1
|
Chen Y, Li D, Chen X, Wang D, Huang Y, Gao Y, Liu F, Lin X, Zhao D, Ji J, Wang D, Jin Q. Side-Chain Engineering of NIR-II-Emissive Aggregation-Induced Emission Luminogens to Boost Photodynamic and Photothermal Antimicrobial Therapy. ACS NANO 2025; 19:16147-16162. [PMID: 40247726 DOI: 10.1021/acsnano.5c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The development of antibiotic resistance has made multidrug-resistant bacterial and fungal infections one of the most serious health problems worldwide. Photothermal therapy (PTT) and photodynamic therapy (PDT) have received increasing attention in antimicrobial fields due to their precision treatment and less susceptibility to inducing resistance. In particular, developing second near-infrared (NIR-II, 1000-1700 nm)-emissive semiconducting polymers for phototheranostics is highly desirable but remains challenging due to the lack of rational molecular design guidelines. Herein, a precise side-chain engineering strategy based on donor-acceptor (D-A)-type semiconductor polymers is developed for antimicrobial phototherapy. By subtle regulation of the side-chain flexibility, a series of NIR-II-emissive polymer aggregation-induced-emission (AIE) luminogens (AIEgens) are constructed. The optimal polymer PIDT(He)TBT bearing flexible side chains shows optimal physicochemical properties, including the highest mass extinction coefficient, the best AIE property, red-shifted absorption/emission spectra, and desirable photodynamic and photothermal effects. PIDT(He)TBT is then encapsulated into nanoparticles to endow them with water solubility, excellent photostability, and enhanced type-I photodynamic and photothermal effects. The excellent performance of PIDT(He)TBT nanoparticles in terms of fluorescence-guided type-I PDT and PTT of bacterial and fungal infections has been demonstrated both in vitro and in vivo. This work brings useful insights into designing NIR-II-emissive semiconducting polymer AIEgens for highly efficient phototheranostics.
Collapse
Affiliation(s)
- Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohui Chen
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou 313000, China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yifan Gao
- Suzhou Sanegene Bio Inc., Room 301, Building 2, Zone B, Phase III of BioBAY, No. 99 Jingu Road, Suzhou Industrial Park, Suzhou 215028, China
| | - Fang Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xintong Lin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Daiguo Zhao
- Sichuan Institute for Drug Control, Chengdu 611731, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
2
|
Borisova D, Strateva T, Dimov SG, Atanassova B, Paunova-Krasteva T, Topouzova-Hristova T, Danova ST, Tropcheva R, Stoitsova S. Diversification of Pseudomonas aeruginosa After Inhaled Tobramycin Therapy of Cystic Fibrosis Patients: Genotypic and Phenotypic Characteristics of Paired Pre- and Post-Treatment Isolates. Microorganisms 2025; 13:730. [PMID: 40284567 PMCID: PMC12029236 DOI: 10.3390/microorganisms13040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
This study examines the impact of inhaled tobramycin therapy on the within-host changes in P. aeruginosa strains isolated from Bulgarian patients with CF prior to and post treatment. Genotypic comparison by RAPD-PCR indicated that most of the pre-treatment isolates had a high similarity and were genetically comparatively close to strains from other countries with known increased morbidity or treatment requirements. Most of the post-treatment isolates were, however, genetically distant from their pre-treatment counterparts, showing genotypic diversification after the treatment. Phenotypic comparisons showed a lower ODmax reached during groswth and an increased lag-time in the post-treatment isolates. All strains were capable of invasion and intracellular reproduction within A549 cultured cells. The addition of sub-inhibitory amounts (1/4 or 1/2 MIC) of tobramycin during growth showed the higher relative fitness (as a percentage of the untreated control) of the post-treatment strains. The effects of sub-MICs on biofilm growth did not show such a pronounced trend. However, when a resazurin-based viability test was applied, the advantage of the post-treatment strains was confirmed for both broth and biofilm cultures. In spite of that, according to the determined MIC values, all isolates were tobramycin-sensitive, and the data from this study imply the development of tolerance to the antibiotic in the strains that survived the treatment.
Collapse
Affiliation(s)
- Dayana Borisova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| | - Tanya Strateva
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Svetoslav G. Dimov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.G.D.); (B.A.); (T.T.-H.)
| | - Borjana Atanassova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.G.D.); (B.A.); (T.T.-H.)
| | - Tsvetelina Paunova-Krasteva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.G.D.); (B.A.); (T.T.-H.)
| | - Svetla T. Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| | - Rositsa Tropcheva
- Center of Applied Studies and Innovation, 8, Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Stoyanka Stoitsova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| |
Collapse
|
3
|
Sahu P, Chakraborty S, Isab AA, Mandal SM, Dinda J. Biofilm Demolition by [Au III(N N)Cl(NHC)][PF 6] 2 Complexes Fastened with Bipyridine and Phenanthroline Ligands; Potent Antibacterial Agents Targeting Membrane Lipid. Chempluschem 2025; 90:e202400543. [PMID: 39434616 DOI: 10.1002/cplu.202400543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The development of new antibacterial drugs is essential for staying ahead of evolving antibiotic resistant bacterial (ARB) threats, ensuring effective treatment options for bacterial infections, and protecting public health. Herein, we successfully designed and synthesized two novel gold(III)- NHC complexes, [Au(1)(bpy)Cl][PF6]2 (2) and [Au(1)(phen)Cl][PF6]2 (3) based on the proligand pyridyl[1,2-a]{2-pyridylimidazol}-3-ylidene hexafluorophosphate (1⋅HPF6) [bpy=2,2'-bipyridine; phen=1,10-phenanthroline]. The synthesized complexes were characterized spectroscopically; their geometries and structural arrangements were confirmed by single crystal XRD analysis. Complexes 2 and 3 showed photoluminescence properties at room temperature and the time-resolved fluorescence decay confirmed the fluorescence lifetimes of 0.54 and 0.62 ns respectively; which were used to demonstrate their direct interaction with bacterial cells. Among the two complexes, complex 3 was found to be more potent against the bacterial strains (Staphylococcus aureus, Gram-positive and Pseudomonas aeruginosa, Gram-negative bacteria) with the MIC values of 8.91 μM and 17.82 μM respectively. Studies revealed the binding of the complexes with the fundamental phospholipids present in the cell membrane of bacteria, which was found to be the leading cause of bacterial cell death. Cytotoxicity was evaluated using an MTT assay on 293 T cell lines; emphasizing the potential therapeutic uses of the Au(III)-NHC complexes to control bacterial infections.
Collapse
Affiliation(s)
- Priyanka Sahu
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | - Sourav Chakraborty
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - A A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Santi M Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Joydev Dinda
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| |
Collapse
|
4
|
Meirelles LA, Vayena E, Debache A, Schmidt E, Rossy T, Distler T, Hatzimanikatis V, Persat A. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat Microbiol 2024; 9:3284-3303. [PMID: 39455898 DOI: 10.1038/s41564-024-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Pseudomonas aeruginosa frequently causes antibiotic-recalcitrant pneumonia, but the mechanisms driving its adaptation during human infections remain unclear. To reveal the selective pressures and adaptation strategies at the mucosal surface, here we investigated P. aeruginosa growth and antibiotic tolerance in tissue-engineered airways by transposon insertion sequencing (Tn-seq). Metabolic modelling based on Tn-seq data revealed the nutritional requirements for P. aeruginosa growth, highlighting reliance on glucose and lactate and varying requirements for amino acid biosynthesis. Tn-seq also revealed selection against biofilm formation during mucosal growth in the absence of antibiotics. Live imaging in engineered organoids showed that biofilm-dwelling cells remained sessile while colonizing the mucosal surface, limiting nutrient foraging and reduced growth. Conversely, biofilm formation increased antibiotic tolerance at the mucosal surface. Moreover, mutants with exacerbated biofilm phenotypes protected less tolerant but more cytotoxic strains, contributing to phenotypic heterogeneity. P. aeruginosa must therefore navigate conflicting physical and biological selective pressures to establish chronic infections.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Auriane Debache
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Schmidt
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Rossy
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania Distler
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Liu Z, Zhang H, Su H, Chen Y, Jing X, Wang D, Li S, Guan H, Meng L. Developing a multifunctional chitosan composite sponge for managing traumatic injuries. Int J Biol Macromol 2024; 280:135895. [PMID: 39343274 DOI: 10.1016/j.ijbiomac.2024.135895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Developing porous hemostatic sponges that are both biosafe and multifunctional remains a complex challenge. Conventional hemostatic techniques often fall short in managing bleeding effectively, leading to severe critical cases such as suboptimal hemostasis, increased infection risk, and complications arising from profuse bleeding. To address these deficits, our study introduces a novel multifunctional nanocomposite sponge that synergistically incorporates chitosan (CS), cellulose (Cel), graphene oxide (GO), and silver (Ag) nanoparticles. The resulting CS/Cel/GO/Ag developed demonstrates a swelling rate exceeding 3000 %, an absorption rate of over 2100 %, and the lowest stress surpassing 20 kPa at an initial 80 % strain. In vitro analyses reveal that the CS/Cel/GO/Ag sponge has excellent cytocompatibility, non-hemolytic nature, and competence in blood cell adherence and bacterial inhibition. In vivo evaluations further demonstrate that compared to conventional hemostatic methods, the sponge substantially enhances hemostatic efficacy, as evidenced by the marked reductions in clotting times and diminished blood loss compared to conventional hemostatic methods. Specifically, the test results of the CS/Cel/GO/Ag sponge across three different models are as follows: for the rat tail amputation model, the clotting time was 99 s, while blood loss was 222 mg; for the rat liver injury model, the clotting time was 129 s. while blood loss was 812 mg; for the rat femoral artery laceration model, the clotting time was 96 s, while blood loss was 758 mg. The compelling attributes of the CS/Cel/GO/Ag sponges position them as a promising solution for the acute management of bleeding. Their excellent performance indicates they have potential role to play in trauma care.
Collapse
Affiliation(s)
- Zhicheng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China
| | - Huining Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yang Chen
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xunan Jing
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shaohui Li
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China; The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, PR China; Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
6
|
Gao Z, Zheng X, Dong X, Liu W, Sha J, Bian S, Li J, Cong H, Lee CS, Wang P. A General Strategy for Enhanced Photodynamic Antimicrobial Therapy with Perylenequinonoid Photosensitizers Using a Macrocyclic Supramolecular Carrier. Adv Healthc Mater 2024; 13:e2401778. [PMID: 38979867 DOI: 10.1002/adhm.202401778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.
Collapse
Affiliation(s)
- Zekun Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuaishuai Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Goltermann L, Laborda P, Irazoqui O, Pogrebnyakov I, Bendixen MP, Molin S, Johansen HK, La Rosa R. Macrolide resistance through uL4 and uL22 ribosomal mutations in Pseudomonas aeruginosa. Nat Commun 2024; 15:8906. [PMID: 39414850 PMCID: PMC11484784 DOI: 10.1038/s41467-024-53329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Macrolides are widely used antibiotics for the treatment of bacterial airway infections. Due to its elevated minimum inhibitory concentration in standardized culture media, Pseudomonas aeruginosa is considered intrinsically resistant and, therefore, antibiotic susceptibility testing against macrolides is not performed. Nevertheless, due to macrolides' immunomodulatory effect and suppression of virulence factors, they are used for the treatment of persistent P. aeruginosa infections. Here, we demonstrate that macrolides are, instead, effective antibiotics against P. aeruginosa airway infections in an Air-Liquid Interface (ALI) infection model system resembling the human airways. Importantly, macrolide treatment in both people with cystic fibrosis and primary ciliary dyskinesia patients leads to the accumulation of uL4 and uL22 ribosomal protein mutations in P. aeruginosa which causes antibiotic resistance. Consequently, higher concentrations of antibiotics are needed to modulate the macrolide-dependent suppression of virulence. Surprisingly, even in the absence of antibiotics, these mutations also lead to a collateral reduction in growth rate, virulence and pathogenicity in airway ALI infections which are pivotal for the establishment of a persistent infection. Altogether, these results lend further support to the consideration of macrolides as de facto antibiotics against P. aeruginosa and the need for resistance monitoring upon prolonged macrolide treatment.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Oihane Irazoqui
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Maria Pals Bendixen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Ruggero La Rosa
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Henriquez T, Santoro F, Medaglini D, Pallecchi L, Clemente I, Bonechi C, Magnani A, Paccagnini E, Gentile M, Lupetti P, Marvasi M, Pini A, Bracci L, Falciani C. Analysis of the utility of a rapid vesicle isolation method for clinical strains of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0064924. [PMID: 39248554 PMCID: PMC11448148 DOI: 10.1128/spectrum.00649-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Pseudomonas aeruginosa, a pathogen capable of causing diseases ranging from mild to life-threatening, has a large arsenal of virulence factors. Notably, extracellular vesicles have emerged as significant players in the pathogenesis of this organism. However, the full range of their functions is still being studied, and difficulties related to vesicle purification (long protocols, low yields, and specialized instruments) have become a major obstacle for their characterization. In this context, the utility of rapid new methods of vesicle isolation from clinical strains is still unknown. Here, we analyze the utility of the ExoBacteria OMV isolation kit for a collection of clinical strains of P. aeruginosa. We first phenotypically characterized 15 P. aeruginosa strains to ensure that our samples were heterogeneous. We then determined the best conditions for purifying vesicles from P. aeruginosa PAO1 reference strain by the rapid method and used them to isolate vesicles from clinical strains. Our results indicated that M9 minimal medium is the best for obtaining high purity with the rapid isolation kit. Although we were able to isolate vesicles from at least four strains, the low yield and the large number of strains with unpurifiable vesicles showed that the kit was not practical or convenient for clinical strains. Our findings suggest that although fast procedures for vesicle purification can be of great utility for Escherichia coli, the more complex phenotypes of clinical isolates of P. aeruginosa are a challenge for these protocols and new alternatives/optimizations need to be developed.IMPORTANCEPseudomonas aeruginosa is recognized as an opportunistic pathogen in humans and animals. It can effectively colonize various environments thanks to a large set of virulence factors that include extracellular vesicles. Different methods were recently developed to reduce the time and effort associated with vesicle purification. However, the utility of rapid vesicle isolation methods for clinical strains of P. aeruginosa (which are recognized as being highly diverse) is not yet known. In this context, we analyzed the utility of the ExoBacteria OMV Isolation kit for vesicle purification in P. aeruginosa clinical strains. Our findings showed that the kit does not seem to be convenient for research on clinical strains due to low vesicle recovery. Our results underscore the importance of developing new rapid vesicle purification protocols/techniques for specific clinical phenotypes.
Collapse
Affiliation(s)
- Tania Henriquez
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lucia Pallecchi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Clemente
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Abán CL, Orosco S, Argañaraz Aybar JN, Albarracín L, Venecia A, Perret L, Ortiz Mayor S, Nishiyama K, Valdéz JC, Kitazawa H, Villena J, Gobbato N. Effect of Lactiplantibacillus plantarum cell-free culture on bacterial pathogens isolated from cystic fibrosis patients: in vitro and in vivo studies. Front Microbiol 2024; 15:1440090. [PMID: 39351305 PMCID: PMC11439784 DOI: 10.3389/fmicb.2024.1440090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
This study aimed to investigate the effects of the cell-free supernatant of Lactiplantibacillus plantarum ATCC® 10241TM on the biofilm-forming capacity of Pseudomonas aeruginosa strains isolated from cystic fibrosis (CF) patients. In addition, the study evaluated the in vivo potential of the cell-free supernatant to modulate inflammation and reduce lung damage in mice infected with P. aeruginosa strains or co-challenged with P. aeruginosa and the Streptococcus milleri group (SMG). The results showed that CF-derived P. aeruginosa strains can infect the respiratory tract of adult mice, inducing local inflammation and lung damage. The severity of these infections was exacerbated when P. aeruginosa was co-administered with SMG. Notably, nebulization with the cell-free supernatant of L. plantarum produced beneficial effects, reducing respiratory infection severity and inflammatory responses induced by P. aeruginosa, both alone or in combination with SMG. Reduced bacterial loads and lung damage were observed in supernatant-treated mice compared to controls. Although further mechanistic studies are necessary, the results show that the cell-free supernatant of L. plantarum ATCC® 10241TM is an interesting adjuvant alternative to treat P. aeruginosa respiratory infections and superinfections in CF patients.
Collapse
Affiliation(s)
- Carla Luciana Abán
- National Council of Scientific and Technological Research (CONICET)–CCT (Salta-Jujuy), Salta, Argentina
| | - Silvia Orosco
- Pneumonology Department, Niño Jesus Children Hospital, SIPROSA, Tucuman, Argentina
| | - Julio Nicolás Argañaraz Aybar
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Analía Venecia
- Institute of Maternity and Gynecology “Nuestra Señora de las Mercedes”, SIPROSA, Tucuman, Argentina
| | - Liliana Perret
- Rehabilitation Department of the Integrated Health Program of the Ministry of Health of the Tucuman Province, Tucuman, Argentina
| | - Sonia Ortiz Mayor
- Hospital Centro de Salud “Zenon Santillan”, SIPROSA, Tucuman, Argentina
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Juan Carlos Valdéz
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nadia Gobbato
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| |
Collapse
|
10
|
Grun CN, Jain R, Schniederberend M, Shoemaker CB, Nelson B, Kazmierczak BI. Bacterial cell surface characterization by phage display coupled to high-throughput sequencing. Nat Commun 2024; 15:7502. [PMID: 39209859 PMCID: PMC11362561 DOI: 10.1038/s41467-024-51912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The remarkable capacity of bacteria to adapt in response to selective pressures drives antimicrobial resistance. Pseudomonas aeruginosa illustrates this point, establishing chronic infections during which it evolves to survive antimicrobials and evade host defenses. Many adaptive changes occur on the P. aeruginosa cell surface but methods to identify these are limited. Here we combine phage display with high-throughput DNA sequencing to create a high throughput, multiplexed technology for surveying bacterial cell surfaces, Phage-seq. By applying phage display panning to hundreds of bacterial genotypes and analyzing the dynamics of the phage display selection process, we capture important biological information about cell surfaces. This approach also yields camelid single-domain antibodies that recognize key P. aeruginosa virulence factors on live cells. These antibodies have numerous potential applications in diagnostics and therapeutics. We propose that Phage-seq establishes a powerful paradigm for studying the bacterial cell surface by identifying and profiling many surface features in parallel.
Collapse
Affiliation(s)
- Casey N Grun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ruchi Jain
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Piton Therapeutics, Watertown, MA, USA
| | - Maren Schniederberend
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Bryce Nelson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Orion Corporation, Turku, Finland
| | - Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Pedersen BH, Simões FB, Pogrebnyakov I, Welch M, Johansen HK, Molin S, La Rosa R. Metabolic specialization drives reduced pathogenicity in Pseudomonas aeruginosa isolates from cystic fibrosis patients. PLoS Biol 2024; 22:e3002781. [PMID: 39178315 PMCID: PMC11376529 DOI: 10.1371/journal.pbio.3002781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/05/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024] Open
Abstract
Metabolism provides the foundation for all cellular functions. During persistent infections, in adapted pathogenic bacteria metabolism functions radically differently compared with more naïve strains. Whether this is simply a necessary accommodation to the persistence phenotype or if metabolism plays a direct role in achieving persistence in the host is still unclear. Here, we characterize a convergent shift in metabolic function(s) linked with the persistence phenotype during Pseudomonas aeruginosa colonization in the airways of people with cystic fibrosis. We show that clinically relevant mutations in the key metabolic enzyme, pyruvate dehydrogenase, lead to a host-specialized metabolism together with a lower virulence and immune response recruitment. These changes in infection phenotype are mediated by impaired type III secretion system activity and by secretion of the antioxidant metabolite, pyruvate, respectively. Our results show how metabolic adaptations directly impinge on persistence and pathogenicity in this organism.
Collapse
Affiliation(s)
- Bjarke Haldrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Filipa Bica Simões
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
14
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
15
|
Sanjar F, Millan CP, Leung KP. Phylogenetic evaluation and genotypic identification of burn-related Pseudomonas aeruginosa strains isolated from post-burn human infections during hospitalization. Pathog Dis 2024; 82:ftae021. [PMID: 39496512 PMCID: PMC11556336 DOI: 10.1093/femspd/ftae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 11/06/2024] Open
Abstract
Cutaneous burn trauma, compromise of dermal layers and immune defense system is a physical and fiscal burden on healthcare systems. Burn-wound infections are a serious complication of thermal injury and contribute significantly to care burden. After burn-induced trauma, sepsis by Pseudomonas aeruginosa impairs patient recovery and contributes to mortality and morbidity. Past studies show positive correlation between detection of Pseudomonas species and healing-impaired traumatic wounds. Pseudomonas aeruginosa is a resilient opportunistic human pathogen and a nosocomial agent involved in pathology of healing-impaired wounds, especially in burn patients. Expansive array of virulence determinants has resulted in gentamicin- and silver-resistant P. aeruginosa outbreaks. Knowledge of molecular dynamics and phylogeny of P. aeruginosa associated with burn wounds is limited. Therefore, we conducted whole-genome sequencing for genotyping and phylogenetic analysis of P. aeruginosa burn-associated strains (n = 19) isolated from 7 burn cases during hospitalization. Comparison of genetic features in P. aeruginosa strains in the core genome and mobilome detected genetic variations within some clonal infections over time. Genetic variations were observed among different burn cases, with some features identified in severe lung infections. Polyclonal infections were also observed, with differing genotypes and virulence potentials, highlighting the importance of reasoned sampling of isolates for clinical testing.
Collapse
Affiliation(s)
- Fatemeh Sanjar
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX 78234-7767, United States
| | - Claudia P Millan
- Fort Gordon DENTAC, 439 Richmond Street Evans, GA 30809, United States
| | - Kai P Leung
- Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, JBSA Fort Sam Houston, San Antonio, TX 78234-7767, United States
| |
Collapse
|
16
|
Grote A, Piscon B, Manson AL, Adani B, Cohen H, Livny J, Earl AM, Gal-Mor O. Persistent Salmonella infections in humans are associated with mutations in the BarA/SirA regulatory pathway. Cell Host Microbe 2024; 32:79-92.e7. [PMID: 38211565 PMCID: PMC11410052 DOI: 10.1016/j.chom.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Several bacterial pathogens, including Salmonella enterica, can cause persistent infections in humans by mechanisms that are poorly understood. By comparing genomes of isolates longitudinally collected from 256 prolonged salmonellosis patients, we identified repeated mutations in global regulators, including the barA/sirA two-component regulatory system, across multiple patients and Salmonella serovars. Comparative RNA-seq analysis revealed that distinct mutations in barA/sirA led to diminished expression of Salmonella pathogenicity islands 1 and 4 genes, which are required for Salmonella invasion and enteritis. Moreover, barA/sirA mutants were attenuated in an acute salmonellosis mouse model and induced weaker transcription of host immune responses. In contrast, in a persistent infection mouse model, these mutants exhibited long-term colonization and prolonged shedding. Taken together, these findings suggest that selection of mutations in global virulence regulators facilitates persistent Salmonella infection in humans, by attenuating Salmonella virulence and inducing a weaker host inflammatory response.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bar Piscon
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Boaz Adani
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Helit Cohen
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Ruhluel D, Fisher L, Barton TE, Leighton H, Kumar S, Amores Morillo P, O’Brien S, Fothergill JL, Neill DR. Secondary messenger signalling influences Pseudomonas aeruginosa adaptation to sinus and lung environments. THE ISME JOURNAL 2024; 18:wrae065. [PMID: 38647527 PMCID: PMC11102083 DOI: 10.1093/ismejo/wrae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Pseudomonas aeruginosa is a cause of chronic respiratory tract infections in people with cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Prolonged infection allows the accumulation of mutations and horizontal gene transfer, increasing the likelihood of adaptive phenotypic traits. Adaptation is proposed to arise first in bacterial populations colonizing upper airway environments. Here, we model this process using an experimental evolution approach. Pseudomonas aeruginosa PAO1, which is not airway adapted, was serially passaged, separately, in media chemically reflective of upper or lower airway environments. To explore whether the CF environment selects for unique traits, we separately passaged PAO1 in airway-mimicking media with or without CF-specific factors. Our findings demonstrated that all airway environments-sinus and lungs, under CF and non-CF conditions-selected for loss of twitching motility, increased resistance to multiple antibiotic classes, and a hyper-biofilm phenotype. These traits conferred increased airway colonization potential in an in vivo model. CF-like conditions exerted stronger selective pressures, leading to emergence of more pronounced phenotypes. Loss of twitching was associated with mutations in type IV pili genes. Type IV pili mediate surface attachment, twitching, and induction of cAMP signalling. We additionally identified multiple evolutionary routes to increased biofilm formation involving regulation of cyclic-di-GMP signalling. These included the loss of function mutations in bifA and dipA phosphodiesterase genes and activating mutations in the siaA phosphatase. These data highlight that airway environments select for traits associated with sessile lifestyles and suggest upper airway niches support emergence of phenotypes that promote establishment of lung infection.
Collapse
Affiliation(s)
- Dilem Ruhluel
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Lewis Fisher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Thomas E Barton
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Sumit Kumar
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Paula Amores Morillo
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Siobhan O’Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Daniel R Neill
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
18
|
Bottery MJ, Johansen HK, Pitchford JW, Friman VP. Co-occurring microflora and mucin drive Pseudomonas aeruginosa diversification and pathoadaptation. ISME COMMUNICATIONS 2024; 4:ycae043. [PMID: 38707844 PMCID: PMC11067959 DOI: 10.1093/ismeco/ycae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
While several environmental factors contribute to the evolutionary diversification of the pathogenic bacterium Pseudomonas aeruginosa during cystic fibrosis lung infections, relatively little is known about the impact of the surrounding microbiota. By using in vitro experimental evolution, we show that the presence of Stenotrophomonas maltophilia, Staphylococcus aureus, or them both, prevent the evolution of loss of virulence, which repeatedly occurs in the absence of these species due to mutations in regulators of the Pseudomonas Quinolone Signal quorum sensing system, vqsM and pqsR. Moreover, the strength of the effect of co-occurring species is attenuated through changes in the physical environment by the addition of mucin, resulting in selection for phenotypes resembling those evolved in the absence of the co-occurring species. Together, our findings show that variation in mucosal environment and the surrounding polymicrobial environment can determine the evolutionary trajectory of P. aeruginosa, partly explaining its diversification and pathoadaptation from acute to chronic phenotype during cystic fibrosis lung infections.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jon W Pitchford
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
- Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
- Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
19
|
Somayaji R, Thornton CS, Acosta N, Smith K, Clark J, Fatovich L, Thakrar MV, Parkins MD. Evaluating Sinus Microbiology by Transplant Status in Persons With Cystic Fibrosis: A Matched Cohort Study. OTO Open 2024; 8:e101. [PMID: 38317784 PMCID: PMC10840018 DOI: 10.1002/oto2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 02/07/2024] Open
Abstract
Objective Sinus disease is prevalent in persons with cystic fibrosis (PwCF) and may be a reservoir of airway infection in postlung transplant (pTx) patients. The microbial composition of cystic fibrosis sinuses and its associations with chronic rhinosinusitis (CRS) is relatively unexplored. We aimed to examine the sinus and lower airway microbiome and their associations with CRS in PwCF and pTxPwCF. Study Design Prospective single-centre study. Setting A total of 31 sex and age (±2 years) matched PwCF and pTxPwCF. Methods Demographic and clinical data along with sinus swabs and sputum were collected. CRS was assessed using Sinonasal Outcome Test-22 (SNOT-22) (patient reported outcome) and Lund-McKay (computed tomography sinus) scores. Samples underwent MiSeq Illumina sequencing of the universal 16S ribosomal RNA gene. Results A total of 31 PwCF (15 pTxPwCF) were included. Aggregate airways microbiome composition was dominated by Pseudomonas (46%), Haemophilus (14%), Staphylococcus (11%), Streptococcus (10%), and Fusobacterium (6%). α-diversity was significantly lower in post-Tx samples across both sputum and sinus samples (P = .005). β-diversity was significantly different between sputum (P = .004), but not sinus (P = .75) samples by transplant status. While there was a trend in higher β-diversity associated with lower SNOT-22 score at time of first visit, this did not reach significance (P = .05). Conclusion Sinus and airway microbiomes differed in PwCF and pTxPwCF, but the prevalent organisms remained consistent. Elucidating the relationship of the microbiome with clinical status to better understand when to intervene accordingly is needed to optimize sinus disease management in PwCF.
Collapse
Affiliation(s)
- Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Medicine, Cumming School of Medicine, Alberta Health ServicesUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryCanada
- Department of Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Christina S. Thornton
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Medicine, Cumming School of Medicine, Alberta Health ServicesUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryCanada
| | - Nicola Acosta
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Kristine Smith
- Department of Otolaryngology–Head and Neck surgeryUniversity of UtahSalt Lake CityUtahUSA
| | - Jessica Clark
- Department of Surgery, Otolaryngology–Head and Neck Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Linda Fatovich
- Department of Medicine, Cumming School of Medicine, Alberta Health ServicesUniversity of CalgaryCalgaryCanada
| | - Mitesh V. Thakrar
- Department of Medicine, Cumming School of Medicine, Alberta Health ServicesUniversity of CalgaryCalgaryCanada
| | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of Medicine, Cumming School of Medicine, Alberta Health ServicesUniversity of CalgaryCalgaryCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryCanada
| |
Collapse
|
20
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Shen C, Zeng J, Zheng D, Xiao Y, Pu J, Luo L, Zhou H, Cai Y, Zhang L, Wu M, Zhang X, Deng G, Li S, Li Q, Zeng J, Sun Z, Huang B, Chen C. Molecular epidemiology and genomic dynamics of Pseudomonas aeruginosa isolates causing relapse infections. Microbiol Spectr 2023; 11:e0531222. [PMID: 37768065 PMCID: PMC10581123 DOI: 10.1128/spectrum.05312-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the leading causes of chronic infections, including reinfection, relapse, and persistent infection, especially in cystic fibrosis patients. Relapse P. aeruginosa infections are more harmful because of repeated hospitalization and undertreatment of antimicrobials. However, relapse P. aeruginosa infection in China remains largely unknown. Herein, we performed a 3-year retrospective study from 2019 to 2022 in a tertiary hospital, which included 442 P. aeruginosa isolates from 196 patients. Relapse infection was identified by screening clinical records and whole-genome sequencing (WGS). We found that 31.6% (62/196) of patients had relapsed infections. The relapse incidence of carbapenem-resistant P. aeruginosa infection (51.4%) is significantly higher than that of carbapenem-susceptible P. aeruginosa infection (20.2%, P < 0.0001). These isolates were assigned to 50 distinct sequence types and sporadically distributed in phylogeny, indicating that relapsed infections were not caused by certain lineages. Fast adaptation and evolution of P. aeruginosa isolates were reflected by dynamic changes of antimicrobial resistance, gene loss and acquisition, and single-nucleotide polymorphisms during relapse episodes. Remarkably, a convergent non-synonymous mutation that occurs in a pyochelin-associated virulence gene fptA (T1056C, M252T) could be a considerable target for the diagnosis and treatment of relapse P. aeruginosa infection. These findings suggest that integrated utilization of WGS and medical records provides opportunities for improved diagnostics of relapsed infections. Continued surveillance of the genomic dynamics of relapse P. aeruginosa infection will generate further knowledge for optimizing treatment and prevention in the future.IMPORTANCEPseudomonas aeruginosa is a predominant pathogen that causes various chronic infections. Relapse infections promote the adaptation and evolution of antimicrobial resistance and virulence of P. aeruginosa, which obscure evolutionary trends and complicate infection management. We observed a high incidence of relapse P. aeruginosa infection in this study. Whole-genome sequencing (WGS) revealed that relapse infections were not caused by certain lineages of P. aeruginosa isolates. Genomic dynamics of relapse P. aeruginosa among early and later stages reflected a plasticity scattered through the entire genome and fast adaptation and genomic evolution in different ways. Remarkably, a convergent evolution was found in a significant virulence gene fptA, which could be a considerable target for diagnosis and treatment. Taken together, our findings highlight the importance of longitudinal surveillance of relapse P. aeruginosa infection in China since cystic fibrosis is rare in Chinese. Integrated utilization of WGS and medical records provides opportunities for improved diagnostics of relapse infections.
Collapse
Affiliation(s)
- Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jinxiang Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Dexiang Zheng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yinglun Xiao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Li Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hongyun Zhou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yimei Cai
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Liling Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Meina Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Guangyuan Deng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Song Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Qiwei Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theater Command, Guangzhou, China
| | - Bin Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Hes C, Jagoe RT. Gut microbiome and nutrition-related predictors of response to immunotherapy in cancer: making sense of the puzzle. BJC REPORTS 2023; 1:5. [PMID: 39516566 PMCID: PMC11523987 DOI: 10.1038/s44276-023-00008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 11/16/2024]
Abstract
The gut microbiome is emerging as an important predictor of response to immune checkpoint inhibitor (ICI) therapy for patients with cancer. However, several nutrition-related patient characteristics, which are themselves associated with changes in gut microbiome, are also prognostic markers for ICI treatment response and survival. Thus, increased abundance of Akkermansia muciniphila, Phascolarctobacterium, Bifidobacterium and Rothia in stool are consistently associated with better response to ICI treatment. A. muciniphila is also more abundant in stool in patients with higher muscle mass, and muscle mass is a strong positive prognostic marker in cancer, including after ICI treatment. This review explores the complex inter-relations between the gut microbiome, diet and patient nutritional status and the correlations with response to ICI treatment. Different multivariate approaches, including archetypal analysis, are discussed to help identify the combinations of features which may select patients most likely to respond to ICI treatment.
Collapse
Affiliation(s)
- Cecilia Hes
- Peter Brojde Lung Cancer Centre, Segal Cancer Center, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, H4A 3J1, Canada
- Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H2X 0A9, Canada
| | - R Thomas Jagoe
- Peter Brojde Lung Cancer Centre, Segal Cancer Center, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
23
|
Cramer N, Klockgether J, Tümmler B. Microevolution of Pseudomonas aeruginosa in the airways of people with cystic fibrosis. Curr Opin Immunol 2023; 83:102328. [PMID: 37116385 DOI: 10.1016/j.coi.2023.102328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023]
Abstract
The chronic infections of cystic fibrosis (CF) airways with Pseudomonas aeruginosa are a paradigm of how environmental bacteria can conquer, adapt, and persist in an atypical habitat and successfully evade defense mechanisms and chemotherapy in a susceptible host. The within-host evolution of intraclonal diversity has been examined by whole-genome sequencing, phenotyping, and competitive fitness experiments of serial P. aeruginosa isolates collected from CF airways since onset of colonization for a period of up to 40 years. The spectrum of de novo mutations and the adaptation of phenotype and fitness of the bacterial progeny were more influenced by the living conditions in the CF lung than by the clone type of their ancestor and its genetic repertoire.
Collapse
Affiliation(s)
- Nina Cramer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
24
|
Proctor DM, Drummond RA, Lionakis MS, Segre JA. One population, multiple lifestyles: Commensalism and pathogenesis in the human mycobiome. Cell Host Microbe 2023; 31:539-553. [PMID: 37054674 PMCID: PMC10155287 DOI: 10.1016/j.chom.2023.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 04/15/2023]
Abstract
Candida auris and Candida albicans can result in invasive fungal diseases. And yet, these species can stably and asymptomatically colonize human skin and gastrointestinal tracts. To consider these disparate microbial lifestyles, we first review factors shown to influence the underlying microbiome. Structured by the damage response framework, we then consider the molecular mechanisms deployed by C. albicans to switch between commensal and pathogenic lifestyles. Next, we explore this framework with C. auris to highlight how host physiology, immunity, and/or antibiotic receipt are associated with progression from colonization to infection. While treatment with antibiotics increases the risk that an individual will succumb to invasive candidiasis, the underlying mechanisms remain unclear. Here, we describe several hypotheses that may explain this phenomenon. We conclude by highlighting future directions integrating genomics with immunology to advance our understanding of invasive candidiasis and human fungal disease.
Collapse
Affiliation(s)
- Diana M Proctor
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Li Y, Luo S, Wang H, Lai Y, Li D, Zhang Q, Huang H, Zhang P. Photoacidolysis-Mediated Iridium(III) Complex for Photoactive Antibacterial Therapy. J Med Chem 2023; 66:4840-4848. [PMID: 36966514 DOI: 10.1021/acs.jmedchem.2c02000] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Photoactive antibacterial therapy is one of the novel therapeutic methods that has great application potential and prospects for curbing bacterial infections. In this work, a photoactivated iridium complex (Ir-Cl) is synthesized for photoactive antibacterial research. Ir-Cl exhibits photoacidolysis, which can generate H+ and be converted into a photolysis product Ir-OH under blue light irradiation. At the meantime, this process is accompanied by 1O2 generation. Notably, Ir-Cl can selectively permeate S. aureus and exhibit excellent photoactive antibacterial activity. Mechanism studies show that Ir-Cl can ablate bacterial membranes and biofilms under light irradiation. Metabolomics analysis proves that Ir-Cl with light exposure mainly disturbs some amino acids' degradation (e.g., valine, leucine, isoleucine, arginine) and pyrimidine metabolism, which indirectly causes the ablation of biofilms and ultimately produces irreversible damage to S. aureus. This work provides guidance for metal complexes in antibacterial application.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shuangling Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yidan Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
26
|
Zhang C, Wu J, Liu W, Zhang W, Lee CS, Wang P. NIR-II xanthene dyes with structure-inherent bacterial targeting for efficient photothermal and broad-spectrum antibacterial therapy. Acta Biomater 2023; 159:247-258. [PMID: 36724864 DOI: 10.1016/j.actbio.2023.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
Development of novel broad-spectrum sterilization is an efficient strategy that can overcome drug resistance and avoid antibiotics abuse toward bacterial-infected diseases. Photothermal therapy (PTT) in the second near-infrared (NIR-II) therapeutic window with an increased tissue penetration and elevated maximal permissible exposure has attracted considerable attention in antibacterial applications. However, the lack of bacterial-targeted photothermal agents limits their further development. Herein, we developed three xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm. Their bulky planar conformations facilitated the formation of H-aggregates with outstanding photothermal conversion ability and good photostability in the NIR-II therapeutic bio window. By manipulating side chains of CNs, their liposomes exhibited different surface charges, ranging from negative to positive. Remarkably, the intermolecular hydrogen bonding of CN3 dimer drived the positively charged xanthene skeleton exposed to the periphery, which endowed it natural bacterial targeting potency. Therefore, CN3 possessed a good NIR-II photothermal and broad-spectrum sterilization against Gram-positive and Gram-negative bacteria. The photothermal antibacterial activities for S. aureus and E. coli were 99.4% and 99.2%, respectively, promoting significant wound healing in bacteria-infected mice with superior biocompatibility. This structure-inherent bacterial targeting strategy as a proof-of-concept shows an efficient broad-spectrum bacterial inactivation, indicating more encouraging NIR-II photothermal antibacterial therapy. STATEMENT OF SIGNIFICANCE: Photothermal therapy (PTT) in the second near-infrared region (NIR-II, 1000-1700 nm) enables the treatment of deep inflammation more satisfactory due to higher tissue penetration depth. In this work, three new NIR-II xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm were developed. CNs showed typical H-aggregated performance with bulky planar conformations and outstanding photothermal conversion ability. Density functional theory calculations revealed that the intermolecular hydrogen bonding of CN3 dimer drived the exposure of positively charged xanthene skeleton to periphery of dimer. Therefore, CN3 NPs possessed natural bacterial targeting potency and excellent NIR-II photothermal and broad-spectrum sterilization, and so as to significantly promote the wound healing of Gram-positive / negative bacteria infected mice.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Qingdao Casfuture Research Institute CO., LTD, PR China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
27
|
Hernando-Amado S, López-Causapé C, Laborda P, Sanz-García F, Oliver A, Martínez JL. Rapid Phenotypic Convergence towards Collateral Sensitivity in Clinical Isolates of Pseudomonas aeruginosa Presenting Different Genomic Backgrounds. Microbiol Spectr 2023; 11:e0227622. [PMID: 36533961 PMCID: PMC9927454 DOI: 10.1128/spectrum.02276-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Collateral sensitivity (CS) is an evolutionary trade-off by which acquisition of resistance to an antibiotic leads to increased susceptibility to another. This Achilles' heel of antibiotic resistance could be exploited to design evolution-based strategies for treating bacterial infections. To date, most studies in the field have focused on the identification of CS patterns in model strains. However, one of the main requirements for the clinical application of this trade-off is that it must be robust and has to emerge in different genomic backgrounds, including preexisting drug-resistant isolates, since infections are frequently caused by pathogens already resistant to antibiotics. Here, we report the first analysis of CS robustness in clinical strains of Pseudomonas aeruginosa presenting different ab initio mutational resistomes. We identified a robust CS pattern associated with short-term evolution in the presence of ciprofloxacin of clinical P. aeruginosa isolates, including representatives of high-risk epidemic clones belonging to sequence type (ST) 111, ST175, and ST244. We observed the acquisition of different ciprofloxacin resistance mutations in strains presenting varied STs and different preexisting mutational resistomes. Importantly, despite these genetic differences, the use of ciprofloxacin led to a robust CS to aztreonam and tobramycin. In addition, we describe the possible application of this evolutionary trade-off to drive P. aeruginosa infections to extinction by using the combination of ciprofloxacin-tobramycin or ciprofloxacin-aztreonam. Our results support the notion that the identification of robust patterns of CS may establish the basis for developing evolution-informed treatment strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens. IMPORTANCE Collateral sensitivity (CS) is a trade-off of antibiotic resistance evolution that could be exploited to design strategies for treating bacterial infections. Clinical application of CS requires it to robustly emerge in different genomic backgrounds. In this study, we performed an analysis to identify robust patterns of CS associated with the use of ciprofloxacin in clinical isolates of P. aeruginosa presenting different mutational resistomes and including high-risk epidemic clones (ST111, ST175, and ST244). We demonstrate the robustness of CS to tobramycin and aztreonam and the potential application of this evolutionary observation to drive P. aeruginosa infections to extinction. Our results support the notion that the identification of robust CS patterns may establish the basis for developing evolutionary strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Fernando Sanz-García
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | | |
Collapse
|
28
|
Zhang H, He C, Shen L, Tao W, Zhu J, Song J, Li Z, Yin J. Membrane-targeting amphiphilic AIE photosensitizer for broad-spectrum bacteria imaging and photodynamic killing of bacteria. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Cameron DR, Pitton M, Oberhaensli S, Schlegel K, Prod’hom G, Blanc DS, Jakob SM, Que YA. Parallel Evolution of Pseudomonas aeruginosa during a Prolonged ICU-Infection Outbreak. Microbiol Spectr 2022; 10:e0274322. [PMID: 36342287 PMCID: PMC9769503 DOI: 10.1128/spectrum.02743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Most knowledge about Pseudomonas aeruginosa pathoadaptation is derived from studies on airway colonization in cystic fibrosis; little is known about adaptation in acute settings. P. aeruginosa frequently affects burned patients and the burn wound niche has distinct properties that likely influence pathoadaptation. This study aimed to genetically and phenotypically characterize P. aeruginosa isolates collected during an outbreak of infection in a burn intensive care unit (ICU). Sequencing reads from 58 isolates of ST1076 P. aeruginosa taken from 23 patients were independently mapped to a complete reference genome for the lineage (H25338); genetic differences were identified and were used to define the population structure. Comparative genomic analysis at single-nucleotide resolution identified pathoadaptive genes that evolved multiple, independent mutations. Three key phenotypic assays (growth performance, motility, carbapenem resistance) were performed to complement the genetic analysis for 47 unique isolates. Population structure for the ST1076 lineage revealed 11 evolutionary sublineages. Fifteen pathoadaptive genes evolved mutations in at least two sublineages. The most prominent functional classes affected were transcription/two-component regulatory systems, and chemotaxis/motility and attachment. The most frequently mutated gene was oprD, which codes for outer membrane porin involved in uptake of carbapenems. Reduced growth performance and motility were found to be adaptive phenotypic traits, as was high level of carbapenem resistance, which correlated with higher carbapenem consumption during the outbreak. Multiple prominent linages evolved each of the three traits in parallel providing evidence that they afford a fitness advantage for P. aeruginosa in the context of human burn infection. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative pathogen causing infections in acutely burned patients. The precise mechanisms required for the establishment of infection in the burn setting, and adaptive traits underpinning prolonged outbreaks are not known. We have assessed genotypic data from 58 independent P. aeruginosa isolates taken from a single lineage that was responsible for an outbreak of infection in a burn ICU that lasted for almost 2.5 years and affected 23 patients. We identified a core set of 15 genes that we predict to control pathoadaptive traits in the burn infection based on the frequency with which independent mutations evolved. We combined the genotypic data with phenotypic data (growth performance, motility, antibiotic resistance) and clinical data (antibiotic consumption) to identify adaptive phenotypes that emerged in parallel. High-level carbapenem resistance evolved rapidly, and frequently, in response to high clinical demand for this antibiotic class during the outbreak.
Collapse
Affiliation(s)
- David R. Cameron
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Melissa Pitton
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Katja Schlegel
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Guy Prod’hom
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique S. Blanc
- Service of Hospital Preventive Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Armbruster CR, Li K, Kiedrowski MR, Zemke AC, Melvin JA, Moore J, Atteih S, Fitch AC, DuPont M, Manko CD, Weaver ML, Gaston JR, Alcorn JF, Morris A, Methé BA, Lee SE, Bomberger JM. Low Diversity and Instability of the Sinus Microbiota over Time in Adults with Cystic Fibrosis. Microbiol Spectr 2022; 10:e0125122. [PMID: 36094193 PMCID: PMC9603634 DOI: 10.1128/spectrum.01251-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a common, yet underreported and understudied manifestation of upper respiratory disease in people with cystic fibrosis (CF). Recently developed standard of care guidelines for the management of CF CRS suggest treatment of upper airway disease may ameliorate lower airway disease. We sought to determine whether changes to sinus microbial community diversity and specific taxa known to cause CF lung disease are associated with increased respiratory disease and inflammation. We performed 16S rRNA gene sequencing, supplemented with cytokine analyses, microscopy, and bacterial culturing, on samples from the sinuses of 27 adults with CF CRS. At each study visit, participants underwent endoscopic paranasal sinus sampling and clinical evaluation. We identified key drivers of microbial community composition and evaluated relationships between diversity and taxa with disease outcomes and inflammation. Sinus community diversity was low, and the composition was unstable, with many participants exhibiting alternating dominance between Pseudomonas aeruginosa and staphylococci over time. Despite a tendency for dominance by these two taxa, communities were highly individualized and shifted composition during exacerbation of sinus disease symptoms. Exacerbations were also associated with communities dominated by Staphylococcus spp. Reduced microbial community diversity was linked to worse sinus disease and the inflammatory status of the sinuses (including increased interleukin-1β [IL-1β]). Increased IL-1β was also linked to worse sinus endoscopic appearance, and other cytokines were linked to microbial community dynamics. Our work revealed previously unknown instability of sinus microbial communities and a link between inflammation, lack of microbial community diversity, and worse sinus disease. IMPORTANCE Together with prior sinus microbiota studies of adults with CF chronic rhinosinusitis, our study underscores similarities between sinus and lower respiratory tract microbial community structures in CF. We show how community structure tracks with inflammation and several disease measures. This work strongly suggests that clinical management of CRS could be leveraged to improve overall respiratory health in CF. Our work implicates elevated IL-1β in reduced microbiota diversity and worse sinus disease in CF CRS, suggesting applications for existing therapies targeting IL-1β. Finally, the widespread use of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy has led to less frequent availability of spontaneous expectorated sputum for microbiological surveillance of lung infections. A better understanding of CF sinus microbiology could provide a much-needed alternative site for monitoring respiratory infection status by important CF pathogens.
Collapse
Affiliation(s)
- Catherine R. Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Megan R. Kiedrowski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anna C. Zemke
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey A. Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John Moore
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Samar Atteih
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adam C. Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Matthew DuPont
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher D. Manko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Madison L. Weaver
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jordon R. Gaston
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John F. Alcorn
- Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Barbara A. Methé
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Stella E. Lee
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Wang Y, Ren M, Li Y, Liu F, Wang Y, Wang Z, Feng L. Bioactive AIEgens Tailored for Specific and Sensitive Theranostics of Gram-Positive Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46340-46350. [PMID: 36194189 DOI: 10.1021/acsami.2c14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diseases caused by bacterial infections are increasingly threatening human health. As a major part of the microbial family, Gram-positive bacteria induce severe infections in hospitals and communities. Therefore, developing antibacterial materials that can recognize bacteria and specifically kill them is significant to cope with fatal bacterial infection. To this end, we designed and prepared a series of positively charged photosensitizers with an aggregation-induced emission feature and a type I reactive oxygen species (ROS) generation ability. Based on a molecular engineering strategy, the PS abbreviated to MTTTPy that owns a superior ROS generation ability and red emission in aggregation is obtained by adjusting bridging groups. Due to the unique molecular structure, MTTTPy can sensitively and specifically recognize and light up Gram-positive bacteria through electrostatic adsorption and void permeability. In addition, it can kill 95% of the recognized bacteria at a low concentration of 0.5 μM by generating oxygen-independent ROS under white light irradiation. Both in vitro and in vivo studies verify the sensitive and specific recognition and killing effect of MTTTPy toward Gram-positive bacteria. This work provides superior material-integrated diagnosis and treatment for Gram-positive bacteria-caused infectious diseases and shows potential for addressing bacterial resistance.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Min Ren
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Ying Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
32
|
Drevinek P, Canton R, Johansen HK, Hoffman L, Coenye T, Burgel PR, Davies JC. New concepts in antimicrobial resistance in cystic fibrosis respiratory infections. J Cyst Fibros 2022; 21:937-945. [DOI: 10.1016/j.jcf.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
33
|
Lichtenberg M, Kragh KN, Fritz B, Kirkegaard JB, Tolker-Nielsen T, Bjarnsholt T. Cyclic-di-GMP signaling controls metabolic activity in Pseudomonas aeruginosa. Cell Rep 2022; 41:111515. [DOI: 10.1016/j.celrep.2022.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2022] Open
|
34
|
Jiang G, Hu R, Li C, Gong J, Wang J, Lam JWY, Qin A, Zhong Tang B. Dipole‐Dipole and Anion‐π
+
Interaction Manipulation Synergistically Enhance Intrinsic Antibacterial Activities of AIEgens. Chemistry 2022; 28:e202202388. [DOI: 10.1002/chem.202202388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Guoyu Jiang
- College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis Inner Mongolia University Hohhot 010021 P. R. China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis Inner Mongolia University Hohhot 010021 P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis Inner Mongolia University Hohhot 010021 P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis Inner Mongolia University Hohhot 010021 P. R. China
| | - Jacky W. Y. Lam
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong P. R. China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China
| |
Collapse
|
35
|
Luo F, Fu Z, Ren Y, Wang W, Huang Y, Shu X. Self-assembly CuO-loaded nanocomposite involving functionalized DNA with dihydromyricetin for water-based efficient and controllable antibacterial action. BIOMATERIALS ADVANCES 2022; 137:212847. [PMID: 35929276 DOI: 10.1016/j.bioadv.2022.212847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
With the antibiotic crisis intensifies, the defense and treatment of pathogen infections in safe and effective fashion has become a critical issue. Herein, we report a novel and advanced type of sterilization agent designed via the functionalization DNA nanocarriers based on dihydromyricetin and CuO-loaded nanoparticles (DNA/DMY-CuO). Firstly, a pure dihydromyricetin (DMY) isolated from Ampelopsis grossedentata is used as a bridge to the stimulate the construction of DNA cross-linking networks by hydrogen bonding. Subsequently, a 3D spherical CuO-loaded nanocomposite (204.39 nm) is customized using the DNA/DMY network as a biological template through a simple coordination-assisted self-assembly method, which exhibits a high dispersibility, water-solubility and physiological stability. The reversible physical interactions in nanocarriers allows the selective separation and automatic release of CuO NPs from DNA/DMY-CuO in neutral and wound exudate environments, thereby extending the survival period of CuO NPs by nearly 24 h. Meanwhile, the nanocarriers system relied on the strong binding ability of DMY to the outer membrane of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) achieves controlled drug delivery onto the pathogen wall. The advanced antibacterial action of DNA/DMY-CuO also reflected in membrane destruction, cytoplasmic constituent leakages and ATP synthetic pathway cessation, thereby halting cytosolic metalloregulatory mechanisms and minimizing drug-resistant bacteria. In summary, such multi-functional CuO-loaded nanocomposite provides a water-dispersibility, controllable, low cytotoxicity and long-effective platform to address the ever-growing threats of bacterial infections.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhihuan Fu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanli Ren
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenxiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yunmao Huang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| |
Collapse
|
36
|
Xu Y, Chen H, Xu S, Liu J, Chen Y, Gui L, Li H, Li R, Yuan Z, Li B. β-Lactamase-Responsive Probe for Efficient Photodynamic Therapy of Drug-Resistant Bacterial Infection. ACS Sens 2022; 7:1361-1371. [PMID: 35442628 DOI: 10.1021/acssensors.1c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several photosensitizers have recently been proposed as novel approaches against β-lactamase-producing drug-resistant bacteria. However, these reported photosensitizers are rarely used for accurate recognition of drug-resistant bacteria. To tackle this challenge, the structurally modified photosensitizer CySG-2 based on a lipophilic cationic heptamethine indocyanine near-infrared (NIR) dye (IR-780) and an important synthesis intermediate of cephalosporin antibiotic (GCLE) not only achieved the accurate recognition of TEM-1 methicillin-resistant Staphylococcus aureus (MRSA) successfully but also achieved antimicrobial photodynamic therapy (aPDT) in animal models infected by drug-resistant bacteria. Accurate enzyme recognition and efficient photodynamic therapy capabilities allow CySG-2 to achieve one stone with two birds. In addition, CySG-2 could also promote the eradication of internalized MRSA by facilitating the autophagy process, which is synergistic with its capacity of inducing reactive oxygen species generation under NIR laser irradiation for aPDT. Collectively, it is an effective multifunctional photosensitizer with the potential ability to guide the optimal use of different antibiotics and apply them in clinical treatment.
Collapse
Affiliation(s)
- Yue Xu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Haiyan Chen
- Cancer Systems Imaging Department, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCR4.3600, Houston, Texas 77054, United States
| | - Shufen Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Ji Liu
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Chen
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Li
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixi Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
37
|
Zhang H, Qi Y, Zhao X, Li M, Wang R, Cheng H, Li Z, Guo H, Li Z. Dithienylethene-Bridged Fluoroquinolone Derivatives for Imaging-Guided Reversible Control of Antibacterial Activity. J Org Chem 2022; 87:7446-7455. [PMID: 35608344 DOI: 10.1021/acs.joc.2c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emerging field of photopharmacology has offered a promising alternative to guard against the bacterial resistance by effectively avoiding antibiotic accumulation in the body or environment. However, the degradation, toxicity, and thermal reversibility have always been an ongoing concern for potential applications of azobenzene-based photopharmacology. Developing novel photopharmacological agents based on a more matched switch is highly in demand and remains a major challenge. Herein, two novel dithienylethene-bridged dual-fluoroquinolone derivatives have been developed by introducing two fluoroquinolone drugs into both ends of the dithienylethene (DTE) switch, in which the fluoroquinolone acts as a fluorophore except for the pharmacodynamic component. For comparison, two monofluoroquinolone-DTE hybrids were also prepared by a similar strategy. As expected, these resultant DTE-based antibacterial agents displayed efficient photochromism and fluorescence switching behavior in dimethyl sulfoxide. Moreover, improved antibacterial activities compared to those of monofluoroquinolone derivatives and a maximum fourfold active difference against Escherichia coli (E. coli) for open and closed isomers and photoswitchable bacterial imaging for Staphylococcus aureus and E. coli were observed. The molecular docking to DNA gyrase gave a rationale for the discrepancies in antibacterial activity for both isomers. Therefore, these fluoroquinolone derivatives can act as interesting imaging-guided photopharmacological agents for further in vivo studies.
Collapse
Affiliation(s)
- Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xinru Zhao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Manman Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ruyue Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huiping Cheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zhuo Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
38
|
Wang S, Cong Z, Xu Z, Ban S, Song H. Fluorescent dyes with multiple quaternary ammonium centers for specific image discrimination and Gram-positive antibacterial activity. Org Biomol Chem 2022; 20:3980-3987. [PMID: 35502882 DOI: 10.1039/d2ob00399f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three quaternary ammonium compounds (QACs), TPQA, T2PQA, and T3PQA, were synthesized and employed in antimicrobial tests against E. coli and S. aureus. It was confirmed that they exhibit selective bacteriostasis against S. aureus. The antibacterial activities of the compounds were evaluated via determining their minimum inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) against S. aureus using the 2,3,5-triphenyltetrazolium chloride (TTC) coloration method. Notably, T2PQA exhibited far better properties than TPQA and T3PQA, with the activity found to be dependent on the structure of the QA and the exposed hydrophobic groups. All three compounds showed promising potential for killing Gram-positive bacteria, efficiently guided by fluorescence imaging.
Collapse
Affiliation(s)
- Siqi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| | - Zisong Cong
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| | - Zhiqin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei Province, China.
| |
Collapse
|
39
|
Wu X, Yang M, Kim JS, Wang R, Kim G, Ha J, Kim H, Cho Y, Nam KT, Yoon J. Reactivity Differences Enable ROS for Selective Ablation of Bacteria. Angew Chem Int Ed Engl 2022; 61:e202200808. [PMID: 35174598 DOI: 10.1002/anie.202200808] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/11/2022]
Abstract
An effective strategy to engineer selective photodynamic agents to surmount bacterial-infected diseases, especially Gram-positive bacteria remains a great challenge. Herein, we developed two examples of compounds for a proof-of-concept study where reactive differences in reactive oxygen species (ROS) can induce selective ablation of Gram-positive bacteria. Sulfur-replaced phenoxazinium (NBS-N) mainly generates a superoxide anion radical capable of selectively killing Gram-positive bacteria, while selenium-substituted phenoxazinium (NBSe-N) has a higher generation of singlet oxygen that can kill both Gram-positive and Gram-negative bacteria. This difference was further evidenced by bacterial fluorescence imaging and morphological changes. Moreover, NBS-N can also successfully heal the Gram-positive bacteria-infected wounds in mice. We believe that such reactive differences may pave a general way to design selective photodynamic agents for ablating Gram-positive bacteria-infected diseases.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Ji Seon Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, Republic of Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, 03760, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| |
Collapse
|
40
|
Extensively Drug-Resistant Klebsiella pneumoniae Counteracts Fitness and Virulence Costs That Accompanied Ceftazidime-Avibactam Resistance Acquisition. Microbiol Spectr 2022; 10:e0014822. [PMID: 35435751 PMCID: PMC9241641 DOI: 10.1128/spectrum.00148-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability of extensively drug-resistant (XDR) Klebsiella pneumoniae to rapidly acquire resistance to novel antibiotics is a global concern. Moreover, Klebsiella clonal lineages that successfully combine resistance and hypervirulence have increasingly occurred during the last years. However, the underlying mechanisms of counteracting fitness costs that accompany antibiotic resistance acquisition remain largely unexplored. Here, we investigated whether and how an XDR sequence type (ST)307 K. pneumoniae strain developed resistance against the novel drug combination ceftazidime-avibactam (CAZ-AVI) using experimental evolution. In addition, we performed in vitro and in vivo assays, molecular modeling, and bioinformatics to identify resistance-conferring processes and explore the resulting decrease in fitness and virulence. The subsequent amelioration of the initial costs was also addressed. We demonstrate that distinct mutations of the major nonselective porin OmpK36 caused CAZ-AVI resistance that persists even upon following a second experimental evolution without antibiotic selection pressure and that the Klebsiella strain compensates the resulting fitness and virulence costs. Furthermore, the genomic and transcriptomic analyses suggest the envelope stress response regulator rpoE and associated RpoE-regulated genes as drivers of this compensation. This study verifies the crucial role of OmpK36 in CAZ-AVI resistance and shows the rapid adaptation of a bacterial pathogen to compensate fitness- and virulence-associated resistance costs, which possibly contributes to the emergence of successful clonal lineages. IMPORTANCE Extensively drug-resistant Klebsiella pneumoniae causing major outbreaks and severe infections has become a significant challenge for health care systems worldwide. Rapid resistance development against last-resort therapeutics like ceftazidime-avibactam is a significant driver for the accelerated emergence of such pathogens. Therefore, it is crucial to understand what exactly mediates rapid resistance acquisition and how bacterial pathogens counteract accompanying fitness and virulence costs. By combining bioinformatics with in vitro and in vivo phenotypic approaches, this study revealed the critical role of mutations in a particular porin channel in ceftazidime-avibactam resistance development and a major metabolic regulator for ameliorating fitness and virulence costs. These results highlight underlying mechanisms and contribute to the understanding of factors important for the emergence of successful bacterial pathogens.
Collapse
|
41
|
Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc Natl Acad Sci U S A 2022; 119:e2109370119. [PMID: 35385351 PMCID: PMC9169633 DOI: 10.1073/pnas.2109370119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial adaptation to the presence of an antibiotic often involves evolutionary trade-offs, such as increased susceptibility to other drugs (collateral sensitivity). Its exploitation to design improved therapeutic strategies is only feasible if collateral sensitivity is robust, reproducible, and emerges in resistant mutants; these issues are rarely addressed in available publications. We describe a robust collateral sensitivity phenotype that emerges in different antibiotic-resistance mutational backgrounds, due to different genetic events, and propose therapeutic strategies effective for treating infections caused by Pseudomonas aeruginosa antibiotic-resistant mutants. Since conserved collateral sensitivity phenotypes do not confer adaptation to the presence of antibiotics, our results are also relevant for understanding convergent evolution processes in which the force selecting the emerging phenotype remains unclear. Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin–tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin–aztreonam or ciprofloxacin–tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.
Collapse
|
42
|
La Rosa R, Johansen HK, Molin S. Persistent Bacterial Infections, Antibiotic Treatment Failure, and Microbial Adaptive Evolution. Antibiotics (Basel) 2022; 11:419. [PMID: 35326882 PMCID: PMC8944626 DOI: 10.3390/antibiotics11030419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is expected by the WHO to be the biggest threat to human health before 2050. In this overview, we argue that this prediction may in fact be too optimistic because it is often overlooked that many bacterial infections frequently 'go under the radar' because they are difficult to diagnose and characterize. Due to our lifestyle, persistent infections caused by opportunistic bacteria-well-known or emerging-show increasing success of infecting patients with reduced defense capacity, and often antibiotics fail to be sufficiently effective, even if the bacteria are susceptible, leaving small bacterial populations unaffected by treatment in the patient. The mechanisms behind infection persistence are multiple, and therefore very difficult to diagnose in the laboratory and to treat. In contrast to antibiotic resistance associated with acute infections caused by traditional bacterial pathogens, genetic markers associated with many persistent infections are imprecise and mostly without diagnostic value. In the absence of effective eradication strategies, there is a significant risk that persistent infections may eventually become highly resistant to antibiotic treatment due to the accumulation of genomic mutations, which will transform colonization into persistence.
Collapse
Affiliation(s)
- Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.L.R.); (H.K.J.)
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
43
|
Xie H, He Z, Liu Y, Zhao C, Guo B, Zhu C, Xu J. Efficient Antibacterial Agent Delivery by Mesoporous Silica Aerogel. ACS OMEGA 2022; 7:7638-7647. [PMID: 35284760 PMCID: PMC8908532 DOI: 10.1021/acsomega.1c06198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/10/2022] [Indexed: 05/27/2023]
Abstract
Bacterial infections still cause many health problems for human beings. Silica aerogels with a three-dimensional (3D) porous structure and a large surficial area are promising candidates for drug delivery, but they have rarely been investigated for antibacterial agent delivery. Herein, we study mesoporous silica aerogels as carriers for delivery of three slightly soluble antibacterial agents including cinnamaldehyde (CA, liquid), salicylic acid (SAA, solid), and sorbic acid (SOA, solid) under supercritical fluid carbon dioxide. Notably, all three antibacterial agents form uniform nanocrystals in the mesopores of silica aerogels and the loading efficiency reaches 56 wt %, which assists in overcoming the obstacles of low bioavailability of slightly soluble antibacterial agents. Benefiting from nanocrystallized antibacterial agents, the agent-loaded aerogels exhibit an inhibition rate of 99.99% against Escherichia coli during the initial release; notably, they still have a 95% inhibition rate even after ∼90% of CA is released. Importantly, the agent-loaded silica aerogels demonstrate good biocompatibility in vitro. This work indicates that mesoporous silica aerogels are a promising platform for antibacterial agent delivery.
Collapse
Affiliation(s)
- Hui Xie
- Institute
of Low-Dimensional Materials Genome Initiative, College of Chemistry
and Environmental Engineering, Shenzhen
University, Shenzhen 518060, China
- Chengdu
Institute of Organic Chemistry, Chinese
Academy of Sciences, Chengdu 610041, China
| | - Zhiguo He
- School
of Science and Shenzhen Key Laboratory of Flexible Printed Electronics
Technology, Harbin Institute of Technology, Shenzhen 518055, China
- Institute
of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518057, China
| | - Yanxing Liu
- Institute
of Low-Dimensional Materials Genome Initiative, College of Chemistry
and Environmental Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Changbo Zhao
- Institute
of Low-Dimensional Materials Genome Initiative, College of Chemistry
and Environmental Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Bing Guo
- School
of Science and Shenzhen Key Laboratory of Flexible Printed Electronics
Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Caizhen Zhu
- Institute
of Low-Dimensional Materials Genome Initiative, College of Chemistry
and Environmental Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Jian Xu
- Institute
of Low-Dimensional Materials Genome Initiative, College of Chemistry
and Environmental Engineering, Shenzhen
University, Shenzhen 518060, China
| |
Collapse
|
44
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
45
|
Inter-species interactions alter antibiotic efficacy in bacterial communities. THE ISME JOURNAL 2022; 16:812-821. [PMID: 34628478 PMCID: PMC8857223 DOI: 10.1038/s41396-021-01130-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022]
Abstract
The efficacy of antibiotic treatments targeting polymicrobial communities is not well predicted by conventional in vitro susceptibility testing based on determining minimum inhibitory concentration (MIC) in monocultures. One reason for this is that inter-species interactions can alter the community members' susceptibility to antibiotics. Here we quantify, and identify mechanisms for, community-modulated changes of efficacy for clinically relevant antibiotics against the pathogen Pseudomonas aeruginosa in model cystic fibrosis (CF) lung communities derived from clinical samples. We demonstrate that multi-drug resistant Stenotrophomonas maltophilia can provide high levels of antibiotic protection to otherwise sensitive P. aeruginosa. Exposure protection to imipenem was provided by chromosomally encoded metallo-β-lactamase that detoxified the environment; protection was dependent upon S. maltophilia cell density and was provided by S. maltophilia strains isolated from CF sputum, increasing the MIC of P. aeruginosa by up to 16-fold. In contrast, the presence of S. maltophilia provided no protection against meropenem, another routinely used carbapenem. Mathematical ordinary differential equation modelling shows that the level of exposure protection provided against different carbapenems can be explained by differences in antibiotic efficacy and inactivation rate. Together, these findings reveal that exploitation of pre-occurring antimicrobial resistance, and inter-specific competition, can have large impacts on pathogen antibiotic susceptibility, highlighting the importance of microbial ecology for designing successful antibiotic treatments for multispecies communities.
Collapse
|
46
|
Wu X, Yang M, Kim JS, Wang R, Kim G, Ha J, Kim H, Cho Y, Nam KT, Yoon J. Reactivity Differences Enable ROS for Selective Ablation of Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Ji Seon Kim
- Severance Biomedical Science Institute Brain Korea 21 PLUS Project for Medical Science, College of Medicine Yonsei University Seoul 03760 Republic of Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute Brain Korea 21 PLUS Project for Medical Science, College of Medicine Yonsei University Seoul 03760 Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute Brain Korea 21 PLUS Project for Medical Science, College of Medicine Yonsei University Seoul 03760 Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03706 Republic of Korea
| |
Collapse
|
47
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
48
|
Jeske A, Arce-Rodriguez A, Thöming JG, Tomasch J, Häussler S. Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. NPJ Biofilms Microbiomes 2022; 8:6. [PMID: 35165270 PMCID: PMC8844440 DOI: 10.1038/s41522-022-00268-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
The overall success of a pathogenic microbe depends on its ability to efficiently adapt to challenging conditions in the human host. Long-term evolution experiments track and predict adaptive trajectories and have contributed significantly to our understanding of the driving forces of bacterial adaptation. In this study, we conducted a cross-sectional study instead of long-term longitudinal evolution experiments. We analyzed the transcriptional profiles as well as genomic sequence variations of a large number of clinical Pseudomonas aeruginosa isolates that have been recovered from different infected human sites. Convergent changes in gene expression patterns were found in different groups of clinical isolates. The majority of repeatedly observed expression patterns could be attributed to a defective lasR gene, which encodes the major quorum-sensing regulator LasR. Strikingly, the gene expression pattern of the lasR-defective strains appeared to reflect a transcriptional response that evolves in a direction consistent with growth within a biofilm. In a process of genetic assimilation, lasR-deficient P. aeruginosa isolates appear to constitutively express a biofilm-adapted transcriptional profile and no longer require a respective environmental trigger. Our results demonstrate that profiling the functional consequences of pathoadaptive mutations in clinical isolates reveals long-term evolutionary pathways and may explain the success of lasR mutants in the opportunistic pathogen P. aeruginosa in a clinical context.
Collapse
Affiliation(s)
- Alexander Jeske
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30265, Hannover, Germany
| | - Alejandro Arce-Rodriguez
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30265, Hannover, Germany
| | - Janne G Thöming
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30265, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, 2100, Copenhagen, Denmark
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30265, Hannover, Germany.
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, 2100, Copenhagen, Denmark.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30265, Hannover, Germany.
| |
Collapse
|
49
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Wardell SJT, Gauthier J, Martin LW, Potvin M, Brockway B, Levesque RC, Lamont IL. Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microb Genom 2021; 7. [PMID: 34826267 PMCID: PMC8743555 DOI: 10.1099/mgen.0.000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.
Collapse
Affiliation(s)
| | - Jeff Gauthier
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Marianne Potvin
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Ben Brockway
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|