI: 10.1016/j.neuron.2023.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Functional magnetic resonance imaging (fMRI) with optogenetic neural manipulation is a powerful tool that enables brain-wide mapping of effective functional networks. To achieve flexible manipulation of neural excitation throughout the mouse cortex, we incorporated spatiotemporal programmable optogenetic stimuli generated by a digital micromirror device into an MRI scanner via an optical fiber bundle. This approach offered versatility in space and time in planning the photostimulation pattern, combined with in situ optical imaging and cell-type-specific or circuit-specific genetic targeting in individual mice. Brain-wide effective connectivity obtained by fMRI with optogenetic stimulation of atlas-based cortical regions is generally congruent with anatomically defined axonal tracing data but is affected by the types of anesthetics that act selectively on specific connections. fMRI combined with flexible optogenetics opens a new path to investigate dynamic changes in functional brain states in the same animal through high-throughput brain-wide effective connectivity mapping.
Collapse
Affiliation(s)
- Seonghoon Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Seok Moon
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thanh Tan Vo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Ho Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
23
|
Katz BM, Walton LR, Houston KM, Cerri DH, Shih YYI. Putative neurochemical and cell type contributions to hemodynamic activity in the rodent caudate putamen. J Cereb Blood Flow Metab 2023; 43:481-498. [PMID: 36448509 PMCID: PMC10063835 DOI: 10.1177/0271678x221142533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is widely used by researchers to noninvasively monitor brain-wide activity. The traditional assumption of a uniform relationship between neuronal and hemodynamic activity throughout the brain has been increasingly challenged. This relationship is now believed to be impacted by heterogeneously distributed cell types and neurochemical signaling. To date, most cell-type- and neurotransmitter-specific influences on hemodynamics have been examined within the cortex and hippocampus of rodent models, where glutamatergic signaling is prominent. However, neurochemical influences on hemodynamics are relatively unknown in largely GABAergic brain regions such as the rodent caudate putamen (CPu). Given the extensive contribution of CPu function and dysfunction to behavior, and the increasing focus on this region in fMRI studies, improved understanding of CPu hemodynamics could have broad impacts. Here we discuss existing findings on neurochemical contributions to hemodynamics as they may relate to the CPu with special consideration for how these contributions could originate from various cell types and circuits. We hope this review can help inform the direction of future studies as well as interpretation of fMRI findings in the CPu.
Collapse
Affiliation(s)
- Brittany M Katz
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsay R Walton
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaiulani M Houston
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Domenic H Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Gozzi A, Zerbi V. Modeling Brain Dysconnectivity in Rodents. Biol Psychiatry 2023; 93:419-429. [PMID: 36517282 DOI: 10.1016/j.biopsych.2022.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Altered or atypical functional connectivity as measured with functional magnetic resonance imaging (fMRI) is a hallmark feature of brain connectopathy in psychiatric, developmental, and neurological disorders. However, the biological underpinnings and etiopathological significance of this phenomenon remain unclear. The recent development of MRI-based techniques for mapping brain function in rodents provides a powerful platform to uncover the determinants of functional (dys)connectivity, whether they are genetic mutations, environmental risk factors, or specific cellular and circuit dysfunctions. Here, we summarize the recent contribution of rodent fMRI toward a deeper understanding of network dysconnectivity in developmental and psychiatric disorders. We highlight substantial correspondences in the spatiotemporal organization of rodent and human fMRI networks, supporting the translational relevance of this approach. We then show how this research platform might help us comprehend the importance of connectional heterogeneity in complex brain disorders and causally relate multiscale pathogenic contributors to functional dysconnectivity patterns. Finally, we explore how perturbational techniques can be used to dissect the fundamental aspects of fMRI coupling and reveal the causal contribution of neuromodulatory systems to macroscale network activity, as well as its altered dynamics in brain diseases. These examples outline how rodent functional imaging is poised to advance our understanding of the bases and determinants of human functional dysconnectivity.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering, École polytechnique fédérale de Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
| |
Collapse
|
25
|
Menon V, Cerri D, Lee B, Yuan R, Lee SH, Shih YYI. Optogenetic stimulation of anterior insular cortex neurons in male rats reveals causal mechanisms underlying suppression of the default mode network by the salience network. Nat Commun 2023; 14:866. [PMID: 36797303 PMCID: PMC9935890 DOI: 10.1038/s41467-023-36616-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The salience network (SN) and default mode network (DMN) play a crucial role in cognitive function. The SN, anchored in the anterior insular cortex (AI), has been hypothesized to modulate DMN activity during stimulus-driven cognition. However, the causal neural mechanisms underlying changes in DMN activity and its functional connectivity with the SN are poorly understood. Here we combine feedforward optogenetic stimulation with fMRI and computational modeling to dissect the causal role of AI neurons in dynamic functional interactions between SN and DMN nodes in the male rat brain. Optogenetic stimulation of Chronos-expressing AI neurons suppressed DMN activity, and decreased AI-DMN and intra-DMN functional connectivity. Our findings demonstrate that feedforward optogenetic stimulation of AI neurons induces dynamic suppression and decoupling of the DMN and elucidates previously unknown features of rodent brain network organization. Our study advances foundational knowledge of causal mechanisms underlying dynamic cross-network interactions and brain network switching.
Collapse
Grants
- R01 MH121069 NIMH NIH HHS
- P50 HD103573 NICHD NIH HHS
- T32 AA007573 NIAAA NIH HHS
- R01 NS091236 NINDS NIH HHS
- R01 MH126518 NIMH NIH HHS
- S10 MH124745 NIMH NIH HHS
- U01 AA020023 NIAAA NIH HHS
- R01 MH111429 NIMH NIH HHS
- S10 OD026796 NIH HHS
- R01 NS086085 NINDS NIH HHS
- R01 EB022907 NIBIB NIH HHS
- P60 AA011605 NIAAA NIH HHS
- RF1 NS086085 NINDS NIH HHS
- RF1 MH117053 NIMH NIH HHS
- This work was supported in part by the National Institute of Mental Health (R01MH121069 to V.M., and R01MH126518, RF1MH117053, R01MH111429, S10MH124745 to Y.-Y.I.S.), National Institute on Alcohol Abuse and Alcoholism (P60AA011605 and U01AA020023 to Y.-Y.I.S., T32AA007573 to D.C.), National Institute of Neurological Disorders and Stroke (R01NS086085 to V.M., R01NS091236 to Y.-Y.I.S.), National Institute of Child Health and Human Development (P50HD103573 to Y.-Y.I.S.), National Institute of Biomedical Imaging and Bioengineering (R01EB022907 to V.M.), and National Institute of Health Office of the Director (S10OD026796 to Y.-Y.I.S.).
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Domenic Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Byeongwook Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rui Yuan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Salvan P, Fonseca M, Winkler AM, Beauchamp A, Lerch JP, Johansen-Berg H. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat Neurosci 2023; 26:53-63. [PMID: 36522497 PMCID: PMC9829536 DOI: 10.1038/s41593-022-01213-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
Although we understand how serotonin receptors function at the single-cell level, what role different serotonin receptors play in regulating brain-wide activity and, in turn, human behavior, remains unknown. Here, we developed transcriptomic-neuroimaging mapping to characterize brain-wide functional signatures associated with specific serotonin receptors: serotonin receptor networks (SRNs). Probing SRNs with optogenetics-functional magnetic resonance imaging (MRI) and pharmacology in mice, we show that activation of dorsal raphe serotonin neurons differentially modulates the amplitude and functional connectivity of different SRNs, showing that receptors' spatial distributions can confer specificity not only at the local, but also at the brain-wide, network level. In humans, using resting-state functional MRI, SRNs replicate established divisions of serotonin effects on impulsivity and negative biases. These results provide compelling evidence that heterogeneous brain-wide distributions of different serotonin receptor types may underpin behaviorally distinct modes of serotonin regulation. This suggests that serotonin neurons may regulate multiple aspects of human behavior via modulation of large-scale receptor networks.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Madalena Fonseca
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Heidi Johansen-Berg
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Zhang J, Northoff G. Beyond noise to function: reframing the global brain activity and its dynamic topography. Commun Biol 2022; 5:1350. [PMID: 36481785 PMCID: PMC9732046 DOI: 10.1038/s42003-022-04297-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
How global and local activity interact with each other is a common question in complex systems like climate and economy. Analogously, the brain too displays 'global' activity that interacts with local-regional activity and modulates behavior. The brain's global activity, investigated as global signal in fMRI, so far, has mainly been conceived as non-neuronal noise. We here review the findings from healthy and clinical populations to demonstrate the neural basis and functions of global signal to brain and behavior. We show that global signal (i) is closely coupled with physiological signals and modulates the arousal level; and (ii) organizes an elaborated dynamic topography and coordinates the different forms of cognition. We also postulate a Dual-Layer Model including both background and surface layers. Together, the latest evidence strongly suggests the need to go beyond the view of global signal as noise by embracing a dual-layer model with background and surface layer.
Collapse
Affiliation(s)
- Jianfeng Zhang
- grid.263488.30000 0001 0472 9649Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China ,grid.263488.30000 0001 0472 9649School of Psychology, Shenzhen University, Shenzhen, China
| | - Georg Northoff
- grid.13402.340000 0004 1759 700XMental Health Center, Zhejiang University School of Medicine, Hangzhou, China ,grid.28046.380000 0001 2182 2255Institute of Mental Health Research, University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
28
|
Liu J, Mo JW, Wang X, An Z, Zhang S, Zhang CY, Yi P, Leong ATL, Ren J, Chen LY, Mo R, Xie Y, Feng Q, Chen W, Gao TM, Wu EX, Feng Y, Cao X. Astrocyte dysfunction drives abnormal resting-state functional connectivity in depression. SCIENCE ADVANCES 2022; 8:eabo2098. [PMID: 36383661 PMCID: PMC9668300 DOI: 10.1126/sciadv.abo2098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Major depressive disorder (MDD) is a devastating mental disorder that affects up to 17% of the population worldwide. Although brain-wide network-level abnormalities in MDD patients via resting-state functional magnetic resonance imaging (rsfMRI) exist, the mechanisms underlying these network changes are unknown, despite their immense potential for depression diagnosis and management. Here, we show that the astrocytic calcium-deficient mice, inositol 1,4,5-trisphosphate-type-2 receptor knockout mice (Itpr2-/- mice), display abnormal rsfMRI functional connectivity (rsFC) in depression-related networks, especially decreased rsFC in medial prefrontal cortex (mPFC)-related pathways. We further uncover rsFC decreases in MDD patients highly consistent with those of Itpr2-/- mice, especially in mPFC-related pathways. Optogenetic activation of mPFC astrocytes partially enhances rsFC in depression-related networks in both Itpr2-/- and wild-type mice. Optogenetic activation of the mPFC neurons or mPFC-striatum pathway rescues disrupted rsFC and depressive-like behaviors in Itpr2-/- mice. Our results identify the previously unknown role of astrocyte dysfunction in driving rsFC abnormalities in depression.
Collapse
Affiliation(s)
- Jiaming Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jia-Wen Mo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xunda Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Can-Yuan Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Alex T. L. Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang-Yu Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ran Mo
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanyao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
29
|
Brown JA, Lee AJ, Pasquini L, Seeley WW. A dynamic gradient architecture generates brain activity states. Neuroimage 2022; 261:119526. [PMID: 35914669 PMCID: PMC9585924 DOI: 10.1016/j.neuroimage.2022.119526] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
The human brain exhibits a diverse yet constrained range of activity states. While these states can be faithfully represented in a low-dimensional latent space, our understanding of the constitutive functional anatomy is still evolving. Here we applied dimensionality reduction to task-free and task fMRI data to address whether latent dimensions reflect intrinsic systems and if so, how these systems may interact to generate different activity states. We find that each dimension represents a dynamic activity gradient, including a primary unipolar sensory-association gradient underlying the global signal. The gradients appear stable across individuals and cognitive states, while recapitulating key functional connectivity properties including anticorrelation, modularity, and regional hubness. We then use dynamical systems modeling to show that gradients causally interact via state-specific coupling parameters to create distinct brain activity patterns. Together, these findings indicate that a set of dynamic, intrinsic spatial gradients interact to determine the repertoire of possible brain activity states.
Collapse
Affiliation(s)
- Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Alex J Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lorenzo Pasquini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
30
|
Lee JY, You T, Woo CW, Kim SG. Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing. Int J Mol Sci 2022; 23:ijms232012268. [PMID: 36293125 PMCID: PMC9602603 DOI: 10.3390/ijms232012268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Sensory processing is a complex neurological process that receives, integrates, and responds to information from one's own body and environment, which is closely related to survival as well as neurological disorders. Brain-wide networks of sensory processing are difficult to investigate due to their dynamic regulation by multiple brain circuits. Optogenetics, a neuromodulation technique that uses light-sensitive proteins, can be combined with functional magnetic resonance imaging (ofMRI) to measure whole-brain activity. Since ofMRI has increasingly been used for investigating brain circuits underlying sensory processing for over a decade, we systematically reviewed recent ofMRI studies of sensory circuits and discussed the challenges of optogenetic fMRI in rodents.
Collapse
Affiliation(s)
- Jeong-Yun Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Taeyi You
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: ; Tel.: +82-31-299-4350; Fax: +82-31-299-4506
| |
Collapse
|
31
|
Ioanas HI, Schlegel F, Skachokova Z, Schroeter A, Husak T, Rudin M. Hybrid fiber optic-fMRI for multimodal cell-specific recording and manipulation of neural activity in rodents. NEUROPHOTONICS 2022; 9:032206. [PMID: 35355657 PMCID: PMC8936941 DOI: 10.1117/1.nph.9.3.032206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/19/2022] [Indexed: 05/08/2023]
Abstract
Significance: Multiscale imaging holds particular relevance to neuroscience, where it helps integrate the cellular and molecular biological scale, which is most accessible to interventions, with holistic organ-level evaluations, most relevant with respect to function. Being inextricably interdisciplinary, multiscale imaging benefits substantially from incremental technology adoption, and a detailed overview of the state-of-the-art is vital to an informed application of imaging methods. Aim: In this article, we lay out the background and methodological aspects of multimodal approaches combining functional magnetic resonance imaging (fMRI) with simultaneous optical measurement or stimulation. Approach: We focus on optical techniques as these allow, in conjunction with genetically encoded proteins (e.g. calcium indicators or optical signal transducers), unprecedented read-out and control specificity for individual cell-types during fMRI experiments, while leveraging non-interfering modalities. Results: A variety of different solutions for optical/fMRI methods has been reported ranging from bulk fluorescence recordings via fiber photometry to high resolution microscopy. In particular, the plethora of optogenetic tools has enabled the transformation of stimulus-evoked fMRI into a cell biological interrogation method. We discuss the capabilities and limitations of these genetically encoded molecular tools in the study of brain phenomena of great methodological and neuropsychiatric interest-such as neurovascular coupling (NVC) and neuronal network mapping. We provide a methodological description of this interdisciplinary field of study, and focus in particular on the limitations of the widely used blood oxygen level dependent (BOLD) signal and how multimodal readouts can shed light on the contributions arising from neurons, astrocytes, or the vasculature. Conclusion: We conclude that information from multiple signaling pathways must be incorporated in future forward models of the BOLD response to prevent erroneous conclusions when using fMRI as a surrogate measure for neural activity. Further, we highlight the potential of direct neuronal stimulation via genetically defined brain networks towards advancing neurophysiological understanding and better estimating effective connectivity.
Collapse
Affiliation(s)
- Horea-Ioan Ioanas
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
- Dartmouth College, Center for Open Neuroscience, Hanover, New Hampshire, United States
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| | - Felix Schlegel
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Zhiva Skachokova
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Aileen Schroeter
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- University of Zurich, USZ Innovation Hub, Zurich, Switzerland
| | - Tetiana Husak
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States
| | - Markus Rudin
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- The LOOP Zurich, Zurich, Switzerland
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| |
Collapse
|
32
|
Beloate LN, Zhang N. Connecting the dots between cell populations, whole-brain activity, and behavior. NEUROPHOTONICS 2022; 9:032208. [PMID: 35350137 PMCID: PMC8957372 DOI: 10.1117/1.nph.9.3.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Simultaneously manipulating and monitoring both microscopic and macroscopic brain activity in vivo and identifying the linkage to behavior are powerful tools in neuroscience research. These capabilities have been realized with the recent technical advances of optogenetics and its combination with fMRI, here termed "opto-fMRI." Opto-fMRI allows for targeted brain region-, cell-type-, or projection-specific manipulation and targetedCa 2 + activity measurement to be linked with global brain signaling and behavior. We cover the history, technical advances, applications, and important considerations of opto-fMRI in anesthetized and awake rodents and the future directions of the combined techniques in neuroscience and neuroimaging.
Collapse
Affiliation(s)
- Lauren N. Beloate
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
| | - Nanyin Zhang
- Pennsylvania State University, Department of Biomedical Engineering, Pennsylvania, United States
- Pennsylvania State University, Huck Institutes of the Life Sciences, Pennsylvania, United States
| |
Collapse
|
33
|
Lv X, Zhang X, Zhao Q, Li C, Zhang T, Yang X. Acute stress promotes brain oscillations and hippocampal-cortical dialog in emotional processing. Biochem Biophys Res Commun 2022; 598:55-61. [PMID: 35151204 DOI: 10.1016/j.bbrc.2022.01.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Hippocampal-cortical circuit oscillations in local field potential (LFP) represent network-level signals which promotes behavior. Investigating these signals promote our understanding on how the brain process cognition and emotion, and provide further perspectives into electroencephalogram endophenotypes, especially under the pathological state. The physiological adaptive stress responses to threatening stimuli are critical for individuals. The disturbance of stress response may lead to psychiatric disorders such as major depressive disorder (MDD). To quantitatively examine the effects of acute stress on hippocampal-cortical circuit, we recorded LFPs in the hippocampus (HC) and the medial prefrontal cortex (mPFC). We analyzed three major LFP oscillations with their temporal coupling. Consistent with our hypothesis that strengthened communication of hippocampal-cortical circuit may occur in stress adaption, we found that intensive acute stress induced enhanced ripple-delta-spindle coupling. The LFP coupling may facilitate the recruitment of relevant structures in hippocampal-cortical circuit, in response to acute stress, and play a role in emotional encoding migration.
Collapse
Affiliation(s)
- Xin Lv
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qian Zhao
- Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xiangyu Yang
- Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.
| |
Collapse
|
34
|
Voisin DA, Wakeford A, Nye J, Mun J, Jones SR, Locke J, Huhman KL, Wilson ME, Albers HE, Michopoulos V. Sex and social status modify the effects of fluoxetine on socioemotional behaviors in Syrian hamsters and rhesus macaques. Pharmacol Biochem Behav 2022; 215:173362. [PMID: 35219757 PMCID: PMC8983589 DOI: 10.1016/j.pbb.2022.173362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Social subordination increases risk for psychiatric disorders, while dominance increases resilience to these disorders. Fluoxetine, a selective serotonin (5HT) reuptake inhibitor whose actions are mediated in part by the 5HT1A receptor (5HT1AR), has sex- and social status-specific effects on socioemotional behavior and aggressive behavior. However, the impact of social status on these sex-specific effects remains unclear. The current study evaluated the impact of acute fluoxetine treatment and social status on dominance-related behaviors in female and male hamsters, and the impact of chronic fluoxetine treatment on socioemotional behavior and 5HT1AR binding potential (5HT1ARBP) in female rhesus macaques. We hypothesized that sex differences in the effects of fluoxetine on aggression in hamsters would be diminished in dominant and enhanced in subordinate males and that aggression in female hamsters would be enhanced in dominants and diminished in subordinates. In female rhesus macaques, we hypothesized that chronic fluoxetine would alter socioemotional behaviors and site-specific 5HT1ARBP in a status-dependent manner. Male (n = 46) and female (n = 56) hamsters were paired with conspecifics for three days to establish social rank. Hamsters received a single dose of 20 mg/kg fluoxetine or vehicle two-hours prior to a test with a non-aggressive intruder. Female rhesus monkeys (n = 14) housed were administered fluoxetine (2.8 mg/kg/day) or vehicle injections chronically for 14-days, separated by a three-week washout period. On Day 15, positron emission tomography neuroimaging for 5HT1ARBP was conducted. Fluoxetine treatment decreased aggression in subordinate female monkeys and subordinate female hamsters but not in dominant females of either species. Fluoxetine decreased aggression in dominant but not in subordinate male hamsters. Fluoxetine also reduced and increased prefrontal 5HT1ARBP in dominant and subordinate females, respectively. Taken together, these results provide cross-species evidence that social status and sex impact how increased 5HT modulates agonistic behavior.
Collapse
Affiliation(s)
- Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Alison Wakeford
- Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Jonathon Nye
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jiyoung Mun
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Molecular Imaging Department, Charles River Laboratories, Mattawan, MI, United States of America
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Mark E Wilson
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
35
|
Whole-brain opto-fMRI map of mouse VTA dopaminergic activation reflects structural projections with small but significant deviations. Transl Psychiatry 2022; 12:60. [PMID: 35165257 PMCID: PMC8844000 DOI: 10.1038/s41398-022-01812-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/16/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Ascending dopaminergic projections from neurons located in the Ventral Tegmental Area (VTA) are key to the etiology, dysfunction, and control of motivation, learning, and addiction. Due to the evolutionary conservation of this nucleus and the extensive use of mice as disease models, establishing an assay for VTA dopaminergic signaling in the mouse brain is crucial for the translational investigation of motivational control as well as of neuronal function phenotypes for diseases and interventions. In this article we use optogenetic stimulation directed at VTA dopaminergic neurons in combination with functional Magnetic Resonance Imaging (fMRI), a method widely used in human deep brain imaging. We present a comprehensive assay producing the first whole-brain opto-fMRI map of dopaminergic activation in the mouse, and show that VTA dopaminergic system function is consistent with its structural VTA projections, diverging only in a few key aspects. While the activation map predominantly highlights target areas according to their relative projection densities (e.g., strong activation of the nucleus accumbens and low activation of the hippocampus), it also includes areas for which a structural connection is not well established (such as the dorsomedial striatum). We further detail the variability of the assay with regard to multiple experimental parameters, including stimulation protocol and implant position, and provide evidence-based recommendations for assay reuse, publishing both reference results and a reference analysis workflow implementation.
Collapse
|
36
|
Mandino F, Vrooman RM, Foo HE, Yeow LY, Bolton TAW, Salvan P, Teoh CL, Lee CY, Beauchamp A, Luo S, Bi R, Zhang J, Lim GHT, Low N, Sallet J, Gigg J, Lerch JP, Mars RB, Olivo M, Fu Y, Grandjean J. A triple-network organization for the mouse brain. Mol Psychiatry 2022; 27:865-872. [PMID: 34650202 PMCID: PMC9054663 DOI: 10.1038/s41380-021-01298-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/21/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023]
Abstract
The triple-network model of psychopathology is a framework to explain the functional and structural neuroimaging phenotypes of psychiatric and neurological disorders. It describes the interactions within and between three distributed networks: the salience, default-mode, and central executive networks. These have been associated with brain disorder traits in patients. Homologous networks have been proposed in animal models, but their integration into a triple-network organization has not yet been determined. Using resting-state datasets, we demonstrate conserved spatio-temporal properties between triple-network elements in human, macaque, and mouse. The model predictions were also shown to apply in a mouse model for depression. To validate spatial homologies, we developed a data-driven approach to convert mouse brain maps into human standard coordinates. Finally, using high-resolution viral tracers in the mouse, we refined an anatomical model for these networks and validated this using optogenetics in mice and tractography in humans. Unexpectedly, we find serotonin involvement within the salience rather than the default-mode network. Our results support the existence of a triple-network system in the mouse that shares properties with that of humans along several dimensions, including a disease condition. Finally, we demonstrate a method to humanize mouse brain networks that opens doors to fully data-driven trans-species comparisons.
Collapse
Affiliation(s)
- Francesca Mandino
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore ,grid.5379.80000000121662407Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK ,grid.47100.320000000419368710Department of Radiology and Bioimaging Sciences, Yale School of Medicine, New Haven, CT USA
| | - Roël M. Vrooman
- grid.10417.330000 0004 0444 9382Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi E. Foo
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore ,grid.1005.40000 0004 4902 0432Centre for Healthy Brain Aging, CHeBA, School of Psychiatry, University of New South Wales Medicine, Kensington, Sydney, NSW 2052 Australia
| | - Ling Yun Yeow
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Thomas A. W. Bolton
- grid.8515.90000 0001 0423 4662Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Piergiorgio Salvan
- grid.8348.70000 0001 2306 7492Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chai Lean Teoh
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Chun Yao Lee
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Antoine Beauchamp
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Sarah Luo
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Renzhe Bi
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Jiayi Zhang
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore ,grid.59025.3b0000 0001 2224 0361Centre for Research and Development in Learning, Nanyang Technological University, 61 Nanyang Drive, Level 1, Singapore, 637460 Singapore
| | - Guan Hui Tricia Lim
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore ,grid.83440.3b0000000121901201University College London Medical School, University College London, London, UK
| | - Nathaniel Low
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Jerome Sallet
- grid.8348.70000 0001 2306 7492Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK ,grid.457382.fUniv Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - John Gigg
- grid.5379.80000000121662407Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jason P. Lerch
- grid.8348.70000 0001 2306 7492Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Rogier B. Mars
- grid.8348.70000 0001 2306 7492Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Malini Olivo
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Yu Fu
- grid.452254.00000 0004 0393 4167Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, Singapore, 138667, Singapore. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Salvan P, Lazari A, Vidaurre D, Mandino F, Johansen-Berg H, Grandjean J. Frequency modulation of entorhinal cortex neuronal activity drives distinct frequency-dependent states of brain-wide dynamics. Cell Rep 2021; 37:109954. [PMID: 34731612 PMCID: PMC8609366 DOI: 10.1016/j.celrep.2021.109954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/26/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022] Open
Abstract
Human neuroimaging studies have shown that, during cognitive processing, the brain undergoes dynamic transitions between multiple, frequency-tuned states of activity. Although different states may emerge from distinct sources of neural activity, it remains unclear whether single-area neuronal spiking can also drive multiple dynamic states. In mice, we ask whether frequency modulation of the entorhinal cortex activity causes dynamic states to emerge and whether these states respond to distinct stimulation frequencies. Using hidden Markov modeling, we perform unsupervised detection of transient states in mouse brain-wide fMRI fluctuations induced via optogenetic frequency modulation of excitatory neurons. We unveil the existence of multiple, frequency-dependent dynamic states, invisible through standard static fMRI analyses. These states are linked to different anatomical circuits and disrupted in a frequency-dependent fashion in a transgenic model of cognitive disease directly related to entorhinal cortex dysfunction. These findings provide cross-scale insight into basic neuronal mechanisms that may underpin flexibility in brain-wide dynamics.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Diego Vidaurre
- Wellcome Centre for Integrative Neuroimaging, OHBA, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; Department of Clinical Medicine, Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Joanes Grandjean
- Department of Medical Imaging and Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Centre, PO Box 9101, 6500HB Nijmegen, the Netherlands.
| |
Collapse
|
38
|
Contribution of animal models toward understanding resting state functional connectivity. Neuroimage 2021; 245:118630. [PMID: 34644593 DOI: 10.1016/j.neuroimage.2021.118630] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research. However, the mechanisms underlying functional connectivity have yet to be fully characterized, hindering interpretation of rs-fMRI studies. As in other branches of neuroscience, the identification of the neurophysiological processes that contribute to functional connectivity largely depends on research conducted on laboratory animals, which provide a platform where specific, multi-dimensional investigations that involve invasive measurements can be carried out. These highly controlled experiments facilitate the interpretation of the temporal correlations observed across the brain. Indeed, information obtained from animal experimentation to date is the basis for our current understanding of the underlying basis for functional brain connectivity. This review presents a compendium of some of the most critical advances in the field based on the efforts made by the animal neuroimaging community.
Collapse
|
39
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
40
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
41
|
Repeated fluoxetine treatment induces transient and long-term astrocytic plasticity in the medial prefrontal cortex of normal adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110252. [PMID: 33484756 DOI: 10.1016/j.pnpbp.2021.110252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Fluoxetine (Flx)-induced neuronal plasticity plays an important role in the effective treatment of depression and mood disorders. It is less understood whether repeated Flx treatment induces astrocytic plasticity that outlasts the presence of the drug in the body. We showed previously that Flx-induced neuronal plasticity in the medial prefrontal cortex (mPFC) persisted up to 20 days after the treatment. In this study, adult rats were subjected to a 15-day repeated Flx treatment at a daily dose of 20 mg/kg body weight. Astrocytic metabolites and markers were assessed in the mPFC at day 1 (d1) and day 20 (d20) after the treatment. Significant transient reductions in the concentrations of astrocytic metabolites taurine and myo-inositol and the expressions of glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) were observed in the mPFC of Flx-treated rats at d1, which recovered to the control levels at d20. Further, Flx treatment resulted in long-lasting changes in Kir4.1 expression in the mPFC, which remained downregulated at d20. The expression of 5-HT1A receptor in the mPFC of Flx-treated rats was downregulated at d1 but became upregulated at d20. In summary, repeated Flx treatment induces both transient and long-term astrocytic plasticity in the mPFC of adult rats. The changes observed at d1 are consistent with disturbed water homeostasis and astrocytic de-maturation in the mPFC. The persistent changes in the expressions of Kir4.1 and 5-HT1A at d20, presumably of the astrocytic origin, might have contributed to the long-term neurotrophic effects of repeated Flx treatment in the mPFC.
Collapse
|
42
|
MicroRNA-34a regulates 5-HT2C expression in dorsal raphe and contributes to the anti-depressant-like effect of fluoxetine. Neuropharmacology 2021; 190:108559. [PMID: 33845072 DOI: 10.1016/j.neuropharm.2021.108559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are designed to improve mood by raising extracellular serotonin levels through the blockade of the serotonin transporter. However, they exhibit a slow onset of action, suggesting the involvement of adaptive regulatory mechanisms. We hypothesized that the microRNA-34 family facilitates the therapeutic activity of SSRIs. We show that genetic deletion of these microRNAs in mice impairs the response to chronic, but not acute, fluoxetine treatment, with a specific effect on behavioral constructs that are related to depression, rather than anxiety. Moreover, using a pharmacological strategy, we found that an increased expression of the serotonin 2C (5-HT2C) receptor in the dorsal raphe region of the brain contributes to this phenotype. The onset of the therapeutic efficacy of SSRIs is paralleled by the desensitization of the 5-HT2C receptor in the dorsal raphe, and 5-HT2C is a putative target of microRNA-34. In this study, acute and chronic fluoxetine treatment differentially alters the expression of 5-HT2C and microRNA-34a in the dorsal raphe. Moreover, by in vitro luciferase assay, we demonstrated the repressive regulatory activity of microRNA-34a against 5-HT2C mRNA. Specific blockade of this interaction through local infusion of a target site blocker was sufficient to prevent the behavioral effects of chronic fluoxetine. Our results demonstrate a new miR-34a-mediated regulatory mechanism of 5-HT2C expression in the dorsal raphe and implicate it in eliciting the behavioral responses to chronic fluoxetine treatment.
Collapse
|
43
|
Jancke D, Herlitze S, Kringelbach ML, Deco G. Bridging the gap between single receptor type activity and whole-brain dynamics. FEBS J 2021; 289:2067-2084. [PMID: 33797854 DOI: 10.1111/febs.15855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023]
Abstract
What is the effect of activating a single modulatory neuronal receptor type on entire brain network dynamics? Can such effect be isolated at all? These are important questions because characterizing elementary neuronal processes that influence network activity across the given anatomical backbone is fundamental to guide theories of brain function. Here, we introduce the concept of the cortical 'receptome' taking into account the distribution and densities of expression of different modulatory receptor types across the brain's anatomical connectivity matrix. By modelling whole-brain dynamics in silico, we suggest a bidirectional coupling between modulatory neurotransmission and neuronal connectivity hardware exemplified by the impact of single serotonergic (5-HT) receptor types on cortical dynamics. As experimental support of this concept, we show how optogenetic tools enable specific activation of a single 5-HT receptor type across the cortex as well as in vivo measurement of its distinct effects on cortical processing. Altogether, we demonstrate how the structural neuronal connectivity backbone and its modulation by a single neurotransmitter system allow access to a rich repertoire of different brain states that are fundamental for flexible behaviour. We further propose that irregular receptor expression patterns-genetically predisposed or acquired during a lifetime-may predispose for neuropsychiatric disorders like addiction, depression and anxiety along with distinct changes in brain state. Our long-term vision is that such diseases could be treated through rationally targeted therapeutic interventions of high specificity to eventually recover natural transitions of brain states.
Collapse
Affiliation(s)
- Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Germany.,International Graduate School of Neuroscience (IGSN), Ruhr University Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University, Bochum, Germany
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark.,Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,Centre for Eudaimonia and Human Flourishing, University of Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
44
|
de Filippo R, Rost BR, Stumpf A, Cooper C, Tukker JJ, Harms C, Beed P, Schmitz D. Somatostatin interneurons activated by 5-HT 2A receptor suppress slow oscillations in medial entorhinal cortex. eLife 2021; 10:66960. [PMID: 33789079 PMCID: PMC8016478 DOI: 10.7554/elife.66960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Serotonin (5-HT) is one of the major neuromodulators present in the mammalian brain and has been shown to play a role in multiple physiological processes. The mechanisms by which 5-HT modulates cortical network activity, however, are not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SOs), a synchronized cortical network activity universally present across species. SOs are observed during anesthesia and are considered to be the default cortical activity pattern. We discovered that (±)3,4-methylenedioxymethamphetamine (MDMA) and fenfluramine, two potent 5-HT releasers, inhibit SOs within the entorhinal cortex (EC) in anesthetized mice. Combining opto- and pharmacogenetic manipulations with in vitro electrophysiological recordings, we uncovered that somatostatin-expressing (Sst) interneurons activated by the 5-HT2A receptor (5-HT2AR) play an important role in the suppression of SOs. Since 5-HT2AR signaling is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, we propose that the newly discovered link between Sst interneurons and 5-HT will contribute to our understanding of these complex topics.
Collapse
Affiliation(s)
- Roberto de Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Cluster of Excellence NeuroCure, Berlin, Germany
| | - Benjamin R Rost
- German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Alexander Stumpf
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany
| | - Claire Cooper
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Christoph Harms
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Experimental Neurology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Center for Stroke Research Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Cluster of Excellence NeuroCure, Berlin, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
45
|
Petersen CL, Davis SED, Patel B, Hurley LM. Social Experience Interacts with Serotonin to Affect Functional Connectivity in the Social Behavior Network following Playback of Social Vocalizations in Mice. eNeuro 2021; 8:ENEURO.0247-20.2021. [PMID: 33658309 PMCID: PMC8114900 DOI: 10.1523/eneuro.0247-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Past social experience affects the circuitry responsible for producing and interpreting current behaviors. The social behavior network (SBN) is a candidate neural ensemble to investigate the consequences of early-life social isolation. The SBN interprets and produces social behaviors, such as vocalizations, through coordinated patterns of activity (functional connectivity) between its multiple nuclei. However, the SBN is relatively unexplored with respect to murine vocal processing. The serotonergic system is sensitive to past experience and innervates many nodes of the SBN; therefore, we tested whether serotonin signaling interacts with social experience to affect patterns of immediate early gene (IEG; cFos) induction in the male SBN following playback of social vocalizations. Male mice were separated into either social housing of three mice per cage or into isolated housing at 18-24 d postnatal. After 28-30 d in housing treatment, mice were parsed into one of three drug treatment groups: control, fenfluramine (FEN; increases available serotonin), or pCPA (depletes available serotonin) and exposed to a 60-min playback of female broadband vocalizations (BBVs). FEN generally increased the number of cFos-immunoreactive (-ir) neurons within the SBN, but effects were more pronounced in socially isolated mice. Despite a generalized increase in cFos immunoreactivity, isolated mice had reduced functional connectivity, clustering, and modularity compared with socially reared mice. These results are analogous to observations of functional dysconnectivity in persons with psychopathologies and suggests that early-life social isolation modulates serotonergic regulation of social networks.
Collapse
Affiliation(s)
- Christopher L Petersen
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
| | - Sarah E D Davis
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Bhumi Patel
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
| | - Laura M Hurley
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405
- Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, Bloomington, IN 47405
- Department of Neuroscience, Indiana University Bloomington, Bloomington, IN 47406
| |
Collapse
|
46
|
Ehrlich AT, Darcq E. Recent advances in basic science methodology to evaluate opioid safety profiles and to understand opioid activities. Fac Rev 2021; 10:15. [PMID: 33718932 PMCID: PMC7946392 DOI: 10.12703/r/10-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Opioids are powerful drugs used by humans for centuries to relieve pain and are still frequently used as pain treatment in current clinical practice. Medicinal opioids primarily target the mu opioid receptor (MOR), and MOR activation produces unmatched pain-alleviating properties, as well as side effects such as strong rewarding effects, and thus abuse potential, and respiratory depression contributing to death during overdose. Therefore, the ultimate goal is to create opioid pain-relievers with reduced respiratory depression and thus fewer chances of lethality. Efforts are also underway to reduce the euphoric effects of opioids and avoid abuse liability. In this review, recent advances in basic science methodology used to understand MOR pharmacology and activities will be summarized. The focus of the review will be to describe current technological advances that enable the study of opioid analgesics from subcellular mechanisms to mesoscale network responses. These advances in understanding MOR physiological responses will help to improve knowledge and future design of opioid analgesics.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Emmanuel Darcq
- Department of Psychiatry, Douglas Research Center, McGill University, Montréal, Canada
- INSERM U1114, UNISTRA University of Strasbourg, Strasbourg, France
| |
Collapse
|
47
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
48
|
Bergmann E, Gofman X, Kavushansky A, Kahn I. Individual variability in functional connectivity architecture of the mouse brain. Commun Biol 2020; 3:738. [PMID: 33277621 PMCID: PMC7718219 DOI: 10.1038/s42003-020-01472-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years precision fMRI has emerged in human brain research, demonstrating characterization of individual differences in brain organization. However, mechanistic investigations to the sources of individual variability are limited in humans and thus require animal models. Here, we used resting-state fMRI in awake mice to quantify the contribution of individual variation to the functional architecture of the mouse cortex. We found that the mouse connectome is also characterized by stable individual features that support connectivity-based identification. Unlike in humans, we found that individual variation is homogeneously distributed in sensory and association networks. Finally, connectome-based predictive modeling of motor behavior in the rotarod task revealed that individual variation in functional connectivity explained behavioral variability. Collectively, these results establish the feasibility of precision fMRI in mice and lay the foundation for future mechanistic investigations of individual brain organization and pre-clinical studies of brain disorders in the context of personalized medicine.
Collapse
Affiliation(s)
- Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xenia Gofman
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
49
|
Xia F, Kheirbek MA. Circuit-Based Biomarkers for Mood and Anxiety Disorders. Trends Neurosci 2020; 43:902-915. [PMID: 32917408 PMCID: PMC7606349 DOI: 10.1016/j.tins.2020.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/23/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Mood and anxiety disorders are complex heterogeneous syndromes that manifest in dysfunctions across multiple brain regions, cell types, and circuits. Biomarkers using brain-wide activity patterns in humans have proven useful in distinguishing between disorder subtypes and identifying effective treatments. In order to improve biomarker identification, it is crucial to understand the basic circuitry underpinning brain-wide activity patterns. Leveraging a large repertoire of techniques, animal studies have examined roles of specific cell types and circuits in driving maladaptive behavior. Recent advances in multiregion recording techniques, data-driven analysis approaches, and machine-learning-based behavioral analysis tools can further push the boundary of animal studies and bridge the gap with human studies, to assess how brain-wide activity patterns encode and drive emotional behavior. Together, these efforts will allow identifying more precise biomarkers to enhance diagnosis and treatment.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
50
|
Belloy ME, Billings J, Abbas A, Kashyap A, Pan WJ, Hinz R, Vanreusel V, Van Audekerke J, Van der Linden A, Keilholz SD, Verhoye M, Keliris GA. Resting Brain Fluctuations Are Intrinsically Coupled to Visual Response Dynamics. Cereb Cortex 2020; 31:1511-1522. [PMID: 33108464 PMCID: PMC7869084 DOI: 10.1093/cercor/bhaa305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
How do intrinsic brain dynamics interact with processing of external sensory stimuli? We sought new insights using functional magnetic resonance imaging to track spatiotemporal activity patterns at the whole brain level in lightly anesthetized mice, during both resting conditions and visual stimulation trials. Our results provide evidence that quasiperiodic patterns (QPPs) are the most prominent component of mouse resting brain dynamics. These QPPs captured the temporal alignment of anticorrelation between the default mode (DMN)- and task-positive (TPN)-like networks, with global brain fluctuations, and activity in neuromodulatory nuclei of the reticular formation. Specifically, the phase of QPPs prior to stimulation could significantly stratify subsequent visual response magnitude, suggesting QPPs relate to brain state fluctuations. This is the first observation in mice that dynamics of the DMN- and TPN-like networks, and particularly their anticorrelation, capture a brain state dynamic that affects sensory processing. Interestingly, QPPs also displayed transient onset response properties during visual stimulation, which covaried with deactivations in the reticular formation. We conclude that QPPs appear to capture a brain state fluctuation that may be orchestrated through neuromodulation. Our findings provide new frontiers to understand the neural processes that shape functional brain states and modulate sensory input processing.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.,Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Jacob Billings
- Department of Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Anzar Abbas
- Department of Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Amrit Kashyap
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Rukun Hinz
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Verdi Vanreusel
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Johan Van Audekerke
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Annemie Van der Linden
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Shella D Keilholz
- Department of Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Marleen Verhoye
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Georgios A Keliris
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|