1
|
Girolimetti G, Gagliardi S, Cordella P, Bramato G, Di Corato R, Romano R, Guerra F, Bucci C. Induced mitochondrial deficit by NDUFS3 transient silencing reduces RAB7 expression and causes lysosomal dysfunction in pancreatic cancer cells. Cell Commun Signal 2025; 23:224. [PMID: 40369571 PMCID: PMC12079996 DOI: 10.1186/s12964-025-02214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/23/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND RAB7 is a small GTPase with multiple cellular roles, regulating late endocytic trafficking and lysosomal biogenesis, influencing mitochondria-lysosome crosstalk, and contributing to many mitochondrial processes. Mitochondrial dysfunctions are widely reported in cancer and the development of cancer therapeutic strategies targeting mitochondria gained momentum in recent years. Mitochondrial impairment can cause alterations of mitochondria-lysosome crosstalk and can influence lysosomal function. Here, we used cell models of pancreatic cancer, one of the deadliest cancers worldwide, to cause a transient mild mitochondrial deficit lowering NDUFS3 protein levels in order to investigate the consequences on RAB7 and on the late endocytic pathway and, thus, the contribution of the mitochondria-lysosomes communication alterations to cancer progression. METHODS NDUFS3 and RAB7 downregulation was obtained by RNA interference (RNAi). Seahorse assays, Western blot analysis, mitochondrial staining, and Transmission Electron Microscopy (TEM) were used to assess silencing effects on mitochondrial structure and functioning. Western blotting was used to investigate expression of late endocytic pathway proteins and of the invasion marker vimentin. Confocal microscopy was used to analyze the mitochondrial network and lysosomal assessment. Zymography was performed to evaluate the ability to digest the extracellular matrix linked to cancer migration. SRB and colony assays were performed to assess cancer viability and proliferation. Wound healing assay and FluoroBlok membranes were used to determine migration and invasiveness. RESULTS In pancreatic cancer cells, transient silencing of the NDUFS3 protein caused mitochondrial deficit, slower oxidative metabolism, and mitochondrial morphology alterations. In this context, we observed RAB7 downregulation and impairment of the late endocytic pathway. In addition, NDUFS3-silenced RAB7-downregulated cells showed less invasive tumorigenic potential revealed by reduced levels of vimentin and other Epithelial-to-Mesenchymal Transition proteins, decreased viability, migration and invasiveness. Moreover, we found that modulation of RAB7 expression may regulate vimentin levels and influence mitochondrial morphology and levels of mitochondrial proteins. CONCLUSIONS Overall, our data show that mitochondrial deficit determines alterations of the crosstalk with lysosomes, leading to dysfunctions, and that this process is regulated by RAB7 acting as an oncogene. This highlights the synergic role of RAB7 and mitochondrial dysfunction, focusing on a cellular mechanism that may boost the effect of mitochondrial dysfunction in the cells, leading to the reduction of the tumorigenic potential.
Collapse
Affiliation(s)
- Giulia Girolimetti
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Sinforosa Gagliardi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Paola Cordella
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Grazia Bramato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Provinciale Lecce-Monteroni, Lecce, 73100, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, 73010, Italy
| | - Roberta Romano
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Cecilia Bucci
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy.
| |
Collapse
|
2
|
Shi W, He L, Li R, Cao J. Role of mitochondrial complex I genes in host plant expansion of Bactrocera tau (Tephritidae: Diptera) by CRISPR/Cas9 system. INSECT SCIENCE 2025. [PMID: 39829059 DOI: 10.1111/1744-7917.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 01/22/2025]
Abstract
Host expansion facilitates tephritid flies to expand their ranges. Unraveling the mechanisms of host expansion will help to efficiently control these pests. Our previous works showed mitochondrial complex I genes Ndufs1, Ndufs3, and Ndufa7 being upregulated during host expansion of Bactrocera tau (Walker), one of the highly hazardous species of tephritids. However, their roles in the host expansion of B. tau remain unknown. Here, using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9) editing system for the first time, a stable homozygous Ndufa7 strain (Btndufa7-/-), heterozygous Ndufs1 (Btndufs1+/-), and Ndufs3 strains (Btndufs3+/-) were obtained from F3 generation of B. tau, after gene knockout. Reduced sizes of larvae and pupae of the Ndufa7 knockout strain were first observed. Notably, the mean values of fitness estimation (pupal numbers, single-pupal weight and emergence rate) and Ndufa7 gene expression in the Ndufa7 knockout strain were slightly reduced on 2 native hosts (summer squash and cucumber), while it sharply decreased on the novel host banana and the potential host pitaya, compared with those of the wild-type strain. Furthermore, the Ndufa7 knockout strain did not survive on the novel host guava. These results suggested that Ndufa7 disturbs the survival on native hosts, expansion to novel hosts, and further expansion to potential hosts of B. tau. Homozygous lethality occurred after the knockout of Ndufs1 or Ndufs3, suggesting that these 2 genes play a role in the early development of B. tau. This study revealed that Ndufa7 is a target gene for the management of tephritids and opens a new avenue for pest control research.
Collapse
Affiliation(s)
- Wei Shi
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Science, Institute of Biodiversity, Yunnan University, Kunming, China
| | - Linsheng He
- School of Life Science, Yunnan University, Kunming, China
| | - Ruixiang Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Science, Institute of Biodiversity, Yunnan University, Kunming, China
| | - Jun Cao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Science, Institute of Biodiversity, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Saez-Carrion E, Aguilar-Aragon M, García-López L, Dominguez M, Uribe ML. Metabolic Adaptations in Cancer and the Host Using Drosophila Models and Advanced Tools. Cells 2024; 13:1977. [PMID: 39682725 PMCID: PMC11640731 DOI: 10.3390/cells13231977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is a multifactorial process involving genetic, epigenetic, physiological, and metabolic changes. The ability of tumours to regulate new reactive pathways is essential for their survival. A key aspect of this involves the decision-making process of cancer cells as they balance the exploitation of surrounding and distant tissues for their own benefit while avoiding the rapid destruction of the host. Nutrition plays a central role in these processes but is inherently limited. Understanding how tumour cells interact with non-tumoural tissues to acquire nutrients is crucial. In this review, we emphasise the utility of Drosophila melanogaster as a model organism for dissecting the complex oncogenic networks underlying these interactions. By studying various levels-from individual tumour cells to systemic markers-we can gain new insights into how cancer adapts and thrives. Moreover, developing innovative technologies, such as high-throughput methods and metabolic interventions, enhances our ability to explore how tumours adapt to different conditions. These technological advances allow us to explore tumour adaptations and open new opportunities for potential therapeutic strategies.
Collapse
Affiliation(s)
- Ernesto Saez-Carrion
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| | - Mario Aguilar-Aragon
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| | - Lucia García-López
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
- Faculty of Health Sciences, Universidad Europea de Valencia, 03016 Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| | - Mary Luz Uribe
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| |
Collapse
|
4
|
Horvat-Menih I, McLean MA, Zamora-Morales MJ, Wylot M, Kaggie J, Khan AS, Gill AB, Duarte J, Locke MJ, Mendichovszky I, Li H, Priest AN, Warren AY, Welsh SJ, Jones JO, Armitage JN, Mitchell TJ, Stewart GD, Gallagher FA. Multiarm, non-randomised, single-centre feasibility study-investigation of the differential biology between benign and malignant renal masses using advanced magnetic resonance imaging techniques (IBM-Renal): protocol. BMJ Open 2024; 14:e083980. [PMID: 39461869 PMCID: PMC11529771 DOI: 10.1136/bmjopen-2024-083980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
INTRODUCTION Localised renal masses are an increasing burden on healthcare due to the rising number of cases. However, conventional imaging cannot reliably distinguish between benign and malignant renal masses, and renal mass biopsies are unable to characterise the entirety of the tumour due to sampling error, which may lead to delayed treatment or overtreatment. There is an unmet clinical need to develop novel imaging techniques to characterise renal masses more accurately. Renal tumours demonstrate characteristic metabolic reprogramming, and novel MRI methods have the potential to detect these metabolic perturbations, which may therefore aid accurate characterisation. Here, we present our study protocol for the investigation of the differential biology of benign and malignant renal masses using advanced MRI techniques (IBM-Renal). METHODS AND ANALYSIS IBM-Renal is a multiarm, single-centre, non-randomised, feasibility study with the aim to provide preliminary evidence for the potential role of the novel MRI techniques to phenotype localised renal lesions. 30 patients with localised renal masses will be recruited to three imaging arms, with 10 patients in each: (1) hyperpolarised [1-13C]-pyruvate MRI, (2) deuterium metabolic imaging (DMI) and (3) sodium MRI. The diagnosis will be made on samples acquired at biopsy or at surgery. The primary objective is the technical development of the novel MRI techniques, with the ultimate aim to understand whether these can identify differences between benign and malignant tumours, while the secondary objectives aim to assess how complementary the techniques are, and if they provide additional information. The exploratory objective is to link imaging findings with clinical data and molecular analyses for the biological validation of the novel MRI techniques. ETHICS AND DISSEMINATION This study was ethically approved (UK REC HRA: 22/EE/0136; current protocol version 2.1 dated 11 August 2022). The plans for dissemination include presentations at conferences, publications in scientific journals, a doctoral thesis and patient and public involvement. TRIAL REGISTRATION NUMBER NCT06016075.
Collapse
Affiliation(s)
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Marta Wylot
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Joao Duarte
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Matthew J Locke
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Iosif Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hao Li
- Department of Radiology, University of Cambridge, Cambridge, UK
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, Shanghai, China
| | - Andrew N Priest
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah J Welsh
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James O Jones
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James N Armitage
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas J Mitchell
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Grant D Stewart
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
5
|
Liu TT, Igarashi T, El-Khoury N, Ihejirika N, Paxton K, Jaumotte J, Dhir R, Hudson CN, Nelson JB, DeFranco DB, Yoshimura N, Wang Z, Pascal LE. Benign prostatic hyperplasia nodules in patients treated with celecoxib and/or finasteride have reduced levels of NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, a mitochondrial protein essential for efficient function of the electron transport chain. Prostate 2024; 84:1309-1319. [PMID: 39004950 DOI: 10.1002/pros.24766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a condition generally associated with advanced age in men that can be accompanied by bothersome lower urinary tract symptoms (LUTS) including intermittency, weak stream, straining, urgency, frequency, and incomplete bladder voiding. Pharmacotherapies for LUTS/BPH include alpha-blockers, which relax prostatic and urethral smooth muscle and 5ɑ-reductase inhibitors such as finasteride, which can block conversion of testosterone to dihydrotestosterone thereby reducing prostate volume. Celecoxib is a cyclooxygenase-2 inhibitor that reduces inflammation and has shown some promise in reducing prostatic inflammation and alleviating LUTS for some men with histological BPH. However, finasteride and celecoxib can reduce mitochondrial function in some contexts, potentially impacting their efficacy for alleviating BPH-associated LUTS. METHODS To determine the impact of these pharmacotherapies on mitochondrial function in prostate tissues, we performed immunostaining of mitochondrial Complex I (CI) protein NADH dehydrogenase [ubiquinone] iron-sulfur protein 3 (NDUFS3) and inflammatory cells on BPH specimens from patients naïve to treatment, or who were treated with celecoxib and/or finasteride for 28 days, as well as prostate tissues from male mice treated with celecoxib or vehicle control for 28 days. Quantification and statistical correlation analyses of immunostaining were performed. RESULTS NDUFS3 immunostaining was decreased in BPH compared to normal adjacent prostate. Patients treated with celecoxib and/or finasteride had significantly decreased NDUFS3 in both BPH and normal tissues, and no change in inflammatory cell infiltration compared to untreated patients. Mice treated with celecoxib also displayed a significant decrease in NDUFS3 immunostaining and no change in inflammatory cell infiltration. CONCLUSIONS These findings suggest that celecoxib and/or finasteride are associated with an overall decrease in NDUFS3 levels in prostate tissues but do not impact the presence of inflammatory cells, suggesting a decline in mitochondrial CI function in the absence of enhanced inflammation. Given that BPH has recently been associated with increased prostatic mitochondrial dysfunction, celecoxib and/or finasteride may exacerbate existing mitochondrial dysfunction in some BPH patients thereby potentially limiting their overall efficacy in providing metabolic stability and symptom relief.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, University of Wisconsin, Madison, Wisconsin, USA
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathalie El-Khoury
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nnamdi Ihejirika
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kelsey Paxton
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Juliann Jaumotte
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chandler N Hudson
- Division of Urology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donald B DeFranco
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura E Pascal
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Chinopoulos C. Complex I activity in hypoxia: implications for oncometabolism. Biochem Soc Trans 2024; 52:529-538. [PMID: 38526218 PMCID: PMC11088919 DOI: 10.1042/bst20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Certain cancer cells within solid tumors experience hypoxia, rendering them incapable of oxidative phosphorylation (OXPHOS). Despite this oxygen deficiency, these cells exhibit biochemical pathway activity that relies on NAD+. This mini-review scrutinizes the persistent, residual Complex I activity that oxidizes NADH in the absence of oxygen as the electron acceptor. The resulting NAD+ assumes a pivotal role in fueling the α-ketoglutarate dehydrogenase complex, a critical component in the oxidative decarboxylation branch of glutaminolysis - a hallmark oncometabolic pathway. The proposition is that through glutamine catabolism, high-energy phosphate intermediates are produced via substrate-level phosphorylation in the mitochondrial matrix substantiated by succinyl-CoA ligase, partially compensating for an OXPHOS deficiency. These insights provide a rationale for exploring Complex I inhibitors in cancer treatment, even when OXPHOS functionality is already compromised.
Collapse
|
7
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
8
|
Zhang G, Liu B, Yang Y, Xie S, Chen L, Luo H, Zhong J, Wei Y, Guo F, Gan J, Zhu F, Xu L, Li Q, Shen Y, Zhang H, Liu Y, Li R, Deng H, Yang H. Mitochondrial UQCC3 controls embryonic and tumor angiogenesis by regulating VEGF expression. iScience 2023; 26:107370. [PMID: 37539028 PMCID: PMC10393800 DOI: 10.1016/j.isci.2023.107370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Mitochondria play important roles in angiogenesis. However, the mechanisms remain elusive. In this study, we found that mitochondrial ubiquinol-cytochrome c reductase complex assembly factor 3 (UQCC3) is a key regulator of angiogenesis. TALEN-mediated knockout of Uqcc3 in mice caused embryonic lethality at 9.5-10.5 days postcoitum, and vessel density was dramatically reduced. Similarly, knockout of uqcc3 in zebrafish induced lethality post-fertilization and impaired vascular development. Knockout of UQCC3 resulted in slower tumor growth and angiogenesis. Mechanistically, UQCC3 was upregulated under hypoxia, promoted reactive oxygen species (ROS) generation, enhanced HIF-1α stability and increased VEGF expression. Finally, higher expression of UQCC3 was associated with poor prognosis in multiple types tumors, implying a role for UQCC3 in tumor progression. In conclusion, our findings highlight the important contribution of UQCC3 to angiogenesis under both physiological and pathological conditions, indicating the potential of UQCC3 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Guimin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binrui Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuo Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingcheng Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zhong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinhao Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengzhu Guo
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Gan
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R.China
| | - Fan Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiqi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuge Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huajin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanshuo Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Barrera JCA, Ondo-Mendez A, Giera M, Kostidis S. Metabolomic and Lipidomic Analysis of the Colorectal Adenocarcinoma Cell Line HT29 in Hypoxia and Reoxygenation. Metabolites 2023; 13:875. [PMID: 37512582 PMCID: PMC10384744 DOI: 10.3390/metabo13070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The poor availability of oxygen and nutrients in malignant tumors drives the activation of various molecular responses and metabolic reprogramming in cancer cells. Hypoxic tumor regions often exhibit resistance to chemotherapy and radiotherapy. One approach to enhance cancer therapy is to indirectly increase tumor oxygen availability through targeted metabolic reprogramming. Thus, understanding the underlying metabolic changes occurring during hypoxia and reoxygenation is crucial for improving therapy efficacy. In this study, we utilized the HT29 colorectal adenocarcinoma cell line as a hypoxia-reoxygenation model to investigate central carbon and lipid metabolism. Through quantitative NMR spectroscopy and flow injection analysis - differential mobility spectroscopy-tandem mass spectrometry (FIA-DMS-MS/MS) analysis, we observed alterations in components of mitochondrial metabolism, redox status, specific lipid classes, and structural characteristics of lipids during hypoxia and up to 24 h of reoxygenation. These findings contribute to our understanding of the metabolic changes occurring during reoxygenation and provide the basis for functional studies aimed at metabolic pathways in cancer cells.
Collapse
Affiliation(s)
| | - Alejandro Ondo-Mendez
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
10
|
Tan H, Liu J, Huang J, Li Y, Xie Q, Dong Y, Mi Z, Ma X, Rong P. Ketoglutaric acid can reprogram the immunophenotype of triple-negative breast cancer after radiotherapy and improve the therapeutic effect of anti-PD-L1. J Transl Med 2023; 21:462. [PMID: 37438720 DOI: 10.1186/s12967-023-04312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Great progress has been made in applying immunotherapy to the clinical treatment of tumors. However, many patients with triple-negative breast cancer (TNBC) cannot benefit from immunotherapy due to the immune desert type of TNBC, which is unresponsive to immunotherapy. DMKG, a cell-permeable derivative of α-KG, has shown potential to address this issue. METHOD We investigated the effects of combining DMKG with radioimmunotherapy on TNBC. We assessed the ability of DMKG to promote tumor cell apoptosis and immunogenic death induced by radiotherapy (RT), as well as its impact on autophagy reduction, antigen and inflammatory factor release, DC cell activation, and infiltration of immune cells in the tumor area. RESULT Our findings indicated that DMKG significantly promoted tumor cell apoptosis and immunogenic death induced by RT. DMKG also significantly reduced autophagy in tumor cells, resulting in increased release of antigens and inflammatory factors, thereby activating DC cells. Furthermore, DMKG promoted infiltration of CD8 + T cells in the tumor area and reduced the composition of T-regulatory cells after RT, reshaping the tumor immune microenvironment. Both DMKG and RT increased the expression of PD-L1 at immune checkpoints. When combined with anti-PD-L1 drugs (α-PD-L1), they significantly inhibited tumor growth without causing obvious side effects during treatment. CONCLUSION Our study underscores the potential of pairing DMKG with radioimmunotherapy as an effective strategy for treating TNBC by promoting apoptosis, immunogenic death, and remodeling the tumor immune microenvironment. This combination therapy could offer a promising therapeutic avenue for TNBC patients unresponsive to conventional immunotherapy.
Collapse
Affiliation(s)
- Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jing Huang
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiongxuan Xie
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yuqian Dong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Zhou Y, Zou J, Xu J, Zhou Y, Cen X, Zhao Y. Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. Eur J Med Chem 2023; 251:115219. [PMID: 36893622 DOI: 10.1016/j.ejmech.2023.115219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Mitochondrial complex I (CI) as a critical multifunctional respiratory complex of electron transport chain (ETC) in mitochondrial oxidative phosphorylation has been identified as vital and essence in ATP production, biosynthesis and redox balance. Recent progress in targeting CI has provided both insight and inspiration for oncotherapy, highlighting that the development of CI-targeting inhibitors is a promising therapeutic approach to fight cancer. Natural products possessing of ample scaffold diversity and structural complexity are the majority source of CI inhibitors, although low specificity and safety hinder their extensive application. Along with the gradual deepening in understanding of CI structure and function, significant progress has been achieved in exploiting novel and selective small molecules targeting CI. Among them, IACS-010759 had been approved by FDA for phase I trial in advanced cancers. Moreover, drug repurposing represents an effective and prospective strategy for CI inhibitor discovery. In this review, we mainly elaborate the biological function of CI in tumor progression, summarize the CI inhibitors reported in recent years and discuss the further perspectives for CI inhibitor application, expecting this work may provide insights into innovative discovery of CI-targeting drugs for cancer treatment.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Qin K, Gui Y, Li Y, Li X, Meng F, Han D, Du L, Li S, Wang Y, Zhou H, Yan H, Peng Y, Gao Z. Biodegradable Microneedle Array-Mediated Transdermal Delivery of Dimethyloxalylglycine-Functionalized Zeolitic Imidazolate Framework-8 Nanoparticles for Bacteria-Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6338-6353. [PMID: 36701257 DOI: 10.1021/acsami.2c17328] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacteria-infected skin wounds caused by external injuries remain a serious challenge to the whole society. Wound healing dressings, with excellent antibacterial activities and potent regeneration capability, are increasingly needed clinically. Here, we reported a novel functional microneedle (MN) array comprising methacrylated hyaluronic acid (MeHA) embedded with pH-responsive functionalized zeolitic imidazolate framework-8 (ZIF-8) nanoparticles to treat bacteria-infected cutaneous wounds. Antibacterial activity was introduced into Zn-ZIF-8 to achieve sterilization through releasing Zn ions, as well as increased angiogenesis by dimethyloxalylglycine (DMOG) molecules that were distributed within its framework. Furthermore, biodegradable MeHA was chosen as a substrate material carrier to fabricate DMOG@ZIF-8 MN arrays. By such design, DMOG@ZIF-8 MN arrays would not only exhibit excellent antibacterial activity against pathogenic bacteria but also enhance angiogenesis within wound bed by upregulating the expression of HIF-1α, leading to a significant therapeutic efficiency on bacteria-infected cutaneous wound healing. Based on these results, we conclude that this new treatment strategy can provide a promising alternative for accelerating infected wound healing via effective antibacterial activity and ameliorative angiogenesis.
Collapse
Affiliation(s)
- Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuan Gui
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Yanchun Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xinyi Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Fei Meng
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lianqun Du
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
13
|
Mu W, Jiang Y, Liang G, Feng Y, Qu F. Metformin: A Promising Antidiabetic Medication for Cancer Treatment. Curr Drug Targets 2023; 24:41-54. [PMID: 36336804 DOI: 10.2174/1389450124666221104094918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Metformin is a widely used drug in patients with type 2 diabetes mellitus. Metformin inhibits hepatic gluconeogenesis and increases glucose utilization in peripheral tissues. In recent years, several studies have shown that metformin is a potential therapeutic agent against cancer, alone or combined with other anticancer treatments. Metformin mainly activates the AMPK complex and regulates intracellular energy status, inhibiting the mitochondrial respiratory chain complex I and reducing the production of reactive oxygen species. Other anticancer targets of metformin are specific transcription factors inhibiting cell proliferation, promoting apoptosis and reducing drug resistance. In addition, metformin modulates tumor cells' response to anticancer treatments, favoring the activity of T cells. In diabetic patients, metformin reduces the occurrence of cancer and improves the prognosis and efficacy of anticancer treatments. In this review, we provided a comprehensive perspective of metformin as an anticancer drug.
Collapse
Affiliation(s)
- Wei Mu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Yunyun Jiang
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Guoqiang Liang
- Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 215000 Suzhou, Jiangsu, PR China
| | - Yue Feng
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| | - Falin Qu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, 214044 Wuxi, Jiangsu, PR China
| |
Collapse
|
14
|
Wang S, Kang Y, Wang R, Deng J, Yu Y, Yu J, Wang J. Emerging Roles of NDUFS8 Located in Mitochondrial Complex I in Different Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248754. [PMID: 36557887 PMCID: PMC9783039 DOI: 10.3390/molecules27248754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
NADH:ubiquinone oxidoreductase core subunit S8 (NDUFS8) is an essential core subunit and component of the iron-sulfur (FeS) fragment of mitochondrial complex I directly involved in the electron transfer process and energy metabolism. Pathogenic variants of the NDUFS8 are relevant to infantile-onset and severe diseases, including Leigh syndrome, cancer, and diabetes mellitus. With over 1000 nuclear genes potentially causing a mitochondrial disorder, the current diagnostic approach requires targeted molecular analysis, guided by a combination of clinical and biochemical features. Currently, there are only several studies on pathogenic variants of the NDUFS8 in Leigh syndrome, and a lack of literature on its precise mechanism in cancer and diabetes mellitus exists. Therefore, NDUFS8-related diseases should be extensively explored and precisely diagnosed at the molecular level with the application of next-generation sequencing technologies. A more distinct comprehension will be needed to shed light on NDUFS8 and its related diseases for further research. In this review, a comprehensive summary of the current knowledge about NDUFS8 structural function, its pathogenic mutations in Leigh syndrome, as well as its underlying roles in cancer and diabetes mellitus is provided, offering potential pathogenesis, progress, and therapeutic target of different diseases. We also put forward some problems and solutions for the following investigations.
Collapse
Affiliation(s)
- Sifan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanbo Kang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruifeng Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Junqi Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Yupei Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Jun Yu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.Y.); (J.W.); Tel./Fax: +86-731-84805411 (J.W.)
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China; (S.W.); (Y.K.); (R.W.); (J.D.); (Y.Y.)
- Department of Pathology, School of Basic Medicine, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.Y.); (J.W.); Tel./Fax: +86-731-84805411 (J.W.)
| |
Collapse
|
15
|
Sollazzo M, De Luise M, Lemma S, Bressi L, Iorio M, Miglietta S, Milioni S, Kurelac I, Iommarini L, Gasparre G, Porcelli AM. Respiratory Complex I dysfunction in cancer: from a maze of cellular adaptive responses to potential therapeutic strategies. FEBS J 2022; 289:8003-8019. [PMID: 34606156 PMCID: PMC10078660 DOI: 10.1111/febs.16218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023]
Abstract
Mitochondria act as key organelles in cellular bioenergetics and biosynthetic processes producing signals that regulate different molecular networks for proliferation and cell death. This ability is also preserved in pathologic contexts such as tumorigenesis, during which bioenergetic changes and metabolic reprogramming confer flexibility favoring cancer cell survival in a hostile microenvironment. Although different studies epitomize mitochondrial dysfunction as a protumorigenic hit, genetic ablation or pharmacological inhibition of respiratory complex I causing a severe impairment is associated with a low-proliferative phenotype. In this scenario, it must be considered that despite the initial delay in growth, cancer cells may become able to resume proliferation exploiting molecular mechanisms to overcome growth arrest. Here, we highlight the current knowledge on molecular responses activated by complex I-defective cancer cells to bypass physiological control systems and to re-adapt their fitness during microenvironment changes. Such adaptive mechanisms could reveal possible novel molecular players in synthetic lethality with complex I impairment, thus providing new synergistic strategies for mitochondrial-based anticancer therapy.
Collapse
Affiliation(s)
- Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Silvia Lemma
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Licia Bressi
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Iorio
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Sara Milioni
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Interdepartmental Center for Industrial Research (CIRI) Life Sciences and Technologies for Health, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
16
|
Kurelac I, Cavina B, Sollazzo M, Miglietta S, Fornasa A, De Luise M, Iorio M, Lama E, Traversa D, Nasiri HR, Ghelli A, Musiani F, Porcelli AM, Iommarini L, Gasparre G. NDUFS3 knockout cancer cells and molecular docking reveal specificity and mode of action of anti-cancer respiratory complex I inhibitors. Open Biol 2022; 12:220198. [PMID: 36349549 PMCID: PMC9653258 DOI: 10.1098/rsob.220198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inhibition of respiratory complex I (CI) is becoming a promising anti-cancer strategy, encouraging the design and the use of inhibitors, whose mechanism of action, efficacy and specificity remain elusive. As CI is a central player of cellular bioenergetics, a finely tuned dosing of targeting drugs is required to avoid side effects. We compared the specificity and mode of action of CI inhibitors metformin, BAY 87-2243 and EVP 4593 using cancer cell models devoid of CI. Here we show that both BAY 87-2243 and EVP 4593 were selective, while the antiproliferative effects of metformin were considerably independent from CI inhibition. Molecular docking predictions indicated that the high efficiency of BAY 87-2243 and EVP 4593 may derive from the tight network of bonds in the quinone binding pocket, although in different sites. Most of the amino acids involved in such interactions are conserved across species and only rarely found mutated in human. Our data make a case for caution when referring to metformin as a CI-targeting compound, and highlight the need for dosage optimization and careful evaluation of molecular interactions between inhibitors and the holoenzyme.
Collapse
Affiliation(s)
- Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Agnese Fornasa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Eleonora Lama
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Daniele Traversa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Hamid Razi Nasiri
- Department of Cellular Microbiology, University Hohenheim, Stuttgart, Germany
| | - Anna Ghelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy,Interdepartmental Centre for Industrial Research ‘Scienze della Vita e Tecnologie per la Salute’, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Liu R, Han C, Hu J, Zhang B, Luo W, Ling F. Infiltration of Apoptotic M2 Macrophage Subpopulation Is Negatively Correlated with the Immunotherapy Response in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms231911014. [PMID: 36232318 PMCID: PMC9569653 DOI: 10.3390/ijms231911014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The polarization of tumor-associated macrophages (TAMs) plays a key role in tumor development and immunotherapy in colorectal cancer (CRC) patients. However, the impact of apoptosis on TAM polarization and immunotherapy efficacy in patients with different mismatch repair statuses (MMR) remains unclear. Here, we constructed an atlas of macrophage and found a higher rate of infiltration of M2-like TAM subpopulation in pMMR CRC tumor tissues compared with that in dMMR CRC tumor tissues. Importantly, a lower infiltration rate of M2c-like TAMs was associated with immunotherapy response. The M2 polarization trajectory revealed the apoptosis of M2c-like TAMs in dMMR while the differentiation of M2c-like TAMs in pMMR, implying a higher polarization level of M2 in pMMR. Furthermore, we found that a high expression of S100A6 induces the apoptosis of M2c-like TAMs in dMMR. In conclusion, we identified apoptotic TAM subpopulations in the M2 polarization trajectory and found that apoptosis caused by the high expression of S100A6 reduces their infiltration in tumors as well as the level of M2 polarization and contributes to a favorable immunotherapy response. These findings provide new insights into the potential role of apoptosis in suppressing tumors and enhancing immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Rui Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chongyin Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiaqi Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Baowen Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Luo
- The First People’s Hospital of Foshan, Sun Yat-sen University, Foshan 528000, China
- Correspondence: (W.L.); (F.L.)
| | - Fei Ling
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Correspondence: (W.L.); (F.L.)
| |
Collapse
|
18
|
Chen B, Zhang L, Zhou H, Ye W, Luo C, Yang L, Fang N, Tang A. HMOX1 promotes lung adenocarcinoma metastasis by affecting macrophages and mitochondrion complexes. Front Oncol 2022; 12:978006. [PMID: 36033490 PMCID: PMC9417688 DOI: 10.3389/fonc.2022.978006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Metastasis is the leading cause of lung adenocarcinoma (LUAD) patient death. However, the mechanism of metastasis is unclear. We performed bioinformatic analyses for HMOX1 (Heme oxygenase-1), aiming to explore its role in LUAD metastasis. Methods Pan-cancer analysis was first used to identify the metastasis-associated role of HMOX1 in LUAD. HMOX1-related genomic alterations were then investigated. Based on functional enrichment, we systematically correlated HMOX1 with immunological characteristics and mitochondrial activities. Furthermore, weighted gene co-expression network analysis (WGCNA) was applied to construct the HMOX1-mediated metastasis regulatory network, which was then validated at the proteomic level. Finally, we conducted the survival analysis and predicted the potential drugs to target the HMOX1 network. Results HMOX1 expression was significantly associated with epithelial-mesenchymal transition (EMT) and lymph and distant metastasis in LUAD. High HMOX1 levels exhibited higher macrophage infiltration and lower mitochondrial complex expression. WGCNA showed a group of module genes co-regulating the traits mentioned above. Subsequently, we constructed an HMOX1-mediated macrophage-mitochondrion-EMT metastasis regulatory network in LUAD. The network had a high inner correlation at the proteomic level and efficiently predicted prognosis. Finally, we predicted 9 potential drugs targeting HMOX1-mediated metastasis in LUAD, like chloroxine and isoliquiritigenin. Conclusions Our analysis elaborates on the role of HMOX1 in LUAD metastasis and identified a highly prognostic HMOX1-mediated metastasis regulatory network. Novel potential drugs targeting the HMOX1 network were also proposed, which should be tested for their activity against LUAD metastasis in future studies.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Fang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Central South University, Changsha, China
- *Correspondence: Anliu Tang,
| |
Collapse
|
19
|
Aramini B, Masciale V, Samarelli AV, Dubini A, Gaudio M, Stella F, Morandi U, Dominici M, De Biasi S, Gibellini L, Cossarizza A. Phenotypic, functional, and metabolic heterogeneity of immune cells infiltrating non–small cell lung cancer. Front Immunol 2022; 13:959114. [PMID: 36032082 PMCID: PMC9399732 DOI: 10.3389/fimmu.2022.959114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cancer in the world, accounting for 1.2 million of new cases annually, being responsible for 17.8% of all cancer deaths. In particular, non–small cell lung cancer (NSCLC) is involved in approximately 85% of all lung cancers with a high lethality probably due to the asymptomatic evolution, leading patients to be diagnosed when the tumor has already spread to other organs. Despite the introduction of new therapies, which have improved the long-term survival of these patients, this disease is still not well cured and under controlled. Over the past two decades, single-cell technologies allowed to deeply profile both the phenotypic and metabolic aspects of the immune cells infiltrating the TME, thus fostering the identification of predictive biomarkers of prognosis and supporting the development of new therapeutic strategies. In this review, we discuss phenotypic and functional characteristics of the main subsets of tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating myeloid cells (TIMs) that contribute to promote or suppress NSCLC development and progression. We also address two emerging aspects of TIL and TIM biology, i.e., their metabolism, which affects their effector functions, proliferation, and differentiation, and their capacity to interact with cancer stem cells.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
- *Correspondence: Andrea Cossarizza,
| |
Collapse
|
20
|
Zhu J, Wang X, Su Y, Shao J, Song X, Wang W, Zhong L, Gan L, Zhao Y, Dong X. Multifunctional nanolocks with GSH as the key for synergistic ferroptosis and anti-chemotherapeutic resistance. Biomaterials 2022; 288:121704. [DOI: 10.1016/j.biomaterials.2022.121704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022]
|
21
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
22
|
De Luise M, Sollazzo M, Lama E, Coadă CA, Bressi L, Iorio M, Cavina B, D’Angelo L, Milioni S, Marchio L, Miglietta S, Coluccelli S, Tedesco G, Ghelli A, Lemma S, Perrone AM, Kurelac I, Iommarini L, Porcelli AM, Gasparre G. Inducing respiratory complex I impairment elicits an increase in PGC1α in ovarian cancer. Sci Rep 2022; 12:8020. [PMID: 35577908 PMCID: PMC9110394 DOI: 10.1038/s41598-022-11620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractAnticancer strategies aimed at inhibiting Complex I of the mitochondrial respiratory chain are increasingly being attempted in solid tumors, as functional oxidative phosphorylation is vital for cancer cells. Using ovarian cancer as a model, we show that a compensatory response to an energy crisis induced by Complex I genetic ablation or pharmacological inhibition is an increase in the mitochondrial biogenesis master regulator PGC1α, a pleiotropic coactivator of transcription regulating diverse biological processes within the cell. We associate this compensatory response to the increase in PGC1α target gene expression, setting the basis for the comprehension of the molecular pathways triggered by Complex I inhibition that may need attention as drawbacks before these approaches are implemented in ovarian cancer care.
Collapse
|
23
|
Chang LC, Chiang SK, Chen SE, Hung MC. Targeting 2-oxoglutarate dehydrogenase for cancer treatment. Am J Cancer Res 2022; 12:1436-1455. [PMID: 35530286 PMCID: PMC9077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023] Open
Abstract
Tricarboxylic acid (TCA) cycle, also called Krebs cycle or citric acid cycle, is an amphoteric pathway, contributing to catabolic degradation and anaplerotic reactions to supply precursors for macromolecule biosynthesis. Oxoglutarate dehydrogenase complex (OGDHc, also called α-ketoglutarate dehydrogenase) a highly regulated enzyme in TCA cycle, converts α-ketoglutarate (αKG) to succinyl-Coenzyme A in accompany with NADH generation for ATP generation through oxidative phosphorylation. The step collaborates with glutaminolysis at an intersectional point to govern αKG levels for energy production, nucleotide and amino acid syntheses, and the resources for macromolecule synthesis in cancer cells with rapid proliferation. Despite being a flavoenzyme susceptible to electron leakage contributing to mitochondrial reactive oxygen species (ROS) production, OGDHc is highly sensitive to peroxides such as HNE (4-hydroxy-2-nonenal) and moreover, its activity mediates the activation of several antioxidant pathways. The characteristics endow OGDHc as a critical redox sensor in mitochondria. Accumulating evidences suggest that dysregulation of OGDHc impairs cellular redox homeostasis and disturbs substrate fluxes, leading to a buildup of oncometabolites along the pathogenesis and development of cancers. In this review, we describe molecular interactions, regulation of OGDHc expression and activity and its relationships with diseases, specifically focusing on cancers. In the end, we discuss the potential of OGDHs as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing UniversityTaichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing UniversityTaichung 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing UniversityTaiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, China Medical UniversityTaichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Deparment of Biotechnology, Asia UniversityTaichung 413, Taiwan
- Research Center for Cancer Biology, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
24
|
Iorio M, Umesh Ganesh N, De Luise M, Porcelli AM, Gasparre G, Kurelac I. The Neglected Liaison: Targeting Cancer Cell Metabolic Reprogramming Modifies the Composition of Non-Malignant Populations of the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215447. [PMID: 34771610 PMCID: PMC8582418 DOI: 10.3390/cancers13215447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known about the impact of metabolism-targeting drugs on the non-malignant tumor components. Here we provide a general overview of the links between cancer cell metabolism and tumor microenvironment (TME), particularly focusing on the emerging literature reporting TME-specific effects of metabolic therapies.
Collapse
Affiliation(s)
- Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Nikkitha Umesh Ganesh
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2088-418
| |
Collapse
|
25
|
De Luise M, Iommarini L, Marchio L, Tedesco G, Coadă CA, Repaci A, Turchetti D, Tardio ML, Salfi N, Pagotto U, Kurelac I, Porcelli AM, Gasparre G. Pathogenic Mitochondrial DNA Mutation Load Inversely Correlates with Malignant Features in Familial Oncocytic Parathyroid Tumors Associated with Hyperparathyroidism-Jaw Tumor Syndrome. Cells 2021; 10:2920. [PMID: 34831144 PMCID: PMC8616364 DOI: 10.3390/cells10112920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
While somatic disruptive mitochondrial DNA (mtDNA) mutations that severely affect the respiratory chain are counter-selected in most human neoplasms, they are the genetic hallmark of indolent oncocytomas, where they appear to contribute to reduce tumorigenic potential. A correlation between mtDNA mutation type and load, and the clinical outcome of a tumor, corroborated by functional studies, is currently lacking. Recurrent familial oncocytomas are extremely rare entities, and they offer the chance to investigate the determinants of oncocytic transformation and the role of both germline and somatic mtDNA mutations in cancer. We here report the first family with Hyperparathyroidism-Jaw Tumor (HPT-JT) syndrome showing the inherited predisposition of four individuals to develop parathyroid oncocytic tumors. MtDNA sequencing revealed a rare ribosomal RNA mutation in the germline of all HPT-JT affected individuals whose pathogenicity was functionally evaluated via cybridization technique, and which was counter-selected in the most aggressive infiltrating carcinoma, but positively selected in adenomas. In all tumors different somatic mutations accumulated on this genetic background, with an inverse clear-cut correlation between the load of pathogenic mtDNA mutations and the indolent behavior of neoplasms, highlighting the importance of the former both as modifiers of cancer fate and as prognostic markers.
Collapse
Affiliation(s)
- Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Luisa Iommarini
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Lorena Marchio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Greta Tedesco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Camelia Alexandra Coadă
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Medical Genetics, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maria Lucia Tardio
- Unit of Pathology, IRCCS S.Orsola University Hospital, 40138 Bologna, Italy;
| | - Nunzio Salfi
- Pathology Unit, IRCCS Giannina Gaslini Children’s Research Hospital, 16147 Genova, Italy;
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| |
Collapse
|
26
|
Spieth L, Berghoff SA, Stumpf SK, Winchenbach J, Michaelis T, Watanabe T, Gerndt N, Düking T, Hofer S, Ruhwedel T, Shaib AH, Willig K, Kronenberg K, Karst U, Frahm J, Rhee JS, Minguet S, Möbius W, Kruse N, von der Brelie C, Michels P, Stadelmann C, Hülper P, Saher G. Anesthesia triggers drug delivery to experimental glioma in mice by hijacking caveolar transport. Neurooncol Adv 2021; 3:vdab140. [PMID: 34647026 PMCID: PMC8500692 DOI: 10.1093/noajnl/vdab140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood–brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery. Methods Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis. Results Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy. Conclusions Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching therapeutic implications for CNS malignancies.
Collapse
Affiliation(s)
- Lena Spieth
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Stefan A Berghoff
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Sina K Stumpf
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Jan Winchenbach
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Thomas Michaelis
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Takashi Watanabe
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Nina Gerndt
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Tim Düking
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Sabine Hofer
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Torben Ruhwedel
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.,Max-Planck-Institute of Experimental Medicine, Electron Microscopy Core Unit, Göttingen, Germany
| | - Ali H Shaib
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Neurobiology, Göttingen, Germany
| | - Katrin Willig
- Max-Planck-Institute of Experimental Medicine, Group of Optical Nanoscopy in Neuroscience, Göttingen, Germany.,University Medical Center, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katharina Kronenberg
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry, Münster, Germany
| | - Jens Frahm
- Max-Planck-Institut für biophysikalische Chemie, Biomedizinische NMR, Göttingen, Germany
| | - Jeong Seop Rhee
- Max-Planck-Institute of Experimental Medicine, Department of Molecular Neurobiology, Göttingen, Germany
| | - Susana Minguet
- Albert-Ludwigs-University of Freiburg, Faculty of Biology, Freiburg, Germany. Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany. Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wiebke Möbius
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany.,Max-Planck-Institute of Experimental Medicine, Electron Microscopy Core Unit, Göttingen, Germany.,University Medical Center, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Niels Kruse
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, Germany
| | | | - Peter Michels
- University Medical Center Göttingen, Institute for Anesthesiology, Göttingen, Germany
| | - Christine Stadelmann
- University Medical Center Göttingen, Institute for Neuropathology, Göttingen, Germany
| | - Petra Hülper
- Klinikum Oldenburg, Oldenburg, University Hospital, Germany
| | - Gesine Saher
- Max-Planck-Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| |
Collapse
|
27
|
Hou Y, Wang X, Zhang Y, Wang S, Meng X. Highland mate: Edible and functional foods in traditional medicine for the prevention and treatment of hypoxia-related symptoms. Curr Opin Pharmacol 2021; 60:306-314. [PMID: 34508939 DOI: 10.1016/j.coph.2021.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The highlands evoke both fascination and awe. Regardless of the reason to live in the highlands, symptoms related to altitude sickness are unbearable because of low atmospheric pressure, low oxygen concentration, strong ultraviolet radiation, cold, and psychological factors. Food and herbal medicines and/or health-care foods have protected highland dwellers owing to their multisystem regulation. These versatile products combine health-care properties with medical values by enhancing immunity, relieving physical fatigue, improving sleep, and augmenting hypoxia tolerance, with rare side effects. We therefore aimed to provide a more comprehensive analysis of these nutraceuticals, which can be used to prevent and treat symptoms of altitude hypoxia in the Chinese market. Finally, we dissect a new perspective for their promotion and development from molecular aspects.
Collapse
Affiliation(s)
- Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
28
|
Amoedo ND, Sarlak S, Obre E, Esteves P, Bégueret H, Kieffer Y, Rousseau B, Dupis A, Izotte J, Bellance N, Dard L, Redonnet-Vernhet I, Punzi G, Rodrigues MF, Dumon E, Mafhouf W, Guyonnet-Dupérat V, Gales L, Palama T, Bellvert F, Dugot-Senan N, Claverol S, Baste JM, Lacombe D, Rezvani HR, Pierri CL, Mechta-Grigoriou F, Thumerel M, Rossignol R. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J Clin Invest 2021; 131:133081. [PMID: 33393495 DOI: 10.1172/jci133081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.
Collapse
Affiliation(s)
- Nivea Dias Amoedo
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Saharnaz Sarlak
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Emilie Obre
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Pauline Esteves
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Hugues Bégueret
- Bordeaux University, Bordeaux, France.,Pathology Department, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Curie Institute - INSERM U830, Paris, France
| | - Benoît Rousseau
- INSERM U1211, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Alexis Dupis
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Julien Izotte
- INSERM U1211, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Nadège Bellance
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Laetitia Dard
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Isabelle Redonnet-Vernhet
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Biochemistry Department, Pellegrin Hospital, CHU Bordeaux, Bordeaux, France
| | - Giuseppe Punzi
- Laboratory of Biochemistry and Molecular Biology, University of Bari,Bari, Italy
| | | | - Elodie Dumon
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | - Walid Mafhouf
- Bordeaux University, Bordeaux, France.,INSERM U1035, Bordeaux, France
| | | | - Lara Gales
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | - Tony Palama
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | - Floriant Bellvert
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National des Sciences Appliquées (INSA)/CNRS 5504 - UMR INSA/Institut National de la Recherche Agronomique (INRA) 792, Toulouse, France
| | | | - Stéphane Claverol
- Bordeaux University, Bordeaux, France.,Functional Genomics Center (CGFB), Proteomics Facility, Bordeaux, France
| | - Jean-Marc Baste
- Thoracic Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry and Molecular Biology, University of Bari,Bari, Italy
| | | | - Matthieu Thumerel
- Thoracic Surgery, Haut-Lévèque Hospital, CHU Bordeaux, Bordeaux, France
| | - Rodrigue Rossignol
- CELLOMET, Bordeaux, France.,INSERM U1211, Bordeaux, France.,Bordeaux University, Bordeaux, France
| |
Collapse
|
29
|
Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K, Li FN, Wang BR, Liu FJ, Jiang ZH, Wang WJ, Zhou D, Chen HZ, Wu Q. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res 2021; 31:980-997. [PMID: 34012073 PMCID: PMC8410789 DOI: 10.1038/s41422-021-00506-9] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pyroptosis is a form of regulated cell death mediated by gasdermin family members, among which the function of GSDMC has not been clearly described. Herein, we demonstrate that the metabolite α-ketoglutarate (α-KG) induces pyroptosis through caspase-8-mediated cleavage of GSDMC. Treatment with DM-αKG, a cell-permeable derivative of α-KG, elevates ROS levels, which leads to oxidation of the plasma membrane-localized death receptor DR6. Oxidation of DR6 triggers its endocytosis, and then recruits both pro-caspase-8 and GSDMC to a DR6 receptosome through protein-protein interactions. The DR6 receptosome herein provides a platform for the cleavage of GSDMC by active caspase-8, thereby leading to pyroptosis. Moreover, this α-KG-induced pyroptosis could inhibit tumor growth and metastasis in mouse models. Interestingly, the efficiency of α-KG in inducing pyroptosis relies on an acidic environment in which α-KG is reduced by MDH1 and converted to L-2HG that further boosts ROS levels. Treatment with lactic acid, the end product of glycolysis, builds an improved acidic environment to facilitate more production of L-2HG, which makes the originally pyroptosis-resistant cancer cells more susceptible to α-KG-induced pyroptosis. This study not only illustrates a pyroptotic pathway linked with metabolites but also identifies an unreported principal axis extending from ROS-initiated DR6 endocytosis to caspase-8-mediated cleavage of GSDMC for potential clinical application in tumor therapy.
Collapse
Affiliation(s)
- Jia-yuan Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Bo Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Ru-yue Sun
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Yuan-li Ai
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Kang Cheng
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Fu-nan Li
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian China
| | - Bao-rui Wang
- grid.12955.3a0000 0001 2264 7233School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian China
| | - Fan-jian Liu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Zhi-hong Jiang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Wei-jia Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Dawang Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Hang-zi Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Qiao Wu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian China
| |
Collapse
|
30
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
31
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
32
|
D'Angelo L, Astro E, De Luise M, Kurelac I, Umesh-Ganesh N, Ding S, Fearnley IM, Gasparre G, Zeviani M, Porcelli AM, Fernandez-Vizarra E, Iommarini L. NDUFS3 depletion permits complex I maturation and reveals TMEM126A/OPA7 as an assembly factor binding the ND4-module intermediate. Cell Rep 2021; 35:109002. [PMID: 33882309 PMCID: PMC8076766 DOI: 10.1016/j.celrep.2021.109002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Complex I (CI) is the largest enzyme of the mitochondrial respiratory chain, and its defects are the main cause of mitochondrial disease. To understand the mechanisms regulating the extremely intricate biogenesis of this fundamental bioenergetic machine, we analyze the structural and functional consequences of the ablation of NDUFS3, a non-catalytic core subunit. We show that, in diverse mammalian cell types, a small amount of functional CI can still be detected in the complete absence of NDUFS3. In addition, we determine the dynamics of CI disassembly when the amount of NDUFS3 is gradually decreased. The process of degradation of the complex occurs in a hierarchical and modular fashion in which the ND4 module remains stable and bound to TMEM126A. We, thus, uncover the function of TMEM126A, the product of a disease gene causing recessive optic atrophy as a factor necessary for the correct assembly and function of CI.
Collapse
Affiliation(s)
- Luigi D'Angelo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Elisa Astro
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Nikkitha Umesh-Ganesh
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Shujing Ding
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Ian M Fearnley
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Massimo Zeviani
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK; Venetian Institute of Molecular Medicine, 35128 Padua, Italy; Department of Neurosciences, University of Padua, 35128 Padua, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy; Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - Erika Fernandez-Vizarra
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK; Institute of Molecular, Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
33
|
Bao X, Zhang J, Huang G, Yan J, Xu C, Dou Z, Sun C, Zhang H. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis 2021; 12:215. [PMID: 33637686 PMCID: PMC7910460 DOI: 10.1038/s41419-021-03505-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Junfang Yan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Caipeng Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Chao Sun
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| |
Collapse
|
34
|
Grasmann G, Mondal A, Leithner K. Flexibility and Adaptation of Cancer Cells in a Heterogenous Metabolic Microenvironment. Int J Mol Sci 2021; 22:1476. [PMID: 33540663 PMCID: PMC7867260 DOI: 10.3390/ijms22031476] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
The metabolic microenvironment, comprising all soluble and insoluble nutrients and co-factors in the extracellular milieu, has a major impact on cancer cell proliferation and survival. A large body of evidence from recent studies suggests that tumor cells show a high degree of metabolic flexibility and adapt to variations in nutrient availability. Insufficient vascular networks and an imbalance of supply and demand shape the metabolic tumor microenvironment, which typically contains a lower concentration of glucose compared to normal tissues. The present review sheds light on the recent literature on adaptive responses in cancer cells to nutrient deprivation. It focuses on the utilization of alternative nutrients in anabolic metabolic pathways in cancer cells, including soluble metabolites and macromolecules and outlines the role of central metabolic enzymes conferring metabolic flexibility, like gluconeogenesis enzymes. Moreover, a conceptual framework for potential therapies targeting metabolically flexible cancer cells is presented.
Collapse
Affiliation(s)
- Gabriele Grasmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
| | - Ayusi Mondal
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (G.G.); (A.M.)
- BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
35
|
Fendt SM, Frezza C, Erez A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov 2020; 10:1797-1807. [PMID: 33139243 PMCID: PMC7710573 DOI: 10.1158/2159-8290.cd-20-0844] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells continuously rewire their metabolism to fulfill their need for rapid growth and survival while subject to changes in environmental cues. Thus, a vital component of a cancer cell lies in its metabolic adaptability. The constant demand for metabolic alterations requires flexibility, that is, the ability to utilize different metabolic substrates; as well as plasticity, that is, the ability to process metabolic substrates in different ways. In this review, we discuss how dynamic changes in cancer metabolism affect tumor progression and the consequential implications for cancer therapy. SIGNIFICANCE: Recognizing cancer dynamic metabolic adaptability as an entity can lead to targeted therapy that is expected to decrease drug resistance.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
Liparulo I, Bergamini C, Bortolus M, Calonghi N, Gasparre G, Kurelac I, Masin L, Rizzardi N, Rugolo M, Wang W, Aleo SJ, Kiwan A, Torri C, Zanna C, Fato R. Coenzyme Q biosynthesis inhibition induces HIF-1α stabilization and metabolic switch toward glycolysis. FEBS J 2020; 288:1956-1974. [PMID: 32898935 DOI: 10.1111/febs.15561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the 'complex Q', where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1α (HIF-1α) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1α degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome.
Collapse
Affiliation(s)
- Irene Liparulo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | | | - Natalia Calonghi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Luca Masin
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Wenping Wang
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Serena J Aleo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Alisar Kiwan
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Cristian Torri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| |
Collapse
|
37
|
Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020; 32:341-352. [PMID: 32668195 PMCID: PMC7483781 DOI: 10.1016/j.cmet.2020.06.019] [Citation(s) in RCA: 438] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts.
Collapse
|
38
|
Nguyen H, LaFramboise T. Complexities and pitfalls in analyzing and interpreting mitochondrial DNA content in human cancer. J Genet Genomics 2020; 47:349-359. [PMID: 33004308 DOI: 10.1016/j.jgg.2020.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022]
Abstract
Mutations in the human mitochondrial genome have been observed in all types of human cancer, indicating that mutations might contribute to tumorigenesis, metastasis, recurrence, or drug response. This possibility is appealing because of the known shift from oxidative metabolism to glycolysis, known as the Warburg effect, that occurs in malignancy. Mitochondrial DNA (mtDNA) mutations could either be maternally inherited and predispose to cancer (germ line mutations) or occur sporadically in the mtDNA of specific tissues (tissue- or tumor-specific somatic mutations) and contribute to the tumor initiation and progression process. High-throughput sequencing technologies now enable comprehensive detection of mtDNA variation in tissues and bodily fluids, with the potential to be used as an early detection tool that may impact the treatment of cancer. Here, we discuss insights into the roles of mtDNA mutations in carcinogenesis, highlighting the complexities involved in the analysis and interpretation of mitochondrial genomic content, technical challenges in studying their contribution to pathogenesis, and the value of mtDNA mutations in developing early detection, diagnosis, prognosis, and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Hieu Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRSIG), 458 Minh Khai, Vinh Tuy, Hai Ba Trung, Hanoi, Viet Nam; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
39
|
Kocemba-Pilarczyk KA, Trojan S, Ostrowska B, Lasota M, Dudzik P, Kusior D, Kot M. Influence of metformin on HIF-1 pathway in multiple myeloma. Pharmacol Rep 2020; 72:1407-1417. [PMID: 32715434 PMCID: PMC7550387 DOI: 10.1007/s43440-020-00142-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is defined as plasma cells malignancy, developing in the bone marrow. At the beginning of the disease, the malignant plasma cells are dependent on bone marrow microenvironment, providing growth and survival factors. Importantly, the recent studies pointed hypoxia as an important factor promoting progression of MM. In particular, hypoxia-triggered HIF-1 signaling was shown to promote chemoresistance, angiogenesis, invasiveness and induction of immature phenotype, suggesting that strategies targeting HIF-1 may contribute to improvement of anti-myeloma therapies. METHODS The Western Blot and RT-PCR techniques were applied to analyze the influence of metformin on HIF-1 pathway in MM cells. To evaluate the effect of metformin on the growth of MM cell lines in normoxic and hypoxic conditions the MTT assay was used. The apoptosis induction in metformin treated hypoxic and normoxic cells was verified by Annexin V/PI staining followed by FACS analysis. RESULTS Our results showed, for the first time, that metformin inhibits HIF-1 signaling in MM cells. Moreover, we demonstrated the effect of metformin to be mainly oxygen dependent, since the HIF-1 pathway was not significantly affected by metformin in anoxic conditions as well as after application of hypoxic mimicking compound, CoCl2. Our data also revealed that metformin triggers the growth arrest without inducing apoptosis in either normoxic or hypoxic conditions. CONCLUSIONS Taken together, our study indicates metformin as a promising candidate for developing new treatment strategies exploiting HIF-1 signaling inhibition to enhance the overall anti-MM effect of currently used therapies, that may considerably benefit MM patients.
Collapse
Affiliation(s)
- Kinga A Kocemba-Pilarczyk
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Sonia Trojan
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Barbara Ostrowska
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Małgorzata Lasota
- Department of Transplantation, Jagiellonian University Medical College, Kraków, Poland
| | - Paulina Dudzik
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Kusior
- Medical Biochemistry, Jagiellonian University-Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| | - Marta Kot
- Department of Transplantation, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
40
|
Xiao Y, Clima R, Busch J, Rabien A, Kilic E, Villegas SL, Timmermann B, Attimonelli M, Jung K, Meierhofer D. Decreased Mitochondrial DNA Content Drives OXPHOS Dysregulation in Chromophobe Renal Cell Carcinoma. Cancer Res 2020; 80:3830-3840. [PMID: 32694149 DOI: 10.1158/0008-5472.can-20-0754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma are closely related, rare kidney tumors. Mutations in complex I (CI)-encoding genes play an important role in dysfunction of the oxidative phosphorylation (OXPHOS) system in renal oncocytoma, but are less frequently observed in chRCC. As such, the relevance of OXPHOS status and role of CI mutations in chRCC remain unknown. To address this issue, we performed proteome and metabolome profiling as well as mitochondrial whole-exome sequencing to detect mitochondrial alterations in chRCC tissue specimens. Multiomic analysis revealed downregulation of electron transport chain (ETC) components in chRCC that differed from the expression profile in renal oncocytoma. A decrease in mitochondrial (mt)DNA content, rather than CI mutations, was the main cause for reduced OXPHOS in chRCC. There was a negative correlation between protein and transcript levels of nuclear DNA- but not mtDNA-encoded ETC complex subunits in chRCC. In addition, the reactive oxygen species scavenger glutathione (GSH) was upregulated in chRCC due to decreased expression of proteins involved in GSH degradation. These results demonstrate that distinct mechanisms of OXPHOS exist in chRCC and renal oncocytoma and that expression levels of ETC complex subunits can serve as a diagnostic marker for this rare malignancy. SIGNIFICANCE: These findings establish potential diagnostic markers to distinguish malignant chRCC from its highly similar but benign counterpart, renal oncocytoma.
Collapse
Affiliation(s)
- Yi Xiao
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rosanna Clima
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Medical and Surgical Sciences-DIMEC, Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Jonas Busch
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | - Ergin Kilic
- Institut für Pathologie am Klinikum Leverkusen, Leverkusen, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sonia L Villegas
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Marcella Attimonelli
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Urologic Research, Berlin, Germany
| | | |
Collapse
|
41
|
Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells. Nat Commun 2020; 11:2687. [PMID: 32483116 PMCID: PMC7264263 DOI: 10.1038/s41467-020-16192-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
Injury of corpus cavernosa results in erectile dysfunction, but its treatment has been very difficult. Here we construct heparin-coated 3D-printed hydrogel scaffolds seeded with hypoxia inducible factor-1α (HIF-1α)-mutated muscle-derived stem cells (MDSCs) to develop bioengineered vascularized corpora. HIF-1α-mutated MDSCs significantly secrete various angiogenic factors in MDSCs regardless of hypoxia or normoxia. The biodegradable scaffolds, along with MDSCs, are implanted into corpus cavernosa defects in a rabbit model to show good histocompatibility with no immunological rejection, support vascularized tissue ingrowth, and promote neovascularisation to repair the defects. Evaluation of morphology, intracavernosal pressure, elasticity and shrinkage of repaired cavernous tissue prove that the bioengineered corpora scaffolds repair the defects and recover penile erectile and ejaculation function successfully. The function recovery restores the reproductive capability of the injured male rabbits. Our work demonstrates that the 3D-printed hydrogels with angiogenic cells hold great promise for penile reconstruction to restore reproductive capability of males. Injury of corpus cavernosa results in erectile dysfunction, and repair leading to restoration of function is difficult. Here the authors construct 3D printed hydrogel constructs seeded with HIF-1α-expressing muscle derived stem cells to restore corpus function in a rabbit model.
Collapse
|
42
|
van Gisbergen MW, Offermans K, Voets AM, Lieuwes NG, Biemans R, Hoffmann RF, Dubois LJ, Lambin P. Mitochondrial Dysfunction Inhibits Hypoxia-Induced HIF-1α Stabilization and Expression of Its Downstream Targets. Front Oncol 2020; 10:770. [PMID: 32509579 PMCID: PMC7248342 DOI: 10.3389/fonc.2020.00770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
mtDNA variations often result in bioenergetic dysfunction inducing a metabolic switch toward glycolysis resulting in an unbalanced pH homeostasis. In hypoxic cells, expression of the tumor-associated carbonic anhydrase IX (CAIX) is enhanced to maintain cellular pH homeostasis. We hypothesized that cells with a dysfunctional oxidative phosphorylation machinery display elevated CAIX expression levels. Increased glycolysis was observed for cytoplasmic 143B mutant hybrid (m.3243A>G, >94.5%) cells (p < 0.05) and 143B mitochondrial DNA (mtDNA) depleted cells (p < 0.05). Upon hypoxia (0.2%, 16 h), genetic or pharmacological oxidative phosphorylation (OXPHOS) inhibition resulted in decreased CAIX (p < 0.05), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) expression levels. Reactive oxygen species (ROS) and prolyl-hydroxylase 2 (PHD2) levels could not explain these observations. In vivo, tumor take (>500 mm3) took longer for mutant hybrid xenografts, but growth rates were comparable with control tumors upon establishment. Previously, it has been shown that HIF-1α is responsible for tumor establishment. In agreement, we found that HIF-1α expression levels and the pimonidazole-positive hypoxic fraction were reduced for the mutant hybrid xenografts. Our results demonstrate that OXPHOS dysfunction leads to a decreased HIF-1α stabilization and subsequently to a reduced expression of its downstream targets and hypoxic fraction in vivo. In contrast, hypoxia-inducible factor 2-alpha (HIF-2α) expression levels in these xenografts were enhanced. Inhibition of mitochondrial function is therefore an interesting approach to increase therapeutic efficacy in hypoxic tumors.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Kelly Offermans
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - An M Voets
- Department of Clinical Genomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Natasja G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Rianne Biemans
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Roland F Hoffmann
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
43
|
Kurelac I, Abarrategi A, Ragazzi M, Iommarini L, Ganesh NU, Snoeks T, Bonnet D, Porcelli AM, Malanchi I, Gasparre G. A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. J Clin Med 2019; 8:E2184. [PMID: 31835761 PMCID: PMC6947153 DOI: 10.3390/jcm8122184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
A cogent issue in cancer research is how to account for the effects of tumor microenvironment (TME) on the response to therapy, warranting the need to adopt adequate in vitro and in vivo models. This is particularly relevant in the development of strategies targeting cancer metabolism, as they will inevitably have systemic effects. For example, inhibition of mitochondrial complex I (CI), despite showing promising results as an anticancer approach, triggers TME-mediated survival mechanisms in subcutaneous osteosarcoma xenografts, a response that may vary according to whether the tumors are induced via subcutaneous injection or by intrabone orthotopic transplantation. Thus, with the aim to characterize the TME of CI-deficient tumors in a model that more faithfully represents osteosarcoma development, we set up a humanized bone niche ectopic graft. A prominent involvement of TME was revealed in CI-deficient tumors, characterized by the abundance of cancer associated fibroblasts, tumor associated macrophages and preservation of osteocytes and osteoblasts in the mineralized bone matrix. The pseudo-orthotopic approach allowed investigation of osteosarcoma progression in a bone-like microenvironment setting, without being invasive as the intrabone cell transplantation. Additionally, establishing osteosarcomas in a humanized bone niche model identified a peculiar association between targeting CI and bone tissue preservation.
Collapse
Affiliation(s)
- Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (N.U.G.); (G.G.)
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK;
| | - Ander Abarrategi
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK (D.B.)
- Regenerative Medicine Lab, CICbiomaGUNE, Paseo Miramón 182, 20014 Donostia, Spain
- Ikerbasque, Basque Foundation of Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Moira Ragazzi
- Anatomia Patologica, Azienda Unità Sanitaria Locale–IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Luisa Iommarini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126 Bologna, Italy; (L.I.); (A.M.P.)
| | - Nikkitha Umesh Ganesh
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (N.U.G.); (G.G.)
| | - Thomas Snoeks
- In Vivo Imaging Operations, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Dominique Bonnet
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK (D.B.)
| | - Anna Maria Porcelli
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126 Bologna, Italy; (L.I.); (A.M.P.)
- Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
| | - Ilaria Malanchi
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK;
| | - Giuseppe Gasparre
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (N.U.G.); (G.G.)
- Centro di Ricerca Biomedica Applicata (CRBA), Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
44
|
Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 2019; 15:569-589. [PMID: 31439934 DOI: 10.1038/s41574-019-0242-2] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Despite its position as the first-line drug for treatment of type 2 diabetes mellitus, the mechanisms underlying the plasma glucose level-lowering effects of metformin (1,1-dimethylbiguanide) still remain incompletely understood. Metformin is thought to exert its primary antidiabetic action through the suppression of hepatic glucose production. In addition, the discovery that metformin inhibits the mitochondrial respiratory chain complex 1 has placed energy metabolism and activation of AMP-activated protein kinase (AMPK) at the centre of its proposed mechanism of action. However, the role of AMPK has been challenged and might only account for indirect changes in hepatic insulin sensitivity. Various mechanisms involving alterations in cellular energy charge, AMP-mediated inhibition of adenylate cyclase or fructose-1,6-bisphosphatase 1 and modulation of the cellular redox state through direct inhibition of mitochondrial glycerol-3-phosphate dehydrogenase have been proposed for the acute inhibition of gluconeogenesis by metformin. Emerging evidence suggests that metformin could improve obesity-induced meta-inflammation via direct and indirect effects on tissue-resident immune cells in metabolic organs (that is, adipose tissue, the gastrointestinal tract and the liver). Furthermore, the gastrointestinal tract also has a major role in metformin action through modulation of glucose-lowering hormone glucagon-like peptide 1 and the intestinal bile acid pool and alterations in gut microbiota composition.
Collapse
Affiliation(s)
- Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Centre, Leiden, Netherlands
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.
- CNRS, UMR8104, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
45
|
Lai PY, Jing X, Michalkiewicz T, Entringer B, Ke X, Majnik A, Kriegel AJ, Liu P, Lane RH, Konduri GG. Adverse early-life environment impairs postnatal lung development in mice. Physiol Genomics 2019; 51:462-470. [PMID: 31373541 DOI: 10.1152/physiolgenomics.00016.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is a major risk factor for bronchopulmonary dysplasia (BPD). Maternal stress and poor diet are linked to FGR. Effect of perinatal stress on lung development remains unknown. OBJECTIVE Using a murine model of adverse early life environment (AELE), we hypothesized that maternal exposure to perinatal environmental stress and high-fat diet (Western diet) lead to impaired lung development in the offspring. METHODS Female mice were placed on either control diet or Western diet before conception. Those exposed to Western diet were also exposed to perinatal environmental stress, the combination referred to as AELE. Pups were either euthanized at postnatal day 21 (P21) or weaned to control diet and environment until adulthood (8-14 wk old). Lungs were harvested for histology, gene expression by quantitative RT-PCR, microRNA profiling, and immunoblotting. RESULTS AELE increased the mean linear intercept and decreased the radial alveolar count and secondary septation in P21 and adult mice. Capillary count was also decreased in P21 and adult mice. AELE lungs had decreased vascular endothelial growth factor A (VEGFA), VEGF receptor 2, endothelial nitric oxide synthase, and hypoxia inducible factor-1α protein levels and increased expression of genes that regulate DNA methylation and upregulation of microRNAs that target genes involved in lung development at P21. CONCLUSION AELE leads to impaired lung alveolar and vascular growth, which persists into adult age despite normalizing the diet and environment at P21. AELE also alters the expression of genes involved in lung remodeling.
Collapse
Affiliation(s)
- Pui Y Lai
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Teresa Michalkiewicz
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Brianna Entringer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Xingrao Ke
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Amber Majnik
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Alison J Kriegel
- Department of Physiology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert H Lane
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Girija G Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| |
Collapse
|
46
|
Abstract
Perturbed mitochondrial bioenergetics constitute a core pillar of cancer-associated metabolic dysfunction. While mitochondrial dysfunction in cancer may result from myriad biochemical causes, a historically neglected source is that of the mitochondrial genome. Recent large-scale sequencing efforts and clinical studies have highlighted the prevalence of mutations in mitochondrial DNA (mtDNA) in human tumours and their potential roles in cancer progression. In this review we discuss the biology of the mitochondrial genome, sources of mtDNA mutations, and experimental evidence of a role for mtDNA mutations in cancer. We also propose a ‘metabolic licensing’ model for mtDNA mutation-derived dysfunction in cancer initiation and progression.
Collapse
Affiliation(s)
- Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK. .,CRUK Beatson Institute for Cancer Research, Glasgow, UK.
| | | |
Collapse
|
47
|
Yadav S, Pandey SK, Goel Y, Temre MK, Singh SM. Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate. Front Pharmacol 2019; 10:728. [PMID: 31333455 PMCID: PMC6620530 DOI: 10.3389/fphar.2019.00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Malignant cells possess a unique metabolic machinery to endure unobstructed cell survival. It comprises several levels of metabolic networking consisting of 1) upregulated expression of membrane-associated transporter proteins, facilitating unhindered uptake of substrates; 2) upregulated metabolic pathways for efficient substrate utilization; 3) pH and redox homeostasis, conducive for driving metabolism; 4) tumor metabolism-dependent reconstitution of tumor growth promoting the external environment; 5) upregulated expression of receptors and signaling mediators; and 6) distinctive genetic and regulatory makeup to generate and sustain rearranged metabolism. This feat is achieved by a "battery of molecular patrons," which acts in a highly cohesive and mutually coordinated manner to bestow immortality to neoplastic cells. Consequently, it is necessary to develop a multitargeted therapeutic approach to achieve a formidable inhibition of the diverse arrays of tumor metabolism. Among the emerging agents capable of such multifaceted targeting of tumor metabolism, an alkylating agent designated as 3-bromopyruvate (3-BP) has gained immense research focus because of its broad spectrum and specific antineoplastic action. Inhibitory effects of 3-BP are imparted on a variety of metabolic target molecules, including transporters, metabolic enzymes, and several other crucial stakeholders of tumor metabolism. Moreover, 3-BP ushers a reconstitution of the tumor microenvironment, a reversal of tumor acidosis, and recuperative action on vital organs and systems of the tumor-bearing host. Studies have been conducted to identify targets of 3-BP and its derivatives and characterization of target binding for further optimization. This review presents a brief and comprehensive discussion about the current state of knowledge concerning various aspects of tumor metabolism and explores the prospects of 3-BP as a safe and effective antineoplastic agent.
Collapse
Affiliation(s)
| | | | | | | | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
48
|
The multifaceted contribution of α-ketoglutarate to tumor progression: An opportunity to exploit? Semin Cell Dev Biol 2019; 98:26-33. [PMID: 31175937 DOI: 10.1016/j.semcdb.2019.05.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023]
Abstract
The thriving field that constitutes cancer metabolism has unveiled some groundbreaking facts over the past two decades, at the heart of which is the TCA cycle and its intermediates. As such and besides its metabolic role, α-ketoglutarate was shown to withstand a wide range of physiological reactions from protection against oxidative stress, collagen and bone maintenance to development and immunity. Most importantly, it constitutes the rate-limiting substrate of 2-oxoglutarate-dependent dioxygenases family enzymes, which are involved in hypoxia sensing and in the shaping of cellular epigenetic landscape, two major drivers of oncogenic transformation. Based on literature reports, we hereby review the benefits of this metabolite as a possible novel adjuvant therapeutic opportunity to target tumor progression. This article is part of the special issue "Mitochondrial metabolic alterations in cancer cells and related therapeutic targets".
Collapse
|
49
|
Desbats MA, Giacomini I, Prayer-Galetti T, Montopoli M. Iron granules in plasma cells. J Clin Pathol 1982; 10:281. [PMID: 32211323 PMCID: PMC7068907 DOI: 10.3389/fonc.2020.00281] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023]
Abstract
Resistance of cancer cells to chemotherapy is the first cause of cancer-associated death. Thus, new strategies to deal with the evasion of drug response and to improve clinical outcomes are needed. Genetic and epigenetic mechanisms associated with uncontrolled cell growth result in metabolism reprogramming. Cancer cells enhance anabolic pathways and acquire the ability to use different carbon sources besides glucose. An oxygen and nutrient-poor tumor microenvironment determines metabolic interactions among normal cells, cancer cells and the immune system giving rise to metabolically heterogeneous tumors which will partially respond to metabolic therapy. Here we go into the best-known cancer metabolic profiles and discuss several studies that reported tumors sensitization to chemotherapy by modulating metabolic pathways. Uncovering metabolic dependencies across different chemotherapy treatments could help to rationalize the use of metabolic modulators to overcome therapy resistance.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- *Correspondence: Monica Montopoli
| |
Collapse
|