1
|
Gupta S, Gupta AK, Mehan S, Khan Z, Gupta GD, Narula AS. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025; 569:331-353. [PMID: 39809360 DOI: 10.1016/j.neuroscience.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK. Activation of these pathways is often correlated with neuronal excitotoxicity, apoptosis, and inflammation, leading to many other pathological conditions such as traumatic brain injury, stroke, and brain tumor. The interplay between glutamate overstimulation and MAPK signalling exacerbates neurodegenerative processes, underscoring the complexity of cellular communication in maintaining neuronal health. Dysfunctional signalling alters synaptic plasticity and neuronal survival, contributing to cognitive impairments in various neurological diseases. The manuscript emphasizes the potential of targeting these signalling pathways for therapeutic interventions, promoting neuroprotection and reducing neuroinflammation. Incorporating insights from precision medicine and innovative drug delivery systems could enhance treatment efficacy. Overall, understanding the intricate mechanisms of these pathways is essential for developing effective strategies to mitigate the impact of neurological disorders and improve patient outcomes. This review highlights the necessity for further exploration into these signalling cascades to facilitate advancements in therapeutic approaches, ensuring better prognoses for individuals affected by neurological conditions.
Collapse
Affiliation(s)
- Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India. https://mehanneuroscience.org
| | - Zuber Khan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Kong C, Bing Z, Yang L, Huang Z, Wang W, Grebogi C. Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD. Genes (Basel) 2024; 16:11. [PMID: 39858558 PMCID: PMC11764921 DOI: 10.3390/genes16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control. METHODS We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level. We employ Cell-Specific Network Inference via Integer Value Programming and Causal Reasoning (CS-NIVaCaR) to identify core modules and Cell-Specific Probabilistic Contextualization for mRNA Regulatory Networks (CS-ProComReN) to quantitatively reveal activated sub-pathways involving MAPK1, MKNK1, RPS6KA5, and MTOR across different cell types in ASD. RESULTS The results indicate that specific pivotal molecules, such as EIF4EBP1 and EIF4E, lacking Differential Expression (DE) characteristics and responsible for protein translation with long-term potentiation (LTP) or long-term depression (LTD), are dysregulated. We further uncover distinct activation patterns causally linked to the EIF4EBP1-EIF4E module in excitatory and inhibitory neurons. CONCLUSIONS Importantly, our work introduces a methodology for leveraging extensive transcriptomics data to parse the signal transduction network, transforming it into mSiReN, and mapping it back to the protein level. These algorithms can serve as potent tools in systems biology to analyze other omics and regulatory networks. Furthermore, the biomarkers within the activated sub-pathways, revealed by identifying convergent dysregulation, illuminate potential diagnostic and prognostic factors in ASD.
Collapse
Affiliation(s)
- Chao Kong
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zigang Huang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China;
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Old Aberdeen AB24 3UE, UK
| |
Collapse
|
3
|
Mongad D, Subramanian I, Krishanpal A. Deriving comprehensive literature trends on multi-omics analysis studies in autism spectrum disorder using literature mining pipeline. Front Neurosci 2024; 18:1400412. [PMID: 39600653 PMCID: PMC11590066 DOI: 10.3389/fnins.2024.1400412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is characterized by highly heterogenous abnormalities in functional brain connectivity affecting social behavior. There is a significant progress in understanding the molecular and genetic basis of ASD in the last decade using multi-omics approach. Mining this large volume of biomedical literature for insights requires considerable amount of manual intervention for curation. Machine learning and artificial intelligence fields are advancing toward simplifying data mining from unstructured text data. Here, we demonstrate our literature mining pipeline to accelerate data to insights. Using topic modeling and generative AI techniques, we present a pipeline that can classify scientific literature into thematic clusters and can help in a wide array of applications such as knowledgebase creation, conversational virtual assistant, and summarization. Employing our pipeline, we explored the ASD literature, specifically around multi-omics studies to understand the molecular interplay underlying autism brain.
Collapse
|
4
|
Huang K, Cai J, Lu Y, Wang T, Yue S, Wei Q, Yao J, Chen Z, Cao X. GPRASP2 deficiency contributes to apoptosis in the spiral ganglion cells via the AMPK/DRP1 signaling pathway. Heliyon 2024; 10:e36140. [PMID: 39253164 PMCID: PMC11381771 DOI: 10.1016/j.heliyon.2024.e36140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
G protein-coupled receptor-associated sorting protein 2 (GPRASP2) deficiency has been implicated in immunological inflammation, cancers, and neurological disorders. Our previous work revealed that the pathogenic mutation in GPRASP2 was responsible for X-linked recessive syndromic hearing loss (SHL). Given the specific high expression of GPRASP2 in the spiral ganglion, GPRASP2 likely contributes to the maintenance and functionality of neurons, potentially playing a role in synaptic transmission. The impact of GPRASP2 deficiency on spiral ganglion cells (SGCs) and their underlying pathogenic mechanisms will be investigated in this study. The primary culture of SGCs obtained from mouse cochleae was treated with Gprasp2-targeting short hairpin RNA (Gprasp2-shRNA) via lentivirus infection. The results showed that GPRASP2 deficiency enhanced SGCs apoptosis and decreased cell viability. Meanwhile, a significant abnormality of mitochondrial morphology and decreased membrane potential were observed in GPRASP2-deficient SGCs. These effects could be mitigated by treatment with the mitochondrial division inhibitor 1 (Mdivi-1). In addition to enhancing SGCs apoptosis and decreasing cell viability, GPRASP2 deficiency also inhibited the development of SGCs in mouse cochlear explant culture. Our study further revealed that this deficiency resulted in increased phosphorylation of AMPK and activation of the AMPK/DRP1 pathway, promoting SGCs apoptosis. These findings provide insight into the pathogenic mechanisms by which GPRASP2 deficiency is implicated in auditory dysfunction.
Collapse
Affiliation(s)
- Kun Huang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jing Cai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Tianming Wang
- Central Laboratory, Translational Medicine Research Center, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Shen Yue
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Wang L, Xu M, Wang Y, Wang F, Deng J, Wang X, Zhao Y, Liao A, Yang F, Wang S, Li Y. Melatonin improves synapse development by PI3K/Akt signaling in a mouse model of autism spectrum disorder. Neural Regen Res 2024; 19:1618-1624. [PMID: 38051907 PMCID: PMC10883500 DOI: 10.4103/1673-5374.387973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00043/figure1/v/2023-11-20T171125Z/r/image-tiff
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes, including Ctnnd2 as a candidate gene. Ctnnd2 knockout mice, serving as an animal model of autism, have been demonstrated to exhibit decreased density of dendritic spines. The role of melatonin, as a neurohormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines, in Ctnnd2 deletion-induced nerve injury remains unclear. In the present study, we discovered that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits, spine loss, impaired inhibitory neurons, and suppressed phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signal pathway in the prefrontal cortex. Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice. Furthermore, the administration of melatonin in the prefrontal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region. The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor, wortmannin, and melatonin receptor antagonists, luzindole and 4-phenyl-2-propionamidotetralin, prevented the melatonin-induced enhancement of GABAergic synaptic function. These findings suggest that melatonin treatment can ameliorate GABAergic synaptic function by activating the PI3K/Akt signal pathway, which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
Collapse
Affiliation(s)
- Luyi Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Man Xu
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Pediatric, Chongqing University Fuling Hospital, Chongqing, China
| | - Yan Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Feifei Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jing Deng
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoya Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yu Zhao
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ailing Liao
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shali Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yingbo Li
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Tecuatl C, Ljungquist B, Ascoli GA. Accelerating the continuous community sharing of digital neuromorphology data. FASEB Bioadv 2024; 6:207-221. [PMID: 38974113 PMCID: PMC11226999 DOI: 10.1096/fba.2024-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 h to 2 min. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Bengt Ljungquist
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
- Interdisciplinary Program in Neuroscience, College of ScienceGeorge Mason UniversityFairfaxVirginiaUSA
| |
Collapse
|
7
|
Pereira MI, Laranjo M, Gomes M, Edfawy M, Peça J. Maternal behaviours disrupted by Gprasp2 deletion modulate neurodevelopmental trajectory in progeny. Sci Rep 2024; 14:12484. [PMID: 38816497 PMCID: PMC11139669 DOI: 10.1038/s41598-024-62088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Autism spectrum disorders (ASDs) are known to present sex-specific differences. At the same time, understanding how maternal behaviours are affected by pathogenic mutations is crucial to translate research efforts since rearing may recursively modulate neurodevelopment phenotype of the progeny. In this work, we focused on the effects of Gprasp2 deletion in females and its impact in progeny care and development. Female mice, wild-type (WT), Gprasp2+/- (HET) or Gprasp2-/- (KO) mutants and their progeny were used and behavioural paradigms targeting anxiety, memory, maternal care, and other social behaviours were performed. Analysis of communication was carried out through daily recordings of ultrasonic vocalizations in isolated pups and cross-fostering experiments were performed to understand the effect of maternal genotype in pup development. We found that Gprasp2-/- females presented striking impairments in social and working memory. Females also showed disruptions in maternal care, as well as physiological and molecular alterations in the reproductive system and hypothalamus, such as the structure of the mammary gland and the expression levels of oxytocin receptor (OxtR) in nulliparous versus primiparous females. We observed alterations in pup communication, particularly a reduced number of calls in Gprasp2 KO pups, which resulted from an interaction effect of the dam and pup genotype. Cross-fostering mutant pups with wild-type dams rescued some of the early defects shown in vocalizations, however, this effect was not bidirectional, as rearing WT pups with Gprasp2-/- dams was not sufficient to induce significant phenotypical alterations. Our results suggest Gprasp2 mutations perturb social and working memory in a sex-independent manner, but impact female-specific behaviours towards progeny care, female physiology, and gene expression. These changes in mutant dams contribute to a disruption in early stages of progeny development. More generally, our results highlight the need to better understand GxE interactions in the context of ASDs, when female behaviour may present a contributing factor in postnatal neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Marta I Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- PhDOC PhD Program, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mariana Laranjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Marcos Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Mohamed Edfawy
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- HEMEX AG, Liestal, Switzerland
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
8
|
Oner M, Cheng PT, Wang HY, Chen MC, Lin H. Metformin alters dendrite development and synaptic plasticity in rat cortical neurons. Biochem Biophys Res Commun 2024; 710:149874. [PMID: 38581950 DOI: 10.1016/j.bbrc.2024.149874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Synaptic plasticity is crucial as it dynamically molds the strength and connectivity of neural circuits, influencing learning, memory, and the development of neurological disorders. Metformin, a widely prescribed anti-diabetic medication, has been shown to readily cross the blood-brain barrier (BBB) and the placenta. However, its prolonged impact on neuronal morphology and functions remains underexplored. In this study, we investigated the influence of metformin on dendrite development and synaptic plasticity in embryonic brains and primary rat cortical neurons. Our findings reveal a negative modulation of dendrite development by metformin, as evidenced by altered dendritic arborization, impaired dendritic spine morphology and disruptions in synaptic plasticity, suggesting a potential link between metformin exposure and aberrations in neuronal connectivity. In addition, we extend our insights to the impact of maternal metformin exposure on embryonic brains, revealing a significant inhibition of dendrite development in E18.5 rat brains. In conclusion, this study adds to the expanding knowledge base on the non-metabolic effects of metformin, emphasizing the significance of assessing its potential influence on both neuronal structure and function. There is an urgent need for further investigations into the enduring impact of prolonged metformin administration on the structural and functional aspects of neurons.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital Taichung, 40705, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
9
|
Tecuatl C, Ljungquist B, Ascoli GA. Accelerating the continuous community sharing of digital neuromorphology data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585306. [PMID: 38562736 PMCID: PMC10983892 DOI: 10.1101/2024.03.15.585306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 hours to 2 minutes. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Bengt Ljungquist
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| |
Collapse
|
10
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Ferreira-Fernandes E, Laranjo M, Reis T, Canijo B, Ferreira PA, Martins P, Vilarinho J, Tavakoli M, Kunicki C, Peça J. In vivo recordings in freely behaving mice using independent silicon probes targeting multiple brain regions. Front Neural Circuits 2023; 17:1293620. [PMID: 38186631 PMCID: PMC10771849 DOI: 10.3389/fncir.2023.1293620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
In vivo recordings in freely behaving animals are crucial to understand the neuronal circuit basis of behavior. Although current multi-channel silicon probes provide unparalleled sampling density, the study of interacting neuronal populations requires the implantation of multiple probes across different regions of the brain. Ideally, these probes should be independently adjustable, to maximize the yield, and recoverable, to mitigate costs. In this work, we describe the implementation of a miniaturized 3D-printed headgear system for chronic in vivo recordings in mice using independently movable silicon probes targeting multiple brain regions. We successfully demonstrated the performance of the headgear by simultaneously recording the neuronal activity in the prelimbic cortex and dorsal hippocampus. The system proved to be sturdy, ensuring high-quality stable recordings and permitted reuse of the silicon probes, with no observable interference in mouse innate behaviors.
Collapse
Affiliation(s)
- Emanuel Ferreira-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Mariana Laranjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Tiago Reis
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Bárbara Canijo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro A. Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro Martins
- Department of Architecture, University of Coimbra, Coimbra, Portugal
| | - João Vilarinho
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Coimbra, Portugal
| | - Carolina Kunicki
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Coimbra, Portugal
| | - João Peça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Guedes JR, Ferreira PA, Costa J, Laranjo M, Pinto MJ, Reis T, Cardoso AM, Lebre C, Casquinha M, Gomes M, Shkatova V, Pereira M, Beltrão N, Hanuscheck N, Greenhalgh AD, Vogelaar CF, Carvalho AL, Zipp F, Cardoso AL, Peça J. IL-4 shapes microglia-dependent pruning of the cerebellum during postnatal development. Neuron 2023; 111:3435-3449.e8. [PMID: 37918358 DOI: 10.1016/j.neuron.2023.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Interleukin-4 (IL-4) is a type 2 cytokine with pleiotropic functions in adaptive immunity, allergies, and cognitive processes. Here, we show that low levels of IL-4 in the early postnatal stage delineate a critical period in which microglia extensively prune cerebellar neurons. Elevating the levels of this cytokine via peripheral injection, or using a mouse model of allergic asthma, leads to defective pruning, permanent increase in cerebellar granule cells, and circuit alterations. These animals also show a hyperkinetic and impulsive-like phenotype, reminiscent of attention-deficit hyperactivity disorder (ADHD). These alterations are blocked in Il4rαfl/fl::Cx3cr1-CreER mice, which are deficient in IL-4 receptor signaling in microglia. These findings demonstrate a previously unknown role for IL-4 during a neuroimmune critical period of cerebellar maturation and provide a first putative mechanism for the comorbidity between allergic disease and ADHD observed in humans.
Collapse
Affiliation(s)
- Joana R Guedes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Pedro A Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Program in Biosciences, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Jéssica Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Mariana Laranjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Maria J Pinto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Tiago Reis
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Maria Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carolina Lebre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria Casquinha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcos Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Viktoriya Shkatova
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marta Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nuno Beltrão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nicholas Hanuscheck
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christina Francisca Vogelaar
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Frauke Zipp
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany.
| | - Ana Luísa Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
13
|
You M, Li S, Yan S, Yao D, Wang T, Wang Y. Exposure to nonylphenol in early life causes behavioural deficits related with autism spectrum disorders in rats. ENVIRONMENT INTERNATIONAL 2023; 180:108228. [PMID: 37802007 DOI: 10.1016/j.envint.2023.108228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Early-life exposure to environmental endocrine disruptors (EDCs) is a potential risk factor for autism spectrum disorder (ASD). Exposure to nonylphenol (NP), a typical EDC, is known to cause some long-term behavioural abnormalities. Moreover, these abnormal behaviours are the most frequent psychiatric co-morbidities in ASD. However, the direct evidence for the link between NP exposure in early life and ASD-like behavioural phenotypes is still missing. In the present study, typical ASD-like behaviours induced by valproic acid treatment were considered as a positive behavioural control. We investigated impacts on social behaviours following early-life exposure to NP, and explored effects of this exposure on neuronal dendritic spines, mitochondria function, oxidative stress, and endoplasmic reticulum (ER) stress. Furthermore, primary cultured rat neurons were employed as in vitro model to evaluate changes in dendritic spine caused by exposure to NP, and oxidative stress and ER stress were specifically modulated to further explore their roles in these changes. Our results indicated rats exposed to NP in early life showed mild ASD-like behaviours. Moreover, we also found the activation of ER stress triggered by oxidative stress may contribute to dendritic spine decrease and synaptic dysfunction, which may underlie neurobehavioural abnormalities induced by early-life exposure to NP.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Tingyu Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
14
|
Shin HS, Lee SH, Moon HJ, So YH, Lee HR, Lee EH, Jung EM. Exposure to polystyrene particles causes anxiety-, depression-like behavior and abnormal social behavior in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131465. [PMID: 37130475 DOI: 10.1016/j.jhazmat.2023.131465] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
In the era of plastic use, organisms are constantly exposed to polystyrene particles (PS-Ps). PS-Ps accumulated in living organisms exert negative effects on the body, although studies evaluating their effects on brain development are scarce. In this study, the effects of PS-Ps on nervous system development were investigated using cultured primary cortical neurons and mice exposed to PS-Ps at different stages of brain development. The gene expression associated with brain development was downregulated in embryonic brains following PS-Ps exposure, and Gabra2 expression decreased in the embryonic and adult mice exposed to PS-Ps. Additionally, offspring of PS-Ps-treated dams exhibited signs of anxiety- and depression-like behavior, and abnormal social behavior. We propose that PS-Ps accumulation in the brain disrupts brain development and behavior in mice. This study provides novel information regarding PS-Ps toxicity and its harmful effects on neural development and behavior in mammals.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Ram Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
15
|
A Novel Early Life Stress Model Affects Brain Development and Behavior in Mice. Int J Mol Sci 2023; 24:ijms24054688. [PMID: 36902120 PMCID: PMC10002977 DOI: 10.3390/ijms24054688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Early life stress (ELS) in developing children has been linked to physical and psychological sequelae in adulthood. In the present study, we investigated the effects of ELS on brain and behavioral development by establishing a novel ELS model that combined the maternal separation paradigm and mesh platform condition. We found that the novel ELS model caused anxiety- and depression-like behaviors and induced social deficits and memory impairment in the offspring of mice. In particular, the novel ELS model induced more enhanced depression-like behavior and memory impairment than the maternal separation model, which is the established ELS model. Furthermore, the novel ELS caused upregulation of arginine vasopressin expression and downregulation of GABAergic interneuron markers, such as parvalbumin (PV), vasoactive intestinal peptide, and calbindin-D28k (CaBP-28k), in the brains of the mice. Finally, the offspring in the novel ELS model showed a decreased number of cortical PV-, CaBP-28k-positive cells and an increased number of cortical ionized calcium-binding adaptors-positive cells in their brains compared to mice in the established ELS model. Collectively, these results indicated that the novel ELS model induced more negative effects on brain and behavioral development than the established ELS model.
Collapse
|
16
|
Surdin T, Preissing B, Rohr L, Grömmke M, Böke H, Barcik M, Azimi Z, Jancke D, Herlitze S, Mark MD, Siveke I. Optogenetic activation of mGluR1 signaling in the cerebellum induces synaptic plasticity. iScience 2022; 26:105828. [PMID: 36632066 PMCID: PMC9826949 DOI: 10.1016/j.isci.2022.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Neuronal plasticity underlying cerebellar learning behavior is strongly associated with type 1 metabotropic glutamate receptor (mGluR1) signaling. Activation of mGluR1 leads to activation of the Gq/11 pathway, which is involved in inducing synaptic plasticity at the parallel fiber-Purkinje cell synapse (PF-PC) in form of long-term depression (LTD). To optogenetically modulate mGluR1 signaling we fused mouse melanopsin (OPN4) that activates the Gq/11 pathway to the C-termini of mGluR1 splice variants (OPN4-mGluR1a and OPN4-mGluR1b). Activation of both OPN4-mGluR1 variants showed robust Ca2+ increase in HEK cells and PCs of cerebellar slices. We provide the prove-of-concept approach to modulate synaptic plasticity via optogenetic activation of OPN4-mGluR1a inducing LTD at the PF-PC synapse in vitro. Moreover, we demonstrate that light activation of mGluR1a signaling pathway by OPN4-mGluR1a in PCs leads to an increase in intrinsic activity of PCs in vivo and improved cerebellum driven learning behavior.
Collapse
Affiliation(s)
- Tatjana Surdin
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Bianca Preissing
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Lennard Rohr
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Michelle Grömmke
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Hanna Böke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany
| | - Maike Barcik
- Cardiovascular Research Institute Düsseldorf, Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Corresponding author
| | - Melanie D. Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Ida Siveke
- Department of Zoology and Neurobiology, Ruhr-University Bochum, Bochum, Germany,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany,Corresponding author
| |
Collapse
|
17
|
Hsieh MY, Tuan LH, Chang HC, Wang YC, Chen CH, Shy HT, Lee LJ, Gau SSF. Altered synaptic protein expression, aberrant spine morphology, and impaired spatial memory in Dlgap2 mutant mice, a genetic model of autism spectrum disorder. Cereb Cortex 2022; 33:4779-4793. [PMID: 36169576 DOI: 10.1093/cercor/bhac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
A microdeletion of approximately 2.4 Mb at the 8p23 terminal region has been identified in a Taiwanese autistic boy. Among the products transcribed/translated from genes mapped in this region, the reduction of DLGAP2, a postsynaptic scaffold protein, might be involved in the pathogenesis of autism spectrum disorder (ASD). DLGAP2 protein was detected in the hippocampus yet abolished in homozygous Dlgap2 knockout (Dlgap2 KO) mice. In this study, we characterized the hippocampal phenotypes in Dlgap2 mutant mice. Dlgap2 KO mice exhibited impaired spatial memory, indicating poor hippocampal function in the absence of DLGAP2. Aberrant expressions of postsynaptic proteins, including PSD95, SHANK3, HOMER1, GluN2A, GluR2, mGluR1, mGluR5, βCAMKII, ERK1/2, ARC, BDNF, were noticed in Dlgap2 mutant mice. Further, the spine density was increased in Dlgap2 KO mice, while the ratio of mushroom-type spines was decreased. We also observed a thinner postsynaptic density thickness in Dlgap2 KO mice at the ultrastructural level. These structural changes found in the hippocampus of Dlgap2 KO mice might be linked to impaired hippocampus-related cognitive functions such as spatial memory. Mice with Dlgap2 deficiency, showing signs of intellectual disability, a common co-occurring condition in patients with ASD, could be a promising animal model which may advance our understanding of ASD.
Collapse
Affiliation(s)
- Ming-Yen Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Serra D, Henriques JF, Sousa FJ, Laranjo M, Resende R, Ferreira-Marques M, de Freitas V, Silva G, Peça J, Dinis TCP, Almeida LM. Attenuation of Autism-like Behaviors by an Anthocyanin-Rich Extract from Portuguese Blueberries via Microbiota-Gut-Brain Axis Modulation in a Valproic Acid Mouse Model. Int J Mol Sci 2022; 23:9259. [PMID: 36012528 PMCID: PMC9409076 DOI: 10.3390/ijms23169259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental pathologies whose current treatment is neither curative nor effective. Anthocyanins are naturally occurring compounds abundant in blueberries and in other red fruits which have been shown to be successful in the treatment of several neurological diseases, at least in in vitro and in vivo disease models. The aim of the present work was to study the ability of an anthocyanin-rich extract (ARE) obtained from Portuguese blueberries to alleviate autism-like symptoms in a valproic acid (VPA) mouse model of ASD and to get insights into the underlying molecular mechanisms of such benefits. Therefore, pregnant BALB/c females were treated subcutaneously with a single dose of VPA (500 mg/kg) or saline on gestational day 12.5. Male offspring mice were orally treated with the ARE from Portuguese blueberries (30 mg/kg/day) or the vehicle for three weeks, and further subjected to behavioral tests and biochemical analysis. Our data suggested that the ARE treatment alleviated autism-like behaviors in in utero VPA-exposed mice and, at the same time, decreased both neuroinflammation and gut inflammation, modulated the gut microbiota composition, increased serotonin levels in cerebral prefrontal cortex and gut, and reduced the synaptic dysfunction verified in autistic mice. Overall, our work suggests that anthocyanins extracted from Portuguese blueberries could constitute an effective strategy to ameliorate typical autistic behaviors through modulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Diana Serra
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Joana F. Henriques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Fábio J. Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana Laranjo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Rosa Resende
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV—Research Unit, Faculty of Science, Porto University, 4099-002 Porto, Portugal
| | - Gabriela Silva
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - João Peça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Department of Life Science, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Teresa C. P. Dinis
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Leonor M. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
19
|
mGluR5 PAMs rescue cortical and behavioural defects in a mouse model of CDKL5 deficiency disorder. Neuropsychopharmacology 2022; 48:877-886. [PMID: 35945276 PMCID: PMC10156697 DOI: 10.1038/s41386-022-01412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.
Collapse
|
20
|
Raja A, Shekhar N, Singh H, Prakash A, Medhi B. In-silico discovery of dual active molecule to restore synaptic wiring against autism spectrum disorder via HDAC2 and H3R inhibition. PLoS One 2022; 17:e0268139. [PMID: 35877665 PMCID: PMC9312418 DOI: 10.1371/journal.pone.0268139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Metal-dependent histone deacetylases (HDACs) are essential epigenetic regulators; their molecular and pharmacological roles in medically critical diseases such as neuropsychiatric disorders, neurodegeneration, and cancer are being studied globally. HDAC2’s differential expression in the central nervous system makes it an appealing therapeutic target for chronic neurological diseases like autism spectrum disorder. In this study, we identified H3R inhibitor molecules that are computationally effective at binding to the HDAC2 metal-coordinated binding site. The study highlights the importance of pitolisant in screening the potential H3R inhibitors by using a hybrid workflow of ligand and receptor-based drug discovery. The screened lead compounds with PubChem SIDs 103179850, 103185945, and 103362074 show viable binding with HDAC2 in silico. The importance of ligand contacts with the Zn2+ ion in the HDAC2 catalytic site is also discussed and investigated for a significant role in enzyme inhibition. The proposed H3R inhibitors 103179850, 103185945, and 103362074 are estimated as dual-active molecules to block the HDAC2-mediated deacetylation of the EAAT2 gene (SLC1A2) and H3R-mediated synaptic transmission irregularity and are, therefore, open for experimental validation.
Collapse
Affiliation(s)
- Anupam Raja
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
- * E-mail:
| |
Collapse
|
21
|
Hippocampal Mitochondrial Abnormalities Induced the Dendritic Complexity Reduction and Cognitive Decline in a Rat Model of Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9253916. [PMID: 35571236 PMCID: PMC9095360 DOI: 10.1155/2022/9253916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Spinal cord injury (SCI) is a progressive neurodegenerative disease in addition to a traumatic event. Cognitive dysfunction following SCI has been widely reported in patients and animal models. However, the neuroanatomical changes affecting cognitive function after SCI, as well as the mechanisms behind these changes, have so far remained elusive. Herein, we found that SCI accelerates oxidative stress damage of hippocampal neuronal mitochondria. Then, for the first time, we presented a three-dimensional morphological atlas of rat hippocampal neurons generated using a fluorescence Micro-Optical Sectioning Tomography system, a method that accurately identifies the spatial localization of neurons and trace neurites. We showed that the number of dendritic branches and dendritic length was decreased in late stage of SCI. Western blot and transmission electron microscopy analyses also showed a decrease in synaptic communication. In addition, a battery of behavioral tests in these animals revealed hippocampal based cognitive dysfunction, which could be attributed to changes in the dendritic complexity of hippocampal neurons. Taken together, these results suggested that mitochondrial abnormalities in hippocampal neurons induced the dendritic complexity reduction and cognitive decline following SCI. Our study highlights the neuroanatomical basis and importance of mitochondria in brain degeneration following SCI, which might contribute to propose new therapeutic strategies.
Collapse
|
22
|
Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 2022; 27:2380-2392. [PMID: 35296811 PMCID: PMC9135628 DOI: 10.1038/s41380-022-01506-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sara Amjad
- Shibli National College, Azamgarh, Uttar Pradesh, 276001, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael P Frenneaux
- Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Animal Research, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
23
|
Aberrant hippocampal transmission and behavior in mice with a stargazin mutation linked to intellectual disability. Mol Psychiatry 2022; 27:2457-2469. [PMID: 35256745 PMCID: PMC9135633 DOI: 10.1038/s41380-022-01487-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Mutations linked to neurodevelopmental disorders, such as intellectual disability (ID), are frequently found in genes that encode for proteins of the excitatory synapse. Transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary proteins that regulate crucial aspects of receptor function. Here, we investigate a mutant form of the TARP family member stargazin, described in an ID patient. Molecular dynamics analyses predicted that the ID-associated stargazin variant, V143L, weakens the overall interface of the AMPAR:stargazin complex and impairs the stability of the complex. Knock-in mice harboring the V143L stargazin mutation manifest cognitive and social deficits and hippocampal synaptic transmission defects, resembling phenotypes displayed by ID patients. In the hippocampus of stargazin V143L mice, CA1 neurons show impaired spine maturation, abnormal synaptic transmission and long-term potentiation specifically in basal dendrites, and synaptic ultrastructural alterations. These data suggest a causal role for mutated stargazin in the pathogenesis of ID and unveil a new role for stargazin in the development and function of hippocampal synapses.
Collapse
|
24
|
Zhou B, Zhang C, Zheng L, Wang Z, Chen X, Feng X, Zhang Q, Hao S, Wei L, Gu W, Hui L. Case Report: A Novel De Novo Missense Mutation of the GRIA2 Gene in a Chinese Case of Neurodevelopmental Disorder With Language Impairment. Front Genet 2021; 12:794766. [PMID: 34899870 PMCID: PMC8655903 DOI: 10.3389/fgene.2021.794766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Neurodevelopmental disorders with language impairment and behavioral abnormalities (NEDLIB) are a disease caused by heterozygous variants in the glutamate ionotropic receptor AMPA type subunit 2 (GRIA2) gene, which manifest as impaired mental development or developmental delay, behavioral abnormalities including autistic characteristics, and language disorders. Currently, only a few mutations in the GRIA2 gene have been discovered. Methods: A GRIA2 variation was detected in a patient by whole-exome sequencing, and the site was validated by Sanger sequencing from the family. Results: We report a Chinese case of NEDLIB in a girl with language impairment and developmental delay through whole-exome sequencing (WES). Genetic analysis showed that there was a de novo missense mutation, c.1934T > G (p.Leu645Arg), in the GRIA2 gene (NM_001083619.1), which has never been reported before. Conclusion: Our case shows the potential diagnostic role of WES in NEDLIB, expands the GRIA2 gene mutation spectrum, and further deepens the understanding of NEDLIB. Deepening the study of the genetic and clinical heterogeneity, treatment, and prognosis of the disease is still our future challenge and focus.
Collapse
Affiliation(s)
- Bingbo Zhou
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Chuan Zhang
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Lei Zheng
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Zhiqiang Wang
- Center for Men's Health, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Xue Chen
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Xuan Feng
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Qinghua Zhang
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Shengju Hao
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Liwan Wei
- Chigene (Beijing) Translational Medical Research Center, Beijing, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center, Beijing, China
| | - Ling Hui
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| |
Collapse
|
25
|
Lu Y, Zhang M, Wei Q, Chen Z, Xing G, Yao J, Cao X. Disruption of Gprasp2 down-regulates Hedgehog signaling and leads to apoptosis in auditory cells. Biochem Biophys Res Commun 2021; 574:1-7. [PMID: 34418635 DOI: 10.1016/j.bbrc.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
GPRASP2 is implicated in nervous system diseases, tumors and immune inflammation. In our previous study, G protein-coupled receptor associated sorting protein 2 (GPRASP2) was identified as a novel causal gene for X-linked recessive syndromic hearing loss (SHL). However, the role of GPRASP2 in auditory function has not been elucidated. The Gprasp2-knockout (KO) mouse HEI-OC1 auditory cells were constructed using CRISPR/Cas9-mediated gene editing. RNA-sequencing (RNA-seq) was used to investigate the differentially expressed genes (DEGs) and DEGs-enriched signaling pathways, which was verified by Western blot. Flow cytometry assay was used to examine cell apoptosis. The cytological pathology was evaluated by laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). Mitochondrial damage was observed in Gprasp2-KO HEI-OC1 cells. RNA-seq analysis suggested that Gprasp2-KO was implicated in the apoptosis process, which could be mediated by Hedgehog (Hh) signaling pathway. The key molecules in Hh signaling pathway (Smo, Gli1, Gli2) were detected to be down-regulated in Gprasp2-KO HEI-OC1 cells. The differential expression of apoptosis molecules (Bcl2, Bax, Caspase-3/cleaved-Caspase-3) indicated that Gprasp2-KO induced apoptosis in HEI-OC1 cells. The treatment of smoothened agonist (Purmorphamine, PUR) activated the Hh-Gli signaling pathway and reduced apoptosis in Gprasp2-KO HEI-OC1 cells. This study revealed that Gprasp2-disruption inhibited Hh signaling pathway and led to cell apoptosis in HEI-OC1 cells, which might provide the potential molecular mechanism of GPRASP2 mutation associated with human SHL.
Collapse
Affiliation(s)
- Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Min Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China.
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
26
|
Karunakaran KB, Amemori S, Balakrishnan N, Ganapathiraju MK, Amemori KI. Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes. Sci Rep 2021; 11:18392. [PMID: 34526518 PMCID: PMC8443595 DOI: 10.1038/s41598-021-97418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, USA.
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
28
|
Maier JP, Ravi VM, Kueckelhaus J, Behringer SP, Garrelfs N, Will P, Sun N, von Ehr J, Goeldner JM, Pfeifer D, Follo M, Hannibal L, Walch AK, Hofmann UG, Beck J, Heiland DH, Schnell O, Joseph K. Inhibition of metabotropic glutamate receptor III facilitates sensitization to alkylating chemotherapeutics in glioblastoma. Cell Death Dis 2021; 12:723. [PMID: 34290229 PMCID: PMC8295384 DOI: 10.1038/s41419-021-03937-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/20/2023]
Abstract
Glioblastoma (GBM), the most malignant tumor of the central nervous system, is marked by its dynamic response to microenvironmental niches. In particular, this cellular plasticity contributes to the development of an immediate resistance during tumor treatment. Novel insights into the developmental trajectory exhibited by GBM show a strong capability to respond to its microenvironment by clonal selection of specific phenotypes. Using the same mechanisms, malignant GBM do develop intrinsic mechanisms to resist chemotherapeutic treatments. This resistance was reported to be sustained by the paracrine and autocrine glutamate signaling via ionotropic and metabotropic receptors. However, the extent to which glutamatergic signaling modulates the chemoresistance and transcriptional profile of the GBM remains unexplored. In this study we aimed to map the manifold effects of glutamate signaling in GBM as the basis to further discover the regulatory role and interactions of specific receptors, within the GBM microenvironment. Our work provides insights into glutamate release dynamics, representing its importance for GBM growth, viability, and migration. Based on newly published multi-omic datasets, we explored the and characterized the functions of different ionotropic and metabotropic glutamate receptors, of which the metabotropic receptor 3 (GRM3) is highlighted through its modulatory role in maintaining the ability of GBM cells to evade standard alkylating chemotherapeutics. We addressed the clinical relevance of GRM3 receptor expression in GBM and provide a proof of concept where we manipulate intrinsic mechanisms of chemoresistance, driving GBM towards chemo-sensitization through GRM3 receptor inhibition. Finally, we validated our findings in our novel human organotypic section-based tumor model, where GBM growth and proliferation was significantly reduced when GRM3 inhibition was combined with temozolomide application. Our findings present a new picture of how glutamate signaling via mGluR3 interacts with the phenotypical GBM transcriptional programs in light of recently published GBM cell-state discoveries.
Collapse
Affiliation(s)
- Julian P Maier
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany.,Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Simon P Behringer
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Niklas Garrelfs
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Paulina Will
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jasmin von Ehr
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jonathan M Goeldner
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Medicine I, Medical Center-University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Axel Karl Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ulrich G Hofmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany. .,Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Translational NeuroOncology Research Group, Medical Center-University of Freiburg, Freiburg, Germany. .,Neuroelectronic Systems, Medical Center-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Wang X, Gao C, Zhang Y, Hu S, Qiao Y, Zhao Z, Gou L, Song J, Wang Q. Overexpression of mGluR7 in the Prefrontal Cortex Attenuates Autistic Behaviors in Mice. Front Cell Neurosci 2021; 15:689611. [PMID: 34335187 PMCID: PMC8319395 DOI: 10.3389/fncel.2021.689611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is associated with a range of abnormalities pertaining to socialization, communication, repetitive behaviors, and restricted interests. Owing to its complexity, the etiology of ASD remains incompletely understood. The presynaptic G protein-coupled glutamate receptor metabotropic glutamate receptor 7 (mGluR7) is known to be essential for synaptic transmission and is also tightly linked with ASD incidence. Herein, we report that prefrontal cortex (PFC) mGluR7 protein levels were decreased in C57BL/6J mice exposed to valproic acid (VPA) and BTBR T+ Itpr3tf/J mice. The overexpression of mGluR7 in the PFC of these mice using a lentiviral vector was sufficient to reduce the severity of ASD-like behavioral patterns such that animals exhibited decreases in abnormal social interactions and communication, anxiety-like, and stereotyped/repetitive behaviors. Intriguingly, patch-clamp recordings revealed that the overexpression of mGluR7 suppressed neuronal excitability by inhibiting action potential discharge frequencies, together with enhanced action potential threshold and increased rheobase. These data offer a scientific basis for the additional study of mGluR7 as a promising therapeutic target in ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaona Wang
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Shunan Hu
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yidan Qiao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhengqin Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Jijun Song
- Henan Infectious Disease Hospital, The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Qi Wang
- Department of Histology and Embryology, Guizhou Medical University, Guizhou, China
| |
Collapse
|
30
|
Ryu YK, Park HY, Go J, Choi DH, Choi YK, Rhee M, Lee CH, Kim KS. Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology (Berl) 2021; 238:1833-1845. [PMID: 33723660 DOI: 10.1007/s00213-021-05812-z/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/01/2021] [Indexed: 05/20/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficits in social interaction and restrictive, repetitive, and stereotypical patterns of behavior. However, there is no pharmacological drug that is currently used to target these core ASD symptoms. Sodium phenylbutyrate (NaPB) is a well-known long-term treatment of urea cycle disorders in children. In this study, we assessed the therapeutic effects of NaPB, which is a chemical chaperone as well as histone deacetylase inhibitor on a BTBR T + Itpr3tf/J (BTBR) mice model of ASD. We found that acute and chronic treatment of NaPB remarkably improved, not only core ASD symptoms, including repetitive behaviors and sociability deficit, but also cognitive impairment in the BTBR mice. NaPB substantially induced histone acetylation in the brain of the BTBR mice. Intriguingly, the therapeutic effects of NaPB on autistic-like behaviors, such as repetitive behaviors, impaired sociability, and cognitive deficit also showed in the valproic acid (VPA)-induced mouse model of autism. In addition, pentylenetetrazole (PTZ)-induced seizure was significantly attenuated by NaPB treatment in C57BL/6J and BTBR mice. These findings suggest that NaPB may provide a novel therapeutic approach for the treatment of patients with ASD.
Collapse
Affiliation(s)
- Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Biosciences & Biotechnology, Chung-Nam National University, Daejeon, 34134, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myungchull Rhee
- College of Biosciences & Biotechnology, Chung-Nam National University, Daejeon, 34134, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
31
|
Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology (Berl) 2021; 238:1833-1845. [PMID: 33723660 DOI: 10.1007/s00213-021-05812-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficits in social interaction and restrictive, repetitive, and stereotypical patterns of behavior. However, there is no pharmacological drug that is currently used to target these core ASD symptoms. Sodium phenylbutyrate (NaPB) is a well-known long-term treatment of urea cycle disorders in children. In this study, we assessed the therapeutic effects of NaPB, which is a chemical chaperone as well as histone deacetylase inhibitor on a BTBR T + Itpr3tf/J (BTBR) mice model of ASD. We found that acute and chronic treatment of NaPB remarkably improved, not only core ASD symptoms, including repetitive behaviors and sociability deficit, but also cognitive impairment in the BTBR mice. NaPB substantially induced histone acetylation in the brain of the BTBR mice. Intriguingly, the therapeutic effects of NaPB on autistic-like behaviors, such as repetitive behaviors, impaired sociability, and cognitive deficit also showed in the valproic acid (VPA)-induced mouse model of autism. In addition, pentylenetetrazole (PTZ)-induced seizure was significantly attenuated by NaPB treatment in C57BL/6J and BTBR mice. These findings suggest that NaPB may provide a novel therapeutic approach for the treatment of patients with ASD.
Collapse
|
32
|
Xu J, Marshall JJ, Kraniotis S, Nomura T, Zhu Y, Contractor A. Genetic disruption of Grm5 causes complex alterations in motor activity, anxiety and social behaviors. Behav Brain Res 2021; 411:113378. [PMID: 34029630 DOI: 10.1016/j.bbr.2021.113378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by impaired social interactions and restricted and repetitive behaviors. Although group 1 metabotropic glutamate receptors (mGluRs), and in particular mGluR5, have been extensively proposed as potential targets for intervention in autism and other neurodevelopmental disorders, there has not been a comprehensive analysis of the effect of mGluR5 loss on behaviors typically assessed in autism mouse models thought to be correlates of behavioral symptoms of human disorders. Here we present a behavioral characterization of mice with complete or partial loss of mGluR5 (homozygous or heterozygous null mutations in Grm5 gene). We tested several autism related behaviors including social interaction, repetitive grooming, digging and locomotor behaviors. We found that digging and marble burying behaviors were almost completely abolished in mGluR5 ko mice, although self-grooming was not altered. Social interaction was impaired in ko but not in heterozygote (het) mice. In tests of locomotor activity and anxiety related behaviors, mGluR5 ko mice exhibited hyperactivity and reduced anxiety in the open field test but unexpectedly, showed hypoactivity in the elevated zero-maze test. There was no impairment in motor learning in the accelerating rotarod in both ko and het mutant. Together these results provide support for the importance of mGluR5 in motor and social behaviors that are specifically affected in autism disorders.
Collapse
Affiliation(s)
- Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States.
| | - John J Marshall
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Stephen Kraniotis
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Toshihiro Nomura
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Yongling Zhu
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, United States.
| |
Collapse
|
33
|
Park HY, Go J, Ryu YK, Choi DH, Noh JR, An JP, Oh WK, Han PL, Lee CH, Kim KS. Humulus japonicus rescues autistic‑like behaviours in the BTBR T + Itpr3 tf/J mouse model of autism. Mol Med Rep 2021; 23:448. [PMID: 33880583 PMCID: PMC8060795 DOI: 10.3892/mmr.2021.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023] Open
Abstract
Humulus japonicus (HJ) is a traditional herbal medicine that exhibits anti-inflammatory, antimicrobial and anti-tumor effects that is used for the treatment of hypertension, pulmonary disease and leprosy. Recently, it has also been reported that HJ demonstrates neuroprotective properties in animal models of neurodegenerative diseases. The current study hypothesised that the administration of HJ would exhibit therapeutic effects in autism spectrum disorder (ASD), a neurodevelopmental disorder with lifelong consequences. The BTBR T+ Itpr3tf/J mouse model of ASD was used to investigate the anti-autistic like behavioural effects of HJ. Chronic oral administration of the ethanolic extract of HJ significantly increased social interaction, attenuated repetitive grooming behaviour and improved novel-object recognition in BTBR mice. Anti-inflammatory effects of HJ in the brain were analysed using immunohistochemistry and reverse-transcription quantitative PCR analysis. Microglia activation was markedly decreased in the striatum and hippocampus, and pro-inflammatory cytokines, including C-C Motif Chemokine Ligand 2, interleukin (IL)-1β and IL-6, were significantly reduced in the hippocampus following HJ treatment. Moreover, HJ treatment normalised the phosphorylation levels of: N-methyl-D-aspartate receptor subtype 2B and calcium/calmodulin-dependent protein kinase type II subunit α in the hippocampus of BTBR mice. The results of the present study demonstrated that the administration of HJ may have beneficial potential for ameliorating behavioural deficits and neuroinflammation in ASD.
Collapse
Affiliation(s)
- Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin-Pyo An
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
4-tert-Octylphenol Exposure Disrupts Brain Development and Subsequent Motor, Cognition, Social, and Behavioral Functions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8875604. [PMID: 33294128 PMCID: PMC7691001 DOI: 10.1155/2020/8875604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
The endocrine-disrupting chemical 4-tert-octylphenol (OP) is a widespread estrogenic chemical used in consumer products such as epoxy resins and polycarbonate plastic. However, the effects of OP on brain development are unknown. The present study examined the effects of OP on neuron and neurobehavioral development in mice. By using primary cortical neuron cultures, we found that OP-treated showed a decreased length of axons and dendrites and an increased number of primary and secondary dendrites. OP reduced bromodeoxyuridine (BrdU), mitotic marker Ki67, and phospho-histone H3 (p-Histone-H3), resulting in a reduction of neuronal progenitor proliferation in offspring mouse brain. Moreover, OP induced apoptosis in neuronal progenitor cells in offspring mouse brain. Furthermore, offspring mice from OP-treated dams showed abnormal cognitive, social, and anxiety-like behaviors. Taken together, these results suggest that perinatal exposure to OP disrupts brain development and behavior in mice.
Collapse
|
35
|
Freitas AE, Heinrich IA, Moura TM, Fraga DB, Costa AP, Azevedo D, Brocardo PS, Kaster MP, Leal RB, Rodrigues ALS. Agmatine potentiates antidepressant and synaptic actions of ketamine: Effects on dendritic arbors and spines architecture and Akt/S6 kinase signaling. Exp Neurol 2020; 333:113398. [DOI: 10.1016/j.expneurol.2020.113398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
|
36
|
Lei L, Wu X, Gu H, Ji M, Yang J. Differences in DNA Methylation Reprogramming Underlie the Sexual Dimorphism of Behavioral Disorder Caused by Prenatal Stress in Rats. Front Neurosci 2020; 14:573107. [PMID: 33192258 PMCID: PMC7609908 DOI: 10.3389/fnins.2020.573107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Prenatal stress (PS) can lead to neuroendocrine and emotional disorders later in adolescence. Sexual dimorphism in these neurodevelopmental outcomes have been observed; however, the underlying mechanisms are not fully understood. To address this issue, we investigated whether there are sex differences in epigenetic reprogramming in rats exposed to PS. Pregnant female rats were subjected to chronic restraint stress from gestational day (G)12 to G18. From postnatal day (P)38 to P45, subgroups of offspring including both males and females were subjected to behavioral testing and brain tissue specimens were analyzed by DNA pyrosequencing, western blotting, and Golgi staining to assess changes in methylation pattern of glucocorticoid receptor (GR) gene, expression of DNA methyltransferase (DNMT) and DNA demethylase, and dendrite morphology, respectively. The DNA methyltransferase inhibitor decitabine was administered to rats prior to PS to further evaluate the role of methylation in the sexually dimorphic effects of PS. The results showed that PS increased anxiety-like behavior in offspring, especially in females, while depression-like behavior was increased in male offspring compared to control littermates. The methylation pattern in the promoter region of the GR gene differed between males and females. Sex-specific changes in the expression of DNMTs (DNMT1 and DNMT3a) and DNA demethylase (Tet methylcytosine dioxygenase 2) were also observed. Interestingly, decitabine alleviated the behavioral disorder caused by PS and restored dendrite density and morphology in female but not male rats. These findings suggest that different change patterns of DNMT and demethylase in the two sexes after PS are responsible for the sexually dimorphism, which could have implications for the clinical management of stress-related disorders.
Collapse
Affiliation(s)
- Lei Lei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinmiao Wu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hanwen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhuo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Franco LO, Carvalho MJ, Costa J, Ferreira PA, Guedes JR, Sousa R, Edfawy M, Seabra CM, Cardoso AL, Peça J. Social subordination induced by early life adversity rewires inhibitory control of the prefrontal cortex via enhanced Npy1r signaling. Neuropsychopharmacology 2020; 45:1438-1447. [PMID: 32492699 PMCID: PMC7360628 DOI: 10.1038/s41386-020-0727-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023]
Abstract
Social hierarchies are present in most mammalian species. In nature, hierarchies offer a tradeoff between reduction of in-group fighting between males, at the expense of an asymmetric sharing of resources. Early life experiences and stress are known to influence the rank an individual attains in adulthood, but the associated cellular and synaptic alterations are poorly understood. Using a maternal separation protocol, we show that care-deprived mice display a long-lasting submissive phenotype, increased social recognition, and enhanced explorative behavior. These alterations are consistent with an adaptation that favors exploration rather than confrontation within a group setting. At the neuronal level, these animals display dendritic atrophy and enhanced inhibitory synaptic inputs in medial prefrontal cortex (mPFC) neurons. To determine what could underlie this synaptic modification, we first assessed global gene expression changes via RNAseq, and next focused on a smaller subset of putatively altered synaptic receptors that could explain the changes in synaptic inhibition. Using different cohorts of maternally deprived mice, we validated a significant increase in the expression of Npy1r, a receptor known to play a role in maternal care, anxiety, foraging, and regulation of group behavior. Using electrophysiological recordings in adult mice while blocking NPY1R signaling, we determined that this receptor plays a key role in enhancing GABAergic currents in mice that experience maternal deprivation. Taken together, our work highlights the potential of regulating NPY1R in social anxiety disorders and the alterations induced in brain circuitry as a consequence of early life stress and adversity.
Collapse
Affiliation(s)
- Lara O. Franco
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cPhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Mário J. Carvalho
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,MIT-Portugal Bioengineering Systems Doctoral Program, Coimbra, Portugal
| | - Jéssica Costa
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cPhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Pedro A. Ferreira
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joana R. Guedes
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Renato Sousa
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mohamed Edfawy
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Catarina M. Seabra
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana L. Cardoso
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
38
|
Perinatal Exposure to Triclosan Results in Abnormal Brain Development and Behavior in Mice. Int J Mol Sci 2020; 21:ijms21114009. [PMID: 32503345 PMCID: PMC7312693 DOI: 10.3390/ijms21114009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Triclosan (TCS) is one of the most common endocrine-disrupting chemicals (EDCs) present in household and personal wash products. Recently, concerns have been raised about the association between abnormal behavior in children and exposure to EDC during gestation. We hypothesized that exposure to TCS during gestation could affect brain development. Cortical neurons of mice were exposed in vitro to TCS. In addition, we examined in vivo whether maternal TCS administration can affect neurobehavioral development in the offspring generation. We determined that TCS can impair dendrite and axon growth by reducing average length and numbers of axons and dendrites. Additionally, TCS inhibited the proliferation of and promoted apoptosis in neuronal progenitor cells. Detailed behavioral analyses showed impaired acquisition of spatial learning and reference memory in offspring derived from dams exposed to TCS. The TCS-treated groups also showed cognition dysfunction and impairments in sociability and social novelty preference. Furthermore, TCS-treated groups exhibited increased anxiety-like behavior, but there was no significant change in depression-like behaviors. In addition, TCS-treated groups exhibited deficits in nesting behavior. Taken together, our results indicate that perinatal exposure to TCS induces neurodevelopment disorder, resulting in abnormal social behaviors, cognitive impairment, and deficits in spatial learning and memory in offspring.
Collapse
|
39
|
Zhang L, Qin Z, Ricke KM, Cruz SA, Stewart AFR, Chen HH. Hyperactivated PTP1B phosphatase in parvalbumin neurons alters anterior cingulate inhibitory circuits and induces autism-like behaviors. Nat Commun 2020; 11:1017. [PMID: 32094367 PMCID: PMC7039907 DOI: 10.1038/s41467-020-14813-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/05/2020] [Indexed: 01/05/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) have social interaction deficits and difficulty filtering information. Inhibitory interneurons filter information at pyramidal neurons of the anterior cingulate cortex (ACC), an integration hub for higher-order thalamic inputs important for social interaction. Humans with deletions including LMO4, an endogenous inhibitor of PTP1B, display intellectual disabilities and occasionally autism. PV-Lmo4KO mice ablate Lmo4 in PV interneurons and display ASD-like repetitive behaviors and social interaction deficits. Surprisingly, increased PV neuron-mediated peri-somatic feedforward inhibition to the pyramidal neurons causes a compensatory reduction in (somatostatin neuron-mediated) dendritic inhibition. These homeostatic changes increase filtering of mediodorsal-thalamocortical inputs but reduce filtering of cortico-cortical inputs and narrow the range of stimuli ACC pyramidal neurons can distinguish. Simultaneous ablation of PTP1B in PV-Lmo4KO neurons prevents these deficits, indicating that PTP1B activation in PV interneurons contributes to ASD-like characteristics and homeostatic maladaptation of inhibitory circuits may contribute to deficient information filtering in ASD.
Collapse
Affiliation(s)
- Li Zhang
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada. .,University of Ottawa Brain and Mind Institute, Ottawa, Canada.
| | - Zhaohong Qin
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, Canada
| | - Konrad M Ricke
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, Canada.,University of Ottawa Heart Institute, Ottawa, Canada.,Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Shelly A Cruz
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, Canada
| | - Alexandre F R Stewart
- University of Ottawa Heart Institute, Ottawa, Canada. .,Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada. .,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada.
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada. .,University of Ottawa Brain and Mind Institute, Ottawa, Canada. .,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada. .,Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada. .,Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
40
|
Heavner WE, Smith SEP. Resolving the Synaptic versus Developmental Dichotomy of Autism Risk Genes. Trends Neurosci 2020; 43:227-241. [PMID: 32209454 DOI: 10.1016/j.tins.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/28/2022]
Abstract
Genes that are mutated in Autism Spectrum Disorders (ASD) can be classified broadly as either synaptic or developmental. But what if this is a false distinction? A recent spate of publications has provided evidence for developmental mechanisms that rely on neural activity for proper cortical development. Conversely, a growing body of evidence indicates a role for developmental mechanisms, particularly chromatin remodeling, during learning or in response to neural activity. Here, we review these recent publications and propose a model in which genes that confer ASD risk operate in signal transduction networks critical for both cortical development and synaptic homeostasis.
Collapse
Affiliation(s)
- Whitney E Heavner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|