1
|
Ma X, Cong R, Cui X, Tang Y, Ren J, Hou J, Liu B, Zhao J, Li P, Li L, Zhang H, Tu J, Jiang L. Dendritic lipopeptide-based transdermal siRNA delivery systems for effective non-invasive therapy in psoriasis. J Control Release 2025; 381:113581. [PMID: 40020928 DOI: 10.1016/j.jconrel.2025.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/02/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Psoriasis is a prevalent chronic inflammatory skin disease characterized by immune cell activation and aberrant keratinocyte proliferation. Signal transducer and activator of transcription 3 (STAT3) plays a key role in the pathology of psoriasis, positioning it as a promising target for therapeutic strategies. However, current STAT3 inhibitors often lack specificity, leading to adverse effects. Here, we present the development of dendritic lipopeptides (DLPs) designed to facilitate the transdermal delivery of small interfering RNA (siRNA) to specifically inhibit STAT3 expression in psoriatic lesions. The dendritic architecture and peptide composition of DLP are crucial for interaction with keratin of stratum corneum and gene transfection efficiency, while the lipid chain selection aims to increase lipophilicity and enhance interactions with cellular membranes. We conducted extensive in vitro and in vivo investigations to assess the therapeutic efficacy of these DLPs for siRNA delivery in psoriasis treatment. The results demonstrated that our DLPs effectively penetrated the skin barrier, delivered siRNA to target cells, and significantly reduced STAT3 expression, regulated immune cell imbalance, leading to a marked improvement in psoriasis symptoms. In conclusion, our study presents a promising non-invasive approach to psoriasis treatment by focusing on the targeted suppression of STAT3 expression. The dendritic lipopeptides offer a safe and effective platform of siRNA delivery, potentially revolutionizing the management of psoriasis and other chronic inflammatory dermatological conditions.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Cong
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xin Cui
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yiwei Tang
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jie Ren
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jinfan Hou
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Boyu Liu
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jiehui Zhao
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Pengwei Li
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lei Li
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Heyang Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC Leiden, Netherlands
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Lei Jiang
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
2
|
Gabele A, Sprang M, Cihan M, Welzel M, Nurbekova A, Romaniuk K, Dietzen S, Klein M, Bündgen G, Emelianov M, Harms G, Rajalingam K, Ziesmann T, Pape K, Wasser B, Gomez-Zepeda D, Braband K, Delacher M, Lemmermann N, Bittner S, Andrade-Navarro MA, Tenzer S, Luck K, Bopp T, Distler U. Unveiling IRF4-steered regulation of context-dependent effector programs in CD4 + T cells under Th17- and Treg-skewing conditions. Cell Rep 2025; 44:115407. [PMID: 40067830 DOI: 10.1016/j.celrep.2025.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 11/16/2024] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
The transcription factor interferon regulatory factor 4 (IRF4) is crucial for the fate determination of pro-inflammatory T helper (Th) 17 and the functionally opposing group of immunomodulatory regulatory T (Treg) cells. However, the molecular mechanisms of how IRF4 steers diverse transcriptional programs in Th17 and Treg cells are far from being definitive. Here, we integrated data derived from affinity-purification and full mass-spectrometry-based proteome analysis with chromatin immunoprecipitation sequencing. This allowed the characterization of subtype-specific molecular programs and the identification of IRF4 interactors in the Th17/Treg context. Our data reveal that IRF4-interacting transcription factors are recruited to IRF composite elements for the regulation of cell-type-specific transcriptional programs as exemplarily demonstrated for FLI1, which, in cooperation with IRF4, promotes Th17-specific gene expression. FLI1 inhibition markedly impaired Th17 differentiation. The present "omics" dataset provides a valuable resource for studying IRF4-mediated gene regulatory programs in pro- and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- Anna Gabele
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mert Cihan
- Faculty of Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mareen Welzel
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany
| | - Assel Nurbekova
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Karolina Romaniuk
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sarah Dietzen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Novo Nordisk Pharma GmbH, 55124 Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Georg Bündgen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maxim Emelianov
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gregory Harms
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Krishnaraj Rajalingam
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tanja Ziesmann
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katrin Pape
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - David Gomez-Zepeda
- Helmholtz Institute for Translational Oncology, 55131 Mainz, Germany; Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Kathrin Braband
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Niels Lemmermann
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Institute of Virology, Medical Faculty, University Bonn, 53127 Bonn, Germany
| | - Stefan Bittner
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Helmholtz Institute for Translational Oncology, 55131 Mainz, Germany; Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Katja Luck
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
3
|
Wu S, Jiang J, Wang D, Lin D, Lin M, Chen P, Chen J, Zhang H, Wang Y, Chen X, Zheng X. JAK/STAT3 signaling promotes pain and depression-like behaviors in rats with bone cancer pain by regulating Th17 cell differentiation. Brain Res Bull 2025; 221:111218. [PMID: 39864595 DOI: 10.1016/j.brainresbull.2025.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Pain and depression are common complications in patients with advanced cancer, which significantly affects their quality of life and survival. Dysregulation of the JAK/STAT3 pathway in the central nervous system is associated with pain and brain inflammatory disorders, but its role in bone cancer pain (BCP) remains unclear. This study aimed to investigate the specific role of the JAK/STAT3 pathway in the amygdala in BCP. METHODS A BCP rat model was established by intratibial injection of MRMT-1 carcinoma cells. Pain behavior was assessed using the mechanical withdrawal threshold, while depression-like behavior was assessed using the sucrose preference and forced swim test. Changes in inflammatory factors and related protein expression levels in the amygdala were detected using western blotting, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of intra-amygdala injections of a lentivirus targeting retinoic acid-related orphan receptor γt (RORγt) (LV-shRORγt), nifuroxazide (a STAT3 antagonist), and colivelin (a STAT3 agonist) were evaluated. RESULTS Rats with BCP demonstrated increased microglial activation in the amygdala. Rats experiencing RORγt knockout in the amygdala showed reduced microglial activation levels. Nifuroxazide reduced Th17 cell differentiation, potentially alleviating pain and depression-like behaviors. To further explore the underlying relationship between the JAK/STAT3 pathway and Th17 cells, LV-shRORγt and a STAT3 agonist were co-administered. The inhibitory effect of LV-shRORγt counteracted the STAT3 agonist's active effects. CONCLUSIONS Our study showed that targeting JAK/STAT3 signaling alleviated pain- and depression-like behaviors in rats with BCP by inhibiting Th17 cell differentiation.
Collapse
Affiliation(s)
- Shuyan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Jundan Jiang
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Danfeng Wang
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Daoyi Lin
- Department of Anesthesia, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Mingxue Lin
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Pinzhong Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Jianghu Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Honghong Zhang
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China
| | - Ying Wang
- Department of Anesthesiology, Fujian Medical University Teaching Hospital, Fujian Provincial Geriatric Hospital, Fuzhou 350003, China
| | - Xiaohui Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350000, China.
| |
Collapse
|
4
|
Liu ZY, Zhang YW, Zhuang HX, Ou YJ, Jiang QY, Li PF, He YM, Ren Y, Mao XL. Inhibiting the Otub1/phosphorylated STAT3 axis for the treatment of non-small cell lung cancer. Acta Pharmacol Sin 2025; 46:184-195. [PMID: 39198663 PMCID: PMC11697133 DOI: 10.1038/s41401-024-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
The transcription factor STAT3 is a promising target for the treatment of non-small cell lung cancer (NSCLC). STAT3 activity is mainly dependent on phosphorylation at tyrosine 705 (pSTAT3-Y705), but the modulation on pSTAT3-Y705 is elusive. By screening a library of deubiquitinases (Dubs), we found that the Otub1 increases STAT3 transcriptional activity. As a Dub, Otub1 binds to pSTAT3-Y705 and specifically abolishes its K48-linked ubiquitination, therefore preventing its degradation and promoting NSCLC cell survival. The Otub1/pSTAT3-Y705 axis could be a potential target for the treatment of NSCLC. To explore this concept, we screen libraries of FDA-approved drugs and natural products based on STAT3-recognition element-driven luciferase assay, from which crizotinib is found to block pSTAT3-Y705 deubiquitination and promotes its degradation. Different from its known action to induce ALK positive NSCLC cell apoptosis, crizotinib suppresses ALK-intact NSCLC cell proliferation and colony formation but not apoptosis. Furthermore, crizotinib also suppresses NSCLC xenograft growth in mice. Taken together, these findings identify Otub1 as the first deubiquitinase of pSTAT3-Y705 and provide that the Otub1/pSTAT3-Y705 axis is a promising target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zi-Yang Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hai-Xia Zhuang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Jie Ou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiu-Yun Jiang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ping-Fei Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ming He
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Ren
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xin-Liang Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University & Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Ruan Z, Li Y, Chen Y. HECTD3 promotes NLRP3 inflammasome and pyroptosis to exacerbate diabetes-related cognitive impairment by stabilising MALT1 to regulate JNK pathway. Arch Physiol Biochem 2024; 130:373-384. [PMID: 35913790 DOI: 10.1080/13813455.2022.2093377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND HECTD3 (HECT domain E3 ubiquitin protein ligase 3) exerts biological activities in neuroinflammation of distinct diseases, such as autoimmune encephalomyelitis and donations after heart death. However, the effect of HECTD3 on diabetes-associated cognitive decline (DACD) remains unclear. METHODS Wild-type or HECTD3-knockout rats were administered with streptozotocin to establish diabetic model. Pathological changes in the hippocampus were assessed by NISSL and haematoxylin and eosin staining. Morris water maze test was used to assess cognitive function. Neuronal survival and inflammation were investigated by immunofluorescence staining and ELISA assay. NLRP3 inflammasome and pyroptosis were assessed by western blot, immunofluorescence and flow cytometry assays. RESULTS HECTD3 was up-regulated in hippocampus of streptozotocin-induced diabetic rats and high glucose-induced PC12 cells. Knockout of HECTD3 increased the number of neurons and improved the learning and memory function. Moreover, knockout of HECTD3 promoted in vivo neuronal survival, and reduced levels of IL-1β, TNF-α, and IL-6 in the hippocampus. Silencing of HECTD3 increased cell viability, and reduced IL-1β, TNF-α, and IL-6 in high glucose-induced PC12 cells. Fluorescence intensities of NLRP3, GSDMD-N and caspase-1 were reduced in HECTD3-knockout diabetic rats, and knockdown of HECTD3 down-regulated protein expression of NLRP3, GSDMD-N, caspase-1, IL-1β, and IL-18 in high glucose-induced PC12 cells to suppress the pyroptosis. HECTD3 promoted the stability of mucosa-associated lymphoid tissue 1 (MALT1) through up-regulation of c-JUN and phospho (p)-JNK in high glucose-induced PC12 cells. Over-expression of MALT1 attenuated neuroprotective effects of HECTD3 silencing on high glucose-induced PC12 cells. CONCLUSION HECTD3 silencing exerted neuroprotective effect against DACD through MALT1-mediated JNK signalling.HighlightsHECTD3 was up-regulated in hippocampus of streptozotocin-induced diabetic rats and high glucose-induced PC12.Knockout of HECTD3 promoted in vivo neuronal survival, reduced inflammation and pyroptosis, and improved the learning and memory function in diabetic rats.Knockout of HECTD3 suppressed the activation of NLRP3 inflammasome in diabetic rats.Silencing of HECTD3 exerted neuroprotective effects through MALT1-mediated JNK signalling.
Collapse
Affiliation(s)
- Zhongfan Ruan
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Li
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanfang Chen
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Wang Y, Deng X, Xie J, Lu T, Qian R, Guo Z, Zeng X, Liao J, Ding Z, Zhou M, Niu X. The COP9 signalosome stabilized MALT1 promotes Non-Small Cell Lung Cancer progression through activation of NF-κB pathway. Cell Biol Toxicol 2024; 40:45. [PMID: 38864940 PMCID: PMC11169058 DOI: 10.1007/s10565-024-09888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong Province, China
| | - Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tianhao Lu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Qian
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi Guo
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin Zeng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Liao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong Province, China.
| |
Collapse
|
7
|
Lan L, Peng S, Zhang R, He H, Yang Y, Xi B, Zhang J. Serum proteomic biomarker investigation of vascular depression using data-independent acquisition: a pilot study. Front Aging Neurosci 2024; 16:1341374. [PMID: 38384936 PMCID: PMC10879412 DOI: 10.3389/fnagi.2024.1341374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Vascular depression (VaD) is a depressive disorder closely associated with cerebrovascular disease and vascular risk factors. It remains underestimated owing to challenging diagnostics and limited information regarding the pathophysiological mechanisms of VaD. The purpose of this study was to analyze the proteomic signatures and identify the potential biomarkers with diagnostic significance in VaD. Methods Deep profiling of the serum proteome of 35 patients with VaD and 36 controls was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Functional enrichment analysis of the quantified proteins was based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Reactome databases. Machine learning algorithms were used to screen candidate proteins and develop a protein-based model to effectively distinguish patients with VaD. Results There were 29 up-regulated and 31 down-regulated proteins in the VaD group compared to the controls (|log2FC| ≥ 0.26, p ≤ 0.05). Enrichment pathways analyses showed that neurobiological processes related to synaptic vesicle cycle and axon guidance may be dysregulated in VaD. Extrinsic component of synaptic vesicle membrane was the most enriched term in the cellular components (CC) terms. 19 candidate proteins were filtered for further modeling. A nomogram was developed with the combination of HECT domain E3 ubiquitin protein ligase 3 (HECTD3), Nidogen-2 (NID2), FTO alpha-ketoglutarate-dependent dioxygenase (FTO), Golgi membrane protein 1 (GOLM1), and N-acetylneuraminate lyase (NPL), which could be used to predict VaD risk with favorable efficacy. Conclusion This study offers a comprehensive and integrated view of serum proteomics and contributes to a valuable proteomics-based diagnostic model for VaD.
Collapse
Affiliation(s)
- Liuyi Lan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sisi Peng
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ran Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Haoying He
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yong Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Bing Xi
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, Peng Y, He Y, Ye Q. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol 2024; 15:1358179. [PMID: 38362505 PMCID: PMC10868393 DOI: 10.3389/fmicb.2024.1358179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a progressive cognitive decline. Sporadic AD, accounting for more than 95% of cases, may arise due to the influence of environmental factors. It was reported that periodontitis, a common oral ailment, shares several risk factors with AD, including advanced age, smoking, diabetes, and hypertension, among others. Periodontitis is an inflammatory disease triggered by dysbiosis of oral microorganisms, whereas Alzheimer's disease is characterized by neuroinflammation. Many studies have indicated that chronic inflammation can instigate brain AD-related pathologies, including amyloid-β plaques, Tau protein hyperphosphorylation, neuroinflammation, and neurodegeneration. The potential involvement of periodontal pathogens and/or their virulence factors in the onset and progression of AD by the oral-brain axis has garnered significant attention among researchers with ongoing investigations. This review has updated the periodontal pathogens potentially associated with AD, elucidating their impact on the central nervous system, immune response, and related pathological processes in the brain to provide valuable insights for future research on the oral-brain axis.
Collapse
Affiliation(s)
- Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huixian Feng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youjian Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Cheng Z, Huang M, Li W, Hou L, Jin L, Fan Q, Zhang L, Li C, Zeng L, Yang C, Liang B, Li F, Chen C. HECTD3 inhibits NLRP3 inflammasome assembly and activation by blocking NLRP3-NEK7 interaction. Cell Death Dis 2024; 15:86. [PMID: 38267403 PMCID: PMC10808187 DOI: 10.1038/s41419-024-06473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The NLRP3 inflammasome plays an important role in protecting the host from infection and aseptic inflammation, and its regulatory mechanism is not completely understood. Dysregulation of NLRP3 can cause diverse inflammatory diseases. HECTD3 is a E3 ubiquitin ligase of the HECT family that has been reported to participate in autoimmune and infectious diseases. However, the relationship between HECTD3 and the NLRP3 inflammasome has not been well studied. Herein, we show that HECTD3 blocks the interaction between NEK7 and NLRP3 to inhibit NLRP3 inflammasome assembly and activation. In BMDMs, Hectd3 deficiency promotes the assembly and activation of NLRP3 inflammasome and the secretion of IL-1β, while the overexpression of HECTD3 inhibits these processes. Unexpectedly, HECTD3 functions in an E3 activity independent manner. Mechanically, the DOC domain of HECTD3 interacts with NACHT/LRR domain of NLRP3, which blocks NLRP3-NEK7 interaction and NLRP3 oligomerization. Furthermore, HECTD3 inhibits monosodium urate crystals (MSU)-induced gouty arthritis, a NLRP3-related disease. Thus, we reveal a novel regulatory mechanism of NLRP3 by HECTD3 and suggest HECTD3 could be a potential therapeutic target for NLRP3-dependent pathologies.
Collapse
Affiliation(s)
- Zhuo Cheng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, 650204, China
| | - Maobo Huang
- The First People's Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Wei Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, 650204, China
| | - Lei Hou
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Li Jin
- The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Qijin Fan
- College of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Linqiang Zhang
- College of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Chengbin Li
- College of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Li Zeng
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, 650204, China
| | - Chuanyu Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, 650204, China
| | - Bin Liang
- College of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| | - Ceshi Chen
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
10
|
Wang X, Chen C, Sun H, Mao K, Yao J, Zhang W, Zhan M, Li HB, Zhang Z, Zhu S, Lu L. m 6A mRNA modification potentiates Th17 functions to inflame autoimmunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2543-2552. [PMID: 37405565 DOI: 10.1007/s11427-022-2323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 07/06/2023]
Abstract
N6-methyladenosine (m6A), the most common and abundant epigenetic RNA modification, governs mRNA metabolism to determine cell differentiation, proliferation and response to stimulation. m6A methyltransferase METTL3 has been reported to control T cell homeostasis and sustain the suppressive function of regulatory T cells (Tregs). However, the role of m6A methyltransferase in other subtypes of T cells remains unknown. T helper cells 17 (Th17) play a pivotal role in host defense and autoimmunity. Here, we found that the loss of METTL3 in T cells caused serious defect of Th17 cell differentiation, and impeded the development of experimental autoimmune encephalomyelitis (EAE). We generated Mettl3f/fIl17aCre mice and observed that METTL3 deficiency in Th17 cells significantly suppressed the development of EAE and displayed less Th17 cell infiltration into central nervous system (CNS). Importantly, we demonstrated that depletion of METTL3 attenuated IL-17A and CCR5 expression by facilitating SOCS3 mRNA stability in Th17 cells, leading to disrupted Th17 cell differentiation and infiltration, and eventually attenuating the process of EAE. Collectively, our results highlight that m6A modification sustains Th17 cell function, which provides new insights into the regulatory network of Th17 cells, and also implies a potential therapeutic target for Th17 cell mediated autoimmune disease.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chen Chen
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Hongwei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Kaiqiong Mao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiameng Yao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiqiao Zhang
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Hua-Bing Li
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiren Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| | - Shu Zhu
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| |
Collapse
|
11
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
12
|
Zhang YY, Wang L, Guo H, Han TT, Chang YH, Cui XC. Levetiracetam attenuates diabetes-associated cognitive impairment and microglia polarization by suppressing neuroinflammation. Front Pharmacol 2023; 14:1145819. [PMID: 37214458 PMCID: PMC10192710 DOI: 10.3389/fphar.2023.1145819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Cognitive impairment is a common complication and comorbidity of diabetes. However, the underlying mechanisms of diabetes-associated cognitive dysfunction are currently unclear. M1 microglia secretes pro-inflammatory factors and can be marked by CD16, iNOS, Iba1 and TNF-ɑ. The decline of M2 microglia in the diabetic rats indicates that high glucose promotes the differentiation of microglia into the M1 type to trigger neuroinflammatory responses. Moreover, there is a lack of strong evidence for treatments of diabetes-associated cognitive impairment in addition to controlling blood glucose. Methods: Diabetic rats were established by intraperitoneal injection of one dose of streptozotocin (60 mg/kg). Polarization transitions of microglia were induced by high glucose treatment in BV2 cells. Levetiracetam was orally administered to rats 72 h after streptozotocin injection for 12 weeks. Results: In STZ-induced diabetic rats, the results demonstrated that levetiracetam improved rat cognitive function (Morris water maze test) and hippocampus morphology (Hematoxylin-eosin staining), and the effect was more evident in the high-dose levetiracetam group. Microglia activation in the hippocampus was inhibited by levetiracetam treatment for 12 weeks. Serum levels of TNF-α, IL-1β, and IL-6 were reduced in the LEV-L and LEV-H groups, and IL-1β level was obviously reduced in the LEV-H group. In vitro, we found that levetiracetam 50 µM attenuated high-glucose induced microglial polarization by increasing IL-10 level and decreasing IL-1β and TNF-α levels. Moreover, levetiracetam 50 µM increased and decreased the proportion of CD206+/Iba1+ and iNOS+/Iba1+cells, respectively. Western blot analysis illustrated that LEV 50 µM downregulated the expression of MyD88 and TRAF6, and phosphorylation of TAK1, JNK, p38, and NF-κB p65. The effect of levetiracetam on the anti-polarization and expression of p-JNK and p-NF-κB p65 were partly reversed by anisomycin (p38 and JNK activators). Discussion: Together, our data suggest that levetiracetam attenuates streptozotocin-induced cognitive impairment by suppressing microglia activation. The in vitro findings also indicate that the levetiracetam inhibited the polarization of microglia via the JNK/MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yun-yun Zhang
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Lu Wang
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hua Guo
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ting-ting Han
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yan-hua Chang
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiao-chuan Cui
- Department of General Practice, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Helm EY, Zelenka T, Cismasiu VB, Islam S, Silvane L, Zitti B, Holmes TD, Drashansky TT, Kwiatkowski AJ, Tao C, Dean J, Obermayer AN, Chen X, Keselowsky BG, Zhang W, Huo Z, Zhou L, Sheridan BS, Conejo-Garcia JR, Shaw TI, Bryceson YT, Avram D. Bcl11b sustains multipotency and restricts effector programs of intestinal-resident memory CD8 + T cells. Sci Immunol 2023; 8:eabn0484. [PMID: 37115913 DOI: 10.1126/sciimmunol.abn0484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.
Collapse
Affiliation(s)
- Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tomas Zelenka
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Valeriu B Cismasiu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Shamima Islam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Leonardo Silvane
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Beatrice Zitti
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joseph Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, S-14186 Stockholm, Sweden
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| |
Collapse
|
14
|
Wang M, Han X, Yu T, Wang M, Luo W, Zou C, Li X, Li G, Wu G, Wang Y, Liang G. OTUD1 promotes pathological cardiac remodeling and heart failure by targeting STAT3 in cardiomyocytes. Theranostics 2023; 13:2263-2280. [PMID: 37153745 PMCID: PMC10157730 DOI: 10.7150/thno.83340] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Understanding the molecular mechanisms of deleterious cardiac remodeling is important for the development of treatments for heart failure. Recent studies have highlighted a role of deubiquitinating enzymes in cardiac pathophysiology. In the present study, we screened for alteration of deubiquitinating enzymes in experimental models of cardiac remodeling, which indicated a potential role of OTU Domain-Containing Protein 1 (OTUD1). Methods: Wide-type or OTUD1 knockout mice with chronic angiotensin II infusion and transverse aortic constriction (TAC) were utilized to develop cardiac remodeling and heart failure. We also overexpressed OTUD1 in mouse heart with AAV9 vector to validate the function of OTUD1. LC-MS/MS analysis combined with Co-IP was used to identify the interacting proteins and substrates of OTUD1. Results: We found that OTUD1 is elevated in mouse heart tissues following chronic angiotensin II administration. OTUD1 knockout mice were significantly protected against angiotensin II-induced cardiac dysfunction, hypertrophy, fibrosis and inflammatory response. Similar results were obtained in the TAC model. Mechanistically, OTUD1 bounds to the SH2 domain of STAT3 and causes deubiquitination of STAT3. Cysteine at position 320 of OTUD1 exerts K63 deubiquitination to promote STAT3 phosphorylation and nuclear translocation, thereby increasing STAT3 activity to induce inflammatory responses, fibrosis, and hypertrophy in cardiomyocytes. Finally, OTUD1 overexpression by AAV9 vector increases Ang II-induced cardiac remodeling in mice and OTUD1-regulated responses can be inhibited by blocking STAT3. Conclusion: Cardiomyocyte OTUD1 promotes pathological cardiac remodeling and dysfunction by deubiquitinating STAT3. These studies have highlighted a novel role of OTUD1 in hypertensive heart failure and identified STAT3 as a target of OTUD1 in mediating these actions.
Collapse
Affiliation(s)
- Mengyang Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianxiang Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wu Luo
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiuyun Li
- Department of Ultrasonography, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- ✉ Corresponding authors: Guang Liang, Ph.D., Professor, Address: Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; E-mail: . Yi Wang, Ph.D., Professor; Address: Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; E-mail:
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- ✉ Corresponding authors: Guang Liang, Ph.D., Professor, Address: Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; E-mail: . Yi Wang, Ph.D., Professor; Address: Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; E-mail:
| |
Collapse
|
15
|
Ollech A, Simon AJ, Lev A, Stauber T, Sherman G, Solomon M, Barzilai A, Somech R, Greenberger S. A horse or a zebra? Unusual manifestations of common cutaneous infections in primary immunodeficiency pediatric patients. Front Pediatr 2023; 11:1103726. [PMID: 36950172 PMCID: PMC10026180 DOI: 10.3389/fped.2023.1103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 03/24/2023] Open
Abstract
Background Patients with primary immunodeficiency disorders (PIDs) often suffer from recurrent infections because of their inappropriate immune response to both common and less common pathogens. These patients may present with unique and severe cutaneous infectious manifestations that are not common in healthy individuals and may be more challenging to diagnose and treat. Objective To describe a cohort of patients with PIDs with atypical presentations of skin infections, who posed a diagnostic and/or therapeutic challenge. Methods This is a retrospective study of pediatric patients with PID with atypical presentations of infections, who were treated at the immunodeficiency specialty clinic and the pediatric dermatology clinic at the Sheba Medical Center between September 2012 and August 2022. Epidemiologic data, PID diagnosis, infectious etiology, presentation, course, and treatment were recorded. Results Eight children with a diagnosis of PID were included, five of whom were boys. The average age at PID diagnosis was 1.7 (±SD 3.2) years. The average age of cutaneous infection was 6.9 (±SD 5.9) years. Three patients were born to consanguineous parents. The PIDs included the following: common variable immunodeficiency, severe combined immunodeficiency, DOCK8 deficiency, ataxia telangiectasia, CARD11 deficiency, MALT1 deficiency, chronic granulomatous disease, and a combined cellular and humoral immunodeficiency syndrome of unknown etiology. The infections included the following: ulcerative-hemorrhagic varicella-zoster virus (two cases) atypical fungal and bacterial infections, resistant Norwegian scabies, giant perianal verrucae (two cases), and diffuse molluscum contagiosum. Conclusions In this case series, we present unusual manifestations of infectious skin diseases in pediatric patients with PID. In some of the cases, recognition of the infectious process prompted life-saving treatment. Increasing familiarity with these dermatological manifestations, as well as keeping a high index of suspicion, is important to enabling early diagnosis of cutaneous infections in PIDs and initiation of prompt suitable treatment.
Collapse
Affiliation(s)
- Ayelet Ollech
- Department of Dermatology, Pediatric Dermatology Service, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Correspondence: Ayelet Ollech
| | - Amos J Simon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Atar Lev
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Tali Stauber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Gilad Sherman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Infectious Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Michal Solomon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Aviv Barzilai
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Shoshana Greenberger
- Department of Dermatology, Pediatric Dermatology Service, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Jiang Z, Yin X, Wang M, Wang Y, Li F, Gao Y, Han G, Gao Z, Wang Z. β-Hydroxybutyrate alleviates pyroptosis in MPP+/MPTP-induced Parkinson’s disease models via inhibiting STAT3/NLRP3/GSDMD pathway. Int Immunopharmacol 2022; 113:109451. [DOI: 10.1016/j.intimp.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
|
17
|
Xu H, You M, Xiang X, Zhao J, Yuan P, Chu L, Xie C. Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858314. [PMID: 36338345 PMCID: PMC9633197 DOI: 10.1155/2022/3858314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2024]
Abstract
Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1β, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Xiang Xiang
- Neurosurgery Department of Chongqing University, Three Gorges Hospital, Chongqing 400010, China
| | - Jun Zhao
- Department of Neurosurgery, Dazhou Hospital of Integrated Traditional and Western Medicine, 635000, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
18
|
Zeng M, Zhang R, Yang Q, Guo L, Zhang X, Yu B, Gan J, Yang Z, Li H, Wang Y, Jiang X, Lu B. Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed Pharmacother 2022; 155:113696. [PMID: 36116247 DOI: 10.1016/j.biopha.2022.113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuyue Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
19
|
Li F, Liang H, You H, Xiao J, Xia H, Chen X, Huang M, Cheng Z, Yang C, Liu W, Zhang H, Zeng L, Wu Y, Ge F, Li Z, Zhou W, Wen Y, Zhou Z, Liu R, Jiang D, Xie N, Liang B, Liu Z, Kong Y, Chen C. Targeting HECTD3-IKKα axis inhibits inflammation-related metastasis. Signal Transduct Target Ther 2022; 7:264. [PMID: 35918322 PMCID: PMC9345961 DOI: 10.1038/s41392-022-01057-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death. The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastasis. Surgery is a common intervention for most primary solid tumors. However, surgical trauma-related systemic inflammation facilitates distant tumor metastasis by increasing the spread and adhesion of tumor cells to vascular endothelial cells (ECs). Currently, there are no effective interventions to prevent distant metastasis. Here, we show that HECTD3 deficiency in ECs significantly reduces tumor metastasis in multiple mouse models. HECTD3 depletion downregulates expression of adhesion molecules, such as VCAM-1, ICAM-1 and E-selectin, in mouse primary ECs and HUVECs stimulated by inflammatory factors and inhibits adhesion of tumor cells to ECs both in vitro and in vivo. We demonstrate that HECTD3 promotes stabilization, nuclear localization and kinase activity of IKKα by ubiquitinating IKKα with K27- and K63-linked polyubiquitin chains at K296, increasing phosphorylation of histone H3 to promote NF-κB target gene transcription. Knockout of HECTD3 in endothelium significantly inhibits tumor cells lung colonization, while conditional knockin promotes that. IKKα kinase inhibitors prevented LPS-induced pulmonary metastasis. These findings reveal the promotional role of the HECTD3-IKKα axis in tumor hematogenous metastasis and provide a potential strategy for tumor metastasis prevention.
Collapse
Affiliation(s)
- Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Department of Pathology, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Ji Xiao
- College of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Maobo Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yingying Wu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Fei Ge
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen Li
- Department of the Third Breast Surgery, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Wenhui Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Zhenzhen Liu
- Department of Breast disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Yanjie Kong
- Biobank, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
20
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
21
|
Ding W, Cai C, Zhu X, Wang J, Jiang Q. Parthenolide ameliorates neurological deficits and neuroinflammation in mice with traumatic brain injury by suppressing STAT3/NF-κB and inflammasome activation. Int Immunopharmacol 2022; 108:108913. [PMID: 35729839 DOI: 10.1016/j.intimp.2022.108913] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) triggers a set of complex inflammation that results in secondary injury. Parthenolide (PTN) is a sesquiterpene lactone extracted from the herb Tanacetum parthenium (Feverfew) and has potent anti-inflammatory, anti-apoptosis and anti-oxidative stress effects in the central nervous system (CNS)-related diseases. This study focuses on investigating the potential neuroprotective effect of PTN on TBI and the related mechanism. METHODS Bv2 microglia, primary microglia were stimulated by LPS, and HT22 neuron cells were stimulated by OGD/R, and they were treated with different doses of PTN. The expression profiles of pro-inflammatory cytokines, proteins, oxidative stress mediators, STAT3/NF-κB pathway, inflammasomes were detected. Forty male/female C57BL/6 mice were randomly divided into the sham, PTN, TBI, and TBI + PTN groups (10 mice per group). A mouse TBI model was set up with a controlled cortical impact (CCI) device. The modified nerve severity score (mNSS) was implemented to check short-term neurological impairment in mice, and the mice's memory and learning were assessed by the Morris water maze test. The water content in the mice's brains was measured by the dry-wet method. Hematoxylin-eosin (H&E) staining, Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay were applied for neuronal apoptosis. RESULTS PTN dramatically alleviated LPS-induced inflammation in microglia, and OGD-mediated neuronal apoptosis and oxidative stress. In addition, PTN repressed LPS- or OGD-modulated STAT3/NF-κB and NLR family pyrin domain containing 1 (NLRP1), NLRP3, NLR family CARD domain containing 4 (NLRC4) inflammasomes activation. Administering the STAT3 inhibitor Stattic or NF-κB inhibitor Bay 11-7082 attenuated PTN-mediated effects. In vivo, PTN treatment relieved neural function deficits, brain edema and neuron apoptosis and improved the memory and learning function of TBI mice. Additionally, PTN impeded microglial activation and reduced the production of pro-inflammatory cytokines in brain lesions of TBI mice. Furthermore, PTN hindered STAT3/NF-κB and inflammasome activation. CONCLUSION PTN can curb microglial activation and neuron apoptosis by dampening the STAT3/NF-κB pathway, thus exerting neuroprotective effects in TBI mice.
Collapse
Affiliation(s)
- Wei Ding
- Department of Neurosurgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430000, China; Department of Neurosurgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chen Cai
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomin Zhu
- Department of Neurology, Guangxi University of Chinese Medicine, Nanning 530200 Guangxi, China
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
22
|
Le Menn G, Jabłońska A, Chen Z. The effects of post-translational modifications on Th17/Treg cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119223. [PMID: 35120998 DOI: 10.1016/j.bbamcr.2022.119223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 01/07/2023]
Abstract
Regulatory T (Treg) cells and Th17 cells are subsets of CD4+ T cells which play an essential role in immune homeostasis and infection. Dysregulation of the Th17/Treg cell balance was shown to be implicated in the development and progression of several disorders such as autoimmune disease, inflammatory disease, and cancer. Multiple factors, including T cell receptor (TCR) signals, cytokines, metabolic and epigenetic regulators can influence the differentiation of Th17 and Treg cells and affect their balance. Accumulating evidence indicates that the activity of key molecules such as forkhead box P3 (Foxp3), the retinoic acid-related orphan receptor gamma t (RORγt), and signal transducer and activator of transcription (STAT)s are modulated by the number of post-translational modifications (PTMs) such as phosphorylation, methylation, nitrosylation, acetylation, glycosylation, lipidation, ubiquitination, and SUMOylation. PTMs might affect the protein folding efficiency and protein conformational stability, and consequently determine protein structure, localization, and function. Here, we review the recent progress in our understanding of how PTMs modify the key molecules involved in the Th17/Treg cell differentiation, regulate the Th17/Treg balance, and initiate autoimmune diseases caused by dysregulation of the Th17/Treg balance. A better understanding of Th17/Treg regulation may help to develop novel potential therapeutics to treat immune-related diseases.
Collapse
Affiliation(s)
- Gwenaëlle Le Menn
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| |
Collapse
|
23
|
Nath M, Romaine SP, Koekemoer A, Hamby S, Webb TR, Nelson CP, Castellanos‐Uribe M, Papakonstantinou M, Anker SD, Lang CC, Metra M, Zannad F, Filippatos G, van Veldhuisen DJ, Cleland JG, Ng LL, May ST, Marelli‐Berg F, Voors AA, Timmons JA, Samani NJ. Whole blood transcriptomic profiling identifies molecular pathways related to cardiovascular mortality in heart failure. Eur J Heart Fail 2022; 24:1009-1019. [PMID: 35570197 PMCID: PMC9546237 DOI: 10.1002/ejhf.2540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022] Open
Abstract
AIMS Chronic heart failure (CHF) is a systemic syndrome with a poor prognosis and a need for novel therapies. We investigated whether whole blood transcriptomic profiling can provide new mechanistic insights into cardiovascular (CV) mortality in CHF. METHODS AND RESULTS Transcriptome profiles were generated at baseline from 944 CHF patients from the BIOSTAT-CHF study, of whom 626 survived and 318 died from a CV cause during a follow-up of 21 months. Multivariable analysis, including adjustment for cell count, identified 1153 genes (6.5%) that were differentially expressed between those that survived or died and strongly related to a validated clinical risk score for adverse prognosis. The differentially expressed genes mainly belonged to five non-redundant pathways: adaptive immune response, proteasome-mediated ubiquitin-dependent protein catabolic process, T-cell co-stimulation, positive regulation of T-cell proliferation, and erythrocyte development. These five pathways were selectively related (RV coefficients >0.20) with seven circulating protein biomarkers of CV mortality (fibroblast growth factor 23, soluble ST2, adrenomedullin, hepcidin, pentraxin-3, WAP 4-disulfide core domain 2, and interleukin-6) revealing an intricate relationship between immune and iron homeostasis. The pattern of survival-associated gene expression matched with 29 perturbagen-induced transcriptome signatures in the iLINCS drug-repurposing database, identifying drugs, approved for other clinical indications, that were able to reverse in vitro the molecular changes associated with adverse prognosis in CHF. CONCLUSION Systematic modelling of the whole blood protein-coding transcriptome defined molecular pathways that provide a link between clinical risk factors and adverse CV prognosis in CHF, identifying both established and new potential therapeutic targets.
Collapse
Affiliation(s)
- Mintu Nath
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
- Institute of Applied Health SciencesUniversity of AberdeenAberdeenUK
| | - Simon P.R. Romaine
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Andrea Koekemoer
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Stephen Hamby
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Thomas R. Webb
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Christopher P. Nelson
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | | | - Manolo Papakonstantinou
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Stefan D. Anker
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Faiez Zannad
- Clinical Investigation Center 1433, Centre Hospitalier Regional et Universitaire de NancyVandoeuvre les NancyFrance
| | | | - Dirk J. van Veldhuisen
- Department of Cardiology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - John G. Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK and Robertson Centre for Biostatistics and Clinical TrialsUniversity of GlasgowGlasgowUK
| | - Leong L. Ng
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Sean T. May
- School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughUK
| | | | - Adriaan A. Voors
- Department of Cardiology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - James A. Timmons
- Barts & The London School of MedicineQueen Mary University of LondonLondonUK
- Augur Precision Medicine LtdStirling University Innovation ParkUK
| | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| |
Collapse
|
24
|
HECTD3 promotes gastric cancer progression by mediating the polyubiquitination of c-MYC. Cell Death Dis 2022; 8:185. [PMID: 35397617 PMCID: PMC8994759 DOI: 10.1038/s41420-022-01001-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022]
Abstract
The E3 ubiquitin ligase HECTD3 is homologous with the E6 related protein carboxyl terminus, which plays a vital role in biological modification, including immunoreactivity, drug resistance and apoptosis. Current research indicates that HECTD3 promotes the malignant proliferation of multiple tumors and increases drug tolerance. Our study primarily explored the important function and effects of HECTD3 in gastric cancer. Here, we discovered that HECTD3 is abnormally activated in gastric cancer, and the clinical prognosis database suggested that HECTD3 was strongly expressed in gastric cancer. Depletion of HECTD3 restrained the proliferative and clone abilities of cells and induced the apoptosis of gastric cancer cells. Mechanistically, our findings revealed that interaction between HECTD3 and c-MYC, and that the DOC domain of HECTD3 interacted with the CP and bHLHZ domains of c-MYC. Furthermore, we discovered that HECTD3 mediates K29-linked polyubiquitination of c-MYC. Then, our research indicated that cysteine mutation at amino acid 823 (ubiquitinase active site) of HECTD3 reduces the polyubiquitination of c-MYC. Our experimental results reveal that HECTD3 facilitates the malignant proliferation of gastric cancer by mediating K29 site-linked polyubiquitination of c-MYC. HECTD3 might become a curative marker.
Collapse
|
25
|
Jia JJ, Liao XY, Liang YY, Chen RL, Gao FG. K48- and K27-mutant ubiquitin regulates adaptive immune response by affecting cross-presentation in bone marrow precursor cells. J Leukoc Biol 2022; 112:157-172. [PMID: 35352390 DOI: 10.1002/jlb.4ma0222-419rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
K48-linked ubiquitination determines antigen degradation and plays vital roles in the process of cross-presentation of bone marrow precursor cell (BMPC)-derived dendritic cells (DCs). Although previous studies revealed that K48 and K27-linked ubiquitination regulates innate immunity, the exact roles of K48 and K27-linked ubiquitination in cross-presentation and BMPC-based adaptive immunity are still uncertain. In this study, we investigated the effects of K48- and K27-mutant ubiquitin (Ub) on BMPC-based adaptive immune response by observing the effects of MG132, Ub deficiency, and K48/K27-mutant Ub on cross-presentation, T cell proliferation, IFN-γ secretion, BMPC-based CTL priming, and thereby the efficiency of cytolytic capacity of BMPC-activate T cells. We demonstrated that MG132, Ub deficiency, and K48-mutant Ub impair cross-presentation, T cell proliferation, IFN-γ secretion, BMPC-based CTL priming, and the cytolytic capacity of BMPC-activated T cells. Moreover, although K27-only Ub decreases cross-presentation, the replenishment of K27-mutant Ub restores Ub deficiency impaireds the abilities of T cell proliferation, IFN-γ secretion, CTL priming, and the cytolytic capacity of BMPC-activated T cells. Thus, these data suggest that K48- and K27-linked ubiquitination contributes to BMPC-mediated adaptive immune response by affecting BMPC cross-presentation and the cytolytic capacity by up-regulating both perforin and granzyme B in BMPC-activated T cells. K48- and K27-mutant Ub might have potential clinical therapeutic function in adaptive immune response-associated diseases.
Collapse
Affiliation(s)
- Jun Jun Jia
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiao Yan Liao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yi Yun Liang
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rui Ling Chen
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Feng Guang Gao
- Department of Basic Medicine Science, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
26
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
27
|
Mohd Noor AA, Azlan M, Mohd Redzwan N. Orchestrated Cytokines Mediated by Biologics in Psoriasis and Its Mechanisms of Action. Biomedicines 2022; 10:biomedicines10020498. [PMID: 35203707 PMCID: PMC8962336 DOI: 10.3390/biomedicines10020498] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Psoriasis is an autoimmune disease mediated by disturbed T cells and other immune cells, and is defined by deep-red, well-demarcated skin lesions. Due to its varied etiologies and indefinite standard pathogenesis, it is challenging to consider the right treatment exclusively for each psoriasis patient; thus, researchers yearn to seek even more precise treatments other than topical treatment and systemic therapy. Using biologics to target specific immune components, such as upregulated cytokines secreted by activated immune cells, is the most advanced therapy for psoriasis to date. By inhibiting the appropriate pro-inflammatory cytokines, cellular signaling can be altered and, thus, can inhibit further downstream inflammatory pathways. Herein, the roles of cytokines with their mechanisms of action in progressing psoriasis and how the usage of biologics alleviates cellular inflammation are discussed. In addition, other potential pro-inflammatory cytokines, with their mechanism of action, are presented herein. The authors hope that this gathered information may benefit future research in expanding the discovery of targeted psoriasis therapy.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Maryam Azlan
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Norhanani Mohd Redzwan
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-9767-6130
| |
Collapse
|
28
|
Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol 2022; 5:114. [PMID: 35136173 PMCID: PMC8826416 DOI: 10.1038/s42003-022-03060-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Ubiquitylation is one of the most common post-translational modifications (PTMs) of proteins that frequently targets substrates for proteasomal degradation. However it can also result in non-proteolytic events which play important functions in cellular processes such as intracellular signaling, membrane trafficking, DNA repair and cell cycle. Emerging evidence demonstrates that dysfunction of non-proteolytic ubiquitylation is associated with the development of multiple human diseases. In this review, we summarize the current knowledge and the latest concepts on how non-proteolytic ubiquitylation pathways are involved in cellular signaling and in disease-mediating processes. Our review, may advance our understanding of the non-degradative ubiquitylation process. Evanthia Pangou and co-authors review recent insights into the important roles of non-proteolytic ubiquitylation in cellular signaling as well as in physiology and disease.
Collapse
|
29
|
Qian Y, Arellano G, Ifergan I, Lin J, Snowden C, Kim T, Thomas JJ, Law C, Guan T, Balabanov RD, Kaech SM, Miller SD, Choi J. ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Rep 2021; 36:109602. [PMID: 34433042 PMCID: PMC8431781 DOI: 10.1016/j.celrep.2021.109602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Inappropriate CD4+ T helper (Th) differentiation can compromise host immunity or promote autoimmune disease. To identify disease-relevant regulators of T cell fate, we examined mutations that modify risk for multiple sclerosis (MS), a canonical organ-specific autoimmune disease. This analysis identified a role for Zinc finger E-box-binding homeobox (ZEB1). Deletion of ZEB1 protects against experimental autoimmune encephalitis (EAE), a mouse model of multiple sclerosis (MS). Mechanistically, ZEB1 in CD4+ T cells is required for pathogenic Th1 and Th17 differentiation. Genomic analyses of paired human and mouse expression data elucidated an unexpected role for ZEB1 in JAK-STAT signaling. ZEB1 inhibits miR-101-3p that represses JAK2 expression, STAT3/STAT4 phosphorylation, and subsequent expression of interleukin-17 (IL-17) and interferon gamma (IFN-γ). Underscoring its clinical relevance, ZEB1 and JAK2 downregulation decreases pathogenic cytokines expression in T cells from MS patients. Moreover, a Food and Drug Administration (FDA)-approved JAK2 inhibitor is effective in EAE. Collectively, these findings identify a conserved, potentially targetable mechanism regulating disease-relevant inflammation. Qian et al. show that ZEB1 is required for the development of the autoimmune disease multiple sclerosis (MS). ZEB1, a transcription factor, promotes JAK-STAT signaling during Th1/Th17 differentiation by repressing expression of a JAK2-targeting miRNA. ZEB1 and JAK2 are potentially clinically relevant therapeutic targets for MS.
Collapse
Affiliation(s)
- Yuan Qian
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean Lin
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Caroline Snowden
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Taehyeung Kim
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jane Joy Thomas
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Roumen D Balabanov
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Xu D, Kong T, Shao Z, Liu M, Zhang R, Zhang S, Kong Q, Chen J, Cheng B, Wang C. Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166230. [PMID: 34358627 DOI: 10.1016/j.bbadis.2021.166230] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Abstract
Orexin-A (OXA) is a neuropeptide with neuroprotective effect by reducing cerebral ischemia/reperfusion injury (CIRI). Inflammation and apoptosis mediated by astrocyte activation are the key pathological mechanisms for CIRI. We thus attempted to confirm neuroprotective effects of OXA on astrocytic inflammation and apoptosis in CIRI and clarify the relative mechanisms. A middle cerebral artery occlusion and reperfusion (MCAO/R) rat model and U251 glioma cells model subjected to oxygen glucose deprivation and reperfusion (OGD/R) were established, with or without OXA treatment. Neurological deficit score was determined, and cerebral infarct volume was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Western Blot was used to detect the expressions of NF-κB p65, p-p65, p-ERK, p-p38, GFAP, OX1R, IL-1β, TNF-α, IL-6, iNOS, Bcl-2, Bax, CytC, cleaved caspase-9 and cleaved caspase-3 in vivo and in vitro. Pro-inflammatory cytokines in cell supernatant IL-1β, TNF-α and IL-6 were determined by ELISA. Hoechst 33342 staining was used to detect the apoptosis of astrocyte. Immunofluorescent staining was performed to assess the nuclear translocation of p65 and the expression of GFAP. The results showed that OXA significantly improved neurological deficit score and decreased the volume of infarct area in brain. OXA decreased inflammatory mediators, inhibited astrocyte activation and nuclear translocation of NF-κB and phosphorylation of NF-κB, MAPK/ERK and MAPK/p38. Besides, OXA suppressed apoptosis via upregulating the ratio of Bcl-2/Bax and downregulating cytochrome C, cleaved-caspase-9 and cleaved caspase-3. Overall, it was concluded that OXA exerts neuroprotective effect during CIRI through attenuating astrocytes apoptosis, astrocytes activation and pro-inflammatory cytokines production, by Inhibiting OX1R-mediated NF-κB, MAPK/ERK and MAPK/p38 signaling pathways. The progress in our study is helpful to elucidate the molecular mechanisms of OXA neuroprotection, which could lead to the development of new treatment strategies for ischemic stroke.
Collapse
Affiliation(s)
- Dandan Xu
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | | | - Ziqi Shao
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Minghui Liu
- Basic Medical Sciences, Jining Medical University, Jining 272067, China
| | - Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Shengnan Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China.
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China.
| |
Collapse
|
31
|
Zhang X, Zhang X, Qiu C, Shen H, Zhang H, He Z, Song Z, Zhou W. The imbalance of Th17/Treg via STAT3 activation modulates cognitive impairment in P. gingivalis LPS-induced periodontitis mice. J Leukoc Biol 2021; 110:511-524. [PMID: 34342041 DOI: 10.1002/jlb.3ma0521-742rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is one of the most common oral diseases worldwide, and it is associated with various systemic diseases, including cognitive diseases. STAT3 regulates the inflammatory cascade and influences adaptive immunity by modulating Th17/Treg cell differentiation. In this study, we aimed to explore the effect of adaptive immunity inside and outside the brain on the association between periodontitis and cognitive impairment and understand the role of the STAT3 signaling pathway. We established Porphyromonas gingivalis LPS-induced periodontitis mice models by injecting P. gingivalis LPS into the gingival sulcus of mice. Behavioral tests showed that learning and memory abilities were impaired. The flow cytometry data showed an imbalance in the Th17/Treg ratio in the blood and brain samples of the mice. The expression of Th17-related cytokines (IL-1β, IL-17A, IL-21, and IL-22) increased, whereas that of Treg-related cytokines (IL-2 and IL-10) decreased in both the blood and the brain. The level of LPS increased and the STAT3 signaling pathway was activated during this process. These effects were reversed by C188-9, a STAT3 inhibitor. In conclusion, P. gingivalis LPS-induced periodontitis may promote the occurrence and progression of cognitive impairment by modulating the Th17/Treg balance inside and outside the brain. The STAT3 signaling pathway may have immunoregulatory effects on the mouth-to-brain axis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xuan Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huanyu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
32
|
Hromadová D, Elewaut D, Inman RD, Strobl B, Gracey E. From Science to Success? Targeting Tyrosine Kinase 2 in Spondyloarthritis and Related Chronic Inflammatory Diseases. Front Genet 2021; 12:685280. [PMID: 34290741 PMCID: PMC8287328 DOI: 10.3389/fgene.2021.685280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Spondyloarthritis (SpA) is a family of inflammatory arthritic diseases, which includes the prototypes of psoriatic arthritis and ankylosing spondylitis. SpA is commonly associated with systemic inflammatory diseases, such as psoriasis and inflammatory bowel disease. Immunological studies, murine models and the genetics of SpA all indicate a pathogenic role for the IL-23/IL-17 axis. Therapeutics targeting the IL-23/IL-17 pathway are successful at providing symptomatic relief, but may not provide complete protection against progression of arthritis. Thus there is still tremendous interest in the discovery of novel therapeutic targets for SpA. Tyrosine kinase 2 (TYK2) is a member of the Janus kinases, which mediate intracellular signaling of cytokines via signal transducer and activator of transcription (STAT) activation. TYK2 plays a crucial role in mediating IL-23 receptor signaling and STAT3 activation. A plethora of natural mutations in and around TYK2 have provided a wealth of data to associate this kinase with autoimmune/autoinflammatory diseases in humans. Induced and natural mutations in murine Tyk2 largely support human data; however, key inter-species differences exist, which means extrapolation of data from murine models to humans needs to be done with caution. Despite these reservations, novel selective TYK2 inhibitors are now proving successful in advanced clinical trials of inflammatory diseases. In this review, we will discuss TYK2 from basic biology to therapeutic targeting, with an emphasis on studies in SpA. Seminal studies uncovering the basic science of TYK2 have provided sound foundations for targeting it in SpA and related inflammatory diseases. TYK2 inhibitors may well be the next blockbuster therapeutic for SpA.
Collapse
Affiliation(s)
- Dominika Hromadová
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Robert D. Inman
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
33
|
Alhazzani K, Ahmad SF, Al-Harbi NO, Attia SM, Bakheet SA, Sarawi W, Alqarni SA, Algahtani M, Nadeem A. Pharmacological Inhibition of STAT3 by Stattic Ameliorates Clinical Symptoms and Reduces Autoinflammation in Myeloid, Lymphoid, and Neuronal Tissue Compartments in Relapsing-Remitting Model of Experimental Autoimmune Encephalomyelitis in SJL/J Mice. Pharmaceutics 2021; 13:pharmaceutics13070925. [PMID: 34206429 PMCID: PMC8308768 DOI: 10.3390/pharmaceutics13070925] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory disease that leads to demyelination and neuronal loss in the central nervous system. Immune cells of lymphoid and myeloid origin play a significant role in the initiation and amplification of neuronal inflammation in MS. STAT3 signaling plays a pivotal role in both myeloid and lymphoid immune cells, such as neutrophils and CD4+ T cells, through regulation of their inflammatory potential. Dysregulation in STAT3 signaling in myeloid and lymphoid cell compartments has been reported in MS. In this report, we attempted to investigate the effect of a small molecular inhibitor of STAT3, i.e., Stattic, in a relapsing–remitting (RR) model of experimental autoimmune encephalomyelitis (EAE). The effect of Stattic was investigated for clinical features, oxidative stress parameters, and Th17-related signaling in both the periphery and brain of SJL/J mice. Our data report that p-STAT3 expression is elevated in granulocytes, CD4+ T cells, and brain tissue in myelin proteolipid protein (PLP)-immunized SJL/J mice, which is associated with the presence of clinical symptoms and upregulation of inflammatory markers in these cells/tissues. Treatment with Stattic leads to the amelioration of disease symptoms and attenuation of inflammatory markers in neutrophils (iNOS/nitrotyrosine/IL-1β), CD4+ T cells (IL-17A/IL-23R), and brain tissue (IL-17A/iNOS/IL-1β/MPO activity/lipid peroxides) in mice with EAE. These data suggest that the blockade of STAT3 signaling in cells of lymphoid and myeloid origin may cause the attenuation of systemic and neuronal inflammation, which could be responsible for the amelioration of disease symptoms in an RR model of EAE. Therefore, pharmacological inhibition of STAT3 in RRMS could be a potential therapeutic strategy.
Collapse
|
34
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
35
|
Costunolide ameliorates colitis via specific inhibition of HIF1α/glycolysis-mediated Th17 differentiation. Int Immunopharmacol 2021; 97:107688. [PMID: 33932695 DOI: 10.1016/j.intimp.2021.107688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of colon. Costunolide, the main active constituent of Radix Aucklandiae, has been demonstrated to possess anti-inflammatory and immunomodulation activities. The aim of this study is to investigate the effect of costunolide on UC induced by dextran sulfate sodium (DSS). Results showed that oral administration of costunolide significantly improved the disease active index (DAI), rescued the reduction of colon length, downregulated myeloperoxidase (MPO) activity, alleviated the pathological changes, and decreased the levels of proinflammatory cytokines in colons of colitis mice. Costunolide also rebalanced Th17/Treg cells in colons, mesenteric lymph nodes and spleen, as indicated by decreased percentages of Th17 cells and reduced mRNA expressions of Rorc, Il17a. Interestingly, the in vitro experiment showed that no significant change in dendritic cell maturation, mRNA expressions of Ifng, Il6 and Treg cell differentiation, but a significant decreased Th17 cell differentiation was observed upon costunolide treatment. Deeper mechanistic studies showed that costunolide triggered the prolyl hydroxylase 2 (PHD2)-triggered proline hydroxylation-ubiquitination-proteasome degradation of HIF-1α, which in turn inactivated glycolytic process in Th17 rather than Treg cells. These findings clearly suggest that inhibition of HIF-1α-mediated glycolysis by costunolide is specifically responsible for Th17 cell differentiation and subsequent alleviation of UC and sets the stage for a new perspective on immune-metabolism therapy for colitis.
Collapse
|
36
|
Zhou Q, Zhang J. K27-linked noncanonic ubiquitination in immune regulation. J Leukoc Biol 2021; 111:223-235. [PMID: 33857334 DOI: 10.1002/jlb.4ru0620-397rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is a common form of posttranslational modification that has been implicated in regulating considerable immune signaling pathways. The functions of canonic K48- and K63-linked ubiquitination have been well studied. However, the roles of noncanonic ubiquitination remain largely unexplored and require further investigations. There is increasing evidence suggesting that K27-linked noncanonic ubiquitination turns out to be indispensable to both innate immune signaling and T cell signaling. In this review, we provide an overview of the latest findings related to K27-linked ubiquitination, and highlight the crucial roles of K27-linked ubiquitination in regulating antimicrobial response, cytokine signaling and response, as well as T cell activation and differentiation. We also propose interesting areas for better understanding how K27-linked ubiquitination regulates immunity.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
Zhao Y, Liu Z, Qin L, Wang T, Bai O. Insights into the mechanisms of Th17 differentiation and the Yin-Yang of Th17 cells in human diseases. Mol Immunol 2021; 134:109-117. [PMID: 33756352 DOI: 10.1016/j.molimm.2021.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Th17 cells are a lineage of CD4+ T helper cells with Th17-specific transcription factors RORγt and RoRα. Since its discovery in 2005, research on Th17 has been in rapid progress, and increasing cytokines or transcription factors have been uncovered in the activation and differentiation of Th17 cells. Furthermore, growing evidence proves there are two different subsets of Th17 cells, namely non-pathogenic Th17 (non-pTh17) and pathogenic Th17 (pTh17), both of which play important roles in adaptive immunity, especially in host defenses, autoimmune diseases, and cancer. In this review, we summarize and discuss the mechanisms of Th17 cells differentiation, and their roles in immunity and diseases.
Collapse
Affiliation(s)
- Yangzhi Zhao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| | - Zhongshan Liu
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Lei Qin
- Institute for Immunology, Tsinghua University, Beijing, China.
| | - Tiejun Wang
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
38
|
Liu F, Yang W, Hu M, Zhang Y, Sun B, Yang H, Brosius J, Deng C. Constitutive activity of GPR26 regulated by ubiquitin-dependent degradation and its antitumor role. FEBS J 2021; 288:4655-4682. [PMID: 33577134 DOI: 10.1111/febs.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 02/05/2023]
Abstract
G protein-coupled receptors (GPCRs) play important roles in many physiological functions and numerous diseases. In addition to the classic ligand-stimulated receptor activity, an increasing number of studies have established that many GPCRs function constitutively in a receptor dose-dependent manner. Previous observations showed that following gene transfection, little or no protein was detectable for certain GPCRs (designated apparent state A), such as GPR26, GPR39, GPR78, GPR133, GPR139, BRS3, and LGR5, which showed strong constitutive activities. When we lysed cells in the immediate presence of western blot loading buffer, a significant increase of protein levels was detected (actual state B), which was much closer to the true expression levels under physiological conditions. GPR26 was chosen for further functional experiments as the actual state B. We identified an important ubiquitination site, K286, as well as the ubiquitin ligase E3 homologous to the E6-associated protein carboxyl terminus domain containing 3 interacting with GPR26. The pronounced differences in the protein expression and constitutive activity of GPR26 were a consequence of the ubiquitin-mediated rapid degradation mechanism. Furthermore, we identified in vitro and in vivo antitumor activity associated with high expression levels and constitutive activity of GPR26 in liver cancer cells. Hence, GPR26 could act as an antitumor gene for hepatocellular carcinoma. This study also represents the actual state B of a batch of GPCRs that actually play potentially important roles in physiological functions by their constitutive activity, which is controlled by rapid ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Fang Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Wei Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Minghui Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Yong Zhang
- West China - Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China
| | - Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, China
| | - Juergen Brosius
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
39
|
Zhou W, Zhong Z, Lin D, Liu Z, Zhang Q, Xia H, Peng S, Liu A, Lu Z, Wang Y, Ye S, Ye Q. Hypothermic oxygenated perfusion inhibits HECTD3-mediated TRAF3 polyubiquitination to alleviate DCD liver ischemia-reperfusion injury. Cell Death Dis 2021; 12:211. [PMID: 33627626 PMCID: PMC7904838 DOI: 10.1038/s41419-021-03493-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable and serious clinical problem in donations after heart death (DCD) liver transplantation. Excessive sterile inflammation plays a fateful role in liver IRI. Hypothermic oxygenated perfusion (HOPE), as an emerging organ preservation technology, has a better preservation effect than cold storage (CS) for reducing liver IRI, in which regulating inflammation is one of the main mechanisms. HECTD3, a new E3 ubiquitin ligase, and TRAF3 have an essential role in inflammation. However, little is known about HECTD3 and TRAF3 in HOPE-regulated liver IRI. Here, we aimed to investigate the effects of HOPE on liver IRI in a DCD rat model and explore the roles of HECTD3 and TRAF3 in its pathogenesis. We found that HOPE significantly improved liver damage, including hepatocyte and liver sinusoidal endothelial cell injury, and reduced DCD liver inflammation. Mechanistically, both the DOC and HECT domains of HECTD3 directly interacted with TRAF3, and the catalytic Cys (C832) in the HECT domain promoted the K63-linked polyubiquitination of TRAF3 at Lys138. Further, the ubiquitinated TRAF3 at Lys138 increased oxidative stress and activated the NF-κB inflammation pathway to induce liver IRI in BRL-3A cells under hypoxia/reoxygenation conditions. Finally, we confirmed that the expression of HECTD3 and TRAF3 was obviously increased in human DCD liver transplantation specimens. Overall, these findings demonstrated that HOPE can protect against DCD liver transplantation-induced-liver IRI by reducing inflammation via HECTD3-mediated TRAF3 K63-linked polyubiquitination. Therefore, HOPE regulating the HECTD3/TRAF3 pathway is a novel target for improving IRI in DCD liver transplantation.
Collapse
Affiliation(s)
- Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Danni Lin
- The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Qiuyan Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Haoyang Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Sheng Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Anxiong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China
| | - Shaojun Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China.
| |
Collapse
|
40
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
41
|
Tracz M, Bialek W. Beyond K48 and K63: non-canonical protein ubiquitination. Cell Mol Biol Lett 2021; 26:1. [PMID: 33402098 PMCID: PMC7786512 DOI: 10.1186/s11658-020-00245-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022] Open
Abstract
Protein ubiquitination has become one of the most extensively studied post-translational modifications. Originally discovered as a critical element in highly regulated proteolysis, ubiquitination is now regarded as essential for many other cellular processes. This results from the unique features of ubiquitin (Ub) and its ability to form various homo- and heterotypic linkage types involving one of the seven different lysine residues or the free amino group located at its N-terminus. While K48- and K63-linked chains are broadly covered in the literature, the other types of chains assembled through K6, K11, K27, K29, and K33 residues deserve equal attention in the light of the latest discoveries. Here, we provide a concise summary of recent advances in the field of these poorly understood Ub linkages and their possible roles in vivo.
Collapse
Affiliation(s)
- Michal Tracz
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Wojciech Bialek
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
42
|
Xiao S, Wang C, Yang Q, Xu H, Lu J, Xu K. Rea regulates microglial polarization and attenuates neuronal apoptosis via inhibition of the NF-κB and MAPK signalings for spinal cord injury repair. J Cell Mol Med 2020; 25:1371-1382. [PMID: 33369103 PMCID: PMC7875927 DOI: 10.1111/jcmm.16220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation and neuronal apoptosis aggravate the secondary damage after spinal cord injury (SCI). Rehmannioside A (Rea) is a bioactive herbal extract isolated from Rehmanniae radix with low toxicity and neuroprotection effects. Rea treatment inhibited the release of pro-inflammatory mediators from microglial cells, and promoted M2 polarization in vitro, which in turn protected the co-cultured neurons from apoptosis via suppression of the NF-κB and MAPK signalling pathways. Furthermore, daily intraperitoneal injections of 80 mg/kg Rea into a rat model of SCI significantly improved the behavioural and histological indices, promoted M2 microglial polarization, alleviated neuronal apoptosis, and increased motor function recovery. Therefore, Rea is a promising therapeutic option for SCI and should be clinically explored.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenggui Wang
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Quanming Yang
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haibin Xu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Kan Xu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Lin S, Liu Q, Wen J, Bai K, Guo Y, Wang J. Mir-124 Attenuates STAT3-Mediated TH17 Differentiation in Colitis-Driven Colon Cancer. Front Oncol 2020; 10:570128. [PMID: 33392070 PMCID: PMC7773897 DOI: 10.3389/fonc.2020.570128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Inflammation often induces regeneration to repair the tissue damage. However, chronic inflammation can transform temporary hyperplasia into a fertile ground for tumorigenesis. Here, we demonstrate that the miR-124 acts as a safeguard to inhibit the pro-inflammatory production and reparative regeneration. METHODS The expression levels of miR-124 and IL-17, IFN-γ were detected by qRT-PCR. TH17 or TH1 cells were detected by flow cytometer, respectively. The binding of STAT3 to the promoter region of IL-17 gene was analyzed by Chip assay. miR-124 binding to the 3'UTR of STAT3 gene was detected by reported plasmid construction and luciferase assay. Furthermore, DSS-induced colitis mice model and T cell transfer model were used to confirm the function of miR-124 in vivo. The related gene expression was analyzed by ELISA and western blot experiments. RESULTS The results indicated that miR-124 decrease promotes colon tumorigenesis after Citrobacter rodentium infection and AOM/DSS induced colon cancer murine model. In molecular mechanism, miR-124 targets STAT3 to inhibit TH17 cell polarization and keep TH17 polarization in colonic microenvironment. CONCLUSIONS Our study strengthened the important role of miR-124 in the regulation of adaptive immune responses and blocking the development of colitis-related cancer.
Collapse
Affiliation(s)
- Shiyong Lin
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianwen Liu
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Wen
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangzhou, China
| | - Kunhao Bai
- Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yandong Guo
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangzhou, China
| | - Jing Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangzhou, China
| |
Collapse
|
44
|
Cytokines and Transgenic Matrix in Autoimmune Diseases: Similarities and Differences. Biomedicines 2020; 8:biomedicines8120559. [PMID: 33271810 PMCID: PMC7761121 DOI: 10.3390/biomedicines8120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases are increasingly recognized as disease entities in which dysregulated cytokines contribute to tissue-specific inflammation. In organ-specific and multiorgan autoimmune diseases, the cytokine profiles show some similarities. Despite these similarities, the cytokines have different roles in the pathogenesis of different diseases. Altered levels or action of cytokines can result from changes in cell signaling. This article describes alterations in the JAK-STAT, TGF-β and NF-κB signaling pathways, which are involved in the pathogenesis of multiple sclerosis and systemic lupus erythematosus. There is a special focus on T cells in preclinical models and in patients afflicted with these chronic inflammatory diseases.
Collapse
|
45
|
Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, Qiao J, Fang H. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front Immunol 2020; 11:594735. [PMID: 33281823 PMCID: PMC7705238 DOI: 10.3389/fimmu.2020.594735] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-17 (IL-17) is an essential proinflammatory cytokine, which is mainly secreted by the CD4+ helper T cells (Th17 cells) and subsets of innate lymphoid cells. IL-17A is associated with the pathogenesis of inflammatory diseases, including psoriasis, atopic dermatitis, hidradenitis suppurativa, alopecia areata, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Interleukin-23 (IL-23) plays a pivotal role in stimulating the production of IL-17 by activating the Th17 cells. The IL-23/IL-17 axis is an important pathway for targeted therapy for inflammatory diseases. Emerging evidence from clinical trials has shown that monoclonal antibodies against IL-23, IL-17, and tumor necrosis factor are effective in the treatment of patients with psoriasis, atopic dermatitis, hidradenitis suppurativa, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Here, we summarize the latest knowledge about the biology, signaling, and pathophysiological functions of the IL-23/IL-17 axis in inflammatory skin diseases. The currently available biologics targeting the axis is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Li T, Wu B, Yang T, Zhang L, Jin K. The outstanding antitumor capacity of CD4 + T helper lymphocytes. Biochim Biophys Acta Rev Cancer 2020; 1874:188439. [PMID: 32980465 DOI: 10.1016/j.bbcan.2020.188439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Over the past decades, tumor-resident immune cells have been extensively studied to dissect their biological functions and clinical roles. Tumor-infiltrating CD8+ T cells, because of their cytotoxic and killing ability, have been under the spotlight for a long time, whereas CD4+ T cells are considered just a supporting actor in the field of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the ability of CD4+ T cells in eradicating solid tumors, and their functions in mediating antitumor immunity have been investigated in various orientations. In this review, we highlight the pivotal role of CD4+ T cells in eliciting vigorous antitumor immune responses, summarize key signaling axes and molecular networks behind these antitumor functions, and also propose possible targets and promising strategies which might translate into more efficient immunotherapies against human cancers.
Collapse
Affiliation(s)
- Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Wu
- School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
47
|
Chitrakar A, Budda SA, Henderson JG, Axtell RC, Zenewicz LA. E3 Ubiquitin Ligase Von Hippel-Lindau Protein Promotes Th17 Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1009-1023. [PMID: 32690659 PMCID: PMC8167928 DOI: 10.4049/jimmunol.2000243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Von Hippel-Lindau (VHL) is an E3 ubiquitin ligase that targets proteins, including HIF-1α, for proteasomal degradation. VHL and HIF regulate the balance between glycolysis and oxidative phosphorylation, which is critical in highly dynamic T cells. HIF-1α positively regulates Th17 differentiation, a complex process in which quiescent naive CD4 T cells undergo transcriptional changes to effector cells, which are commonly dysregulated in autoimmune diseases. The role of VHL in Th17 cells is not known. In this study, we hypothesized VHL negatively regulates Th17 differentiation and deletion of VHL in CD4 T cells would elevate HIF-1α and increase Th17 differentiation. Unexpectedly, we found that VHL promotes Th17 differentiation. Mice deficient in VHL in their T cells were resistant to an autoimmune disease, experimental autoimmune encephalomyelitis, often mediated by Th17 cells. In vitro Th17 differentiation was impaired in VHL-deficient T cells. In the absence of VHL, Th17 cells had decreased activation of STAT3 and SMAD2, suggesting that VHL indirectly or directly regulates these critical signaling molecules. Gene expression analysis revealed that in Th17 cells, VHL regulates many cellular pathways, including genes encoding proteins involved indirectly or directly in the glycolysis pathway. Compared with wild-type, VHL-deficient Th17 cells had elevated glycolysis and glycolytic capacity. Our finding has implications on the design of therapeutics targeting the distinct metabolic needs of T cells to combat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Scott A Budda
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Jacob G Henderson
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
48
|
Dexamethasone suppresses the Th17/1 cell polarization in the CD4 + T cells from patients with primary immune thrombocytopenia. Thromb Res 2020; 190:26-34. [PMID: 32278222 DOI: 10.1016/j.thromres.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease with increased Th17 cells in peripheral blood. Th17/1 cells, which were recently characterized as a new differentiated Th17 lineage secreting IL-17 and IFN-γ, play an important role in the pathogenesis of multiple autoimmune diseases. In this study, we investigated whether Th17/1 cells are involved in the pathogenesis of ITP. MATERIALS AND METHODS Peripheral blood was obtained from 44 ITP patients and 50 healthy controls. The percentages of T cell subsets were evaluated. We also detected molecular signature of Th17/1 cells in CD4+ T cells. Besides, CD4+ T cells from ITP patients were treated with dexamethasone, the inhibitor of NF-κB, or rapamycin to evaluate the impact and mechanism of dexamethasone treatment on Th17/1 cells. RESULTS We found an elevated percentage and an enhanced specific molecular signature of Th17/1 cells in CD4+ T cells in ITP patients. The percentage of Th17/1 cells was correlated positively with Th17 cells in ITP patients and healthy controls. The percentage of Th17/1 cells was correlated with corticosteroid resistance. Dexamethasone reversed the molecular signature of Th17/1 cells and decreased the percentage of Th17/1 cells in vitro. Treatment of dexamethasone and the inhibitor of NF-κB suppressed the phosphorylation of STAT3, while dexamethasone treatment also inhibited the phosphorylation of NF-κB p65. CONCLUSIONS Our data suggested Th17/1 cells may contribute to the pathogenesis of ITP and dexamethasone could inhibit Th17/1 cells through NF-κB/STAT3 pathway. These results may provide a potential therapeutic strategy of correcting the Th17/1 cell deviation in ITP.
Collapse
|
49
|
Jiang Q, Li F, Cheng Z, Kong Y, Chen C. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cell Mol Life Sci 2020; 77:1483-1495. [PMID: 31637449 PMCID: PMC11105068 DOI: 10.1007/s00018-019-03339-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Ubiquitin modification plays significant roles in protein fate determination, signaling transduction, and cellular processes. Over the past 2 decades, the number of studies on ubiquitination has demonstrated explosive growth. E3 ubiquitin ligases are the key enzymes that determine the substrate specificity and are involved in cancer. Several recent studies shed light on the functions and mechanisms of HECTD3 E3 ubiquitin ligase. This review describes the progress in the recent studies of HECTD3 in cancer and other diseases. We propose that HECTD3 is a potential biomarker and a therapeutic target, and discuss the future directions for HECTD3 investigations.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Fubing Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Yanjie Kong
- Institute of Translation Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
50
|
Zhao L, Gimple RC, Yang Z, Wei Y, Gustafsson JÅ, Zhou S. Immunoregulatory Functions of Nuclear Receptors: Mechanisms and Therapeutic Implications. Trends Endocrinol Metab 2020; 31:93-106. [PMID: 31706690 DOI: 10.1016/j.tem.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Members of the nuclear receptor superfamily serve as master regulators in signaling by either positively or negatively regulating gene expression. Accumulating evidence has suggested that nuclear receptors are actively involved in immune responses, with specific roles in different immune cell compartments that contribute to both normal function and to disease development. The druggable properties of nuclear receptors have made them ideal modulatory therapeutic targets. Here, we revisit nuclear receptor biology, summarize recent advances in our understanding of the immunological functions of nuclear receptors, describe cell-type-specific roles and specific nuclear receptors in disease pathogenesis, and explore their potential as novel therapeutic targets. These nuclear receptor-dependent alterations in the immune system are amenable to pharmacological manipulation and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|