1
|
McNee A, Kannan A, Jull P, Shankar S. Expanding Human Breg for Cellular Therapy in Transplantation: Time for Translation. Transplantation 2025; 109:926-937. [PMID: 39439021 PMCID: PMC12091222 DOI: 10.1097/tp.0000000000005243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024]
Abstract
Regulatory B cells (Breg) are instrumental in protecting allografts in transplantation. Breg signatures are identified in operationally tolerant human kidney transplant recipients and can predict organ survival and acute rejection. Animal models of transplantation and autoimmunity support the use of Breg as an adoptive cellular therapy. Detailed mechanistic studies have identified multiple signaling pathways utilized by Breg in their induction, expansion, and downstream function. These preclinical studies provide the guiding principles, which will inform protocols by which to expand this crucial immunoregulatory population before clinical use. There is an urgent need for novel therapies to improve long-term transplant outcomes and to minimize immunosuppression-related morbidity including life-threatening infection and cancer. Systematic evaluation of the signals, which drive Breg expansion, will be key to transforming the as of yet unharnessed potential of this potent immunoregulatory cell. In this review, we explore the potential avenues of translating Breg subsets from cell culture at the laboratory bench to cell therapy at the patient's bedside. We will discuss the standardization of Breg phenotypes to aid in precursor population selection and quality control of a Breg-cell therapy product. We will evaluate avenues by which to optimize protocols to drive human Breg expansion to levels sufficient for cellular therapy. Finally, we will examine the steps required in process development including scalable culture systems and quality control measures to deliver a viable Breg-cell therapy product for administration to a transplant recipient.
Collapse
Affiliation(s)
- Adam McNee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Ananya Kannan
- Oxford University Medical School, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Patrick Jull
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
2
|
Brown EM, Temple ER, Jeanfavre S, Avila-Pacheco J, Taylor N, Liu K, Nguyen PNU, Mohamed AMT, Ung P, Walker RA, Graham DB, Clish CB, Xavier RJ. Bacteroides sphingolipids promote anti-inflammatory responses through the mevalonate pathway. Cell Host Microbe 2025:S1931-3128(25)00186-6. [PMID: 40449488 DOI: 10.1016/j.chom.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/20/2025] [Accepted: 05/07/2025] [Indexed: 06/03/2025]
Abstract
Sphingolipids derived from Bacteroides species are associated with changes in host inflammation and metabolic syndrome; however, the signaling mechanisms within host cells are unknown. We utilize outer membrane vesicles (OMVs) from wild-type and sphingolipid-deficient Bacteroides strains to understand how these lipids modulate host inflammation. Characterization of the lipidome of B. thetaiotaomicron OMVs revealed enrichment of dihydroceramide phosphoethanolamine (CerPE). OMVs deliver bacterial sphingolipids into host dendritic and epithelial cells, where a subset of lipids, including CerPE, stably persist. Similarly, B. thetaiotaomicron colonization results in sphingolipid persistence in murine tissues and host lipidome alterations that are not observed with the sphingolipid-deficient strain. OMVs induce a potent, sphingolipid-dependent interleukin-10 (IL-10) anti-inflammatory response in dendritic cells, which depends on mevalonate pathway activation. Adding a CerPE fraction to sphingolipid-deficient OMVs rescued IL-10 secretion, similarly dependent on mevalonate pathway activation. These data highlight the essential roles of sphingolipids in stimulating anti-inflammatory responses mediated by mevalonate pathway induction.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Emily R Temple
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sarah Jeanfavre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Noel Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kai Liu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Ahmed M T Mohamed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Panhasith Ung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Afzali B, Singh P, Tajmul M, Kemper C. Inside job: Roles of intracellular C3. J Allergy Clin Immunol 2025:S0091-6749(25)00374-4. [PMID: 40194602 DOI: 10.1016/j.jaci.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Our understanding of the complement system continues to grow beyond that of a liver-derived systemically operative mechanism of pathogen clearance to a central orchestrator of single-cell behavior and tissue biology. These expanded activities reflect the extrahepatic and local production of complement by many, if not most, cells, and the unexpected recent finding that complement also serves important physiological intracellular roles. The complement core component C3 has emerged as a particularly critical player in basic cell functions. Here, we provide an overview of the currently known forms and functions of intracellular C3 and the mechanisms that control it. We also discuss 2 emerging concepts as potential key areas for future exploration: intracellular C3 as a second layer of pathogen defense at host-environmental interfaces and "C3 licensing." We conclude by suggesting that the potential clinical implications surrounding perturbations in intracellular C3 activities should be explored better.
Collapse
Affiliation(s)
- Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Md
| | - Parul Singh
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, Md
| | - Md Tajmul
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Md
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, NIH, Bethesda, Md.
| |
Collapse
|
4
|
Vital KD, Pires LO, Gallotti B, Silva JL, Lima de Jesus LC, Alvarez-Leite JI, Ferreira Ê, de Carvalho Azevedo VA, Santos Martins F, Nascimento Cardoso V, Antunes Fernandes SO. Atorvastatin attenuates intestinal mucositis induced by 5-fluorouracil in mice by modulating the epithelial barrier and inflammatory response. J Chemother 2025; 37:175-192. [PMID: 38711347 DOI: 10.1080/1120009x.2024.2345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1β, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octavio Pires
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janayne Luihan Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís Cláudio Lima de Jesus
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ênio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Cui C, Yan A, Huang S, Chen Y, Zhao J, Li C, Wang X, Yang J. PCSK9 Manipulates Lipid Metabolism and the Immune Microenvironment in Cancer. Onco Targets Ther 2025; 18:411-427. [PMID: 40166624 PMCID: PMC11956896 DOI: 10.2147/ott.s504637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Cancer remains the foremost cause of mortality on a global scale. Immunotherapy has yielded remarkable outcomes in the fight against cancer and is regarded as one of the most crucial and promising therapeutic modalities. PCSK9, a critical target for plasma lipids control, has been extensively and deeply studied in multiple diseases. Currently, the functions of PCSK9 in cancer, particularly its immunomodulatory role, have been progressively revealed. PCSK9 is capable of modulating a variety of immune response throughout tumor progression by orchestrating lipid metabolism. Moreover, PCSK9 governs the cell fate of diverse immune cells, such as inflammatory factor signals, MHC signals, and TCR signals. This review comprehensively summarizes the current state of knowledge regarding the role and underlying mechanisms of PCSK9 in tumorigenesis, progression, immune escape, and drug resistance.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Aiwei Yan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Shengming Huang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Rudong County Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, People’s Republic of China
| | - Yifan Chen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jinyu Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Cixia Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jianbo Yang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| |
Collapse
|
6
|
Prasad RR, Kumar S, Zhang H, Li M, Hu CJ, Riddle S, McKeon BA, Frid M, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Tuder RM, Stenmark KR. An intracellular complement system drives metabolic and proinflammatory reprogramming of vascular fibroblasts in pulmonary hypertension. JCI Insight 2025; 10:e184141. [PMID: 39946184 PMCID: PMC11949053 DOI: 10.1172/jci.insight.184141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
The complement system is central to the innate immune response, playing a critical role in proinflammatory and autoimmune diseases such as pulmonary hypertension (PH). Recent discoveries highlight the emerging role of intracellular complement, or the "complosome," in regulating cellular processes such as glycolysis, mitochondrial dynamics, and inflammatory gene expression. This study investigated the hypothesis that intracellular complement proteins C3, CFB, and CFD are upregulated in PH fibroblasts (PH-Fibs) and drive their metabolic and inflammatory states, contributing to PH progression. Our results revealed a pronounced upregulation of CFD, CFB, and C3 in PH-Fibs from human samples and bovine models, both in vivo and in vitro. The finding of elevated levels of C3 activation fragments, including C3b, C3d, and C3a, emphasized enhanced C3 activity. PH-Fibs exhibited notable metabolic reprogramming and increased levels of proinflammatory mediators such as MCP1, SDF1, IL-6, IL-13, and IL-33. Silencing CFD via shRNA reduced CFB activation and C3a production, while normalizing glycolysis, tricarboxylic acid (TCA) cycle activity, and fatty acid metabolism. Metabolomic and gene expression analyses of CFD-knockdown PH-Fibs revealed restored metabolic and inflammatory profiles, underscoring CFD's crucial role in these changes. This study emphasizes the crucial role of intracellular complement in PH pathogenesis, highlighting the potential for complement-targeted therapies in PH.
Collapse
Affiliation(s)
- Ram Raj Prasad
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Sushil Kumar
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Hui Zhang
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Min Li
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzette Riddle
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Brittany A. McKeon
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - M.G. Frid
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Rubin M. Tuder
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
- Department of Lung Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt R. Stenmark
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| |
Collapse
|
7
|
Zou Y, Yang Y, Yang J, Zhang Y, Zhao C, Qin L, Hu N. The Utility of Synovial Fluid Interleukin-10 in Diagnosing Chronic Periprosthetic Joint Infection: A Prospective Cohort Study. Infect Drug Resist 2025; 18:533-542. [PMID: 39898353 PMCID: PMC11786602 DOI: 10.2147/idr.s490962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Background Diagnosing chronic periprosthetic joint infection (PJI) is challenging. Synovial fluid interleukin-10 (SF IL-10), an anti-inflammatory cytokine produced by leukocytes, plays a pivotal role in inflammation and infection regulation. However, limited research has explored the diagnostic potential of SF IL-10 in chronic PJI patients. Objective The study aimed to investigate the relationship between SF IL-10 and incidence of chronic PIJ, and to evaluate its diagnostic reliability. Design and Methods We analyzed data from 137 patients who underwent revision surgery for aseptic loosening or chronic PJI between 2017 and 2019 in our hospital. PJI diagnoses followed the 2013 International Consensus Meeting criteria. We measured serum ESR, serum CRP, SF PMN%, SF WBC and SF IL-10 levels, using logistic regression and receiver operating characteristic (ROC) curves to evaluate associations and diagnostic accuracy. Results Demographic data showed no significant differences. However, SF IL-10 levels differed significantly between groups. Logistic regression indicated a strong association between SF IL-10 and chronic PJI (OR = 1.11, 95% CI 1.05~1.17, p < 0.001). At a cut-off of 10.305 pg/mL, SF IL-10 had an area under the ROC curve (AUC) of 0.891, with 92.16% sensitivity and 77.91% specificity. Adding SF IL-10 to traditional models improved risk prediction for chronic PJI (net reclassification improvement [NRI]: 0.167 [0.023 ~ 0.312]; integrated discrimination improvement [IDI]: 0.160 [0.096 ~ 0.224]). Conclusion Higher SF IL-10 levels were significantly associated with chronic PJI in revision surgery patients, and incorporating SF IL-10 into the traditional risk model enhanced its predictive value for chronic PJI in these patients.
Collapse
Affiliation(s)
- Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Department of Orthopedics, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, People’s Republic of China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yaji Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yanhao Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
8
|
Chen Z, Yan D, Guo S, Song Y, Zhang X, Gu W, Dong H, Huang L. METTL3/miR-192-5p/SCD1 Axis Regulates Lipid Metabolism to Affect T Cell Differentiation in Asthma. Mediators Inflamm 2025; 2025:4955849. [PMID: 39867638 PMCID: PMC11769594 DOI: 10.1155/mi/4955849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
Background: This study aimed to explore the mechanisms underlying T-cell differentiation in asthma. Methods and Results: Flow cytometry was performed to detect Th cells. LC-MS/MS was performed to assess lipid metabolism. HE staining was performed to assess the pathological changes of the lung tissues. ELISA was performed to detect cytokine levels. The results of quantitative real-time polymerase chain reaction (qRT-PCR) and western blot showed that miR-192-5p expression was decreased, while SCD1 expression was increased in CD4+T cells isolated from the peripheral blood of children with asthma. The dual luciferase reporter assay determined the direct interaction between miR-192-5p and SCD1. MiR-192-5p inhibitor reduced ASCL3 and PPARα, increased FASN and SREBP1c mRNA expression and protein levels in mouse spleen CD4+T cells, and elevated Th2 and Th17 cells, but these effects were reversed by the SCD1 inhibitor. Oleic acid (OA) reduced Th1 cells and increased Th2 and Th17 cells in mouse spleen CD4+T cells treated with an SCD1 inhibitor. Additionally, pri-miR-192-5p expression was increased in CD4+T cells isolated from the peripheral blood of asthmatic children, and the deletion of METTL3 upregulated pri-miR-192-5p expression in an m6A-dependent manner. MiR-192-5p mimic and inhibitor both reversed miR-192-5p and SCD1 expression affected by overexpression or deletion of METTL3, both in vivo and in vitro. Furthermore, METTL3 overexpression attenuated lung inflammation, elevated Th1 cells, and reduced Th2 and Th17 cells in CD4+T cells isolated from the peripheral blood of asthmatic mice. These effects were reversed by the miR-192-5p inhibitor. Conclusion: These results suggest that METTL3/miR-192-5p/SCD1 axis regulates lipid metabolism and affects T cell differentiation, thus affecting asthma progression. This study may provide novel insights into the pathogenesis of asthma and a new treatment strategy.
Collapse
Affiliation(s)
- Zhengrong Chen
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Dingwei Yan
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Suyu Guo
- Department of Pediatric Pulmonology, Xuzhou Children's Hospital, Xuzhou Medical University, No 18 Sudi Road, Xuzhou 221000, China
| | - Yiyi Song
- Suzhou Medical College, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Xinxing Zhang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Wenjing Gu
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Heting Dong
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| | - Li Huang
- Department of Pediatric Pulmonology, Children's Hospital of Soochow University, No 303, Jingde Road, Suzhou 215003, China
| |
Collapse
|
9
|
Hwang SH, Yang Y, Jung JH, Kim JW, Kim Y. Stearoyl-CoA desaturase in CD4 + T cells suppresses tumor growth through activation of the CXCR3/CXCL11 axis in CD8 + T cells. Cell Biosci 2024; 14:137. [PMID: 39543650 PMCID: PMC11566202 DOI: 10.1186/s13578-024-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Within the tumor microenvironment, altered lipid metabolism promotes cancer cell malignancy by activating oncogenic cascades; however, impact of lipid metabolism in CD4+ tumor-infiltrating lymphocytes (TILs) remains poorly understood. Here, we elucidated that role of stearoyl-CoA desaturase (SCD) increased by treatment with cancer-associated fibroblast (CAF) supernatant in CD4+ T cells on their subset differentiation and activity of CD8+ T cells. RESULTS In our study, we observed that CD4+ TILs had higher lipid droplet content than CD4+ splenic T cells. In tumor tissue, CAF-derived supernatant provided fatty acids to CD4+ TILs, which increased the expression of SCD and oleic acid (OA) content. Increased SCD expression by OA treatment enhanced the levels of Th1 cell markers TBX21, interleukin-2, and interferon-γ. However, SCD inhibition upregulated the expression of regulatory T (Treg) cell markers, FOXP3 and transforming growth factor-β. Comparative fatty acid analysis of genetically engineered Jurkat cells revealed that OA level was significantly higher in SCD-overexpressing cells. Overexpression of SCD increased expression of Th1 cell markers, while treatment with OA enhanced the transcriptional level of TBX21 in Jurkat cells. In contrast, palmitic acid which is higher in SCD-KO cells than other subclones enhanced the expression of Treg cell markers through upregulation of mitochondrial superoxide. Furthermore, SCD increased the secretion of the C-X-C motif chemokine ligand 11 (CXCL11) from CD4+ T cells. The binding of CXCL11 to CXCR3 on CD8+ T cells augmented their cytotoxic activity. In a mouse tumor model, the suppressive effect of CD8+ T cells on tumor growth was dependent on CXCR3 expression. CONCLUSION These findings illustrate that SCD not only orchestrates the differentiation of T helper cells, but also promotes the antitumor activity of CD8+ T cells, suggesting its function in adverse tumor microenvironments.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- BK21 Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jae-Ha Jung
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
10
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Granela H, Perez AB, Morier L, Alvarez M, Guzmán MG, Sierra B. Possible effects of ancestry-related oxysterol-binding protein-like 10 genetic polymorphisms on dengue virus replication and anti-dengue immune response. Heliyon 2024; 10:e37535. [PMID: 39444395 PMCID: PMC11497451 DOI: 10.1016/j.heliyon.2024.e37535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Oxysterol-binding protein-like 10 (OSBPL10) gene has been associated with reduced susceptibility to severe dengue in individuals of African descent. The aim of this study was to determine the possible effect of OSBPL10 on dengue virus (DENV) replication as well as the impact of African and European haplotypes of six OSBPL10 small nuclear polymorphisms (SNPs) on dengue multiplication and innate immune response. Methods We conducted gene knockdown experiments targeting OSBPL10 in THP-1 and Huh-7D12 cell lines, followed by a DENV-2 replication assay. Extracellular viral load was determined using qRT-PCR. To investigate the impact of SNPs haplotypes on viral replication and gene expression we cultured peripheral blood mononuclear cells (PBMC) from individuals with homozygous African and European haplotypes of OSBPL10 with DENV-2. Individual genotyping was performed using High Resolution Melt (HRM) analysis. The level of viral replication was assessed through plaque assay, while RT-PCR was employed to determine the expression levels of RXR-α, IFN-γ, IL-10 and IL-8 genes. Results In vitro OSBPL10 knockdown significantly reduced DENV-2 replication. Individuals carrying European haplotypes showed higher DENV titers along with elevated levels of RXR-α and IL-8 mRNA compared to those carrying African haplotypes, who exhibited lower viral loads alongside increased IFN-γ and IL-10 expression. Conclusions Our findings further explore the role of OSBPL10 in DENV multiplication, immune response to infection. The European haplotypes of OSBPL10 appear to increase DENV replication and promote RXR-α and IL-8 mRNA expression which correlates with the suppressive effect of these mediators on type I IFN, promoting viral replication and a deficient antiviral response. In contrast, the African haplotype showed a reduction in DENV replication and enhanced IFN-γ and IL-10 mRNA expression, which could be related to the better management of dengue infection and the low frequency of severe disease in this ethnic groupe.
Collapse
Affiliation(s)
- Hector Granela
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Ana B. Perez
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Luis Morier
- Virology Department, Biology Faculty, University of Havana. 455, 25th Street. Havana, Cuba
| | - Mayling Alvarez
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Maria G. Guzmán
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| | - Beatriz Sierra
- Virology Department, “Pedro Kourí” Tropical Medicine Institute (IPK). Autopista Novia del Mediodía, km 61/2.Havana, Cuba
| |
Collapse
|
12
|
Duan Z, Yang M, Yang J, Wu Z, Zhu Y, Jia Q, Ma X, Yin Y, Zheng J, Yang J, Jiang S, Hu L, Zhang J, Liu D, Huo Y, Yao L, Sun Y. AGFG1 increases cholesterol biosynthesis by disrupting intracellular cholesterol homeostasis to promote PDAC progression. Cancer Lett 2024; 598:217130. [PMID: 39089666 DOI: 10.1016/j.canlet.2024.217130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Cholesterol metabolism reprograming has been acknowledged as a novel feature of cancers. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a high demand of cholesterol for rapid growth. The underlying mechanism of how cholesterol metabolism homestasis are disturbed in PDAC is explored. EXPERIMENTAL DESIGN The relevance between PDAC and cholesterol was confirmed in TCGA database. The expression and clinical association were discovered in TCGA and GEO datasets. Knockdown and overexpression of AGFG1 was adopted to perform function studies. RNA sequencing, cholesterol detection, transmission electron microscope, co-immunoprecipitation, and immunofluorescence et al. were utilized to reveal the underlying mechanism. RESULTS AGFG1 was identified as one gene positively correlated with cholesterol metabolism in PDAC as revealed by bioinformatics analysis. AGFG1 expression was then found associated with poor prognosis in PDAC. AGFG1 knockdown led to decreased proliferation of tumor cells both in vitro and in vivo. By RNA sequencing, we found AGFG1 upregulated expression leads to enhanced intracellular cholesterol biosynthesis. AGFG1 knockdown suppressed cholesterol biosynthesis and an accumulation of cholesterol in the ER. Mechanistically, we confirmed that AGFG1 interacted with CAV1 to relocate cholesterol for the proceeding of cholesterol biosynthesis, therefore causing disorders in intracellular cholesterol metabolism. CONCLUSIONS Our study demonstrates the tumor-promoting role of AGFG1 by disturbing cholesterol metabolism homestasis in PDAC. Our study has present a new perspective on cancer therapeutic approach based on cholerstrol metabolism in PDAC.
Collapse
Affiliation(s)
- Zonghao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China; Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Zheng Wu
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yuheng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qinyuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xueshiyu Ma
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yifan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Jiahao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jianyu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Shuheng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lipeng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China; Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, PR China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| | - Linli Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
13
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
14
|
Guo Y, Luo L, Zhu J, Li C. Advance in Multi-omics Research Strategies on Cholesterol Metabolism in Psoriasis. Inflammation 2024; 47:839-852. [PMID: 38244176 DOI: 10.1007/s10753-023-01961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/22/2024]
Abstract
The skin is a complex and dynamic organ where homeostasis is maintained through the intricate interplay between the immune system and metabolism, particularly cholesterol metabolism. Various factors such as cytokines, inflammatory mediators, cholesterol metabolites, and metabolic enzymes play crucial roles in facilitating these interactions. Dysregulation of this delicate balance contributes to the pathogenic pathways of inflammatory skin conditions, notably psoriasis. In this article, we provide an overview of omics biomarkers associated with psoriasis in relation to cholesterol metabolism. We explore multi-omics approaches that reveal the communication between immunometabolism and psoriatic inflammation. Additionally, we summarize the use of multi-omics strategies to uncover the complexities of multifactorial and heterogeneous inflammatory diseases. Finally, we highlight potential future perspectives related to targeted drug therapies and research areas that can advance precise medicine. This review aims to serve as a valuable resource for those investigating the role of cholesterol metabolism in psoriasis.
Collapse
Affiliation(s)
- Youming Guo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Lingling Luo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Bamidele AO, Mishra SK, Piovezani Ramos G, Hirsova P, Klatt EE, Abdelrahman LM, Sagstetter MR, Davidson HM, Fehrenbach PJ, Valenzuela-Pérez L, Kim Lee HS, Zhang S, Aguirre Lopez A, Kurdi AT, Westphal MS, Gonzalez MM, Gaballa JM, Kosinsky RL, Lee HE, Smyrk TC, Bantug G, Gades NM, Faubion WA. Interleukin 21 Drives a Hypermetabolic State and CD4 + T-Cell-Associated Pathogenicity in Chronic Intestinal Inflammation. Gastroenterology 2024; 166:826-841.e19. [PMID: 38266738 PMCID: PMC11034723 DOI: 10.1053/j.gastro.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND & AIMS Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease; however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing the Seahorse XF analyzer. We used a Crohn's disease single-cell RNA sequencing dataset to infer the therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically modified Tregs in CD4+ T-cell-induced murine colitis models. RESULTS Mitochondria-endoplasmic reticulum appositions, known to mediate pyruvate entry into mitochondria via voltage-dependent anion channel 1 (VDAC1), are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate supplementation. Notably, interleukin (IL) 21 diminished mitochondria-endoplasmic reticulum appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 β, a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. Methyl pyruvate and glycogen synthase kinase 3 β pharmacologic inhibitor (LY2090314) reversed IL21-induced metabolic rewiring and inflammatory state. Moreover, IL21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS IL21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL21-induced metabolism in Tregs may mitigate CD4+ T-cell-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota.
| | - Shravan K Mishra
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Emily E Klatt
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Leena M Abdelrahman
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Heidi M Davidson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick J Fehrenbach
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Song Zhang
- Mayo Clinic Metabolomics Core, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Abner Aguirre Lopez
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ahmed T Kurdi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maria S Westphal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michelle M Gonzalez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Joseph M Gaballa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Hee Eun Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Glenn Bantug
- Immunobiology Laboratory, Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Bishop EL, Gudgeon N, Fulton-Ward T, Stavrou V, Roberts J, Boufersaoui A, Tennant DA, Hewison M, Raza K, Dimeloe S. TNF-α signals through ITK-Akt-mTOR to drive CD4 + T cell metabolic reprogramming, which is dysregulated in rheumatoid arthritis. Sci Signal 2024; 17:eadg5678. [PMID: 38652761 DOI: 10.1126/scisignal.adg5678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Upon activation, T cells undergo metabolic reprogramming to meet the bioenergetic demands of clonal expansion and effector function. Because dysregulated T cell cytokine production and metabolic phenotypes coexist in chronic inflammatory disease, including rheumatoid arthritis (RA), we investigated whether inflammatory cytokines released by differentiating T cells amplified their metabolic changes. We found that tumor necrosis factor-α (TNF-α) released by human naïve CD4+ T cells upon activation stimulated the expression of a metabolic transcriptome and increased glycolysis, amino acid uptake, mitochondrial oxidation of glutamine, and mitochondrial biogenesis. The effects of TNF-α were mediated by activation of Akt-mTOR signaling by the kinase ITK and did not require the NF-κB pathway. TNF-α stimulated the differentiation of naïve cells into proinflammatory T helper 1 (TH1) and TH17 cells, but not that of regulatory T cells. CD4+ T cells from patients with RA showed increased TNF-α production and consequent Akt phosphorylation upon activation. These cells also exhibited increased mitochondrial mass, particularly within proinflammatory T cell subsets implicated in disease. Together, these findings suggest that T cell-derived TNF-α drives their metabolic reprogramming by promoting signaling through ITK, Akt, and mTOR, which is dysregulated in autoinflammatory disease.
Collapse
Affiliation(s)
- Emma L Bishop
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
| | - Nancy Gudgeon
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
| | - Taylor Fulton-Ward
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Victoria Stavrou
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Karim Raza
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, B15 2TT Birmingham, UK
- Sandwell and West Birmingham NHS Trust, B18 7QH Birmingham, UK
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK
| |
Collapse
|
17
|
Li C, Xiong Z, Han J, Nian W, Wang Z, Cai K, Gao J, Wang G, Tao K, Cai M. Identification of a lipid homeostasis-related gene signature for predicting prognosis, immunity, and chemotherapeutic effect in patients with gastric cancer. Sci Rep 2024; 14:2895. [PMID: 38316848 PMCID: PMC10844315 DOI: 10.1038/s41598-024-52647-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Gastric cancer (GC) is one of the most common and deadliest cancers worldwide. Lipid homeostasis is essential for tumour development because lipid metabolism is one of the most important metabolic reprogramming pathways within tumours. Elucidating the mechanism of lipid homeostasis in GC might significantly improve treatment strategies and patient prognosis. GSE62254 was applied to construct a lipid homeostasis-related gene signature score (HGSscore) by multiple bioinformatic algorithms including weighted gene coexpression network analysis (WGCNA) and LASSO-Cox regression. A nomogram based on HGSscore and relevant clinical characteristics was constructed to predict the survival of patients with GC. TIMER and xCell were used to evaluate immune and stromal cell infiltration in the tumour microenvironment. Correlations between lipid homeostasis-related genes and chemotherapeutic efficacy were analysed in GSCAlite. RT‒qPCR and cell viability assays were applied to verify the findings in this study. HGSscore was constructed based on eighteen lipid homeostasis-related genes that were selected by WGCNA and LASSO-Cox regression. HGSscore was strongly associated with advanced TNM stage and showed satisfactory value in predicting GC prognosis in three independent cohorts. Furthermore, we found that HGSscore was associated with the tumour mutation burden (TMB) and immune/stromal cell infiltration, which are related to GC prognosis, indicating that lipid homeostasis impacts the formation of the tumour microenvironment (TME). With respect to the GSCAlite platform, PLOD2 and TGFB2 were shown to be positively related to chemotherapeutic resistance, while SLC10A7 was a favourable factor for chemotherapy efficacy. Cell viability assays showed that disrupted lipid homeostasis could attenuate GC cell viability. Moreover, RT‒qPCR revealed that lipid homeostasis could influence expression of specific genes. We identified a lipid homeostasis-related gene signature that correlated with survival, clinical characteristics, the TME, and chemotherapeutic efficacy in GC patients. This research provides a new perspective for improving prognosis and guiding individualized chemotherapy for patients with GC.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Xiong
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Nian
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
19
|
Sang XZ, Chen W, Hou XX, Wang CH, Zhang DF, Hou LJ. Association Between Statin Use and Dementia, and Related Mechanisms: A Bibliometric Analysis from 2007 to 2023. J Alzheimers Dis 2024; 101:847-876. [PMID: 39269837 DOI: 10.3233/jad-240270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Emerging evidence suggests the potential of hydroxymethylglutaryl-coenzyme A (HMG-CoA, statins) as a therapeutic option for dementia. Objective The primary objective of this study is to assess the current state of research on statins use in dementia, with a focus on identifying pivotal questions within the field. Methods A systemic search for publications on statin use in dementia between 2007 and 2023 was conducted, utilizing the Web of Science Core Collection. The scientific output was analyzed from various perspectives through VOSviewer, CiteSpace, and the bibliometrics website (https://bibliometric.com/). Results 560 articles authored by 2,977 individuals and 999 institutions across 58 countries were included, which were published in 295 periodicals and cited 21,176 references from 16,424 authors. The annual publication output remained steady, while the number of citations increased consistently. The U.S. and Mayo Clinic emerged as the most significant country and institution, respectively. B. McGuinness and D.L. Sparks were the most eminent authors. Journal of Alzheimer's Disease was the most influential journal. Three sets of keywords and the top 10 references were identified, suggesting pivotal questions within the field. Conclusions While statins show promising potential as a treatment option for dementia, their use remains uncertain due to the reported short-term cognitive impairment events and questionable long-term protective effects against dementia. The pivotal question is to ascertain the association between statins and cognition. The mechanisms underlying the effects of statins on cognition are multifaceted. This study provides insights into the current status within the field of statin use in dementia.
Collapse
Affiliation(s)
- Xian-Zheng Sang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiao-Xiang Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chun-Hui Wang
- Department of Neurosurgery, No. 905 Hospital of PLA Navy, Shanghai, China
| | - Dan-Feng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li-Jun Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Singh P, Kemper C. Complement, complosome, and complotype: A perspective. Eur J Immunol 2023; 53:e2250042. [PMID: 37120820 PMCID: PMC10613581 DOI: 10.1002/eji.202250042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023]
Abstract
Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.
Collapse
Affiliation(s)
- Parul Singh
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Cox LS, Alvarez-Martinez M, Wu X, Gabryšová L, Luisier R, Briscoe J, Luscombe NM, O'Garra A. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res 2023; 8:403. [PMID: 38074197 PMCID: PMC10709690 DOI: 10.12688/wellcomeopenres.19680.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Background CD4 + Th1 cells producing IFN-γ are required to eradicate intracellular pathogens, however if uncontrolled these cells can cause immunopathology. The cytokine IL-10 is produced by multiple immune cells including Th1 cells during infection and regulates the immune response to minimise collateral host damage. In this study we aimed to elucidate the transcriptional network of genes controlling the expression of Il10 and proinflammatory cytokines, including Ifng in Th1 cells differentiated from mouse naive CD4 + T cells. Methods We applied computational analysis of gene regulation derived from temporal profiling of gene expression clusters obtained from bulk RNA sequencing (RNA-seq) of flow cytometry sorted naïve CD4 + T cells from mouse spleens differentiated in vitro into Th1 effector cells with IL-12 and IL-27 to produce Ifng and Il10, compared to IL-27 alone which express Il10 only , or IL-12 alone which express Ifng and no Il10, or medium control driven-CD4 + T cells which do not express effector cytokines . Data were integrated with analysis of active genomic regions from these T cells using an assay for transposase-accessible chromatin with sequencing (ATAC)-seq, integrated with literature derived-Chromatin-immunoprecipitation (ChIP)-seq data and the RNA-seq data, to elucidate the transcriptional network of genes controlling expression of Il10 and pro-inflammatory effector genes in Th1 cells. The co-dominant role for the transcription factors, Prdm1 (encoding Blimp-1) and Maf (encoding c-Maf) , in cytokine gene regulation in Th1 cells, was confirmed using T cells obtained from mice with T-cell specific deletion of these transcription factors. Results We show that the transcription factors Blimp-1 and c-Maf each have unique and common effects on cytokine gene regulation and not only co-operate to induce Il10 gene expression in IL-12 plus IL-27 differentiated mouse Th1 cells, but additionally directly negatively regulate key proinflammatory cytokines including Ifng, thus providing mechanisms for reinforcement of regulated Th1 cell responses. Conclusions These data show that Blimp-1 and c-Maf positively and negatively regulate a network of both unique and common anti-inflammatory and pro-inflammatory genes to reinforce a Th1 response in mice that will eradicate pathogens with minimum immunopathology.
Collapse
Affiliation(s)
- Luke S. Cox
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Marisol Alvarez-Martinez
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Xuemei Wu
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Leona Gabryšová
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Raphaëlle Luisier
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Nicholas M. Luscombe
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, England, UK
| |
Collapse
|
22
|
Antony IR, Wong BHS, Kelleher D, Verma NK. Maladaptive T-Cell Metabolic Fitness in Autoimmune Diseases. Cells 2023; 12:2541. [PMID: 37947619 PMCID: PMC10650071 DOI: 10.3390/cells12212541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Immune surveillance and adaptive immune responses, involving continuously circulating and tissue-resident T-lymphocytes, provide host defense against infectious agents and possible malignant transformation while avoiding autoimmune tissue damage. Activation, migration, and deployment of T-cells to affected tissue sites are crucial for mounting an adaptive immune response. An effective adaptive immune defense depends on the ability of T-cells to dynamically reprogram their metabolic requirements in response to environmental cues. Inability of the T-cells to adapt to specific metabolic demands may skew cells to become either hyporesponsive (creating immunocompromised conditions) or hyperactive (causing autoimmune tissue destruction). Here, we review maladaptive T-cell metabolic fitness that can cause autoimmune diseases and discuss how T-cell metabolic programs can potentially be modulated to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Irene Rose Antony
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Vellore Institute of Technology, Vellore 632014, India; (I.R.A.); (B.H.S.W.); (D.K.)
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech-NTU), Nanyang Technological University, Singapore 637335, Singapore
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
23
|
West EE, Merle NS, Kamiński MM, Palacios G, Kumar D, Wang L, Bibby JA, Overdahl K, Jarmusch AK, Freeley S, Lee DY, Thompson JW, Yu ZX, Taylor N, Sitbon M, Green DR, Bohrer A, Mayer-Barber KD, Afzali B, Kazemian M, Scholl-Buergi S, Karall D, Huemer M, Kemper C. Loss of CD4 + T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection. Immunity 2023; 56:2036-2053.e12. [PMID: 37572656 PMCID: PMC10576612 DOI: 10.1016/j.immuni.2023.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/14/2023]
Abstract
Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.
Collapse
Affiliation(s)
- Erin E West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jack A Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kirsten Overdahl
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Simon Freeley
- School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Marc Sitbon
- Pediatric Oncology Branch, Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrea Bohrer
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Sabine Scholl-Buergi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Pediatric Endocrinology and Diabetology, University Children's Hospital Basel, Basel, Switzerland; Department of Pediatrics, Landeskrankenhaus (LKH) Bregenz, Bregenz, Austria
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
24
|
Bamidele AO, Mishra SK, Hirsova P, Fehrenbach PJ, Valenzuela-Pérez L, Lee HSK. Interleukin-21 Drives a Hypermetabolic State and CD4 + T Cell-associated Pathogenicity in Chronic Intestinal Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543518. [PMID: 37333332 PMCID: PMC10274654 DOI: 10.1101/2023.06.02.543518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND & AIMS Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease (IBD); however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing Seahorse XF analyzer. We utilized Crohn's disease single-cell RNA sequencing dataset to infer therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically-modified Tregs in CD4+ T cell-induced murine colitis models. RESULTS Mitochondria-endoplasmic reticulum (ER) appositions, known to mediate pyruvate entry into mitochondria via VDAC1, are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate (MePyr) supplementation. Notably, IL-21 diminished mitochondria-ER appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 β (GSK3β), a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. MePyr and GSK3β pharmacologic inhibitor (LY2090314) reversed IL-21-induced metabolic rewiring and inflammatory state. Moreover, IL-21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS IL-21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL-21-induced metabolism in Tregs may mitigate CD4+ T cell-driven chronic intestinal inflammation.
Collapse
Affiliation(s)
- Adebowale O Bamidele
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Shravan K Mishra
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Patrick J Fehrenbach
- Immunometabolism and Mucosal Immunity Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lucia Valenzuela-Pérez
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
25
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
26
|
Jiang Q, Wang Q, Tan S, Cai J, Ye X, Su G, Yang P. Effects of Plasma-Derived Exosomal miRNA-19b-3p on Treg/T Helper 17 Cell Imbalance in Behçet's Uveitis. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37093132 PMCID: PMC10148662 DOI: 10.1167/iovs.64.4.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Purpose To explore the potential role of plasma-derived exosomal microRNAs (miRNAs) in the development of regulatory T cell (Treg)/T helper 17 (Th17) cell imbalances in Behçet's uveitis (BU). Methods The exosome treatment was conducted to evaluate the effects of plasma exosomes from patients with active BU and healthy controls on the Treg/Th17 cell balance. miRNA sequencing analysis of plasma exosomes was conducted to identify differentially expressed miRNAs between patients with active BU and healthy controls. miRTarBase analysis and dual-luciferase reporter assays were conducted to identify the target genes of miR-19b-3p. CD4+T cells were transfected with miR-19b-3p mimic or inhibitor to evaluate its regulation of the Treg/Th17 cell balance. The Treg/Th17 cell balance in CD4+T cells was evaluated by flow cytometry and enzyme-linked immunosorbent assay. Results Exosomes from patients with active BU promoted Th17 cell differentiation and inhibited Treg cell differentiation. MiRNA sequencing analysis revealed 177 upregulated and 274 downregulated miRNAs in plasma exosomes of patients with active BU. Among them, miR-19b-3p was significantly elevated, and its target genes were identified as being involved in T-cell differentiation. miR-19b-3p overexpression downregulated CD46 expression and the Treg/Th17 cell ratio in CD4+T cells from healthy controls, whereas miR-19b-3p inhibition reversed these regulatory effects and restored the Treg/Th17 cell balance of CD4+T cells from patients with active BU. Conclusions Plasma-derived exosomes from patients with active BU showed a markedly differential miRNA expression in comparison to healthy controls. Highly expressed miRNA-19b-3p could induce a Treg/Th17 cell imbalance, probably by downregulating CD46 expression.
Collapse
Affiliation(s)
- Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Jinyu Cai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
27
|
DİKMEN N, ÖZKAN H, ÇİMEN F, ÇAMDEVİREN B, AY E, AMBARCIOĞLU P, DURAN N, YAKIN A. Dose-dependent effects of simvastatin, atorvastatin and rosuvastatin on apoptosis and inflammation pathways on cancerous lung cells. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2023; 70:141-148. [DOI: 10.33988/auvfd.938418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The aim of study was to investigate the anti-proliferative and inflammatory effects of atorvastatin, rosuvastatin, and simvastatin in lung cancer. The effects of statins were investigated in Vero, BEAS-2B, and A549 cell lines. In addition to expressions of BAX, BCL-2, TNFα, IL-10, IL-6, protein levels of TNFα, IL-10, IL-6 were determined. Cell viability and MDA were also measured. While the cell numbers in groups with low doses of statins were found to be approximately 1x106/mL, proliferation was inhibited at higher rates containing high doses. Simvastatin, rosuvastatin, and high dose atorvastatin upregulated the BAX, while high dose of atorvastatin and both doses of rosuvastatin caused downregulation in BCL-2. All statin groups had higher MDA. Simvastatin and high dose rosuvastatin upregulated TNFα. While low dose simvastatin and atorvastatin and high dose atorvastatin and rosuvastatin upregulated IL-10, IL-6 was upregulated with a low dose of rosuvastatin. TNFα was higher in simvastatin and rosuvastatin groups. IL-10 was highest in rosuvastatin groups. Atorvastatin groups had lower IL-6. Although cell numbers have been reduced by all statins, rosuvastatin is more effective on studied genes.
Collapse
|
28
|
Selvin T, Berglund M, Lenhammar L, Jarvius M, Nygren P, Fryknäs M, Larsson R, Andersson CR. Phenotypic screening platform identifies statins as enhancers of immune cell-induced cancer cell death. BMC Cancer 2023; 23:164. [PMID: 36803614 PMCID: PMC9938546 DOI: 10.1186/s12885-023-10645-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND High-throughput screening (HTS) of small molecule drug libraries has greatly facilitated the discovery of new cancer drugs. However, most phenotypic screening platforms used in the field of oncology are based solely on cancer cell populations and do not allow for the identification of immunomodulatory agents. METHODS We developed a phenotypic screening platform based on a miniaturized co-culture system with human colorectal cancer- and immune cells, providing a model that recapitulates part of the tumor immune microenvironment (TIME) complexity while simultaneously being compatible with a simple image-based readout. Using this platform, we screened 1,280 small molecule drugs, all approved by the Food and Drug Administration (FDA), and identified statins as enhancers of immune cell-induced cancer cell death. RESULTS The lipophilic statin pitavastatin had the most potent anti-cancer effect. Further analysis demonstrated that pitavastatin treatment induced a pro-inflammatory cytokine profile as well as an overall pro-inflammatory gene expression profile in our tumor-immune model. CONCLUSION Our study provides an in vitro phenotypic screening approach for the identification of immunomodulatory agents and thus addresses a critical gap in the field of immuno-oncology. Our pilot screen identified statins, a drug family gaining increasing interest as repurposing candidates for cancer treatment, as enhancers of immune cell-induced cancer cell death. We speculate that the clinical benefits described for cancer patients receiving statins are not simply caused by a direct effect on the cancer cells but rather are dependent on the combined effect exerted on both cancer and immune cells.
Collapse
Affiliation(s)
- Tove Selvin
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, SE-75185, Uppsala, Sweden.
| | - Malin Berglund
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, SE-75185, Uppsala, Sweden
| | - Lena Lenhammar
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, SE-75185, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, SE-75185, Uppsala, Sweden
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185, Rudbecklaboratoriet, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, SE-75185, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, SE-75185, Uppsala, Sweden
| | - Claes R Andersson
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, SE-75185, Uppsala, Sweden.
| |
Collapse
|
29
|
Babl N, Hofbauer J, Matos C, Voll F, Menevse AN, Rechenmacher M, Mair R, Beckhove P, Herr W, Siska PJ, Renner K, Kreutz M, Schnell A. Low-density lipoprotein balances T cell metabolism and enhances response to anti-PD-1 blockade in a HCT116 spheroid model. Front Oncol 2023; 13:1107484. [PMID: 36776340 PMCID: PMC9911890 DOI: 10.3389/fonc.2023.1107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The discovery of immune checkpoints and the development of their specific inhibitors was acclaimed as a major breakthrough in cancer therapy. However, only a limited patient cohort shows sufficient response to therapy. Hence, there is a need for identifying new checkpoints and predictive biomarkers with the objective of overcoming immune escape and resistance to treatment. Having been associated with both, treatment response and failure, LDL seems to be a double-edged sword in anti-PD1 immunotherapy. Being embedded into complex metabolic conditions, the impact of LDL on distinct immune cells has not been sufficiently addressed. Revealing the effects of LDL on T cell performance in tumor immunity may enable individual treatment adjustments in order to enhance the response to routinely administered immunotherapies in different patient populations. The object of this work was to investigate the effect of LDL on T cell activation and tumor immunity in-vitro. Methods Experiments were performed with different LDL dosages (LDLlow = 50 μg/ml and LDLhigh = 200 μg/ml) referring to medium control. T cell phenotype, cytokines and metabolism were analyzed. The functional relevance of our findings was studied in a HCT116 spheroid model in the context of anti-PD-1 blockade. Results The key points of our findings showed that LDLhigh skewed the CD4+ T cell subset into a central memory-like phenotype, enhanced the expression of the co-stimulatory marker CD154 (CD40L) and significantly reduced secretion of IL-10. The exhaustion markers PD-1 and LAG-3 were downregulated on both T cell subsets and phenotypical changes were associated with a balanced T cell metabolism, in particular with a significant decrease of reactive oxygen species (ROS). T cell transfer into a HCT116 spheroid model resulted in a significant reduction of the spheroid viability in presence of an anti-PD-1 antibody combined with LDLhigh. Discussion Further research needs to be conducted to fully understand the impact of LDL on T cells in tumor immunity and moreover, to also unravel LDL effects on other lymphocytes and myeloid cells for improving anti-PD-1 immunotherapy. The reason for improved response might be a resilient, less exhausted phenotype with balanced ROS levels.
Collapse
Affiliation(s)
- Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joshua Hofbauer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Florian Voll
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ruth Mair
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Beckhove
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Annette Schnell
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany,*Correspondence: Annette Schnell,
| |
Collapse
|
30
|
Zouali M. B Cells at the Cross-Roads of Autoimmune Diseases and Auto-Inflammatory Syndromes. Cells 2022; 11:cells11244025. [PMID: 36552788 PMCID: PMC9777531 DOI: 10.3390/cells11244025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Whereas autoimmune diseases are mediated primarily by T and B cells, auto-inflammatory syndromes (AIFS) involve natural killer cells, macrophages, mast cells, dendritic cells, different granulocyte subsets and complement components. In contrast to autoimmune diseases, the immune response of patients with AIFS is not associated with a breakdown of immune tolerance to self-antigens. Focusing on B lymphocyte subsets, this article offers a fresh perspective on the multiple cross-talks between both branches of innate and adaptive immunity in mounting coordinated signals that lead to AIFS. By virtue of their potential to play a role in adaptive immunity and to exert innate-like functions, B cells can be involved in both promoting inflammation and mitigating auto-inflammation in disorders that include mevalonate kinase deficiency syndrome, Kawasaki syndrome, inflammatory bone disorders, Schnitzler syndrome, Neuro-Behçet's disease, and neuromyelitis optica spectrum disorder. Since there is a significant overlap between the pathogenic trajectories that culminate in autoimmune diseases, or AIFS, a more detailed understanding of their respective roles in the development of inflammation could lead to designing novel therapeutic avenues.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
31
|
IL-10: A bridge between immune cells and metabolism during pregnancy. J Reprod Immunol 2022; 154:103750. [PMID: 36156316 DOI: 10.1016/j.jri.2022.103750] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/06/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Energy metabolism plays a crucial role in the immune system. In addition to providing vital energy for cell growth, reproduction and other cell activities, the metabolism of nutrients such as glucose and lipids also have significant effects on cell function through metabolites, metabolic enzymes, and changing metabolic status. Interleukin-10 (IL-10), as a pleiotropic regulator, can be secreted by a diverse set of cells and can also participate in regulating the functions of various cells, thereby playing an essential role in the formation and maintenance of immune tolerance in pregnancy. Studies on the regulatory effects and mechanisms of IL-10 on immune cells are extensive; however, research from a metabolic perspective is relatively negligible. Here, we have discussed old and new data on the relationship between IL-10 and metabolism. The data show that alterations in cellular metabolism and specific metabolites regulate IL-10 production of immune cells. Moreover, IL-10 regulates immune cell phenotypes and functions by modulating oxidative phosphorylation and glycolysis. This review summarizes some earlier observations regarding IL-10 and its relationship with immune cells in pregnancy, and also presents recent research on the link between IL-10 and metabolism, highlighting the potential relationship between IL-10, immune cells, and energy metabolism during pregnancy.
Collapse
|
32
|
Ejam SS, Saleh RO, Catalan Opulencia MJ, Najm MA, Makhmudova A, Jalil AT, Abdelbasset WK, Al-Gazally ME, Hammid AT, Mustafa YF, Sergeevna SE, Karampoor S, Mirzaei R. Pathogenic role of 25-hydroxycholesterol in cancer development and progression. Future Oncol 2022; 18:4415-4442. [PMID: 36651359 DOI: 10.2217/fon-2022-0819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023] Open
Abstract
Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Pharmacy, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Mazin Aa Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Aziza Makhmudova
- Department of Social Sciences & Humanities, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health & Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sergushina Elena Sergeevna
- National Research Ogarev Mordovia State University, 68 Bolshevitskaya Street, Republic of Mordovia, Saransk, 430005, Russia
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Synovial gene signatures associated with the development of rheumatoid arthritis in at risk individuals: A prospective study. J Autoimmun 2022; 133:102923. [PMID: 36208493 DOI: 10.1016/j.jaut.2022.102923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/07/2022]
Abstract
OBJECTIVE To identify molecular changes in synovium before arthritis development in individuals at risk of developing rheumatoid arthritis (RA). MATERIALS AND METHODS We included 67 IgM rheumatoid factor and/or anti-citrullinated protein antibody positive individuals with arthralgia but without arthritis. Synovial biopsies were collected after which individuals were prospectively followed for at least 2 years during which 17 developed arthritis. An exploratory genome-wide transcriptional profiling study was performed in 13 preselected individuals to identify transcripts associated with arthritis development (n = 6). Findings were validated using quantitative real-time PCR and immunohistochemistry in the total cohort. RESULTS Microarray-based survival analyses identified 5588 transcripts whose expression levels in synovium were significantly associated with arthritis development. Pathway analysis revealed that synovial tissue of at risk individuals who later developed arthritis display higher expression of genes involved in adaptive immune response-related pathways compared to at risk individuals who did not develop arthritis. Lower expression was observed for genes involved in extracellular matrix receptor interaction, Wnt-mediated signal transduction and lipid metabolism. Two-way hierarchical clustering analyses of a 27-gene signature separated the total at risk cohort into two groups, where pre-RA individuals preferred to cluster together. Immunohistochemistry studies revealed more podoplanin positive cells and lower lipid droplet staining in synovial tissue from pre-RA individuals. CONCLUSION Synovial alterations in adaptive immune response and lipid metabolism are associated with future development of arthritis. Since this data show synovial changes without overt cellular infiltration, these may be attributed to preclinical changes in resident synovial tissue cells such as fibroblasts, macrophages and tissue resident T cells.
Collapse
|
34
|
Kemper C, Sack MN. Linking nutrient sensing, mitochondrial function, and PRR immune cell signaling in liver disease. Trends Immunol 2022; 43:886-900. [PMID: 36216719 PMCID: PMC9617785 DOI: 10.1016/j.it.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Caloric overconsumption in vertebrates promotes adipose and liver fat accumulation while perturbing the gut microbiome. This triad triggers pattern recognition receptor (PRR)-mediated immune cell signaling and sterile inflammation. Moreover, immune system activation perpetuates metabolic consequences, including the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic hepatic steatohepatitis (NASH). Recent findings show that sensing of nutrient overabundance disrupts the activity and homeostasis of the central cellular energy-generating organelle, the mitochondrion. In parallel, whether caloric excess-initiated PRR signaling and mitochondrial perturbations are coordinated to amplify this inflammatory process in NASH progression remains in question. We hypothesize that altered mitochondrial function, classic PRR signaling, and complement activation in response to nutrient overload together play an integrated role across the immune cell landscape, leading to liver inflammation and NASH progression.
Collapse
Affiliation(s)
- Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Xu X, Wang M, Wang Z, Chen Q, Chen X, Xu Y, Dai M, Wu B, Li Y. The bridge of the gut-joint axis: Gut microbial metabolites in rheumatoid arthritis. Front Immunol 2022; 13:1007610. [PMID: 36275747 PMCID: PMC9583880 DOI: 10.3389/fimmu.2022.1007610] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint destruction, synovitis, and pannus formation. Gut microbiota dysbiosis may exert direct pathogenic effects on gut homeostasis. It may trigger the host's innate immune system and activate the "gut-joint axis", which exacerbates the RA. However, although the importance of the gut microbiota in the development and progression of RA is widely recognized, the mechanisms regulating the interactions between the gut microbiota and the host immune system remain incompletely defined. In this review, we discuss the role of gut microbiota-derived biological mediators, such as short-chain fatty acids, bile acids, and tryptophan metabolites, in maintaining intestinal barrier integrity, immune balance and bone destruction in RA patients as the bridge of the gut-joint axis.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xixuan Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yingyue Xu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Min Dai
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yanping Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
36
|
Chakraborty S, Khamaru P, Bhattacharyya A. Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biol Int 2022; 46:1729-1746. [PMID: 35900141 DOI: 10.1002/cbin.11867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Metabolism is a dynamic process and keeps changing from time to time according to the demand of a particular cell to meet its bio-energetic requirement. Different immune cells rely on distinct metabolic programs which allow the cell to balance its requirements for energy, molecular biosynthesis, and effector activity. In the aspect of infection and cancer immunology, effector T and B cells get exhausted and help tumor cells to evade immunosurveillance. On the other hand, T cells become hyperresponsive in the scenario of autoimmune diseases. In this article, we have explored the uniqueness and distinct metabolic features of key CD4+ T and B helper cell subsets, CD4+ T, B regulatory cell subsets and CD8+ T cells regarding health and disease. Th1 cells rely on glycolysis and glutaminolysis; inhibition of these metabolic pathways promotes Th1 cells in Treg population. However, Th2 cells are also dependent on glycolysis but an abundance of lactate within TME shifts their metabolic dependency to fatty acid metabolism. Th17 cells depend on HIF-1α mediated glycolysis, ablation of HIF-1α reduces Th17 cells but enhance Treg population. In contrast to effector T cells which are largely dependent on glycolysis for their differentiation and function, Treg cells mainly rely on FAO for their function. Therefore, it is of utmost importance to understand the metabolic fates of immune cells and how it facilitates their differentiation and function for different disease models. Targeting metabolic pathways to restore the functionality of immune cells in diseased conditions can lead to potent therapeutic measures.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
37
|
Louie AY, Tingling J, Dray E, Hussain J, McKim DB, Swanson KS, Steelman AJ. Dietary Cholesterol Causes Inflammatory Imbalance and Exacerbates Morbidity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2523-2539. [PMID: 35577367 DOI: 10.4049/jimmunol.2100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
Influenza is a common cause of pneumonia-induced hospitalization and death, but how host factors function to influence disease susceptibility or severity has not been fully elucidated. Cellular cholesterol levels may affect the pathogenesis of influenza infection, as cholesterol is crucial for viral entry and replication, as well as immune cell proliferation and function. However, there is still conflicting evidence on the extent to which dietary cholesterol influences cholesterol metabolism. In this study, we examined the effects of a high-cholesterol diet in modulating the immune response to influenza A virus (IAV) infection in mice. Mice were fed a standard or a high-cholesterol diet for 5 wk before inoculation with mouse-adapted human IAV (Puerto Rico/8/1934), and tissues were collected at days 0, 4, 8, and 16 postinfection. Cholesterol-fed mice exhibited dyslipidemia characterized by increased levels of total serum cholesterol prior to infection and decreased triglycerides postinfection. Cholesterol-fed mice also displayed increased morbidity compared with control-fed mice, which was neither a result of immunosuppression nor changes in viral load. Instead, transcriptomic analysis of the lungs revealed that dietary cholesterol caused upregulation of genes involved in viral-response pathways and leukocyte trafficking, which coincided with increased numbers of cytokine-producing CD4+ and CD8+ T cells and infiltrating dendritic cells. Morbidity as determined by percent weight loss was highly correlated with numbers of cytokine-producing CD4+ and CD8+ T cells as well as granulocytes. Taken together, dietary cholesterol promoted IAV morbidity via exaggerated cellular immune responses that were independent of viral load.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Joseph Tingling
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Evan Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL; .,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL; and.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
38
|
Kanwore K, Kanwore K, Adzika GK, Abiola AA, Guo X, Kambey PA, Xia Y, Gao D. Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma. Front Immunol 2022; 13:831636. [PMID: 35392088 PMCID: PMC8980436 DOI: 10.3389/fimmu.2022.831636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is a type of brain and spinal cord tumor that begins in glial cells that support the nervous system neurons functions. Age, radiation exposure, and family background of glioma constitute are risk factors of glioma initiation. Gliomas are categorized on a scale of four grades according to their growth rate. Grades one and two grow slowly, while grades three and four grow faster. Glioblastoma is a grade four gliomas and the deadliest due to its aggressive nature (accelerated proliferation, invasion, and migration). As such, multiple therapeutic approaches are required to improve treatment outcomes. Recently, studies have implicated the significant roles of immune cells in tumorigenesis and the progression of glioma. The energy demands of gliomas alter their microenvironment quality, thereby inducing heterogeneity and plasticity change of stromal and immune cells via the PI3K/AKT/mTOR pathway, which ultimately results in epigenetic modifications that facilitates tumor growth. PI3K is utilized by many intracellular signaling pathways ensuring the proper functioning of the cell. The activation of PI3K/AKT/mTOR regulates the plasma membrane activities, contributing to the phosphorylation reaction necessary for transcription factors activities and oncogenes hyperactivation. The pleiotropic nature of PI3K/AKT/mTOR makes its activity unpredictable during altered cellular functions. Modification of cancer cell microenvironment affects many cell types, including immune cells that are the frontline cells involved in inflammatory cascades caused by cancer cells via high cytokines synthesis. Typically, the evasion of immunosurveillance by gliomas and their resistance to treatment has been attributed to epigenetic reprogramming of immune cells in the tumor microenvironment, which results from cancer metabolism. Hence, it is speculative that impeding cancer metabolism and/or circumventing the epigenetic alteration of immune cell functions in the tumor microenvironment might enhance treatment outcomes. Herein, from an oncological and immunological perspective, this review discusses the underlying pathomechanism of cell-cell interactions enhancing glioma initiation and metabolism activation and tumor microenvironment changes that affect epigenetic modifications in immune cells. Finally, prospects for therapeutic intervention were highlighted.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Konimpo Kanwore
- Faculty Mixed of Medicine and Pharmacy, Lomé-Togo, University of Lomé, Lomé, Togo
| | | | - Ayanlaja Abdulrahman Abiola
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxiao Guo
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
39
|
de Freitas FA, Levy D, Reichert CO, Cunha-Neto E, Kalil J, Bydlowski SP. Effects of Oxysterols on Immune Cells and Related Diseases. Cells 2022; 11:cells11081251. [PMID: 35455931 PMCID: PMC9031443 DOI: 10.3390/cells11081251] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are the products of cholesterol oxidation. They have a wide range of effects on several cells, organs, and systems in the body. Oxysterols also have an influence on the physiology of the immune system, from immune cell maturation and migration to innate and humoral immune responses. In this regard, oxysterols have been involved in several diseases that have an immune component, from autoimmune and neurodegenerative diseases to inflammatory diseases, atherosclerosis, and cancer. Here, we review data on the participation of oxysterols, mainly 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, in the immune system and related diseases. The effects of these oxysterols and main oxysterol receptors, LXR and EBI2, in cells of the immune system (B cells, T cells, macrophages, dendritic cells, oligodendrocytes, and astrocytes), and in immune-related diseases, such as neurodegenerative diseases, intestinal diseases, cancer, respiratory diseases, and atherosclerosis, are discussed.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy (LIM60), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil;
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
| | - Jorge Kalil
- National Institute of Science and Technology for Investigation in Immunology-III/INCT, Sao Paulo 05403-000, SP, Brazil;
- Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence:
| |
Collapse
|
40
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
41
|
Hitsuda A, Dan R, Urakawa A, Hiraoka Y, Murakami C, Yamamoto H, Tanaka AR. 25-hydroxycholesterol-induced cell death via activation of ROCK/LIMK/cofilin axis in colorectal cancer cell spheroids. J Steroid Biochem Mol Biol 2022; 216:106037. [PMID: 34861388 DOI: 10.1016/j.jsbmb.2021.106037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
25-Hydroxycholesterol (25OHC) induces anchorage-dependent programmed cell death, or anoikis, in colorectal cancer cells but the mechanism is not fully understood. Here, we found that 25OHC induced cofilin phosphorylation and promoted rearrangement of the actin cytoskeleton in spheroids of the colorectal cancer cell lines, DLD1 and HT29/WiDr. Cell death induced by 25OHC was inhibited by the actin polymerization inhibitor, cytochalasin D, and BMS-3, an inhibitor of LIMK, which phosphorylates and inactivates cofilin. In addition, we showed that cofilin phosphorylation induced by 25OHC was associated with caspase-3 activation, which can activate ROCK. Rho GTPase was directly activated by 25OHC. These results indicate that 25OHC affects actin dynamics through activation of the Rho/ROCK/LIMK/cofilin axis, eventuating in the cell death of colorectal cancer cell spheroids.
Collapse
Affiliation(s)
- Ayaho Hitsuda
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima 731-0153, Japan
| | - Reona Dan
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima 731-0153, Japan
| | - Ayaka Urakawa
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima 731-0153, Japan
| | - Yasuna Hiraoka
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima 731-0153, Japan
| | - Chiho Murakami
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima 731-0153, Japan
| | - Hideya Yamamoto
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima 731-0153, Japan
| | - Arowu R Tanaka
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima 731-0153, Japan.
| |
Collapse
|
42
|
Susceptibility to disease (tropical theileriosis) is associated with differential expression of host genes that possess motifs recognised by a pathogen DNA binding protein. PLoS One 2022; 17:e0262051. [PMID: 35061738 PMCID: PMC8782480 DOI: 10.1371/journal.pone.0262051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Background Knowledge of factors that influence the outcome of infection are crucial for determining the risk of severe disease and requires the characterisation of pathogen-host interactions that have evolved to confer variable susceptibility to infection. Cattle infected by Theileria annulata show a wide range in disease severity. Native (Bos indicus) Sahiwal cattle are tolerant to infection, whereas exotic (Bos taurus) Holstein cattle are susceptible to acute disease. Methodology/Principal findings We used RNA-seq to assess whether Theileria infected cell lines from Sahiwal cattle display a different transcriptome profile compared to Holstein and screened for altered expression of parasite factors that could generate differences in host cell gene expression. Significant differences (<0.1 FDR) in the expression level of a large number (2211) of bovine genes were identified, with enrichment of genes associated with Type I IFN, cholesterol biosynthesis, oncogenesis and parasite infection. A screen for parasite factors found limited evidence for differential expression. However, the number and location of DNA motifs bound by the TashAT2 factor (TA20095) were found to differ between the genomes of B. indicus vs. B. taurus, and divergent motif patterns were identified in infection-associated genes differentially expressed between Sahiwal and Holstein infected cells. Conclusions/Significance We conclude that divergent pathogen-host molecular interactions that influence chromatin architecture of the infected cell are a major determinant in the generation of gene expression differences linked to disease susceptibility.
Collapse
|
43
|
Ahlers J, Mantei A, Lozza L, Stäber M, Heinrich F, Bacher P, Hohnstein T, Menzel L, Yüz SG, Alvarez-Simon D, Bickenbach AR, Weidinger C, Mockel-Tenbrinck N, Kühl AA, Siegmund B, Maul J, Neumann C, Scheffold A. A Notch/STAT3-driven Blimp-1/c-Maf-dependent molecular switch induces IL-10 expression in human CD4 + T cells and is defective in Crohn´s disease patients. Mucosal Immunol 2022; 15:480-490. [PMID: 35169232 PMCID: PMC9038525 DOI: 10.1038/s41385-022-00487-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Immunosuppressive Interleukin (IL)-10 production by pro-inflammatory CD4+ T cells is a central self-regulatory function to limit aberrant inflammation. Still, the molecular mediators controlling IL-10 expression in human CD4+ T cells are largely undefined. Here, we identify a Notch/STAT3 signaling-module as a universal molecular switch to induce IL-10 expression across human naïve and major effector CD4+ T cell subsets. IL-10 induction was transient, jointly controlled by the transcription factors Blimp-1/c-Maf and accompanied by upregulation of several co-inhibitory receptors, including LAG-3, CD49b, PD-1, TIM-3 and TIGIT. Consistent with a protective role of IL-10 in inflammatory bowel diseases (IBD), effector CD4+ T cells from Crohn's disease patients were defective in Notch/STAT3-induced IL-10 production and skewed towards an inflammatory Th1/17 cell phenotype. Collectively, our data identify a Notch/STAT3-Blimp-1/c-Maf axis as a common anti-inflammatory pathway in human CD4+ T cells, which is defective in IBD and thus may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Jonas Ahlers
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany ,grid.420214.1Present Address: Sanofi Pasteur, Sanofi-Aventis Deutschland GmbH, Berlin, Germany
| | - Andrej Mantei
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Laura Lozza
- Cell Biology, Precision for Medicine GmbH, Berlin, Germany
| | - Manuela Stäber
- Central Lab Service, Max-Plack-Institute for Infection Biology, Berlin, Germany
| | - Frederik Heinrich
- grid.413453.40000 0001 2224 3060German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Petra Bacher
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany ,grid.9764.c0000 0001 2153 9986Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Thordis Hohnstein
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Menzel
- grid.419491.00000 0001 1014 0849Translational Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simge G. Yüz
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Daniel Alvarez-Simon
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Anne Rieke Bickenbach
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Carl Weidinger
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Mockel-Tenbrinck
- grid.59409.310000 0004 0552 5033Miltenyi Biotec B.V. & Co.KG, Bergisch-Gladbach, Nordrhein-Westfalen Germany
| | - Anja A. Kühl
- grid.6363.00000 0001 2218 4662iPATH, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Maul
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany ,Gastroenterologie am Bayerischen Platz, Berlin, Germany
| | - Christian Neumann
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Scheffold
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
44
|
King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol 2022; 43:78-92. [PMID: 34942082 PMCID: PMC8812650 DOI: 10.1016/j.it.2021.11.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Cholesterol is a multifaceted metabolite that is known to modulate processes in cancer, atherosclerosis, and autoimmunity. A common denominator between these diseases appears to be the immune system, in which many cholesterol-associated metabolites impact both adaptive and innate immunity. Many cancers display altered cholesterol metabolism, and recent studies demonstrate that manipulating systemic cholesterol metabolism may be useful in improving immunotherapy responses. However, cholesterol can have both proinflammatory and anti-inflammatory roles in mammals, acting via multiple immune cell types, and depending on context. Gaining mechanistic insights into various cholesterol-related metabolites can improve our understanding of their functions and extensive effects on the immune system, and ideally will inform the design of future therapeutic strategies against cancer and/or other pathologies.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| |
Collapse
|
45
|
Tan W, Pan T, Wang S, Li P, Men Y, Tan R, Zhong Z, Wang Y. Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chem 2021; 376:131860. [PMID: 34971892 DOI: 10.1016/j.foodchem.2021.131860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
The edible and medicinal plants (EMPs) are becoming an abundant source for cancer prevention and treatment since the natural and healthy trend for modern human beings. Currently, there are more than one hundred species of EMPs widely used and listed by the national health commission of China, and most of them indicate immune or metabolic regulation potential in cancer treatment with numerous studies over the past two decades. In the present review, we focused on the metabolic influence in immunocytes and tumor microenvironment, including immune response, immunosuppressive factors and cancer cells, discussing the immunometabolic potential of EMPs in cancer treatment. There are more than five hundred references collected and analyzed through retrieving pharmacological studies deposited in PubMed by medical subject headings and the corresponding names derived from pharmacopoeia of China as a sole criterion. Finally, the immunometabolism modulation of EMPs was sketch out implying an immunometabolic control in cancer treatment.
Collapse
Affiliation(s)
- Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
46
|
Patnaik SK, Petrucci C, Barbi J, Seager RJ, Pabla S, Yendamuri S. Obesity-Specific Association of Statin Use and Reduced Risk of Recurrence of Early Stage NSCLC. JTO Clin Res Rep 2021; 2:100254. [PMID: 34877556 PMCID: PMC8633682 DOI: 10.1016/j.jtocrr.2021.100254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
Introduction Statins, used for their lipid-lowering activity, have anti-inflammatory and anticancer properties as well. We evaluated this potential benefit of statin use in patients with NSCLC. Methods All 613 patients with pathologic stage 1 or 2 NSCLC who had lobectomy without neoadjuvant therapy at our institution during 2008 to 2015 were included. Association between presurgery statin use and overall survival and recurrence-free survival (RFS) was analyzed using Cox proportional hazards regression. Association of statin use with tumor transcriptome was evaluated in another 350 lung cancer cases. Results Univariable analyses did not reveal a statistically significant association of statin use with either overall survival or RFS, with hazard ratio equals to 1.19 and 0.70 (Wald p = 0.28 and 0.09), respectively. In subgroup analyses, significantly improved RFS was found in statin users, but only in overweight/obese patients (body mass index [BMI] > 25; n = 422), with univariable and multivariable hazard ratio of 0.49 and 0.46 (p = 0.005 and 0.002), respectively, but not in patients with BMI less than or equal to 25 (n = 191; univariable p = 0.21). Transcriptomes of tumor statin users had high expression of tumoricidal genes such as granzyme A and interferon-γ compared with those of nonusers among high- but not low-BMI patients with lung cancer. Conclusions Our study suggests that statins may improve the outcome of early stage NSCLC but only in overweight or obese patients. This benefit may stem from a favorable reprogramming of the antitumor immune response that statins perpetrate specifically in the obese.
Collapse
Affiliation(s)
- Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Cara Petrucci
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | | | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
47
|
Sharifi Y, Payab M, Mohammadi-Vajari E, Aghili SMM, Sharifi F, Mehrdad N, Kashani E, Shadman Z, Larijani B, Ebrahimpur M. Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: a review. J Diabetes Metab Disord 2021; 20:1743-1765. [PMID: 34222055 PMCID: PMC8233632 DOI: 10.1007/s40200-021-00822-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus, which began spreading from China Wuhan and gradually spreaded to most countries, led to the announcement by the World Health Organization on March 11, 2020, as a new pandemic. The most important point presented by the World Health Organization about this disease is to better understand the risk factors that exacerbate the course of the disease and worsen its prognosis. Due to the high majority of cardio metabolic risk factors like obesity, hypertension, diabetes, and dyslipidemia among the population over 60 years old and higher, these cardio metabolic risk factors along with the age of these people could worsen the prognosis of the coronavirus disease of 2019 (COVID-19) and its mortality. In this study, we aimed to review the articles from the beginning of the pandemic on the impression of cardio metabolic risk factors on COVID-19 and the effectiveness of COVID-19 on how to manage these diseases. All the factors studied in this article, including hypertension, diabetes mellitus, dyslipidemia, and obesity exacerbate the course of Covid-19 disease by different mechanisms, and the inflammatory process caused by coronavirus can also create a vicious cycle in controlling these diseases for patients.
Collapse
Affiliation(s)
- Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Yaas Diabetes and Metabolic Diseases Research Center, Indiana University School of Medicine, Indianapolis, IN 46202 US
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Mohammadi-Vajari
- Student of Medicine, School of Medicine, Gilan University of Medical Sciences, Rasht, Iran
| | - Seyed Morsal Mosallami Aghili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mehrdad
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Kashani
- Department of Obstetrics and Gynecology, Golestan University of Medical Sciences, Golestan, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
49
|
Hofmaenner DA, Kleyman A, Press A, Bauer M, Singer M. The Many Roles of Cholesterol in Sepsis: A Review. Am J Respir Crit Care Med 2021; 205:388-396. [PMID: 34715007 DOI: 10.1164/rccm.202105-1197tr] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The biological functions of cholesterol are diverse, ranging from cell membrane integrity and signalling, immunity, to the synthesis of steroid and sex hormones, Vitamin D, bile acids and oxysterols. Multiple studies have demonstrated hypocholesterolemia in sepsis, the degree of which is an excellent prognosticator of poor outcomes. However, the clinical significance of hypocholesterolemia has been largely unrecognized. OBJECTIVES/METHODS We undertook a detailed review of the biological roles of cholesterol, the impact of sepsis, its reliability as a prognosticator in sepsis, and the potential utility of cholesterol as a treatment. MEASUREMENTS AND MAIN RESULTS Sepsis affects cholesterol synthesis, transport and metabolism. This likely impacts upon its biological functions including immunity, hormone and vitamin production, and cell membrane receptor sensitivity. Early preclinical studies show promise for cholesterol as a pleiotropic therapeutic agent. CONCLUSIONS Hypocholesterolemia is a frequent condition in sepsis and an important early prognosticator. Low plasma levels are associated with wider changes in cholesterol metabolism and its functional roles, and these appear to play a significant role in sepsis pathophysiology. The therapeutic impact of cholesterol elevation warrants further investigation.
Collapse
Affiliation(s)
- Daniel A Hofmaenner
- University College London, 4919, Bloomsbury Inst of Intensive Care Medicine, London, United Kingdom of Great Britain and Northern Ireland.,University Hospital Zurich, Institute of Intensive Care Medicine, Zurich, Switzerland
| | - Anna Kleyman
- University College London, 4919, Bloomsbury Inst of Intensive Care Medicine, London, United Kingdom of Great Britain and Northern Ireland
| | - Adrian Press
- Jena University Hospital Center for Sepsis Control and Care, 553346, Jena, Germany
| | - Michael Bauer
- University Hospital Jena, Dep. of Anesthesiology and Intensive Care Medicine, Jena, Germany
| | - Mervyn Singer
- University College London, 4919, Bloomsbury Inst of Intensive Care Medicine, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
50
|
Guo Y, Xu D, Fang Z, Xu S, Liu J, Xu Z, Zhou J, Bu Z, Zhao Y, He J, Yang X, Pan W, Shen Y, Sun F. Metabolomics Analysis of Splenic CD19 + B Cells in Mice Chronically Infected With Echinococcus granulosus sensu lato Protoscoleces. Front Vet Sci 2021; 8:718743. [PMID: 34552973 PMCID: PMC8450515 DOI: 10.3389/fvets.2021.718743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Background: The larval stages of Echinococcus granulosus sensu lato (E. granulosus s.l) infection can alter B cell function and affect host anti-infective immunity, but the underlying mechanism remains unclear. The newly emerging immunometabolism highlights that several metabolites are key factors in determining the fate of immune cells, which provides a new insight for exploring how larval E. granulosus s.l. infection remodels B cell function. This study investigated the metabolomic profiles of B cells in mice infected with E. granulosus s.l. protoscoleces (PSC). Results:Total CD19+ B cells, purified from the spleen of infected mice, showed significantly increased production of IL-6, TNF-α, and IL-10 after exposure to LPS in vitro. Moreover, the mRNA expression of metabolism related enzymes in B cells was remarkably disordered post infection. In addition, differential metabolites were identified in B cells after infection. There were 340 differential metabolites (83 upregulated and 257 downregulated metabolites) identified in the positive ion model, and 216 differential metabolites (97 upregulated and 119 downregulated metabolites) identified in the negative ion mode. Among these, 64 differential metabolites were annotated and involved in 68 metabolic pathways, including thyroid hormone synthesis, the metabolic processes of glutathione, fructose, mannose, and glycerophospholipid. Furthermore, several differential metabolites such as glutathione, taurine, and inosine were validated to regulate the cytokine production in LPS stimulated B cells. Conclusion:Infection with the larval E. granulosus s.l. causes metabolic reprogramming in the intrinsic B cells of mice, which provides the first evidence for understanding the role and mechanism of B cells in parasite anti-infective immunity from the viewpoint of immunometabolism.
Collapse
Affiliation(s)
- Yuxin Guo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Zheng Fang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Shiping Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Zixuan Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jikai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Zhenzhen Bu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yingyi Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jingmei He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,National Experimental Teaching Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|