1
|
Gangal A, Singh P, Yogita, Manori S, Shukla RK. Nematic lyotropic liquid crystalline ordering in rhizome powder of Curcuma species and water mixtures: rheological properties and antioxidant applications. SOFT MATTER 2025. [PMID: 40356410 DOI: 10.1039/d5sm00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
This study focuses on developing a self-assembled lyotropic phase in four Curcuma species viz. Curcuma amada (CA), Curcuma caesia (CC), Curcuma Longa (CL), and Curcuma Zedoaria (CZ) using their rhizome powder in an aqueous environment. Polarizing optical microscopy (POM) depicts the maltese cross textures with twisted thread and fractional topological charge of +1/2, which confirms the formation of nematic phases in CA, CC, CL, and CZ/water mixtures along with orientation order parameters 0.34, 0.44, 0.54, and 0.46, respectively. X-ray diffraction (XRD) analysis shows a broad diffraction peak at 2θ ≅ 20°, which further validates the nematic ordering in these mixtures. Fourier transform infrared (FTIR) spectroscopy analysis confirms the inter- and intramolecular hydrogen bonding among keto/enol forms of curcumin and starch molecules with water. Rheological studies demonstrate the shear-thinning behaviour with negative values of power-law exponent n, and strong elastic properties of nematic phases in all the cases. The viscosity of these species varies according to their molecular alignment. Specifically, CL exhibited the highest molecular alignment and viscosity. Nematic lyotropic mixtures are further explored for antioxidant potential through DPPH and phosphomolybdenum assays. The lowest IC50 (25.3 and 26.6, respectively) values for CL-based nematic lyotropic phases are noted for both assays, predicting their best antioxidant potential. The biodegradable and non-toxic nature of Curcuma-based nematic lyotropic liquid crystals (LLCs) offers their potential for advanced material formulations, therapeutic delivery systems, cosmetic applications, and anti-aging formulations, aligning with global trends toward sustainable and green product development.
Collapse
Affiliation(s)
- Avinash Gangal
- Advanced Functional Smart Materials Laboratory, Department of Physics, School of Physical Sciences, DIT University, Uttarakhand, 248009, India.
| | - Prayas Singh
- The Swiss Institute for Dryland Environmental and Energy Research (SIDEER), The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Sede Boqer Campus-8499000, Israel
| | - Yogita
- Advanced Functional Smart Materials Laboratory, Department of Physics, School of Physical Sciences, DIT University, Uttarakhand, 248009, India.
| | - Samta Manori
- Advanced Functional Smart Materials Laboratory, Department of Physics, School of Physical Sciences, DIT University, Uttarakhand, 248009, India.
| | - Ravi K Shukla
- Advanced Functional Smart Materials Laboratory, Department of Physics, School of Physical Sciences, DIT University, Uttarakhand, 248009, India.
| |
Collapse
|
2
|
Chakraborty A, Rani A, Sinha P, Sarma S, Agarwal V, Prasun A, Jha HC, Sarma TK. Guanosine Monophosphate Induced Solubilization of Folic Acid Leading to Hydrogel Formation for Targeted Delivery of Hydrophilic and Hydrophobic Drugs. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11848-11860. [PMID: 39939122 DOI: 10.1021/acsami.4c21306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Hydrogels are emerging as one of the most sought-after drug carriers due to their biocompatibility, high water content mimicking tissue-like environment, injectability, and stimuli responsiveness. Sustained drug release accompanied by targeted delivery to cancer cells can abate numerous adverse side effects of conventional chemotherapy. Folate receptors are overexpressed in various cancer cells, and their high binding affinity to folic acid (FA) makes folic acid-anchored drug carriers a specific targeting entity. Reports of folic acid-based hydrogels are still scarce, owing to their low solubility in water. In this study, we present a simple approach to generate a self-assembled supramolecular hydrogel by employing an amphiphilic low molecular weight gelator (LMWG), guanosine monophosphate (GMP), which noncovalently interacts and coassembles with FA. The hydrogel shows biocompatibility, thermoreversibility, self-healing, injectability, thixotropy, and self-adhesive properties. The hydrogel could encapsulate and release both hydrophilic (doxorubicin) and hydrophobic (curcumin) drugs in a sustained manner. In vitro studies on cancer cells showed that encapsulating the drugs within the hydrogel matrix resulted in enhanced uptake by the cancer cells, thereby increasing their therapeutic efficacy through upregulating tumor suppressor, apoptotic gene expression, and inhibiting cell proliferation markers. Thus, a straightforward fabrication procedure, cost-effectiveness, and treatment potency make the FA-GMP hydrogel a promising drug carrier for practical use in biomedical applications.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Annu Rani
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pramesh Sinha
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Suryakamal Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Aditya Prasun
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Hem Chandra Jha
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tridib K Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
3
|
Yao Y, Xu Z, Ding H, Yang S, Chen B, Zhou M, Zhu Y, Yang A, Yan X, Liang C, Kou X, Chen B, Huang W, Li Y. Carrier-free nanoparticles-new strategy of improving druggability of natural products. J Nanobiotechnology 2025; 23:108. [PMID: 39953594 PMCID: PMC11827262 DOI: 10.1186/s12951-025-03146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
There are abundant natural products resources and extensive clinical use experience in China. However, the active components of natural products generally have problems such as poor water solubility and low bioavailability, which limit their druggability. Carrier-free nanoparticles, such as nanocrystals, self-assembled nanoparticles, and extracellular vesicles derived from both animal and plant sources, have great application potential in improving the safety and efficacy of drugs due to their simple and flexible preparation methods, high drug loading capacity and delivery efficiency, as well as long half-life in blood circulation. It has been widely used in biomedical fields such as anti-tumor, anti-bacterial, anti-inflammatory and anti-oxidation. Therefore, based on the natural products that have been used in clinic, this review focuses on the advantages of carrier-free nanoparticles in delivering active compounds, in order to improve the delivery process of natural products in vivo and improve their draggability.
Collapse
Affiliation(s)
- Yaqi Yao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenna Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haoran Ding
- College of Pharmacy, Shandong Xiandai University, Jinan, 250104, China
| | - Shenshen Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bohan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengjiao Zhou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yehan Zhu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Aihong Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenrui Liang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaodi Kou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yubo Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Fang C, Wang Y, Pan Z. Formation of self-assembly aggregates in traditional Chinese medicine decoctions and their application in cancer treatments. RSC Adv 2025; 15:5476-5506. [PMID: 39967882 PMCID: PMC11833604 DOI: 10.1039/d4ra07212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Traditional Chinese Medicine (TCM) formulas, based on the principles of Chinese medicine, have a long history and are widely applied in the treatment of diseases. Compared to single-component drugs, TCM formulas demonstrate superior therapeutic efficacy and fewer side effects owing to their synergistic effects and mechanisms of detoxification and efficacy enhancement. However, various drawbacks, such as the uncertainty of functional targets and molecular mechanisms, poor solubility of components, and low bioavailability, have limited the global promotion and application of TCM formulas. To overcome these limitations, self-assembled aggregate (SA) nanotechnology has emerged as a promising solution. SA nanotechnology significantly enhances the bioavailability and anti-tumor efficacy of TCM by improving its absorption, distribution, and precise targeting capabilities, thereby providing an innovative solution for the modernization and internationalization of TCM. This review delves into the nature and common interactions of SAs based on the latest research developments. The structural characteristics of SAs in TCM formulas, paired-herb decoctions, and single-herb decoctions are analyzed and their self-assembly mechanisms are systematically elucidated. In addition, this article elaborates on the advantages of SAs in cancer treatment, particularly in enhancing the bioavailability and targeting capabilities. Furthermore, this review aims to provide new perspectives for the study of TCM compatibility and its clinical applications, thereby driving the innovative development of nanomaterials in this field. On addressing the technological challenges, SAs are expected to further promote the global application and recognition of TCM in the healthcare sector.
Collapse
Affiliation(s)
- Chunqiu Fang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613844993950
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| |
Collapse
|
5
|
Han M, Zhou X, Cheng H, Qiu M, Qiao M, Geng X. Chitosan and hyaluronic acid in colorectal cancer therapy: A review on EMT regulation, metastasis, and overcoming drug resistance. Int J Biol Macromol 2025; 289:138800. [PMID: 39694373 DOI: 10.1016/j.ijbiomac.2024.138800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Up to 90% of cancer-related fatalities could be attributed to metastasis. Therefore, understanding the mechanisms that facilitate tumor cell metastasis is beneficial for improving patient survival and results. EMT is considered the main process involved in the invasion and spread of CRC. Essential molecular components like Wnt, TGF-β, and PI3K/Akt play a role in controlling EMT in CRC, frequently triggered by various factors such as Snail, Twist, and ZEB1. These factors affect not only the spread of CRC but also determine the reaction to chemotherapy. The influence of non-coding RNAs, especially miRNAs and lncRNAs, on the regulation of EMT is clear in CRC. Exosomes, involved in cell-to-cell communication, can affect the TME and metastasis of CRC. Pharmacological substances and nanoparticles demonstrate promise as efficient modulators of EMT in CRC. Chitosan and HA are two major carbohydrate polymers with considerable potential in inhibiting CRC. Chitosan and HA can be employed to modify nanoparticles to enhance cargo transport for reducing CRC. Additionally, chitosan and HA-modified nanocarriers, which can be utilized as potential approaches in suppressing EMT and reversing drug resistance in CRC, can inhibit EMT and chemoresistance, crucial components in tumorigenesis.
Collapse
Affiliation(s)
- Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Hang Cheng
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Mengru Qiu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Meng Qiao
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Xiao Geng
- Department of Party Committee Office, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| |
Collapse
|
6
|
Ahmad NA, Ho J. Fatty Alcohol Membrane Model for Quantifying and Predicting Amphiphilicity. J Chem Inf Model 2025; 65:417-426. [PMID: 39700188 DOI: 10.1021/acs.jcim.4c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Amphiphilicity is an important property for drug development and self-assembly. This paper introduces a general approach based on a simple fatty alcohol (dodecanol) membrane model that can be used to quantify the amphiphilicity of small molecules that are in good agreement with experimental surface tension data. By applying the model to a systematic series of compounds, it was possible to elucidate the effect of different motifs on amphiphilicity. The results further indicate that amphiphilicity correlates strongly with water-octanol partition coefficients (logP) for the 29 organic molecules examined in the 0 < logP < 4 range. Importantly, the simulation of the model membrane is an order of magnitude faster than a phospholipid membrane (e.g., 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) simulation and offers a simple atomistic approach for quantifying and predicting amphiphilicity of small drug-like molecules that could be used in quantitative structure-activity relationship studies.
Collapse
Affiliation(s)
- Nur Afiqah Ahmad
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
8
|
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers (Basel) 2024; 16:2097. [PMID: 39125124 PMCID: PMC11314328 DOI: 10.3390/polym16152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer self-assembly can prepare various shapes and sizes of pores, making it widely used. The complexity and diversity of biomolecules make them a unique class of building blocks for precise assembly. They are particularly suitable for the new generation of biomaterials integrated with life systems as they possess inherent characteristics such as accurate identification, self-organization, and adaptability. Therefore, many excellent methods developed have led to various practical results. At the same time, the development of advanced science and technology has also expanded the application scope of self-assembly of synthetic polymers. By utilizing this technology, materials with unique shapes and properties can be prepared and applied in the field of tissue engineering. Nanomaterials with transparent and conductive properties can be prepared and applied in fields such as electronic displays and smart glass. Multi-dimensional, controllable, and multi-level self-assembly between nanostructures has been achieved through quantitative control of polymer dosage and combination, chemical modification, and composite methods. Here, we list the classic applications of natural- and artificially synthesized polymer self-assembly in the fields of biomedicine and materials, introduce the cutting-edge technologies involved in these applications, and discuss in-depth the advantages, disadvantages, and future development directions of each type of polymer self-assembly.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyi Chen
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.H.); (S.Z.); (X.Z.); (C.S.); (Y.Z.)
| |
Collapse
|
9
|
Yan C, Zhao Y, Liu X, Jiang Y, Li Q, Yang L, Li X, Luo K. Self-Delivery Nanobooster to Enhance Immunogenic Cell Death for Cancer Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33169-33181. [PMID: 38915234 DOI: 10.1021/acsami.4c06149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Inducing immunogenic cell death (ICD) is a promising strategy for cancer immunotherapy. Shikonin (SHK), a naphthoquinone compound from Lithospermum erythrorhizon, can stimulate antitumor immunity by inducing ICD. Nevertheless, the immunogenicity of tumor cells killed by SHK is weak. Endoplasmic reticulum (ER) stress is an important intracellular pathway of the ICD effect. Curcumin (CUR) can directly induce ER stress by disrupting Ca2+ homeostasis, which might enhance SHK-induced ICD effect. A self-delivery ICD effect nanobooster (CS-PEG NPs) was developed by the self-assembly of SHK (ICD inducer) and CUR (ICD enhancer) with the assistance of DSPE-PEG2K for cancer chemoimmunotherapy. CS-PEG NPs possessed effective CT26 tumor cell cellular uptake and tumor accumulation ability. Moreover, enhanced cytotoxicity against tumor cells and apoptosis promotion were achieved due to the synergistic effect of CUR and SHK. Notably, CS-PEG NPs induced obvious Ca2+ homeostasis disruption, ER stress, and ICD effect. Subsequently, the neoantigens produced by the robust ICD effect in vivo promoted dendritic cell maturation, which further recruited and activated cytotoxic T lymphocytes. Superior antitumor efficacy and systemic antitumor immunity were observed in the CT26-bearing BALB/c mouse model without side effects in major organs. This study offers a promising self-delivery nanobooster to induce strong ICD effect and antitumor immunity for cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
10
|
Lin R, Wang Y, Cheng H, Ye X, Chen S, Pan H. Epigallocatechin-3-gallate stabilizes aqueous curcumin by generating nanoparticles and its application in beverages. Food Chem 2024; 444:138655. [PMID: 38330612 DOI: 10.1016/j.foodchem.2024.138655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
In this study, we addressed the limited water solubility of curcumin by utilizing epigallocatechin-3-gallate to form nanoparticles through self-assembly. The resulting particles, ranging from 100 to 150 nm, exhibited a redshift in the UV-visible spectrum, from 425 nm to 435 nm, indicative of potential π-π stacking. Molecular docking experiments supported this finding. Curcumin loaded with epigallocatechin-3-gallate showed exceptional dispersibility in aqueous solutions, with 90.92 % remaining after 60 days. The electrostatic screening effect arises from the charge carried by epigallocatechin-3-gallate on the nanoparticles, leading to enhanced retention of curcumin under different pH, temperature, and ionic strength conditions. Furthermore, epigallocatechin-3-gallate can interact with other hydrophobic polyphenols, improving their dispersibility and stability in aqueous systems. Applying this principle, a palatable beverage was formulated by combining turmeric extract and green tea. The nanoparticles encapsulated with epigallocatechin-3-gallate show potential for improving the applicability of curcumin in aqueous food systems.
Collapse
Affiliation(s)
- Ruge Lin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
11
|
Cao C, Tian L, Li J, Raveendran R, Stenzel MH. Mix and Shake: A Mild Way to Drug-Loaded Lysozyme Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27177-27186. [PMID: 38753304 DOI: 10.1021/acsami.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Cheng Cao
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Linqing Tian
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Joanna Li
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
12
|
Tian L, Cao C, Ho J, Stenzel MH. Maximizing Aqueous Drug Encapsulation: Small Nanoparticles Formation Enabled by Glycopolymers Combining Glucose and Tyrosine. J Am Chem Soc 2024; 146:8120-8130. [PMID: 38477486 DOI: 10.1021/jacs.3c12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Highly potent heterocyclic drugs are frequently poorly water soluble, leading to limited or abandoned further drug development. Nanoparticle technology offers a powerful delivery approach by enhancing the solubility and bioavailability of hydrophobic therapeutics. However, the common usage of organic solvents causes unwanted toxicity and process complexity, therefore limiting the scale-up of nanomedicine technology for clinical translation. Here, we show that an organic-solvent-free methodology for hydrophobic drug encapsulation can be obtained using polymers based on glucose and tyrosine. An aqueous solution based on a tyrosine-containing glycopolymer is able to dissolve solid dasatinib directly without adding an organic solvent, resulting in the formation of very small nanoparticles of around 10 nm loaded with up to 16 wt % of drug. This polymer is observed to function as both a drug solubilizer and a nanocarrier at the same time, offering a simple route for the delivery of insoluble drugs.
Collapse
|
13
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
14
|
Han Y, Zhang H, Zhao H, Fu S, Li R, Wang Z, Wang Y, Lu W, Yang X. Nanoparticle encapsulation using self-assembly abietic acid to improve oral bioavailability of curcumin. Food Chem 2024; 436:137676. [PMID: 37832417 DOI: 10.1016/j.foodchem.2023.137676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
This research constructed composite nanoparticles (NPs) using abietic acid (AA) as a carrier for significantly enhancing the bioavailability of curcumin (CCM). CCM-loaded AA NPs were synthesized using a low-energy microemulsification method, and the obtained nanoparticles had a spherical morphology with an average diameter of 458.66 nm, a narrow size distribution and a negative surface charge of -19.13 mV. The encapsulation efficiency of CCM was 17.98 %, while its solubility was 20-fold that of free curcumin. FITR, UV, and MD revealed hydrogen bonds and hydrophobic forces between AA and CCM. Thein-vitrorelease profile showed sustainable release of CCM in simulated gastric and intestinal fluids up to 2 h at 37 °C. In cellular studies, CCM-loaded AA NPs with the same CCM concentration exhibited greater bioaccessibility and bioavailability than free CCM. These data suggested a possible utilization of AA NPs in improving water solubility, bioavailability and activity of lipophilic bioactive food factors.
Collapse
Affiliation(s)
- Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Zhili Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yangxin Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
15
|
Menichetti A, Mordini D, Montalti M. Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:303. [PMID: 38334574 PMCID: PMC10856634 DOI: 10.3390/nano14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, drug delivery strategies based on nanomaterials have attracted a lot of interest in different kinds of therapies because of their superior properties. Polydopamine (PDA), one of the most interesting materials in nanomedicine because of its versatility and biocompatibility, has been widely investigated in the drug delivery field. It can be easily functionalized to favor processes like cellular uptake and blood circulation, and it can also induce drug release through two kinds of stimuli: NIR light irradiation and pH. In this review, we describe PDA nanomaterials' performance on drug delivery, based on their size, morphology, and surface charge. Indeed, these characteristics strongly influence the main mechanisms involved in a drug delivery system: blood circulation, cellular uptake, drug loading, and drug release. The understanding of the connections between PDA nanosystems' properties and these phenomena is pivotal to obtain a controlled design of new nanocarriers based on the specific drug delivery applications.
Collapse
Affiliation(s)
| | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| |
Collapse
|
16
|
Shen S, Zhang J, Han Y, Pu C, Duan Q, Huang J, Yan B, You X, Lin R, Shen X, Qiu X, Hou H. A Core-Shell Nanoreinforced Ion-Conductive Implantable Hydrogel Bioelectronic Patch with High Sensitivity and Bioactivity for Real-Time Synchronous Heart Monitoring and Repairing. Adv Healthc Mater 2023; 12:e2301990. [PMID: 37467758 DOI: 10.1002/adhm.202301990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
To achieve synchronous repair and real-time monitoring the infarcted myocardium based on an integrated ion-conductive hydrogel patch is challenging yet intriguing. Herein, a novel synthetic strategy is reported based on core-shell-structured curcumin-nanocomposite-reinforced ion-conductive hydrogel for synchronous heart electrophysiological signal monitoring and infarcted heart repair. The nanoreinforcement and multisite cross-linking of bioactive curcumin nanoparticles enable well elasticity with negligible hysteresis, implantability, ultrahigh mechanoelectrical sensitivity (37 ms), and reliable sensing capacity (over 3000 cycles) for the nanoreinforced hydrogel. Results of in vitro and in vivo experiments demonstrate that such solely physical microenvironment of electrophysiological and biomechanical characteristics combining with the role of bioactive curcumin exert the synchronous benefit of regulating inflammatory microenvironment, promoting angiogenesis, and reducing myocardial fibrosis for effective myocardial infarction (MI) repair. Especially, the hydrogel sensors offer the access for achieving accurate acquisition of cardiac signals, thus monitoring the whole MI healing process. This novel bioactive and electrophysiological-sensing ion-conductive hydrogel cardiac patch highlights a versatile strategy promising for synchronous integration of in vivo real-time monitoring the MI status and excellent MI repair performance.
Collapse
Affiliation(s)
- Si Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yanni Han
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chunyi Pu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Qixiang Duan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jianxing Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Bing Yan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoxi Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
17
|
Chen Z, Chen Y, Hao W, Shui M, Zhang J, Zhou H, Zhang C, Wang Y, Wang S. Oral Delivery of Transformable Bilirubin Self-Assembled System for Targeted Therapy of Colitis. Adv Healthc Mater 2023; 12:e2300946. [PMID: 37317667 DOI: 10.1002/adhm.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC) is a high incidence disease worldwide and clinically presents as relapsing and incurable inflammation of the colon. Bilirubin (BR), a natural antioxidant with significant anti-colitic effects, is utilized in preclinical studies as an intestinal disease therapy. Due to their water-insolubility, the design of BR-based agents usually involves complicated chemosynthetic processes, introducing various uncertainties in BR development. After screening numerous materials, it is identified that chondroitin sulfate can efficiently mediate the construction of BR self-assembled nanomedicine (BSNM) via intermolecular hydrogen bonds between dense sulfate and carboxyl of chondroitin sulfate and imino groups of BR. BSNM exhibits pH sensitivity and reactive oxygen species responsiveness, enabling targeted delivery to the colon. After oral administration, BSNM significantly inhibits colonic fibrosis and apoptosis of colon and goblet cells; it also reduces the expression of inflammatory cytokines. Moreover, BSNM maintains the normal level of zonula occludens-1 and occludin to sustain the integrity of intestinal barrier, regulates the macrophage polarization from M1 to M2 type, and promotes the ecological recovery of intestinal flora. Collectively, the work provides a colon-targeted and transformable BSNM that is simple to prepare and is useful as an efficient targeted UC therapy.
Collapse
Affiliation(s)
- Zhejie Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Yi Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Wei Hao
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Mingju Shui
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519090, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Shengpeng Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
18
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
19
|
Liu Y, Nemec S, Kopecky C, Stenzel MH, Kilian KA. Hydrogel Microtumor Arrays to Evaluate Nanotherapeutics. Adv Healthc Mater 2023; 12:e2201696. [PMID: 36373218 PMCID: PMC11323127 DOI: 10.1002/adhm.202201696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Nanoparticle drug formulations have many advantages for cancer therapy due to benefits in targeting selectivity, lack of systemic toxicity, and increased drug concentration in the tumor microenvironment after delivery. However, the promise of nanomedicine is limited by preclinical models that fail to accurately assess new drugs before entering human trials. In this work a new approach to testing nanomedicine using a microtumor array formed through hydrogel micropatterning is demonstrated. This technique allows partitioning of heterogeneous cell states within a geometric pattern-where boundary regions of curvature prime the stem cell-like fraction-allowing to simultaneously probe drug uptake and efficacy in different cancer cell fractions with high reproducibility. Using melanoma cells of different metastatic potential, a relationship between stem fraction and nanoparticle uptake is discovered. Deformation cytometry reveals that the stem cell-like population exhibits a more mechanically deformable cell membrane. Since the stem fraction in a tumor is implicated in drug resistance, recurrence, and metastasis, the findings suggest that nanoparticle drug formulations are well suited for targeting this dangerous cell population in cancer therapy.
Collapse
Affiliation(s)
- Yiling Liu
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicineSydneyNSW2052Australia
| | - Stephanie Nemec
- Australian Centre for NanoMedicineSydneyNSW2052Australia
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicineSydneyNSW2052Australia
| | - Martina H. Stenzel
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
| | - Kristopher A. Kilian
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicineSydneyNSW2052Australia
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
20
|
Li M, Wang P, Luo S, Wu Y, Tian X, Pan J. Construction of Anti-Biofouling Imprinted Sorbents Based on Anisotropic Polydopamine Nanotubes for Fast and Selective Capture of 2′-Deoxyadenosine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
21
|
Zhang L, Xia H, Du S, Zhao N, Zhang X, Pan Q, Xu S, He Z, Yi Z, Chai J. Carrier-free curcumin nanoassemblies for enhancing therapy effects in inflammation related disease. MATERIALS & DESIGN 2022; 222:111087. [DOI: 10.1016/j.matdes.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
22
|
Kazakova O, Lipkovska N, Barvinchenko V. Keto-enol tautomerism of curcumin in the preparation of nanobiocomposites with fumed silica. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121287. [PMID: 35468375 DOI: 10.1016/j.saa.2022.121287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
The tautomerism of curcumin (Cur) in water-ethanol solutions in the presence of fumed silica was studied by UV-visible spectroscopy. The results showed that the enol tautomer exists at an ethanol concentration in solution >50%, and with an increase in the water content, the tautomeric equilibrium shifts towards the formation of the keto tautomer. Quantum-chemical calculations (solvation model SM 5.42/6-31G (d), GAMESSPLUS) of various curcumin isomers confirmed that the existence of curcumin keto tautomer in aqueous solution is more thermodynamically favorable. The ratio of keto and enol forms also depends on the dielectric constant of water-ethanol solutions: at ε < 45, only the enol form of curcumin exists, while at ε > 45, the relative amount of the keto tautomer increases in proportion to the dielectric constant. Curcumin tautomers adsorb on fumed silica in different ways. At a low curcumin concentration in the initial solutions (<1.5 × 10-4 M), only the enol tautomer forms a monolayer on the sorbent surface, apparently due to its planar structure. The keto tautomer, characterized by a bent structure, begins to adsorb only at a concentration of Cur > 1.5 × 10-4 M, being a component of molecular aggregates with coplanar geometry.
Collapse
Affiliation(s)
- Olga Kazakova
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str, Kyiv 03164, Ukraine.
| | - Natalia Lipkovska
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str, Kyiv 03164, Ukraine
| | - Valentyna Barvinchenko
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str, Kyiv 03164, Ukraine
| |
Collapse
|
23
|
Wong S, Cao C, Lessio M, Stenzel MH. Sugar-induced self-assembly of curcumin-based polydopamine nanocapsules with high loading capacity for dual drug delivery. NANOSCALE 2022; 14:9448-9458. [PMID: 35735130 DOI: 10.1039/d2nr01795d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many drug delivery carriers reported in the literature require multistep assembly or often have very low drug loading capacities. Here, we present a simple sugar-based strategy that feeds the increased interest in high-loading nanomedicine. The driving force of the supramolecular nanocapsule formation is the interaction between curcumin (CCM) and the monosaccharide fructose. Drug and sugar are simply mixed in an aqueous solution in an open vessel, followed by coating the nanocapsules with polydopamine (PDA) to maintain structural integrity. We show that nanocapsules can still be obtained when other drugs are added, producing dual-drug nanoparticles with sizes of around 150-200 nm and drug loading contents of around 90% depending on the thickness of the PDA shell. This concept is widely applicable for a broad variety of drugs, as long as the drug has similar polarities to CCM. The key to success is the interaction of CCM and the second drug as shown in computational studies. The drug was able to be released from the nanocapsule at a release rate that could be fine-tuned by adjusting the thickness of the PDA layer.
Collapse
Affiliation(s)
- Sandy Wong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Martina Lessio
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Affiliation(s)
- Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Silverman L, Bhatti G, Wulff JE, Moffitt MG. Improvements in Drug-Delivery Properties by Co-Encapsulating Curcumin in SN-38-Loaded Anticancer Polymeric Nanoparticles. Mol Pharm 2022; 19:1866-1881. [PMID: 35579267 DOI: 10.1021/acs.molpharmaceut.2c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SN-38 is an immensely potent anticancer agent although its use necessitates encapsulation to overcome issues of poor solubility and stability. Since SN-38 is a notoriously challenging drug to encapsulate, new avenues to increase encapsulation efficiency in polymer nanoparticles (PNPs) are needed. In this paper, we show that nanoprecipitation with curcumin (CUR) increases SN-38 encapsulation efficiencies in coloaded SN-38/CUR-PNPs based on poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG) by up to a factor of 10. In addition, we find a dramatic decrease in PNP polydispersities, from 0.34 to 0.07, as the initial CUR-to-polymer ratio increases from 0 to 10, with only a modest increase in PNP size (from 40 to 55 nm). Compared to coloaded PNP formation using nanoprecipitation in the bulk or in a gas-liquid, a two-phase microfluidic reactor shows similar trends with respect to CUR content, although improvements in SN-38 encapsulation efficiencies both with and without CUR are found using the microfluidic method. Additional precipitation studies without copolymer suggest that CUR increases the dispersion of SN-38 in the solvent medium of micelle formation, which may contribute to the observed encapsulation enhancement. Cytotoxicity studies of unencapsulated SN-38/CUR mixtures show that addition of CUR does not significantly affect SN-38 potency against either U87 (glioblastoma) or A204 (rhabdomyosarcoma) cell lines. However, we find significant differences in the potencies of SN-38/CUR-PNP formulations depending on initial CUR amounts, with an optimized formulation showing subnanomolar cytotoxicity against A204 cells, significantly more potent than either free SN-38 or PNPs containing only SN-38.
Collapse
Affiliation(s)
- Lisa Silverman
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| | - Gitika Bhatti
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| |
Collapse
|
26
|
Flanders M, Gramlich WM. Water-Soluble and Degradation-Resistant Curcumin Copolymers from Reversible Addition–Fragmentation Chain (RAFT) Copolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Flanders
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | - William M. Gramlich
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
- Advance Structures and Composites Center, University of Maine, Orono, Maine 04469, United States
- Institute of Medicine, University of Maine, Orono, Maine 04469, United States
| |
Collapse
|
27
|
Yu J, Qi J, Li Z, Tian H, Xu X. A Colorimetric Ag + Probe for Food Real-Time Visual Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1389. [PMID: 35564098 PMCID: PMC9101572 DOI: 10.3390/nano12091389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023]
Abstract
Monitoring food quality throughout the food supply chain is critical to ensuring global food safety and minimizing food losses. Here we find that simply by mixing an aqueous solution of sugar-stabilized Ag+ and amines in an open vessel leads to the generation of Ag NPs and an intelligent evaluation system based on a colorimetric Ag+ probe is developed for real-time visual monitoring of food freshness. The self-assembly reaction between methylamine (MA) generated during meat storage and the colorimetric Ag+ probe produces different color changes that indicate changes in the quality of the meat. The colorimetric Ag+ probe was integrated into food packaging systems for real-time monitoring of chilled broiler meat freshness. The proposed evaluation system provides a versatile approach for detecting biogenic amines and monitoring chilled broiler meat freshness and it has the advantages of high selectivity, real-time and on-site measurements, sensitivity, economy, and safety and holds great public health significance.
Collapse
Affiliation(s)
| | | | | | | | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (J.Q.); (Z.L.); (H.T.)
| |
Collapse
|
28
|
Zou Y, Wang F, Li A, Wang J, Wang D, Chen J. Synthesis of curcumin‐loaded shellac nanoparticles via co‐precipitation in a rotating packed bed for food engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.52421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanzuo Zou
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Fen Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Angran Li
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Jie‐Xin Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Dan Wang
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic‐Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology Beijing University of Chemical Technology Beijing China
| |
Collapse
|
29
|
Ma Z, Yao J, Wang Y, Jia J, Liu F, Liu X. Polysaccharide-based delivery system for curcumin: Fabrication and characterization of carboxymethylated corn fiber gum/chitosan biopolymer particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study. Nat Commun 2022; 13:1370. [PMID: 35296677 PMCID: PMC8927472 DOI: 10.1038/s41467-022-29086-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Resolving single-crystal structures of two-dimensional covalent organic frameworks (2D COFs) is a great challenge, hindered in part by limited strategies for growing high-quality crystals. A better understanding of the growth mechanism facilitates development of methods to grow high-quality 2D COF single crystals. Here, we take a different perspective to explore the 2D COF growth process by tracing growth intermediates. We discover two different growth mechanisms, nucleation and self-healing, in which self-assembly and pre-arrangement of monomers and oligomers are important factors for obtaining highly crystalline 2D COFs. These findings enable us to grow micron-sized 2D single crystalline COF Py-1P. The crystal structure of Py-1P is successfully characterized by three-dimensional electron diffraction (3DED), which confirms that Py-1P does, in part, adopt the widely predicted AA stacking structure. In addition, we find the majority of Py-1P crystals (>90%) have a previously unknown structure, containing 6 stacking layers within one unit cell. Resolving single-crystal structures of two-dimensional covalent organic frameworks (2D COFs) is a great challenge. Here, the authors identify two different growth mechanisms of COFs, enabling the growth and structure determination of micron-sized 2D single-crystalline COFs.
Collapse
|
31
|
Determination of favipiravir in human plasma using homogeneous liquid-liquid microextraction followed by HPLC/UV. Bioanalysis 2022; 14:205-216. [PMID: 35001648 DOI: 10.4155/bio-2021-0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Favipiravir is an antiviral drug that was recently approved for the management of COVID-19 infection. Aim: This work aimed to develop a new method, using sugaring-out induced homogeneous liquid-liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Materials & methods: The optimum extraction conditions were attained using 500 μl of tetrahydrofuran as an extractant and 1400 mg of fructose as a phase-separating agent. Results: The developed method was validated according to the US FDA bioanalytical guidelines and was found linear in the range of 25-80,000 ng/ml with a correlation coefficient of 0.999. Conclusion: These results showed that the developed method was simple, easy, valid and adequately sensitive for determination of favipiravir in plasma for bioequivalence studies.
Collapse
|
32
|
Garbuio M, Dias LD, de Souza LM, Corrêa TQ, Mezzacappo NF, Blanco KC, de Oliveira KT, Inada NM, Bagnato VS. Formulations of curcumin and d-mannitol as a photolarvicide against Aedes aegypti larvae: sublethal photolarvicidal action, toxicity, residual evaluation, and small-scale field trial. Photodiagnosis Photodyn Ther 2022; 38:102740. [DOI: 10.1016/j.pdpdt.2022.102740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/18/2023]
|
33
|
Nikoo S, Maghari A, Habibi-Rezaei M, Moosavi-Movahedi AA. Mechanistic study of lysozyme glycation by fructose and modulation by curcumin derivatives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Wu L, Gao Y, Zhao C, Huang D, Chen W, Lin X, Liu A, Lin L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112608. [DOI: 10.1016/j.msec.2021.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
|
35
|
Ren B, Wang J, Zhang M, Chen Y, Zhao W. A Chiral Copper Catalyzed Site‐Selective O‐Alkylation of Carbohydrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Ren
- College of Pharmacy Xinxiang University Jinsui Avenue 191 Xinxiang Henan 453003 People's Republic of China
| | - Jiaxi Wang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Yue Chen
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Wei Zhao
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| |
Collapse
|
36
|
Chibh S, Katoch V, Singh M, Prakash B, Panda JJ. Miniatured Fluidics-Mediated Modular Self-Assembly of Anticancer Drug-Amino Acid Composite Microbowls for Combined Chemo-Photodynamic Therapy in Glioma. ACS Biomater Sci Eng 2021; 7:5654-5665. [PMID: 34724373 DOI: 10.1021/acsbiomaterials.1c01023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A particulate carrier with the ability to load a combination of therapeutic molecules acting via diverse modes to initiate cancer cell ablation would help heighten anticancer therapeutic outcomes and mitigate harmful side effects due to high doses of mono drug therapy. Moving a step closer, herein, we have developed doxorubicin-curcumin-amino acid-based composite microbowls (CMBs) following miniaturized fluid flow-based self-assembly. The CMBs were further exploited as dual chemo-photodynamic therapeutic agents in C6 glioma cells cultured in both two-dimensional (2D) monolayer and as three-dimensional (3D) spheroids. These CMBs showed synergistic and visible (blue)-light-sensitive cell-killing effects in both C6 cells and 3D spheroids. Furthermore, these bowl-shaped structures also demonstrated good stability and excellent in vitro cytocompatibility in C6 glioma cells. Our results indicated that CMBs with asymmetric cavities could potentially be used as a combinatorial drug carrier enabling simultaneous chemo- and phototherapy for effective cancer treatment. The use of blue light, from the visible part of the electromagnetic system, to generate the phototherapeutic effect further advocates for the ease and widespread applicability of the systems.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| |
Collapse
|
37
|
Kumar KV, Ramisetty KA, Devi KR, Krishna GR, Heffernan C, Stewart AA, Guo J, Gadipelli S, Brett DJL, Favvas EP, Rasmuson ÅC. Pure Curcumin Spherulites from Impure Solutions via Nonclassical Crystallization. ACS OMEGA 2021; 6:23884-23900. [PMID: 34568668 PMCID: PMC8459370 DOI: 10.1021/acsomega.1c02794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/25/2021] [Indexed: 05/10/2023]
Abstract
Crystallization experiments performed with highly supercooled solutions produced highly pure (>99 wt %) and highly crystalline mesocrystals of curcumin from impure solutions (∼22% of two structurally similar impurities) in one step. These mesocrystals exhibited a crystallographic hierarchy and were composed of perfectly or imperfectly aligned nanometer-thick crystallites. X-ray diffraction and spectroscopic analysis confirmed that the spherulites are a new solid form of curcumin. A theoretical hypothesis based on particle aggregation, double nucleation, and repeated secondary nucleation is proposed to explain the spherulite formation mechanism. The experimental results provide, for the first time, evidence for an organic molecule to naturally form spherulites without the presence of any stabilizing agents. Control experiments performed with highly supercooled pure solutions produced spherulites, confirming that the formation of spherulites is attributed to the high degree of supercooling and not due to the presence of impurities. Likewise, control experiments performed with a lower degree of supercooling produced impure crystals of curcumin via classical molecular addition mechanisms. Collectively, these experimental observations provide, for the first time, evidence for particle-mediated crystallization as an alternate and efficient method to purify organic compounds.
Collapse
Affiliation(s)
- K Vasanth Kumar
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences and the Bernal Institute, University of LimerickRINGGOLD, Limerick V94 T9PX, Ireland
| | - Kiran A Ramisetty
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences and the Bernal Institute, University of LimerickRINGGOLD, Limerick V94 T9PX, Ireland
| | - K Renuka Devi
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences and the Bernal Institute, University of LimerickRINGGOLD, Limerick V94 T9PX, Ireland
| | - Gamidi Rama Krishna
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences and the Bernal Institute, University of LimerickRINGGOLD, Limerick V94 T9PX, Ireland
| | - Claire Heffernan
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences and the Bernal Institute, University of LimerickRINGGOLD, Limerick V94 T9PX, Ireland
| | - Andrew A Stewart
- Department of Physics and the Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Jian Guo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Srinivas Gadipelli
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Evangelos P Favvas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi 15341, Attica, Greece
| | - Åke C Rasmuson
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences and the Bernal Institute, University of LimerickRINGGOLD, Limerick V94 T9PX, Ireland
| |
Collapse
|
38
|
Sahu P, Kashaw SK, Kashaw V, Shabaaz JP, Dahiya R. Synthesis and ex vivo evaluation of PLGA chitosan surface modulated double walled transdermal Pluronic nanogel for the controlled delivery of Temozolomide. Int J Biol Macromol 2021; 187:742-754. [PMID: 34310997 DOI: 10.1016/j.ijbiomac.2021.07.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
A surface modulated biodegradable transdermal strategy has been exploited for improving the biopharmaceutical properties of Temozolomide augmented in Poly Lactic-co-glycolic acid (PLGA) chitosan double walled nanogel (PCNGL). The PCNGL was synthesized by dual approach methodology showing consistent nanosize particle range of 210 nm and PDI 0.325 ± 0.43 with cationic zeta potential values +29.34 ± 0.79 mV. The PCNGL showed qualitative endothermic & exothermic temperature dependent degradation peaks by thermogravimetry analysis. Blood hemolysis and coagulation assay showed 3.37 ± 0.19 as hemolytic ratio, validating biologically safe margin for transdermal delivery. The in vitro drug release showed 85% transdermal release at slightly acidic pH mimicking skin microenvironment. The ex vivo studies displayed noteworthy penetration potential validated by concentration depth assay and confocal laser scanning microscopy, exhibiting 80% Temozolomide uptake in porcine epidermal tissue. The current research demonstrated the biodegradable controlled delivery of chemotherapeutic Temozolomide leading to biologically safe transdermal therapy.
Collapse
Affiliation(s)
- Prashant Sahu
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, MP, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, MP, India.
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar, MP, India
| | - J P Shabaaz
- Department of Microbiology and Biotechnology, Bangalore University, J.B. Campus, Bangalore 5600n56, Karnataka, India
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
39
|
Möller K, Macaulay B, Bein T. Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:489. [PMID: 33672006 PMCID: PMC7919290 DOI: 10.3390/nano11020489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
The efficiency of anti-cancer drugs is commonly determined by endpoint assays after extended incubation times, often after days. Here we demonstrate that curcumin encapsulated in crosslinked cyclodextrin nanoparticles (CD-NP) acts extremely rapidly on cell metabolism resulting in an immediate and complete inhibition of cell growth and in efficient cancer-cell killing only few hours after incubation. This early onset of anti-cancer action was discovered by live-cell high-throughput fluorescence microscopy using an environmental stage. To date, only very few examples of covalently crosslinked nanoscale CD-based (CD-NP) drug carriers exist. Crosslinking cyclodextrins enables the adsorption of unusually high payloads of hydrophobic curcumin (762 µg CC/mg CD-NP) reflecting a molar ratio of 2.3:1 curcumin to cyclodextrin. We have investigated the effect of CD-NP encapsulated curcumin (CD-CC-NP) in comparison to free, DMSO-derived curcumin nanoparticles (CC-NP) on 4 different cell lines. Very short incubations times as low as 1 h were applied and cell responses after medium change were subsequently followed over two days. We show that cell proliferation is inhibited nearly immediately in all cell lines and that a cell- and concentration dependent cancer-cell killing occurs. Anti-cancer effects were similar with free and encapsulated curcumin, however, encapsulation in CD-NP drastically extends the long-term photostability and anti-cancer activity of curcumin. Curcumin-sensitivity is highest in HeLa cells reaching up to 90% cell death under these conditions. Sensitivity decreased from HeLa to T24 to MDA MB-231 cells. Strikingly, the immortalized non-cancerous cell line MCF-10A was robust against curcumin concentrations that were highly toxic to the other cell lines. Our results underline the potential of curcumin as gentle and yet effective natural anti-cancer agent when delivered solvent-free in stabilizing and biocompatible drug carriers such as CD-NP that enable efficient cellular delivery.
Collapse
Affiliation(s)
- Karin Möller
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| |
Collapse
|
40
|
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021; 13:477. [PMID: 33540922 PMCID: PMC7867356 DOI: 10.3390/polym13030477] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The broad diversity of structures and the presence of numerous functional groups available for chemical modifications represent an enormous advantage for the development of safe, non-toxic, and cost-effective micellar drug delivery systems (DDS) based on natural biopolymers, such as polysaccharides, proteins, and peptides. Different drug-loading methods are used for the preparation of these micellar systems, but it appeared that dialysis is generally recommended, as it avoids the formation of large micellar aggregates. Moreover, the preparation method has an important influence on micellar size, morphology, and drug loading efficiency. The small size allows the passive accumulation of these micellar systems via the permeability and retention effect. Natural biopolymer-based micellar DDS are high-value biomaterials characterized by good compatibility, biodegradability, long blood circulation time, non-toxicity, non-immunogenicity, and high drug loading, and they are biodegraded to non-toxic products that are easily assimilated by the human body. Even if some recent studies reported better antitumoral effects for the micellar DDS based on polysaccharides than for commercial formulations, their clinical use is not yet generalized. This review is focused on the studies from the last decade concerning the preparation as well as the colloidal and biological characterization of micellar DDS based on natural biopolymers.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
| |
Collapse
|
41
|
Qiao Y, Duan L. Curcumin-loaded polyvinyl butyral film with antibacterial activity. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AbstractAntibacterial materials have found widespread interest in different fields nowadays. In this study, curcumin (Cur) was incorporated into the polyvinyl butyral (PVB) matrix by dissolving in ethanol for improving the functional properties of a pure PVB film. We found that Cur was uniformly dispersed in the PVB matrix, which showed good compatibility. Moreover, the incorporation of Cur could also improve thermal stability, hydrophilicity, and mechanical property. The UV-vis spectra of the PVB–Cur film demonstrated that the film could block ultraviolet radiation. Subsequently, the antibacterial activity of the PVB–Cur film was measured by the colony-counting method against S. aureus and E. coli. The results showed that the PVB–Cur film exhibited good antibacterial activity. Therefore, the PVB–Cur film was considered as a promising material for food and medical packaging applications.
Collapse
Affiliation(s)
- Yanchao Qiao
- School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic China
| | - Lijie Duan
- School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic China
| |
Collapse
|
42
|
Macromolecular design of folic acid functionalized amylopectin–albumin core–shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin. J Colloid Interface Sci 2020; 580:561-572. [DOI: 10.1016/j.jcis.2020.07.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
|
43
|
Wang H, Cai X, Ma L. Curcumin Modifies Epithelial-Mesenchymal Transition in Colorectal Cancer Through Regulation of miR-200c/EPM5. Cancer Manag Res 2020; 12:9405-9415. [PMID: 33061628 PMCID: PMC7534868 DOI: 10.2147/cmar.s260129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The serious side effect of current conventional treatments for patients with metastatic colorectal cancer (CRC) highlights the requirement of an alternative treatment strategy. Natural compounds, such as curcumin, have been gained much attention due to its low toxicity and anti-tumor effect. Methods qPCR and Western blot were used to measure the molecular changes induced by curcumin. Wound-healing assay and transwell assay were conducted to study the effect on cell migration and invasion. RT1 PCR array was performed to identify the miRNAs involved in curcumin-repressed EMT. Three algorithms and luciferase reporter assay were used to identify EPM5 as a target of miR-200c. The bioinformatical analysis of TCGA-COAD and other CRC cohorts were used to examine the association of EPM5 with EMT signatures and clinical relevance. The ectopic expression or siRNA-mediated knockdown of EPM5 was applied to study the role of EPM5 in CRC. Results Treatment with curcumin changed the epithelial–mesenchymal transition (EMT)-related gene expression, repressed cell migration and invasion in CRC cells. Its anti-tumor capability required the upregulation of miR-200c. EPM5 was a direct target of miR-200c and enriched in the consensus molecular subtype (CMS) 4 of CRC. Ectopic expression of EPM5 alone was sufficient to induce EMT in CRC. Downregulation of EPM5 was necessary for curcumin-repressed EMT, migration, and invasion. Higher expression of EPM5 was associated with the advanced TNM stages and poor survival in CRC. Conclusion Our data provide the first evidence that the curcumin inhibits EMT in CRC by upregulation of miR-200c and downregulation of EPM5, and the use of curcumin might be able to prevent or delay CRC progression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiaolong Cai
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| | - Longyang Ma
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
44
|
Angelini G, Pasc A, Gasbarri C. Curcumin in silver nanoparticles aqueous solution: Kinetics of keto-enol tautomerism and effects on AgNPs. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Liu B, Wu R, Gong S, Xiao H, Thayumanavan S. In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angew Chem Int Ed Engl 2020; 59:15135-15140. [PMID: 32410309 PMCID: PMC7666047 DOI: 10.1002/anie.202004017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/02/2020] [Indexed: 12/25/2022]
Abstract
Polymer-drug conjugates are promising as strategies for drug delivery, because of their high drug loading capacity and low premature release profile. However, the preparation of these conjugates is often tedious. In this paper, we report an efficient method for polymer-drug conjugates using an ultrafast and reversible click reaction in a post-polymerization functionalization strategy. The reaction is based on the rapid condensation of boronic acid functionalities with salicylhydroxamates. The polymer, bearing the latter functionality, has been designed such that the reaction with boronic acid bearing drugs induces an in situ self-assembly of the conjugates to form well-defined nanostructures. We show that this method is not only applicable for molecules with an intrinsic boronic acid group, but also for the other molecules that can be linked to aryl boronic acids through a self-immolative linker. The linker has been designed to cause traceless release of the attached drug molecules, the efficiency of which has been demonstrated through intracellular delivery.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Shuai Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
46
|
Molecular level investigation of curcumin self-assembly induced by trigonelline and nanoparticle formation. APPLIED NANOSCIENCE 2020; 10:3987-3998. [PMID: 32837805 PMCID: PMC7426070 DOI: 10.1007/s13204-020-01526-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/25/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticle-facilitated drug delivery forms the core of medicine nowadays with the drug being delivered right at the target, reducing side effects and enhancing therapeutic value. Nanoparticles derived from natural compounds are further a point of focus being biocompatible and safe by and large. In this study, we have performed HF/6-31G calculations coupled with intermolecular interaction calculations and nanoscale molecular dynamics simulations to investigate self-assemblage in curcumin induced by trigonelline. Similar to recently reported self-assemblage in curcumin induced by sugar, trigonelline, a natural antidiabetic derived from fenugreek, can also induce auto-catalyzed self-assemblage in curcumin to form nanoparticles. It has been shown that these nanoparticles may be utilized for the delivery of drugs with severe side effects especially for diabetic patients with triple benefit of being antidiabetic, biocompatible and safe. As an example, carriage of antidiabetic drug pioglitazone and anticancer drug taxol have been depicted utilizing nanoparticles of curcumin and trigonelline. Twenty five taxol molecules could be comfortably carried in a 50 nm nanoparticle with an average overall root mean square deviation of 2.89 Å with reference to initial positions. For the first time, this study shows the possibility of developing antidiabetic nanoparticles with plethora of opportunities for diabetic patients. The study is expected to motivate experimental verification and has a long lasting impact in medicinal chemistry.
Collapse
|
47
|
Yi Z, Chen G, Chen X, Ma X, Cui X, Sun Z, Su W, Li X. Preparation of Strong Antioxidative, Therapeutic Nanoparticles Based on Amino Acid-Induced Ultrafast Assembly of Tea Polyphenols. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33550-33563. [PMID: 32627530 DOI: 10.1021/acsami.0c10282] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoformulations offer the opportunity to overcome the shortcomings of drug molecules, such as low solubility, side effects, insufficient stability, etc., but in most of the current nanomedicines, nanocarriers as excipients do not directly participate in the therapy procedure. Accordingly, it is promising to develop the nanotherapeutics composed entirely of pharmaceutically active molecules. Tea polyphenols, especially epigallocatechin gallate (EGCG), are a kind of natural antioxidants with various biological and health beneficial effects and are extensively investigated as nutrients and anticancer drugs. Here, the size-tunable and highly active polyphenol nanoparticles were conveniently synthesized in water and could be massively produced with a simple facility. Compared to the previous strategies, either molecular assembly via oxidative coupling or combination with other biomacromolecules, the present preparation was conducted by the amino acid-triggered Mannish condensation reactions, thus permitting the flexible molecular design of various polyphenol nanoparticles by selecting different amino acids. This straightforward and ultrafast method actually opens up a novel means to make use of naturally reproducible polyphenols. Moreover, inheriting the salient properties of EGCG, these nanoparticles show strong antioxidation capacity, 10-fold higher than the extensively investigated polydopamine nanoparticles, and they are biosafe but have therapeutic effects, according to the in vitro and in vivo assessments of anticancer activity, which is promising for various biomedical purposes.
Collapse
Affiliation(s)
- Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xinxing Cui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
48
|
Cao C, Chen F, Garvey CJ, Stenzel MH. Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Behavior of Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30221-30233. [PMID: 32515935 DOI: 10.1021/acsami.0c09054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of the hydrophobic block length on the morphologies of polymerization-induced self-assembled (PISA) nanoparticles is well understood. However, the influence of drug loading on the phase morphology of the nanoparticles during the PISA process, and the resulting biological function of PISA nanoparticles, has barely been investigated. In this work, we show that the addition of a drug, curcumin, during the PISA process shifts the phase diagram toward different morphologies. The PISA system was based on hydrophilic poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC), which was chain extended with hydrophobic methyl methacrylate (MMA) in various concentrations of curcumin. According to transmission electron microscopy, the presence of curcumin led to the transition of, for example, worms to polymersome and micelles to worms analysis. To understand the interaction between polymer particles and drug, small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and fluorescence lifetime measurements were carried out. These measurements show that curcumin is predominantly located in the core in the case of micelles and worms while it is found in the shell of polymersomes. The change in morphology influences the cellular uptake by MCF-7 cells and the movement of the particles in multicellular cancer spheroids (3D model). With the increasing amount of drug, the cellular uptake of micelles and worms was enhanced with the increasing grafting density of MPC chains, which contrasts the decreasing cellular uptake in the higher drug-loaded polymersomes due to the lower shell hydration.
Collapse
Affiliation(s)
- Cheng Cao
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney 2052, Australia
- Australia Nuclear Science and Technology Organisation, Lucas Heights 2234, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Christopher J Garvey
- Australia Nuclear Science and Technology Organisation, Lucas Heights 2234, Australia
- Lund Institute for Advanced Neutron and X-ray Scattering, Lund 22100, Sweden
- Biofilm-Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University, Malmö 20506, Sweden
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
49
|
Johnson EM, Lee H, Jayabalan R, Suh JW. Ferulic acid grafted self-assembled fructo-oligosaccharide micro particle for targeted delivery to colon. Carbohydr Polym 2020; 247:116550. [PMID: 32829783 DOI: 10.1016/j.carbpol.2020.116550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is the third most commonly occurring malignancy and is ranked second among the leading cause of cancer death globally. The colorectal cancer is attributed to the life style and poor dietary habits. Ferulic acid is known to have anti-cancer activity, anti-oxidant activity and also known to be less toxic to normal cells under high doses. The purpose of this research is to develop an oral dietary intervention by grafting ferulic acid to fructo oligosaccharide and there by self-assembling them in to microparticles for targeted delivery to colon. The microparticle is characterized by using Solid state NMR and FTIR. Their morphological features were studied using SEM, XRD and particle size analyzer. The stability of the microparticle under simulated gastric and intestinal digestion were investigated. The physico-chemical characteristics of the microparticle was investigated by thermogravimetric analysis and by differential scanning calorimetry. Finally the antioxidant activity and anti-cancer activity of the microparticles were investigated in-vitro.
Collapse
Affiliation(s)
- Eldin M Johnson
- Department of Life Science, Food Microbiology and Bioprocess Laboratory, National Institute of Technology, Rourkela, India; Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, South Korea.
| | - Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, South Korea
| | - Rasu Jayabalan
- Department of Life Science, Food Microbiology and Bioprocess Laboratory, National Institute of Technology, Rourkela, India
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, South Korea; Department of Biomodulation, Graduate School, Myongji University, Yongin, South Korea.
| |
Collapse
|
50
|
Beltrán A, Burguete MI, Galindo F, Luis SV. Synthesis of new fluorescent pyrylium dyes and study of their interaction with N-protected amino acids. NEW J CHEM 2020. [DOI: 10.1039/d0nj02033h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Six new fluorescent styrylpyrylium dyes have been synthesized and the collisional quenching taking place upon their interaction with Z-protected amino acids has been studied.
Collapse
Affiliation(s)
- Alicia Beltrán
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| | - M. Isabel Burguete
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| | - Francisco Galindo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| | - Santiago V. Luis
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| |
Collapse
|