1
|
Sattari-Esfahlan SM, Mirzaei S, Josline MJ, Moon JY, Hyun SH, Jang H, Lee JH. Amorphous boron nitride: synthesis, properties and device application. NANO CONVERGENCE 2025; 12:22. [PMID: 40314909 PMCID: PMC12048386 DOI: 10.1186/s40580-025-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Amorphous boron nitride (a-BN) exhibits remarkable electrical, optical, and chemical properties, alongside robust mechanical stability, making it a compelling material for advanced applications in nanoelectronics and photonics. This review comprehensively examines the unique characteristics of a-BN, emphasizing its electrical and optical attributes, state-of-the-art synthesis techniques, and device applications. Key advancements in low-temperature growth methods for a-BN are highlighted, offering insights into their potential for integration into scalable, CMOS-compatible platforms. Additionally, the review discusses the emerging role of a-BN as a dielectric material in electronic and photonic devices, serving as substrates, encapsulation layers, and gate insulators. Finally, perspectives on future challenges, including defect control, interface engineering, and scalability, are presented, providing a roadmap for realizing the full potential of a-BN in next-generation device technologies.
Collapse
Affiliation(s)
| | - Saeed Mirzaei
- CEITEC BUT, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
- Fraunhofer Institute for Material and Beam Technology, WinterbergstraBe 28, E01277, Dresden, Germany
| | | | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sang-Hwa Hyun
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Houk Jang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| | - Jae-Hyun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117575, Singapore.
| |
Collapse
|
2
|
Huang J, Meng J, Yang H, Jiang J, Xia Z, Zhang S, Zeng L, Yin Z, Zhang X. Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride. SMALL METHODS 2025; 9:e2401296. [PMID: 39420859 DOI: 10.1002/smtd.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe2 on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe2 layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe2 and h-BN/sapphire is determined to HfSe2 (0001)[12 ¯ ${\mathrm{\bar{2}}}$ 10]//h-BN (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]//sapphire (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe2 layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe2 epilayers and the weak interfacial scattering of HfSe2/h-BN, the photodetector fabricated from the vdW epitaxial HfSe2 on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 104 and a responsivity up to 43 mA W-1. Furthermore, the vdW epitaxy of other TMDs such as HfS2, ZrS2, and ZrSe2 is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.
Collapse
Affiliation(s)
- Jidong Huang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Meng
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Huabo Yang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siyu Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Libin Zeng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Li Y, Liang D, Wang R, Yang S, Liu W, Sang Q, Pu J, Wang Y, Qian K. Interfacial Self-Assembly Nanostructures: Constructions and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405318. [PMID: 39301942 DOI: 10.1002/smll.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Interfacial self-assembly nanoarrays refer to the spontaneously organized nanostructures at interfaces, relying on the intrinsic properties of involved materials, such as surface energy, molecular structure, and interactions. In recent years, the exponential growth of self-assembly nanotechnology has substantially expanded the utility of nanomaterials. Particularly, non-covalent interactions-based interfacial self-assembly represents a viable and promising approach for the synthesis of novel nanostructure. This review introduces the significance and current development status of interfacial self-assembly technology, focusing on the driving mode, application, and prospects of interfacial self-assembly nanoarrays over the past few years.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Dingyitai Liang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Ruimin Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Wanshan Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Qi Sang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Jun Pu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, P. R. China
| |
Collapse
|
4
|
Liu Z, Wang F, Wang X, Huang J, Yue Y, Dai R, Li K, Wang Z, Yang K, Chen D, Xin G. Enhancing Thermal Management of Graphene Devices by Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65165-65172. [PMID: 39556322 DOI: 10.1021/acsami.4c14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Two-dimensional graphene has emerged as a promising competitor to silicon in the post-Moore era due to its superior electrical, optical, and thermal properties. However, graphene undergoes a strong degradation in its in-plane thermal conductivity when it is coupled to an amorphous substrate. Meanwhile, the weak van der Waals interaction between graphene and the dielectric substrate leads to high interfacial thermal resistance. Severe challenges in the device's heat dissipation rise, resulting in elevated hotspot and deteriorated electrical performance. Here, we applied self-assembled monolayers (SAMs) to modify the interface between graphene and the oxide substrate and mitigate the thermal issues in the device. The -NH2 terminated SAM demonstrates enhanced interfacial coupling strength between graphene and substrate, increasing the interfacial thermal conductance. The -CH3 terminated SAM effectively suppresses the substrate phonon scattering, preserving the high in-plane thermal conductivity of graphene. Particularly, the -NH2 terminated SAM significantly enhances the heat dissipation efficacy of graphene field-effect transistors and alleviates the self-heating issues. Enhancements of 28.1% and 48.2% were observed in the devices' current-carrying capacity and maximum power density, respectively. Our research provides a highly attractive platform for incorporating SAMs to improve thermal management in two-dimensional electronic devices.
Collapse
Affiliation(s)
- Zexin Liu
- Wuhan National High Magnetic Field Center and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanfan Wang
- School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofeng Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian Huang
- School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Yue
- Wuhan National High Magnetic Field Center and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiwen Dai
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kangyong Li
- School of Materials Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiqiang Wang
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Yang
- Wuhan National High Magnetic Field Center and School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Chen
- School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Guoqing Xin
- Wuhan National High Magnetic Field Center and School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Stankus V, Vasiliauskas A, Guobienė A, Andrulevičius M, Meškinis Š. Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering. Molecules 2024; 29:5247. [PMID: 39598637 PMCID: PMC11596222 DOI: 10.3390/molecules29225247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
In the present research, hexagonal boron nitride (h-BN) films were deposited by reactive high-power impulse magnetron sputtering (HiPIMS) of the pure boron target. Nitrogen was used as both a sputtering gas and a reactive gas. It was shown that, using only nitrogen gas, hexagonal-boron-phase thin films were synthesized successfully. The deposition temperature, time, and nitrogen gas flow effects were studied. It was found that an increase in deposition temperature resulted in hydrogen desorption, less intensive hydrogen-bond-related luminescence features in the Raman spectra of the films, and increased h-BN crystallite size. Increases in deposition time affect crystallites, which form larger conglomerates, with size decreases. The conglomerates' size and surface roughness increase with increases in both time and temperature. An increase in the nitrogen flow was beneficial for a significant reduction in the carbon amount in the h-BN films and the appearance of the h-BN-related features in the lateral force microscopy images.
Collapse
Affiliation(s)
- Vytautas Stankus
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (A.V.); (A.G.); (M.A.)
| | | | | | | | - Šarūnas Meškinis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (A.V.); (A.G.); (M.A.)
| |
Collapse
|
6
|
Tie K, Qi J, Hu Y, Fu Y, Sun S, Wang Y, Huang Y, Wang Z, Yuan L, Li L, Wei D, Chen X, Hu W. Crucial role of interfacial thermal dissipation in the operational stability of organic field-effect transistors. SCIENCE ADVANCES 2024; 10:eadn5964. [PMID: 39241080 PMCID: PMC11378947 DOI: 10.1126/sciadv.adn5964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
The operational stability becomes a key issue affecting the commercialization for organic field-effect transistors (OFETs). It is widely recognized to be closely related to the defects and traps at the interface between dielectric and organic semiconductors, but this understanding does not always effectively address operational instability, implying that the factors influencing the operational stability have not been fully understood. Here, we reveal that the self-heating effect is another crucial factor in operational stability. By using hexagonal boron nitride (hBN) to assist interfacial thermal dissipation, the dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) FETs exhibit high mobility of 14.18 cm2 V-1 s-1 and saturated power density up to 1.8 × 104 W cm-2. The OFET can operate at a power density of 1.06 × 104 W cm-2 for 30,000 s with negligible performance degradation, showing excellent operational stability under high power density. This work deepens the understanding on operational stability and develops an effective way for ultrahigh stable devices.
Collapse
Affiliation(s)
- Kai Tie
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jiannan Qi
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yongxu Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yao Fu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Shougang Sun
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanpeng Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yinan Huang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongwu Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Liqian Yuan
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Liqiang Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xiaosong Chen
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
7
|
Chen J, Sun MY, Wang ZH, Zhang Z, Zhang K, Wang S, Zhang Y, Wu X, Ren TL, Liu H, Han L. Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor. NANO-MICRO LETTERS 2024; 16:264. [PMID: 39120835 PMCID: PMC11315877 DOI: 10.1007/s40820-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) allow for atomic-scale manipulation, challenging the conventional limitations of semiconductor materials. This capability may overcome the short-channel effect, sparking significant advancements in electronic devices that utilize 2D TMDs. Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance. This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor. It delves into the impacts of miniaturization, including the reduction of channel length, gate length, source/drain contact length, and dielectric thickness on transistor operation and performance. In addition, this review provides a detailed analysis of performance parameters such as source/drain contact resistance, subthreshold swing, hysteresis loop, carrier mobility, on/off ratio, and the development of p-type and single logic transistors. This review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage. It also emphasizes the role of 2D TMD-based transistors as memory devices, focusing on enhancing memory operation speed, endurance, data retention, and extinction ratio, as well as reducing energy consumption in memory devices functioning as artificial synapses. This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices. This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications. It underscores the anticipated challenges, opportunities, and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- BNRist, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ming-Yuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zhen-Hua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Kai Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China
| | - Xiaoming Wu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, People's Republic of China.
| |
Collapse
|
8
|
Yu J, Han W, Suleiman AA, Han S, Miao N, Ling FCC. Recent Advances on Pulsed Laser Deposition of Large-Scale Thin Films. SMALL METHODS 2024; 8:e2301282. [PMID: 38084465 DOI: 10.1002/smtd.202301282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Indexed: 07/21/2024]
Abstract
2D thin films, possessing atomically thin thickness, are emerging as promising candidates for next-generation electronic devices, due to their novel properties and high performance. In the early years, a wide variety of 2D materials are prepared using several methods (mechanical/liquid exfoliation, chemical vapor deposition, etc.). However, the limited size of 2D flakes hinders their fundamental research and device applications, and hence the effective large-scale preparation of 2D films is still challenging. Recently, pulsed laser deposition (PLD) has appeared to be an impactful method for wafer-scale growth of 2D films, owing to target-maintained stoichiometry, high growth rate, and efficiency. In this review, the recent advances on the PLD preparation of 2D films are summarized, including the growth mechanisms, strategies, and materials classification. First, efficacious strategies of PLD growth are highlighted. Then, the growth, characterization, and device applications of various 2D films are presented, such as graphene, h-BN, MoS2, BP, oxide, perovskite, semi-metal, etc. Finally, the potential challenges and further research directions of PLD technique is envisioned.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physics, The University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Wei Han
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, P. R. China
- School of Microelectronics, Hubei University, Wuhan, 430062, P. R. China
| | - Abdulsalam Aji Suleiman
- Institute of Materials Science and Nanotechnology, Bilkent University UNAM, Ankara, 06800, Turkey
| | - Siyu Han
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | | |
Collapse
|
9
|
Sengottaiyan C, Hara M, Nagata H, Mitsuboshi H, Jeganathan C, Yoshimura M. Large-Area Synthesis and Fabrication of Few-Layer hBN/Monolayer RGO Heterostructures for Enhanced Contact Surface Potential. ACS OMEGA 2024; 9:26307-26315. [PMID: 38911715 PMCID: PMC11190914 DOI: 10.1021/acsomega.4c02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024]
Abstract
Hexagonal boron nitride (hBN) has a property similar to that of graphene, and it has become one of the most popular materials due to its flexible physical and chemical properties for a variety of applications, especially in nanoelectronics. Enhanced properties of hBN-based heterostructures are crucial for future electronic devices. In this work, a sheet-like hBN crystal was synthesized and transferred onto SiO2/Si substrate and reduced graphene oxide (RGO)/SiO2/Si substrate. Accordingly, the hBN and hBN/RGO films are investigated by optical microscopy, X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The thickness of a single hBN layer is approximately 0.4 nm. A few layers of hBN stacked in large areas are mostly observed in both hBN and the hBN/RGO films. By using Kelvin probe force microscopy, it was found that the hBN/RGO heterostructure has a contact surface potential higher than that of the hBN layer. The large-scale synthesis and fabrication of hBN/RGO films could be extended to fabricate other van der Waals heterostructures.
Collapse
Affiliation(s)
| | - Masanori Hara
- Toyota Technological Institute,
Tempaku, Nagoya, Aichi 468-8511, Japan
| | - Hiroki Nagata
- Toyota Technological Institute,
Tempaku, Nagoya, Aichi 468-8511, Japan
| | - Hibiki Mitsuboshi
- Toyota Technological Institute,
Tempaku, Nagoya, Aichi 468-8511, Japan
| | | | | |
Collapse
|
10
|
Wang H, Guo H, Guzman R, JiaziLa N, Wu K, Wang A, Liu X, Liu L, Wu L, Chen J, Huan Q, Zhou W, Yang H, Pantelides ST, Bao L, Gao HJ. Ultrafast Non-Volatile Floating-Gate Memory Based on All-2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311652. [PMID: 38502781 DOI: 10.1002/adma.202311652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/29/2024] [Indexed: 03/21/2024]
Abstract
The explosive growth of massive-data storage and the demand for ultrafast data processing require innovative memory devices with exceptional performance. 2D materials and their van der Waal heterostructures with atomically sharp interfaces hold great promise for innovations in memory devices. Here, this work presents non-volatile, floating-gate memory devices with all functional layers made of 2D materials, achieving ultrafast programming/erasing speeds (20 ns), high extinction ratios (up to 108), and multi-bit storage capability. These devices also exhibit long-term data retention exceeding 10 years, facilitated by a high gate-coupling ratio (GCR) and atomically sharp interfaces between functional layers. Additionally, this work demonstrates the realization of an "OR" logic gate on a single-device unit by synergistic electrical and optical operations. The present results provide a solid foundation for next-generation ultrahigh-speed, ultralong lifespan, non-volatile memory devices, with a potential for scale-up manufacturing and flexible electronics applications.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Guo
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Hefei National Laboratory, Hefei, Anhui, 230088, P. R. China
| | - Roger Guzman
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nuertai JiaziLa
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kang Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aiwei Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuanye Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangmei Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiancui Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Huan
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haitao Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Hefei National Laboratory, Hefei, Anhui, 230088, P. R. China
| | - Sokrates T Pantelides
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Physics and Astronomy & Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Lihong Bao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Hefei National Laboratory, Hefei, Anhui, 230088, P. R. China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Hefei National Laboratory, Hefei, Anhui, 230088, P. R. China
| |
Collapse
|
11
|
Zhang K, Zhang T, You J, Zheng X, Zhao M, Zhang L, Kong J, Luo Z, Huang S. Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307587. [PMID: 38084456 DOI: 10.1002/smll.202307587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Indexed: 05/12/2024]
Abstract
2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
12
|
Perkgoz C. Identifying optical microscope images of CVD-grown two-dimensional MoS 2 by convolutional neural networks and transfer learning. PeerJ Comput Sci 2024; 10:e1885. [PMID: 38435565 PMCID: PMC10909165 DOI: 10.7717/peerj-cs.1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Background In Complementary Metal-Oxide Semiconductor (CMOS) technology, scaling down has been a key strategy to improve chip performance and reduce power losses. However, challenges such as sub-threshold leakage and gate leakage, resulting from short-channel effects, contribute to an increase in distributed static power. Two-dimensional transition metal dichalcogenides (2D TMDs) emerge as potential solutions, serving as channel materials with steep sub-threshold swings and lower power consumption. However, the production and development of these 2-dimensional materials require some time-consuming tasks. In order to employ them in different fields, including chip technology, it is crucial to ensure that their production meets the required standards of quality and uniformity; in this context, deep learning techniques show significant potential. Methods This research introduces a transfer learning-based deep convolutional neural network (CNN) to classify chemical vapor deposition (CVD) grown molybdenum disulfide (MoS2) flakes based on their uniformity or the occurrence of defects affecting electronic properties. Acquiring and labeling a sufficient number of microscope images for CNN training may not be realistic. To address this challenge, artificial images were generated using Fresnel equations to pre-train the CNN. Subsequently, accuracy was improved through fine-tuning with a limited set of real images. Results The proposed transfer learning-based CNN method significantly improved all measurement metrics with respect to the ordinary CNNs. The initial CNN, trained with limited data and without transfer learning, achieved 68% average accuracy for binary classification. Through transfer learning and artificial images, the same CNN achieved 85% average accuracy, demonstrating an average increase of approximately 17%. While this study specifically focuses on MoS2 structures, the same methodology can be extended to other 2-dimensional materials by simply incorporating their specific parameters when generating artificial images.
Collapse
Affiliation(s)
- Cahit Perkgoz
- Department of Computer Engineering, Eskisehir Technical University, Eskişehir, Turkey
| |
Collapse
|
13
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
14
|
Liu C, Huang C, Li Y, Liu Y, Bian H, Xiang Z, Wang H, Wang H, Xiao H. Freeze-casting production of thermal insulating and fire-retardant lightweight aerogels based on nanocellulose and boron nitride. Int J Biol Macromol 2023; 252:126370. [PMID: 37595711 DOI: 10.1016/j.ijbiomac.2023.126370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Cellulose aerogels exhibit biocompatibility and biodegradability, rendering them promising candidate for application in building energy conservation and insulation materials. However, the intrinsic inflammability of pristine cellulose aerogel causes unneglectable safety concerns, hindering their application in energy-efficient buildings. Herein, a thermal insulating, fire-retardant, strong, and lightweight aerogel was produced via freeze-casting suspensions of cellulose nanofibril (CNF) and l-glutamine functionalized boron nitride nanosheets (BNNS-g). The aerogel with a BNNS-g:CNF concentration ratio of 15:5 exhibited outstanding mechanical strength owing to the strong interaction between BNNS-g and CNF as well as satisfactory thermal insulating performance (0.052 W/m·K). Particularly, this aerogel showed excellent fire-retardant and self-extinguishing capabilities in the vertical burning test, which remained unscathed after over 60 s of burning in a butane flame. Further, the limit oxygen index (LOI) of this aerogel was 36.0 %, which was better than the LOIs of traditional petrochemical-based insulating materials. This study provides a promising strategy for producing aerogels with excellent properties using cellulose and other inorganic nano-fillers.
Collapse
Affiliation(s)
- Chao Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chunqin Huang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyang Bian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huijie Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| |
Collapse
|
15
|
Zeng F, Wang R, Wei W, Feng Z, Guo Q, Ren Y, Cui G, Zou D, Zhang Z, Liu S, Liu K, Fu Y, Kou J, Wang L, Zhou X, Tang Z, Ding F, Yu D, Liu K, Xu X. Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates. Nat Commun 2023; 14:6421. [PMID: 37828069 PMCID: PMC10570391 DOI: 10.1038/s41467-023-42270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.
Collapse
Affiliation(s)
- Fankai Zeng
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Ran Wang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Wenya Wei
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zuo Feng
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China
| | - Quanlin Guo
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China
| | - Yunlong Ren
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Guoliang Cui
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Dingxin Zou
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Zhensheng Zhang
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Song Liu
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Kehai Liu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Ying Fu
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Jinzong Kou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Li Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xu Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Zhilie Tang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Feng Ding
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dapeng Yu
- International Quantum Academy, Futian District, Shenzhen, 518045, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, 100871, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China.
| | - Xiaozhi Xu
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Liu S, Liu Y, Holtzman L, Li B, Holbrook M, Pack J, Taniguchi T, Watanabe K, Dean CR, Pasupathy AN, Barmak K, Rhodes DA, Hone J. Two-Step Flux Synthesis of Ultrapure Transition-Metal Dichalcogenides. ACS NANO 2023; 17:16587-16596. [PMID: 37610237 DOI: 10.1021/acsnano.3c02511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Two-dimensional transition-metal dichalcogenides (TMDs) have attracted tremendous interest due to the unusual electronic and optoelectronic properties of isolated monolayers and the ability to assemble diverse monolayers into complex heterostructures. To understand the intrinsic properties of TMDs and fully realize their potential in applications and fundamental studies, high-purity materials are required. Here, we describe the synthesis of TMD crystals using a two-step flux growth method that eliminates a major potential source of contamination. Detailed characterization of TMDs grown by this two-step method reveals charged and isovalent defects with densities an order of magnitude lower than those in TMDs grown by a single-step flux technique. For WSe2, we show that increasing the Se/W ratio during growth reduces point defect density, with crystals grown at 100:1 ratio achieving charged and isovalent defect densities below 1010 and 1011 cm-2, respectively. Initial temperature-dependent electrical transport measurements of monolayer WSe2 yield room-temperature hole mobility above 840 cm2/(V s) and low-temperature disorder-limited mobility above 44,000 cm2/(V s). Electrical transport measurements of graphene-WSe2 heterostructures fabricated from the two-step flux grown WSe2 also show superior performance: higher graphene mobility, lower charged impurity density, and well-resolved integer quantum Hall states. Finally, we demonstrate that the two-step flux technique can be used to synthesize other TMDs with similar defect densities, including semiconducting 2H-MoSe2 and 2H-MoTe2 and semimetallic Td-WTe2 and 1T'-MoTe2.
Collapse
Affiliation(s)
- Song Liu
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Yang Liu
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Luke Holtzman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Baichang Li
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Madisen Holbrook
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Jordan Pack
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Daniel A Rhodes
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
17
|
Yang S, Liu K, Xu Y, Liu L, Li H, Zhai T. Gate Dielectrics Integration for 2D Electronics: Challenges, Advances, and Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207901. [PMID: 36226584 DOI: 10.1002/adma.202207901] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Indexed: 05/05/2023]
Abstract
2D semiconductors have emerged both as an ideal platform for fundamental studies and as promising channel materials in beyond-silicon field-effect-transistors due to their outstanding electrical properties and exceptional tunability via external field. However, the lack of proper dielectrics for 2D semiconductors has become a major roadblock for their further development toward practical applications. The prominent issues between conventional 3D dielectrics and 2D semiconductors arise from the integration and interface quality, where defect states and imperfections lead to dramatic deterioration of device performance. In this review article, the root causes of such issues are briefly analyzed and recent advances on some possible solutions, including various approaches of adapting conventional dielectrics to 2D semiconductors, and the development of novel dielectrics with van der Waals surface toward high-performance 2D electronics are summarized. Then, in the perspective, the requirements of ideal dielectrics for state-of-the-art 2D devices are outlined and an outlook for their future development is provided.
Collapse
Affiliation(s)
- Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Yamamoto M, Murata H, Miyata N, Takashima H, Nagao M, Mimura H, Neo Y, Murakami K. Low-Temperature Direct Synthesis of Multilayered h-BN without Catalysts by Inductively Coupled Plasma-Enhanced Chemical Vapor Deposition. ACS OMEGA 2023; 8:5497-5505. [PMID: 36816676 PMCID: PMC9933473 DOI: 10.1021/acsomega.2c06757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Low-temperature direct synthesis of thick multilayered hexagonal-boron nitride (h-BN) on semiconducting and insulating substrates is required to produce high-performance electronic devices based on two-dimensional (2D) materials. In this study, multilayered h-BN with a thickness exceeding 5 nm was directly synthesized on quartz and Si at low temperatures, between 400 and 500 °C, by inductively coupled plasma-enhanced chemical vapor deposition using borazine as the precursor material. The quality and thickness of the h-BN crystals were investigated with respect to synthesis parameters, namely, temperature, radio frequency power, N2 flow rate, and H2 flow rate. Introducing N2 and H2 carrier gases critically affected the deposition rate, and increasing the carrier gas flow rate enhanced the h-BN crystal quality. The typical optical band gap of synthesized h-BN was approximately 5.8 eV, consistent with that of previous studies. The full width at half-maximum of the h-BN Raman peak was 32-33 cm-1, comparable to that of commercially available multilayered h-BN on Cu foil. These results are expected to facilitate the development of 2D materials for electronics applications.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Research
Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan
- National
Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hiromasa Murata
- National
Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Noriyuki Miyata
- National
Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hiroshi Takashima
- National
Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Masayoshi Nagao
- National
Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hidenori Mimura
- Research
Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan
| | - Yoichiro Neo
- Research
Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011, Japan
| | - Katsuhisa Murakami
- National
Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
19
|
Duan F, Wei D, Chen A, Zheng X, Wang H, Qin G. Efficient modulation of thermal transport in two-dimensional materials for thermal management in device applications. NANOSCALE 2023; 15:1459-1483. [PMID: 36541854 DOI: 10.1039/d2nr06413h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the development of chip technology, the density of transistors on integrated circuits is increasing and the size is gradually shrinking to the micro-/nanoscale, with the consequent problem of heat dissipation on chips becoming increasingly serious. For device applications, efficient heat dissipation and thermal management play a key role in ensuring device operation reliability. In this review, we summarize the thermal management applications based on 2D materials from both theoretical and experimental perspectives. The regulation approaches of thermal transport can be divided into two main types: intrinsic structure engineering (acting on the intrinsic structure) and non-structure engineering (applying external fields). On one hand, the thermal transport properties of 2D materials can be modulated by defects and disorders, size effect (including length, width, and the number of layers), heterostructures, structure regulation, doping, alloy, functionalizing, and isotope purity. On the other hand, strain engineering, electric field, and substrate can also modulate thermal transport efficiently without changing the intrinsic structure of the materials. Furthermore, we propose a perspective on the topic of using magnetism and light field to modulate the thermal transport properties of 2D materials. In short, we comprehensively review the existing thermal management modulation applications as well as the latest research progress, and conclude with a discussion and perspective on the applications of 2D materials in thermal management, which will be of great significance to the development of next-generation nanoelectronic devices.
Collapse
Affiliation(s)
- Fuqing Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Donghai Wei
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ailing Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xiong Zheng
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Huimin Wang
- Hunan Key Laboratory for Micro-Nano Energy Materials & Device and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Guangzhao Qin
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
20
|
Moon S, Kim J, Park J, Im S, Kim J, Hwang I, Kim JK. Hexagonal Boron Nitride for Next-Generation Photonics and Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204161. [PMID: 35735090 DOI: 10.1002/adma.202204161] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Hexagonal boron nitride (h-BN), an insulating 2D layered material, has recently attracted tremendous interest motivated by the extraordinary properties it shows across the fields of optoelectronics, quantum optics, and electronics, being exotic material platforms for various applications. At an early stage of h-BN research, it is explored as an ideal substrate and insulating layers for other 2D materials due to its atomically flat surface that is free of dangling bonds and charged impurities, and its high thermal conductivity. Recent discoveries of structural and optical properties of h-BN have expanded potential applications into emerging electronics and photonics fields. h-BN shows a very efficient deep-ultraviolet band-edge emission despite its indirect-bandgap nature, as well as stable room-temperature single-photon emission over a wide wavelength range, showing a great potential for next-generation photonics. In addition, h-BN is extensively being adopted as active media for low-energy electronics, including nonvolatile resistive switching memory, radio-frequency devices, and low-dielectric-constant materials for next-generation electronics.
Collapse
Affiliation(s)
- Seokho Moon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jiye Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jeonghyeon Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Semi Im
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jawon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Inyong Hwang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
21
|
Yu QV, Watanabe K, Taniguchi T, Li LH. Interfacial thermal conductance between atomically thin boron nitride and graphene. NANOSCALE 2022; 15:122-126. [PMID: 36504234 DOI: 10.1039/d2nr05985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomically thin hexagonal boron nitride (BN) is a promising dielectric substrate for graphene and other two-dimensional (2D) materials for performance enhancement and heat dissipation. However, the interfacial heat conductance between atomically thin BN and graphene has not been experimentally studied yet. Here, we report that the interfacial thermal conductance between high-quality graphene and trilayer BN is 9.64 ± 2.12 MW m-2 K-1 in the temperature range of 293-393 K, indicating that the interfacial thermal conductance is depressed when the heterostructure thickness is smaller than the wavelength of the low-frequency phonons, e.g. ZA in BN.
Collapse
Affiliation(s)
- Qiuhui V Yu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Kenji Watanabe
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Lu Hua Li
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
22
|
Wei T, Han Z, Zhong X, Xiao Q, Liu T, Xiang D. Two dimensional semiconducting materials for ultimately scaled transistors. iScience 2022; 25:105160. [PMID: 36204270 PMCID: PMC9529977 DOI: 10.1016/j.isci.2022.105160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two dimensional (2D) semiconductors have been established as promising candidates to break through the short channel effect that existed in Si metal-oxide-semiconductor field-effect-transistor (MOSFET), owing to their unique atomically layered structure and dangling-bond-free surface. The last decade has witnessed the significant progress in the size scaling of 2D transistors by various approaches, in which the physical gate length of the transistors has shrank from micrometer to sub-one nanometer with superior performance, illustrating their potential as a replacement technology for Si MOSFETs. Here, we review state-of-the-art techniques to achieve ultra-scaled 2D transistors with novel configurations through the scaling of channel, gate, and contact length. We provide comprehensive views of the merits and drawbacks of the ultra-scaled 2D transistors by summarizing the relevant fabrication processes with the corresponding critical parameters achieved. Finally, we identify the key opportunities and challenges for integrating ultra-scaled 2D transistors in the next-generation heterogeneous circuitry.
Collapse
Affiliation(s)
- Tianyao Wei
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
- Frontier Institute of Chip and System, Fudan University, Shanghai 200438, People’s Republic of China
| | - Zichao Han
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
| | - Xinyi Zhong
- Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
| | - Qingyu Xiao
- Department of Materials Science, Fudan University, Shanghai 200433, People’s Republic of China
| | - Tao Liu
- Institute of Optoelectronics, Fudan University, Shanghai 200438, People’s Republic of China
- Zhangjiang Fudan International Innovation Centre, Fudan University, Shanghai 200438, People’s Republic of China
- Corresponding author
| | - Du Xiang
- Frontier Institute of Chip and System, Fudan University, Shanghai 200438, People’s Republic of China
- Zhangjiang Fudan International Innovation Centre, Fudan University, Shanghai 200438, People’s Republic of China
- Shanghai Qi Zhi Institute, Shanghai 200232, People’s Republic of China
- Corresponding author
| |
Collapse
|
23
|
Sun X, Feng Y, Wang F, Wang P, Gao W, Yin H. Direct growth of h-BN multilayers with controlled thickness on non-crystalline dielectric substrates without metal catalysts. Chem Commun (Camb) 2022; 58:9750-9753. [PMID: 35946432 DOI: 10.1039/d2cc03025j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an rGO-assisted CVD approach that enables the direct growth of high-quality single crystalline h-BN films with adjustable thickness and layered order on amorphous quartz and SiO2/Si substrates at relatively low temperatures. This work demonstrates a viable prototype for growing continuous ultrathin h-BN films on desired substrates without the requirement of lattice orientation, thus offering a great opportunity for their appealing applications.
Collapse
Affiliation(s)
- Xiaoyan Sun
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, Jilin, People's Republic of China.
| | - Yuanfang Feng
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, Jilin, People's Republic of China.
| | - Fei Wang
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, Jilin, People's Republic of China.
| | - Peng Wang
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, Jilin, People's Republic of China.
| | - Wei Gao
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, Jilin, People's Republic of China.
| | - Hong Yin
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, Jilin, People's Republic of China.
| |
Collapse
|
24
|
Wu Q, Luo Y, Xie R, Nong H, Cai Z, Tang L, Tan J, Feng S, Zhao S, Yu Q, Lin J, Chai G, Liu B. Space-Confined One-Step Growth of 2D MoO 2 /MoS 2 Vertical Heterostructures for Superior Hydrogen Evolution in Alkaline Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201051. [PMID: 35841344 DOI: 10.1002/smll.202201051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
2D material-based heterostructures are constructed by stacking or spicing individual 2D layers to create an interface between them, which have exotic properties. Here, a new strategy for the in situ growth of large numbers of 2D heterostructures on the centimeter-scale substrate is developed. In the method, large numbers of 2D MoS2 , MoO2 , or their heterostructures of MoO2 /MoS2 are controllably grown in the same setup by simply tuning the gap distance between metal precursor and growth substrate, which changes the concentration of metal precursors feed. A lateral force microscope is used first to identify the locations of each material in the heterostructures, which have MoO2 on the top of MoS2 . Noteworthy, the creation of a clean interface between atomic thin MoO2 (metallic) and MoS2 (semiconducting) results in a different electronic structure compared with pure MoO2 and MoS2 . Theoretical calculations show that the charge redistribution at such an interface results in an improved HER performance on the MoO2 /MoS2 heterostructures, showing an overpotential of 60 mV at 10 mA cm-2 and a Tafel slope of 47 mV dec-1 . This work reports a new strategy for the in situ growth of heterostructures on large-scale substrates and provides platforms to exploit their applications.
Collapse
Affiliation(s)
- Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yuting Luo
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Ruikuan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhengyang Cai
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Lei Tang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Simin Feng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shilong Zhao
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guoliang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
25
|
Lu Z, Zhu M, Liu Y, Zhang G, Tan Z, Li X, Xu S, Wang L, Dou R, Wang B, Yao Y, Zhang Z, Dong J, Cheng Z, Chen S. Low-Temperature Synthesis of Boron Nitride as a Large-Scale Passivation and Protection Layer for Two-Dimensional Materials and High-Performance Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25984-25992. [PMID: 35604780 DOI: 10.1021/acsami.2c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional materials (2DMs) with extraordinary electronic and optical properties have attracted great interest in optoelectronic applications. Due to their atomically thin feature, 2DM-based devices are generally sensitive to oxygen and moisture in ambient air, and thus, practical application of durable 2DM-based devices remains challenging. Here, we report a novel strategy to directly synthesize amorphous BN film on various 2DMs and field-effect transistor (FET) devices at low temperatures by conventional chemical vapor deposition. The wafer-scale BN film with controllable thickness serves as a passivation and heat dissipation layer, further improving the long-term stability, the resistance to laser irradiation, and the antioxidation performance of the underneath 2DMs. In particular, the BN capping layer could be deposited directly on a WSe2 FET at low temperature to achieve a clean and conformal interface. The high performance of the BN-capped WSe2 device is realized with suppressed current fluctuations and 10-fold enhanced carrier mobility. The transfer-free amorphous BN synthesis technique is simple and applicable to various 2DMs grown on arbitrary substrates, which shows great potential for applications in future two-dimensional electronics.
Collapse
Affiliation(s)
- Zhanjie Lu
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natural Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| | - Meijie Zhu
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natural Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yifan Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Gehui Zhang
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natural Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zuoquan Tan
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natural Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| | - Xiaotian Li
- Department of Physics, Beijing Normal University, Beijing 100875, P. R. China
| | - Shuaishuai Xu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Le Wang
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natural Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| | - Ruifen Dou
- Department of Physics, Beijing Normal University, Beijing 100875, P. R. China
| | - Bin Wang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuan Yao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Jichen Dong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natural Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shanshan Chen
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natural Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
26
|
Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 2022; 606:88-93. [PMID: 35650356 DOI: 10.1038/s41586-022-04745-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Large-area single-crystal monolayers of two-dimensional (2D) materials such as graphene1-3, hexagonal boron nitride (hBN)4-6 and transition metal dichalcogenides7,8 have been grown. hBN is considered to be the 'ideal' dielectric for 2D-materials-based field-effect transistors (FETs), offering the potential for extending Moore's law9,10. Although hBN thicker than a monolayer is more desirable as substrate for 2D semiconductors11,12, highly uniform and single-crystal multilayer hBN growth has yet to be demonstrated. Here we report the epitaxial growth of wafer-scale single-crystal trilayer hBN by a chemical vapour deposition (CVD) method. Uniformly aligned hBN islands are found to grow on single-crystal Ni (111) at early stage and finally to coalesce into a single-crystal film. Cross-sectional transmission electron microscopy (TEM) results show that a Ni23B6 interlayer is formed (during cooling) between the single-crystal hBN film and Ni substrate by boron dissolution in Ni. There are epitaxial relationships between hBN and Ni23B6 and between Ni23B6 and Ni. We also find that the hBN film acts as a protective layer that remains intact during catalytic evolution of hydrogen, suggesting continuous single-crystal hBN. This hBN transferred onto the SiO2 (300 nm)/Si wafer acts as a dielectric layer to reduce electron doping from the SiO2 substrate in MoS2 FETs. Our results demonstrate high-quality single-crystal multilayered hBN over large areas, which should open up new pathways for making it a ubiquitous substrate for 2D semiconductors.
Collapse
|
27
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Chen J, Wang G, Meng J, Cheng Y, Yin Z, Tian Y, Huang J, Zhang S, Wu J, Zhang X. Low-Temperature Direct Growth of Few-Layer Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7004-7011. [PMID: 35080841 DOI: 10.1021/acsami.1c22626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wide-band-gap layered semiconductor hexagonal boron nitride (h-BN) is attracting intense interest due to its unique optoelectronic properties and versatile applications in deep ultraviolet optoelectronic and two-dimensional electronic devices. However, it is still a great challenge to directly grow high-quality h-BN on dielectric substrates, and an extremely high substrate temperature or annealing is usually required. In this work, high-quality few-layer h-BN is directly grown on sapphire substrates via ion beam sputtering deposition at a relatively low temperature of 700 °C by introducing NH3 into the growth chamber. Such low growth temperature is attributed to the presence of abundant active N species, originating from the decomposition of NH3 under ion beam irradiation. To further tailor the properties of h-BN, carbon was introduced into the h-BN layer by simultaneously introducing CH4 and NH3 during the growth process, indicating the wide applicability of this approach. Moreover, a deep ultraviolet (DUV) photodetector is also fabricated from a C-doped h-BN layer and exhibits superior performance compared with an intrinsic h-BN device.
Collapse
Affiliation(s)
- Jingren Chen
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gaokai Wang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junhua Meng
- Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yong Cheng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Tian
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jidong Huang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siyu Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinliang Wu
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Joint Lab of Digital Optical Chip, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
29
|
Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi MASR, Lai J, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu Z, Iyengar SA, Autreto PADS, Oliveira EF, Gao G, Birdwell AG, Neupane MR, Ivanov TG, Taha-Tijerina J, Yadav RM, Arepalli S, Vajtai R, Ajayan PM. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101589. [PMID: 34561916 DOI: 10.1002/adma.202101589] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Indexed: 05/09/2023]
Abstract
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ashokkumar Meiyazhagan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sandhya Susarla
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Sreehari K Saju
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mai Kim Tran
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lucas M Sassi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jiawei Lai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Onur Sahin
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Bhuvaneswari Dharmarajan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Devashish Salpekar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Nithya Chakingal
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Abhijit Baburaj
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xinting Shuai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Aparna Adumbumkulath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Alec Ajnsztajn
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Thibeorchews Prasankumar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | | | - Ved Ojha
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Harikishan Kannan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ali Zein Khater
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Zhenwei Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sathvik Ajay Iyengar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pedro Alves da Silva Autreto
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001-Bangú, Santo André - SP, Santo André, 09210-580, Brazil
| | - Eliezer Fernando Oliveira
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - A Glen Birdwell
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Mahesh R Neupane
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Tony G Ivanov
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Jaime Taha-Tijerina
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Engineering Department, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza Garcí, Monterrey, Nuevo Leon, 66238, Mexico
- Department of Manufacturing and Industrial Engineering, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Physics, VSSD College, Kanpur, Uttar Pradesh, 208002, India
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| |
Collapse
|
31
|
Li D, Wang Q, Xu X. Thermal Conductivity of VO 2 Nanowires at Metal-Insulator Transition Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2428. [PMID: 34578742 PMCID: PMC8472604 DOI: 10.3390/nano11092428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Vanadium dioxide (VO2) nanowires endowed with a dramatic metal-insulator transition have attracted enormous attention. Here, the thermal conductance of VO2 nanowires with different sizes, measured using the thermal bridge method, is reported. A size-dependent thermal conductivity was observed where the thicker nanowire showed a higher thermal conductivity. Meanwhile, the thermal conductivity jump at metal-insulator transition temperature was measured to be much higher in the thicker samples. The dominant heat carriers were phonons both at the metallic and the insulating regimes in the measured samples, which may result from the coexistence of metal and insulator phases at high temperature. Our results provide a window into exploring the mechanism of the metal-insulator transition of VO2 nanowires.
Collapse
Affiliation(s)
| | | | - Xiangfan Xu
- Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (D.L.); (Q.W.)
| |
Collapse
|
32
|
Yi K, Liu D, Chen X, Yang J, Wei D, Liu Y, Wei D. Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications. Acc Chem Res 2021; 54:1011-1022. [PMID: 33535000 DOI: 10.1021/acs.accounts.0c00757] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ConspectusSince the rise of two-dimensional (2D) materials, synthetic methods including mechanical exfoliation, solution synthesis, and chemical vapor deposition (CVD) have been developed. Mechanical exfoliation prepares randomly shaped materials with small size. Solution synthesis introduces impurities that degrade the performances. CVD is the most successful one for low-cost scalable preparation. However, when it comes to practical applications, disadvantages such as high operating temperature (∼1000 °C), probable usage of metal catalysts, contamination, defects, and interstices introduced by postgrowth transfer are not negligible. These are the reasons why plasma-enhanced CVD (PECVD), a method that enables catalyst-free in situ preparation at low temperature, is imperatively desirable.In this Account, we summarize our recent progress on controllable preparation of 2D materials by PECVD and their applications. We found that there was a competition between etching and nucleation and deposition in PECVD, making it highly controllable to obtain desired materials. Under different equilibrium states of the competition, various 2D materials with diverse morphologies and properties were prepared including pristine or nitrogen-doped graphene crystals, graphene quantum dots, graphene nanowalls, hexagonal boron nitride (h-BN), B-C-N ternary materials (BCxN), etc. We also used mild plasma to modify or treat 2D materials (e.g., WSe2) for desired properties.PECVD has advantages such as low temperature, transfer-free process, and industrial compatibility, which enable facile, scalable, and low-cost preparation of 2D materials with clean surfaces and interfaces directly on noncatalytic substrates. These merits significantly benefit the as-prepared materials in the applications. Field-effect transistors with high motilities were directly fabricated on graphene and nitrogen-doped graphene. By use of h-BN as the dielectric interfacial layer, both mobilities and saturated power densities of the devices were improved owing to the clean, closely contacted interface and enhanced interfacial thermal dissipation. High-quality materials and interfaces also enabled promising applications of these materials in photodetectors, pressure sensors, biochemical sensors, electronic skins, Raman enhancement, etc. To demonstrate the commercial applications, several prototypical devices were studied such as distributed pressure sensor arrays, touching module on a robot hand for braille recognition, and smart gloves for recording sign language. Finally, we discuss opportunities and challenges of PECVD as a comprehensive preparation methodology of 2D materials for future applications beyond traditional CVD.
Collapse
Affiliation(s)
- Kongyang Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200092, China
| | - Donghua Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Xiaosong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dapeng Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Leiter R, Li Y, Kaiser U. In-situ formation and evolution of atomic defects in monolayer WSe 2 under electron irradiation. NANOTECHNOLOGY 2020; 31:495704. [PMID: 32946426 DOI: 10.1088/1361-6528/abb335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal dichalcogenide (TMD) monolayers such as MoS2, MoSe2, MoTe2, WS2 and WSe2 have attracted significant interest due to their remarkable electronic and optical properties, exhibiting a direct band gap, enabling usability in electronics and optics. Their properties can be altered further by the introduction of lattice defects. In this work, the dynamics of the formation of electron-beam-induced lattice defects in monolayer WSe2 are investigated by in-situ spherical and chromatic aberration-corrected low-voltage transmission electron microscopy. We show and analyze the electron-dose-limited life of a monolayer WSe2 from the formation of isolated Se vacancies over extended defects such as vacancy lines, mirror twin boundaries (MTBs) and inversion domains towards the loss of W atoms leading to the formation of holes and finally the destruction of the monolayer. We identify, moreover, a new type of MTB. Our study extends the basic understanding of defect dynamics in monolayer WSe2, sheds further light on the electron radiation response and suggests new ways for engineering the in-plane architecture of TMDs.
Collapse
Affiliation(s)
- Robert Leiter
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | |
Collapse
|
34
|
Han Y, Han HJ, Rah Y, Kim C, Kim M, Lim H, Ahn KH, Jang H, Yu K, Kim TS, Cho EN, Jung YS. Desolvation-Triggered Versatile Transfer-Printing of Pure BN Films with Thermal-Optical Dual Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002099. [PMID: 33617118 DOI: 10.1002/adma.202002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/21/2020] [Indexed: 06/12/2023]
Abstract
Although hexagonal boron nitride (BN) nanostructures have recently received significant attention due to their unique physical and chemical properties, their applications have been limited by a lack of processability and poor film quality. In this study, a versatile method to transfer-print high-quality BN films composed of densely stacked BN nanosheets based on a desolvation-induced adhesion switching (DIAS) mechanism is developed. It is shown that edge functionalization of BN sheets and rational selection of membrane surface energy combined with systematic control of solvation and desolvation status enable extensive tunability of interfacial interactions at BN-BN, BN-membrane, and BN-substrate boundaries. Therefore, without incorporating any additives in the BN film and applying any surface treatment on target substrates, DIAS achieves a near 100% transfer yield of pure BN films on diverse substrates, including substrates containing significant surface irregularities. The printed BNs demonstrate high optical transparency (>90%) and excellent thermal conductivity (>167 W m-1 K-1) for few-micrometer-thick films due to their dense and well-ordered microstructures. In addition to outstanding heat dissipation capability, substantial optical enhancement effects are confirmed for light-emitting, photoluminescent, and photovoltaic devices, demonstrating their remarkable promise for next-generation optoelectronic device platforms.
Collapse
Affiliation(s)
- Yujin Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeuk Jin Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoonhyuk Rah
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Cheolgyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Moohyum Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hunhee Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang Ho Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoungsik Yu
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eugene N Cho
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
35
|
Yi K, Jin Z, Bu S, Wang D, Liu D, Huang Y, Dong Y, Yuan Q, Liu Y, Wee ATS, Wei D. Catalyst-Free Growth of Two-Dimensional BC xN Materials on Dielectrics by Temperature-Dependent Plasma-Enhanced Chemical Vapor Deposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33113-33120. [PMID: 32574487 DOI: 10.1021/acsami.0c08555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traditional methods to prepare two-dimensional (2D) B-C-N ternary materials (BCxN), such as chemical vapor deposition (CVD), require sophisticated experimental conditions such as high temperature, delicate control of precursors, and postgrowth transfer from catalytic substrates, and the products are generally thick or bulky films without the atomically mixed phase of B-C-N, hampering practical applications of these materials. Here, for the first time, we develop a temperature-dependent plasma-enhanced chemical vapor deposition (PECVD) method to grow 2D BCxN materials directly on noncatalytic dielectrics at low temperature with high controllability. The C, N, and B compositions can be tuned by simply changing the growth temperature. Thus, the properties of the as-made materials including band gap and conductivity are modulated, which is hardly achieved by other methods. A 2D hybridized BC2N film with a mixed BC2N phase is produced, for the first time, with a band gap of about 2.3 eV. The growth temperature is 580-620 °C, much lower than that of traditional catalytic CVD for growing BCxN. The product has a p-type conducting property and can be directly applied in field-effect transistors and sensors without postgrowth transfer, showing great promise for this method in future applications.
Collapse
Affiliation(s)
- Kongyang Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, 200433 Shanghai, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200092, China
| | - Zhepeng Jin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, 200433 Shanghai, China
| | - Saiyu Bu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Dingguan Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Donghua Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, 200433 Shanghai, China
| | - Yamin Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200092, China
| | - Yemin Dong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200092, China
| | - Qinghong Yuan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, 200433 Shanghai, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, 200433 Shanghai, China
| |
Collapse
|
36
|
Lu J, Yuan K, Sun F, Zheng K, Zhang Z, Zhu J, Wang X, Zhang X, Zhuang Y, Ma Y, Cao X, Zhang J, Tang D. Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42708-42714. [PMID: 31625728 DOI: 10.1021/acsami.9b12006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reliability and lifespan of highly miniaturized and integrated devices will be effectively improved if excessive accumulated heat can be quickly transported to heat sinks. In this study, both molecular dynamics (MD) simulations and experiments were performed to demonstrate that self-assembled monolayers (SAMs) have high potential in interfacial thermal management and can enhance thermal transport across the polystyrene (PS)/silicon (Si) interface, modeling the common polymer/semiconductor interfaces in actual devices. The influence of packing density and alkyl-chain length of SAMs is investigated. First, MD simulations show that the interfacial thermal transport efficiency of SAM is higher with high packing density. The interfacial thermal conductance (ITC) between PS and Si can be improved up to 127 ± 9 MW m-2 K-1, close to the ITC across the metal and semiconductor interface. At moderate packing density, the SAMs with less than eight carbon atoms in the alkyl chain show superior improvements over those with more carbons because of the assembled structure variation. Second, the time-domain thermoreflectance technique was employed to characterize the ITCs of a bunch of Al/PS/SAM/Si samples. C6-SAM enhances the ITC by fivefolds, from 11 ± 1 to 56 ± 17 MW m-2 K-1. The interfacial thermal management efficiency will weaken when the alkyl chain exceeds eight carbon atoms, which agrees with the ITC trend from MD simulations at moderate packing density. The relationship between the SAM morphology and interfacial thermal management efficiency is also discussed in detail. This study demonstrates the feasibility of molecular-level design for interfacial thermal management from both the theoretical calculation and experiment and may provide a new idea for improving the heat dissipation efficiency of microdevices.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Kunpeng Yuan
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering , Dalian University of Technology , Dalian 116024 , China
| | | | | | - Zhongyin Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Jie Zhu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Xinwei Wang
- College of Pipeline and Civil Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xiaoliang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Yafang Zhuang
- School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongmei Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS) , Beijing 100190 , China
| | | | | | - Dawei Tang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
37
|
Chen X, Hu P, Song K, Wang X, Zuo C, Yang R, Wang J. CVD growth of large–scale hexagon-like shaped MoSe2 monolayers with sawtooth edge. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|