1
|
Lu J, Yu D, Li H, Qin P, Chen H, Chen L. Promising natural products targeting protein tyrosine phosphatase SHP2 for cancer therapy. Phytother Res 2025; 39:1735-1757. [PMID: 38558278 DOI: 10.1002/ptr.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The development of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors is a hot spot in the research and development of antitumor drugs, which may induce immunomodulatory effects in the tumor microenvironment and participate in anti-tumor immune responses. To date, several SHP2 inhibitors have made remarkable progress and entered clinical trials for the treatment of patients with advanced solid tumors. Multiple compounds derived from natural products have been proved to influence tumor cell proliferation, apoptosis, migration and other cellular functions, modulate cell cycle and immune cell activation by regulating the function of SHP2 and its mutants. However, there is a paucity of information about their diversity, biochemistry, and therapeutic potential of targeting SHP2 in tumors. This review will provide the structure, classification, inhibitory activities, experimental models, and antitumor effects of the natural products. Notably, this review summarizes recent advance in the efficacy and pharmacological mechanism of natural products targeting SHP2 in inhibiting the various signaling pathways that regulate different cancers and thus pave the way for further development of anticancer drugs targeting SHP2.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Roussot N, Kaderbhai C, Ghiringhelli F. Targeting Immune Checkpoint Inhibitors for Non-Small-Cell Lung Cancer: Beyond PD-1/PD-L1 Monoclonal Antibodies. Cancers (Basel) 2025; 17:906. [PMID: 40075753 PMCID: PMC11898530 DOI: 10.3390/cancers17050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Immunotherapy targeting the PD-1/PD-L1 axis has revolutionized treatment, providing durable responses in a subset of patients. However, with fewer than 50% of patients achieving significant benefits, there is a critical need to expand therapeutic strategies. This review explores emerging targets in immune checkpoint inhibition beyond PD-1/PD-L1, including CTLA-4, TIGIT, LAG-3, TIM-3, NKG2A, and CD39/CD73. We highlight the biological basis of CD8 T cell exhaustion in shaping the antitumor immune response. Novel therapeutic approaches targeting additional inhibitory receptors (IR) are discussed, with a focus on their distinct mechanisms of action and combinatory potential with existing therapies. Despite significant advancements, challenges remain in overcoming resistance mechanisms and optimizing patient selection. This review underscores the importance of dual checkpoint blockade and innovative bispecific antibody engineering to maximize therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Nicolas Roussot
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Courèche Kaderbhai
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
3
|
Williams E, Echeverri Tribin F, Carreño JM, Krammer F, Hoffer M, Pallikkuth S, Pahwa S. Proteomic signatures of vaccine-induced and breakthrough infection-induced host responses to SARS-CoV-2. Vaccine 2025; 43:126484. [PMID: 39520894 PMCID: PMC12044548 DOI: 10.1016/j.vaccine.2024.126484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The severity of SARS-CoV-2 illness is influenced by factors including age, sex, pre-existing health conditions, and individual immune responses. However, the mechanisms conferring immunity following antigenic challenge have not been fully elucidated. There are currently no studies evaluating longitudinal proteomic changes in individuals following vaccination and breakthrough, limiting our understanding of the underlying mechanisms driving conferred immunity. In this work, we evaluated the differential protein expression in individuals with (CoV-P) or without (CoV-N) prior SARS-CoV-2 infection following primary vaccination and after breakthrough infection (CoV-BT). Overall, we found that individuals receiving primary vaccination relied on innate immune mechanisms, including complement and coagulation cascades, and natural killer cell-mediated cytotoxicity, while conversely, breakthrough infection immune mechanisms relied on T cell-mediated immunity. These mechanistic differences may help explain heterogeneity associated with vaccine-induced and breakthrough infection-related outcomes.
Collapse
Affiliation(s)
- Erin Williams
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, Florida, 33136, USA
| | | | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, New York, 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, New York, 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida, 33136, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, 33146, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, 33146, USA
| |
Collapse
|
4
|
Lv X, Li P, Chen Z, Huang S, Zhang S, Ji B, Liu J, Du T, Zhang T, Chen X, Qiang L, He Y, Lai Y. Discovery of novel substituted pyridine carboxamide derivatives as potent allosteric SHP2 inhibitors. Eur J Med Chem 2024; 279:116830. [PMID: 39303516 DOI: 10.1016/j.ejmech.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2), a critical regulator of proliferation pathways and immune checkpoint signaling in various cancers, is an attractive target for cancer therapy. Here, we report the discovery of a novel series of substituted pyridine carboxamide derivatives as potent allosteric SHP2 inhibitors. Among them, compound C6 showed excellent inhibitory activity against SHP2 and antiproliferative effect on MV-4-11 cell line with IC50 values of 0.13 and 3.5 nM, respectively. Importantly, orally administered C6 displayed robust in vivo antitumor efficacy in the MV-4-11 xenograft mouse model (TGI = 69.5 %, 30 mg/kg). Subsequent H&E and Ki67 staining showed that C6 significantly suppressed the proliferation of tumor cells. Notably, flow cytometry, ELISA and immunofluorescence experiments showed that C6 remarkably decreased the population of CD206+/Ly6C+ M2-like tumor-associated macrophages (TAMs), the expression level of interleukin-10 (IL-10), and the number of F4/80+/CD206+ M2-like TAMs, suggesting that C6 could effectively alleviate the activation and infiltration of M2-like TAMs. Taken together, these results illustrate that C6 is a promising SHP2 inhibitor worthy of further development.
Collapse
Affiliation(s)
- Xiashi Lv
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Peifeng Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhuo Chen
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang Zhang
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Bei Ji
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjing Liu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tonghong Du
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yisheng Lai
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Anastasiou P, Moore C, Rana S, Tomaschko M, Pillsbury CE, de Castro A, Boumelha J, Mugarza E, de Carné Trécesson S, Mikolajczak A, Blaj C, Goldstone R, Smith JAM, Quintana E, Molina-Arcas M, Downward J. Combining RAS(ON) G12C-selective inhibitor with SHP2 inhibition sensitises lung tumours to immune checkpoint blockade. Nat Commun 2024; 15:8146. [PMID: 39322643 PMCID: PMC11424635 DOI: 10.1038/s41467-024-52324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Mutant selective drugs targeting the inactive, GDP-bound form of KRASG12C have been approved for use in lung cancer, but resistance develops rapidly. Here we use an inhibitor, (RMC-4998) that targets RASG12C in its active, GTP-bound form, to treat KRAS mutant lung cancer in various immune competent mouse models. RAS pathway reactivation after RMC-4998 treatment could be delayed using combined treatment with a SHP2 inhibitor, which not only impacts tumour cell RAS signalling but also remodels the tumour microenvironment to be less immunosuppressive. In an immune inflamed model, RAS and SHP2 inhibitors in combination drive durable responses by suppressing tumour relapse and inducing development of immune memory. In an immune excluded model, combined RAS and SHP2 inhibition sensitises tumours to immune checkpoint blockade, leading to efficient tumour immune rejection. These preclinical results demonstrate the potential of the combination of RAS(ON) G12C-selective inhibitors with SHP2 inhibitors to sensitize tumours to immune checkpoint blockade.
Collapse
Affiliation(s)
| | | | - Sareena Rana
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Mona Tomaschko
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Andrea de Castro
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Jesse Boumelha
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | - Edurne Mugarza
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Ania Mikolajczak
- Experimental Histopathology, Francis Crick Institute, London, UK
| | | | - Robert Goldstone
- Bioinformatics & Biostatistics Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | | | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Feng P, Luo L, Yang Q, Meng W, Guan Z, Li Z, Sun G, Dong Z, Yang M. Hippo kinases Mst1 and Mst2 maintain NK cell homeostasis by orchestrating metabolic state and transcriptional activity. Cell Death Dis 2024; 15:430. [PMID: 38898027 PMCID: PMC11187177 DOI: 10.1038/s41419-024-06828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Natural killer (NK) cells play a crucial role in immune response against viral infections and tumors. However, further investigation is needed to better understand the key molecules responsible for determining the fate and function of NK cells. In this study, we made an important discovery regarding the involvement of the Hippo kinases Mst1 and Mst2 as novel regulators in maintaining mouse NK cell homeostasis. The presence of high Mst1 and Mst2 (Mst1/2) activity in NK cells is essential for their proper development, survival and function in a canonical Hippo signaling independent mode. Mechanistically, Mst1/2 induce cellular quiescence by regulating the processes of proliferation and mitochondrial metabolism, thereby ensuring the development and survival of NK cells. Furthermore, Mst1/2 effectively sense IL-15 signaling and facilitate the activation of pSTAT3-TCF1, which contributes to NK cell homeostasis. Overall, our investigation highlights the crucial role of Mst1/2 as key regulators in metabolic reprogramming and transcriptional regulation for mouse NK cell survival and function, emphasizing the significance of cellular quiescence during NK cell development and functional maturation.
Collapse
Affiliation(s)
- Peiran Feng
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Liang Luo
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital(Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
| | - Wanqing Meng
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zerong Guan
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhizhong Li
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zhongjun Dong
- The First Affiliated Hospital of Anhui Medical University and Institute for Clinical Immunology, Anhui Medical University, 230032, Anhui, China.
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital(Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou Key Laboratory for Germ-free animals and Microbiota Application, Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Liu X, Zhang Z, Yuan J, Yu J, Chen D. Spatial interaction and functional status of CD68 +SHP2 + macrophages in tumor microenvironment correlate with overall survival of NSCLC. Front Immunol 2024; 15:1396719. [PMID: 38799432 PMCID: PMC11116570 DOI: 10.3389/fimmu.2024.1396719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumor microenvironment (TME) that can regulate tumor proliferation and support resistance to therapy, constituting promising targets for the development of novel anticancer agents. Our previous results suggest that SHP2 plays a crucial role in reprogramming the phenotype of TAMs. Thus, we hypothesized that SHP2+ TAM may predict the treatment efficacy of non-small cell lung cancer NSCLC patients as a biomarker. Methods We analyzed cancer tissue samples from 79 NSCLC patients using multiplex fluorescence (mIF) staining to visualize various SHP-2+ TAM subpopulations (CD68+SHP2+, CD68+CD86+, CD68 + 206+, CD68+ CD86+SHP2+, CD68+ CD206+SHP2+) and T cells (CD8+ Granzyme B +) of immune cells. The immune cells proportions were quantified in the tumor regions (Tumor) and stromal regions (Stroma), as well as in the overall tumor microenvironment (Tumor and Stroma, TME). The analysis endpoint was overall survival (OS), correlating them with levels of cell infiltration or effective density. Cox regression was used to evaluate the associations between immune cell subsets infiltration and OS. Correlations between different immune cell subsets were examined by Spearman's tests. Results In NSCLC, the distribution of different macrophage subsets within the TME, tumor regions, and stroma regions exhibited inconsistency. The proportions of CD68+ SHP2+ TAMs (P < 0.05) were higher in tumor than in stroma. And the high infiltration of CD68+SHP2+ TAMs in tumor areas correlated with poor OS (P < 0.05). We found that the expression level of SHP2 was higher in M2-like macrophages than in M1-like macrophages. The CD68+SHP2+ subset proportion was positively correlated with the CD68+CD206+ subset within TME (P < 0.0001), tumor (P < 0.0001) and stroma (P < 0.0001). Conclusions The high infiltration of CD68+SHP2+ TAMs predict poor OS in NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit M2-phenotype polarization. And it provides a new thought for SHP2 targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Jupeng Yuan
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Sodir NM, Pathria G, Adamkewicz JI, Kelley EH, Sudhamsu J, Merchant M, Chiarle R, Maddalo D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov 2023; 13:2339-2355. [PMID: 37682219 PMCID: PMC10618746 DOI: 10.1158/2159-8290.cd-23-0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is considered a multifaceted target in cancer, spurring the notion that the development of direct inhibitors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response. SIGNIFICANCE The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hinders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the depth and the durability of tumor response to therapy.
Collapse
Affiliation(s)
- Nicole M. Sodir
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Gaurav Pathria
- Department of Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Elizabeth H. Kelley
- Department of Discovery Chemistry, Genentech, South San Francisco, California
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Mark Merchant
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, South San Francisco, California
| |
Collapse
|
10
|
Olou AA, Ambrose J, Jack JL, Walsh M, Ruckert MT, Eades AE, Bye BA, Dandawate P, VanSaun MN. SHP2 regulates adipose maintenance and adipocyte-pancreatic cancer cell crosstalk via PDHA1. J Cell Commun Signal 2023; 17:575-590. [PMID: 36074246 PMCID: PMC10409927 DOI: 10.1007/s12079-022-00691-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Adipocytes are the most abundant cell type in the adipose tissue, and their dysfunction is a significant driver of obesity-related pathologies, such as cancer. The mechanisms that (1) drive the maintenance and secretory activity of adipocytes and (2) mediate the cancer cellular response to the adipocyte-derived factors are not fully understood. To address that gap of knowledge, we investigated how alterations in Src homology region 2-containing protein (SHP2) activity affect adipocyte function and tumor crosstalk. We found that phospho-SHP2 levels are elevated in adipose tissue of obese mice, obese patients, and differentiating adipocytes. Immunofluorescence and immunoprecipitation analyses as well as in-silico protein-protein interaction modeling demonstrated that SHP2 associates with PDHA1, and that a positive association promotes a reactive oxygen species (ROS)-driven adipogenic program. Accordingly, this SHP2-PDHA1-ROS regulatory axis was crucial for adipocyte maintenance and secretion of interleukin-6 (IL-6), a key cancer-promoting cytokine. Mature adipocytes treated with an inhibitor for SHP2, PDHA1, or ROS exhibited an increased level of pro-lipolytic and thermogenic proteins, corresponding to an increased glycerol release, but a suppression of secreted IL-6. A functional analysis of adipocyte-cancer cell crosstalk demonstrated a decreased migration, invasion, and a slight suppression of cell cycling, corresponding to a reduced growth of pancreatic cancer cells exposed to conditioned media (CM) from mature adipocytes previously treated with inhibitors for SHP2/PDHA1/ROS. Importantly, PDAC cell growth stimulation in response to adipocyte CM correlated with PDHA1 induction but was suppressed by a PDHA1 inhibitor. The data point to a novel role for (1) SHP2-PDHA1-ROS in adipocyte maintenance and secretory activity and (2) PDHA1 as a regulator of the pancreatic cancer cells response to adipocyte-derived factors.
Collapse
Affiliation(s)
- Appolinaire A Olou
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| | - Joe Ambrose
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Jarrid L Jack
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - McKinnon Walsh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mariana T Ruckert
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Austin E Eades
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Bailey A Bye
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Michael N VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
11
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
12
|
Khameneh HJ, Fonta N, Zenobi A, Niogret C, Ventura P, Guerra C, Kwee I, Rinaldi A, Pecoraro M, Geiger R, Cavalli A, Bertoni F, Vivier E, Trumpp A, Guarda G. Myc controls NK cell development, IL-15-driven expansion, and translational machinery. Life Sci Alliance 2023; 6:e202302069. [PMID: 37105715 PMCID: PMC10140547 DOI: 10.26508/lsa.202302069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Nicolas Fonta
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pedro Ventura
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Concetta Guerra
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ivo Kwee
- BigOmics Analytics SA, Lugano, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Roger Geiger
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Innate Pharma Research Laboratories, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Greta Guarda
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
13
|
Fu Y, Sui Y, Zhao Y, Jiang J, Wang X, Cui J, Fu X, Xing S, Zhao ZJ. PZR promotes tumorigenicity of lung cancer cells by regulating cell migration and invasion via modulating oxidative stress and cell adhesion. Aging (Albany NY) 2023; 15:204771. [PMID: 37279992 PMCID: PMC10292906 DOI: 10.18632/aging.204771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
PZR is a transmembrane glycoprotein encoded by the MPZL1 gene. It serves as a specific binding protein and substrate of tyrosine phosphatase SHP-2 whose mutations cause developmental diseases and cancers. Bioinformatic analyses of cancer gene databases revealed that PZR is overexpressed in lung cancer and correlated with unfavorable prognosis. To investigate the role of PZR in lung cancer, we employed the CRISPR technique to knockout its expression and recombinant lentiviruses to overexpress it in lung adenocarcinoma SPC-A1 cells. While knockout of PZR reduced colony formation, migration, and invasion, overexpression of PZR had the opposite effects. Furthermore, when implanted in immunodeficient mice, PZR-knockout SPC-A1 cells showed suppressed tumor-forming ability. Finally, the underlying molecular mechanism for these functions of PZR is its positive role in activating tyrosine kinases FAK and c-Src and in maintaining the intracellular level of reactive oxygen species (ROS). In conclusion, our data indicated that PZR plays an important role in lung cancer development, and it may serve as a therapeutic target for anti-cancer development and as a biomarker for cancer prognosis.
Collapse
Affiliation(s)
- Ying Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuan Sui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Yuming Zhao
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Jianzhuo Jiang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xueyuan Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Jiarui Cui
- Department of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Abstract
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Collapse
Affiliation(s)
- Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Meng Michelle Xu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China;
| |
Collapse
|
15
|
Ma S, Barr T, Yu J. Recent Advances of RNA m 6A Modifications in Cancer Immunoediting and Immunotherapy. Cancer Treat Res 2023; 190:49-94. [PMID: 38112999 DOI: 10.1007/978-3-031-45654-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer immunotherapy, which modulates immune responses against tumors using immune-checkpoint inhibitors or adoptive cell transfer, has emerged as a novel and promising therapy for tumors. However, only a minority of patients demonstrate durable responses, while the majority of patients are resistant to immunotherapy. The immune system can paradoxically constrain and promote tumor development and progression. This process is referred to as cancer immunoediting. The mechanisms of resistance to immunotherapy seem to be that cancer cells undergo immunoediting to evade recognition and elimination by the immune system. RNA modifications, specifically N6-methyladenosine (m6A) methylation, have emerged as a key regulator of various post-transcriptional gene regulatory processes, such as RNA export, splicing, stability, and degradation, which play unappreciated roles in various physiological and pathological processes, including immune system development and cancer pathogenesis. Therefore, a deeper understanding of the mechanisms by which RNA modifications impact the cancer immunoediting process can provide insight into the mechanisms of resistance to immunotherapies and the strategies that can be used to overcome such resistance. In this chapter, we briefly introduce the background of cancer immunoediting and immunotherapy. We also review and discuss the roles and mechanisms of RNA m6A modifications in fine-tuning the innate and adaptive immune responses, as well as in regulating tumor escape from immunosurveillance. Finally, we summarize the current strategies targeting m6A regulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA, 91010, USA.
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, 91010, USA.
| |
Collapse
|
16
|
Ventura PMO, Gakovic M, Fischer BA, Spinelli L, Rota G, Pathak S, Khameneh HJ, Zenobi A, Thomson S, Birchmeier W, Cantrell DA, Guarda G. Concomitant deletion of Ptpn6 and Ptpn11 in T cells fails to improve anticancer responses. EMBO Rep 2022; 23:e55399. [PMID: 36194675 PMCID: PMC9638855 DOI: 10.15252/embr.202255399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 03/10/2024] Open
Abstract
Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Pedro M O Ventura
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Milica Gakovic
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Berenice A Fischer
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Laura Spinelli
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Shalini Pathak
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Hanif J Khameneh
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, UK
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, UK
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
17
|
Xu X, Zheng G, Ren Y, He X, Peng B, Hu X, Liu W. A novel 2B4 receptor leads to worse pregnancy outcomes by facilitating TNF-α and IFN-γ production in dNK cells during Toxoplasma gondii infection. Parasit Vectors 2022; 15:337. [PMID: 36153598 PMCID: PMC9509566 DOI: 10.1186/s13071-022-05455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Infections are a major threat to human reproductive health because they can induce pregnancy failure, including recurrent abortion, stillbirth, and preterm birth. Toxoplasma gondii (T. gondii) infection can result in adverse pregnancy outcomes by affecting certain immune molecules and cytokines. However, the detailed mechanisms behind T. gondii-induced pregnancy failure are poorly understood.
Methods
Toxoplasma gondii-infected wild-type (WT) pregnant mice and 2B4 knockout (2B4−/−) pregnant mice were established for in vivo study. Human decidual natural killer (dNK) cells were cultured for in vitro study. Abnormal pregnancy outcomes were observed, and the expression of 2B4, functional molecules (CD69, CD107a, tumor necrosis factor alpha [TNF-α], interferon gamma [IFN-γ]), and signaling molecules (SHP-2, Fyn, p-ERK, p-P38) in dNK cells were detected by flow cytometry, Western blot, reverse transcriptase polymerase chain reaction (RT-PCR), and/or immunofluorescence. The direct interactions (2B4 interacts with SHP-2 and Fyn; SHP-2 interacts with p-P38 and 2B4; Fyn interacts with p-ERK and 2B4) were verified by co-immunoprecipitation (co-IP) in NK-92 cells.
Results
Here, results showed that 2B4 was significantly downregulated after T. gondii infection. Subsequently, infected 2B4−/− pregnant mice displayed worse pregnancy outcomes compared with infected WT pregnant mice. Also, increased TNF-α and IFN-γ expression and elevated dNK cell cytotoxicity were found in 2B4−/− pregnant mice during T. gondii infection. In contrast, reduced TNF-α and IFN-γ expression and decreased human dNK cell activity were found following 2B4 activation during T. gondii infection. Interestingly, results showed that 2B4 binds to adaptor SHP-2 or Fyn, which then triggers different signaling pathways to regulate TNF-α and IFN-γ expression in dNK cells during T. gondii infection. Further, SHP-2 binds 2B4 and p-P38 directly after 2B4 activation, which generates an inhibitory signal for TNF-α and IFN-γ in NK-92 cells. In addition, Fyn can bind to 2B4 and p-ERK after activation of 2B4, thereby inhibiting TNF-α and IFN-γ expression in NK-92 cells following T. gondii infection.
Conclusions
These data suggest that 2B4 may be a novel danger-signaling molecule that is implicated in pregnancy failure during T. gondii infection. Unraveling the mechanism by which 2B4 regulates dNK cell activity will provide novel insights to aid our understanding of T. gondii-induced adverse pregnancy outcomes.
Graphical Abstract
Collapse
|
18
|
RNA methylation in immune cells. Adv Immunol 2022; 155:39-94. [PMID: 36357012 DOI: 10.1016/bs.ai.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Zhang R, Chen D, Fan H, Wu R, Tu J, Zhang FQ, Wang M, Zheng H, Qu CK, Elf SE, Faubert B, He YY, Bissonnette MB, Gao X, DeBerardinis RJ, Chen J. Cellular signals converge at the NOX2-SHP-2 axis to induce reductive carboxylation in cancer cells. Cell Chem Biol 2022; 29:1200-1208.e6. [PMID: 35429459 PMCID: PMC9308720 DOI: 10.1016/j.chembiol.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
Abstract
Environmental stresses, including hypoxia or detachment for anchorage independence, or attenuation of mitochondrial respiration through inhibition of electron transport chain induce reductive carboxylation in cells with an enhanced fraction of citrate arising through reductive metabolism of glutamine. This metabolic process contributes to redox homeostasis and sustains biosynthesis of lipids. Reductive carboxylation is often dependent on cytosolic isocitrate dehydrogenase 1 (IDH1). However, whether diverse cellular signals induce reductive carboxylation differentially or through a common signaling converging node remains unclear. We found that induction of reductive carboxylation commonly requires enhanced tyrosine phosphorylation and activation of IDH1, which, surprisingly, is achieved by attenuation of a cytosolic protein tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-2 (SHP-2). Mechanistically, diverse signals induce reductive carboxylation by converging at upregulation of NADPH oxidase 2, leading to elevated cytosolic reactive oxygen species that consequently inhibit SHP-2. Together, our work elucidates the signaling basis underlying reductive carboxylation in cancer cells.
Collapse
Affiliation(s)
- Rukang Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Dong Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Wu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayi Tu
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Freya Q Zhang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mei Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hong Zheng
- Department of Pediatrics and Aflac Cancer and Blood Disorder Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng-Kui Qu
- Department of Pediatrics and Aflac Cancer and Blood Disorder Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shannon E Elf
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Brandon Faubert
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yu-Ying He
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Marc B Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Xue Gao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Landolina N, Mariotti FR, Ingegnere T, Alicata C, Ricci B, Pelosi A, Veneziani I, Azzarone BG, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8 silencing improves the anti-tumor function of freshly isolated human NK cells. J Immunother Cancer 2022; 10:jitc-2021-003858. [PMID: 35292515 PMCID: PMC8928329 DOI: 10.1136/jitc-2021-003858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/04/2022] Open
Abstract
The inhibitory receptor interleukin-1 receptor 8 (IL-1R8) has been recently recognized to be expressed also by human natural killer (NK) cells. This study was aimed to design and optimize IL-1R8 silencing conditions in human NK cells to precisely establish the activity of such receptor in these cells. Electroporation of freshly isolated or IL-2-cultured NK cells with small interfering RNA (siRNA), resulted in a marked, even though variable, IL-1R8-silencing. Although the expression profile revealed downregulation of most genes involved in several intracellular pathways, some genes related to proliferation, expression of some chemokine receptors, antibody-dependent cell cytotoxicity and cytotoxic activity were upregulated in IL-1R8-silenced NK cells. Furthermore, upon IL-15 activation, the majority of genes involved in NK cell function were upregulated in IL-1R8-siRNA—compared with control—siRNA-transfected NK cells. More importantly, in agreement with these findings, the reduction of IL-1R8 gene expression levels resulted in enhanced expression of NK cell activation markers, production of cytokines and chemokines, and cytotoxic activity against several NK cell targets with different susceptibility to NK-mediated lysis. Similar results were obtained following stimulation with IL-18. All together these data, deeply impacting on the main effector functions of human NK cells, can lead to a better understanding of IL-1R8-mediated regulation on these cells and to the design of new strategies for improving NK cell-mediated anti-tumor responses.
Collapse
Affiliation(s)
- Nadine Landolina
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Tiziano Ingegnere
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Claudia Alicata
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Biancamaria Ricci
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Pelosi
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Irene Veneziani
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, Humanitas University, Rozzano (Milan), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, Humanitas University, Rozzano (Milan), Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Enrico Maggi
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
21
|
Wu Z, Park S, Lau CM, Zhong Y, Sheppard S, Sun JC, Das J, Altan-Bonnet G, Hsu KC. Dynamic variability in SHP-1 abundance determines natural killer cell responsiveness. Sci Signal 2021; 14:eabe5380. [PMID: 34752140 DOI: 10.1126/scisignal.abe5380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zeguang Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Soo Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen M Lau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Zhong
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sam Sheppard
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, Pelotonia Institute of ImmunoOncology, Wexner College of Medicine, Ohio State University, Columbus, OH 43210, USA.,Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.,Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
22
|
Jiang L, Fei H, Jin X, Liu X, Yang C, Li C, Chen J, Yang A, Zhu J, Wang H, Fei X, Zhang S. Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells. Int J Biol Sci 2021; 17:4377-4395. [PMID: 34803505 PMCID: PMC8579460 DOI: 10.7150/ijbs.63390] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles derived from trophoblasts (T-EVs) play an important role in pregnancy, but the mechanism is not entirely clear. In this study, we found that HLA-E, which is mostly confined to the cytoplasm of trophoblast cells, was secreted by T-EVs. The level of HLA-E in T-EVs from unexplained recurrent spontaneous abortion (URSA) patients was lower than that in normal pregnancy (NP) and RSA patients who had an abnormal embryo karyotype (AK-RSA). T-EVs promoted secretion of IFN-γ and VEGFα by decidual NK (dNK) cells from URSA patients via HLA-E, VEGFα was necessary for angiogenesis and trophoblast growth, and IFN-γ inhibited Th17 induction. Glycolysis and oxidative phosphorylation (OxPhos) were involved in this process. Glycolysis but not OxPhos of dNK cells facilitated by T-EVs was dependent on mTORC1 activation. Inhibition of T-EV production in vivo increased the susceptibility of mice to embryo absorption, which was reversed by transferring exogenous T-EVs. T-EVs promoted secretion of IFN-γ and VEGFα by dNK cells to maintain pregnancy via Qa-1 in abortion-prone mouse models. This study reveals a new mechanism of pregnancy maintenance mediated by HLA-E via T-EVs.
Collapse
Affiliation(s)
- Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Anran Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| | - Jiajuan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Medical, Jiaxing University Affiliated Women and Children Hospital, 314051, Jiaxing, China
| | - Huihong Wang
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, 310008, Hangzhou, China
| | - Xiaoyang Fei
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital, 310008, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016, Hangzhou, China
| |
Collapse
|
23
|
Song H, Song J, Cheng M, Zheng M, Wang T, Tian S, Flavell RA, Zhu S, Li HB, Ding C, Wei H, Sun R, Peng H, Tian Z. METTL3-mediated m 6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun 2021; 12:5522. [PMID: 34535671 PMCID: PMC8448775 DOI: 10.1038/s41467-021-25803-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells exert critical roles in anti-tumor immunity but how their functions are regulated by epitranscriptional modification (e.g., N6-methyladenosine (m6A) methylation) is unclear. Here we report decreased expression of the m6A "writer" METTL3 in tumor-infiltrating NK cells, and a positive correlation between protein expression levels of METTL3 and effector molecules in NK cells. Deletion of Mettl3 in NK cells alters the homeostasis of NK cells and inhibits NK cell infiltration and function in the tumor microenvironment, leading to accelerated tumor development and shortened survival in mice. The gene encoding SHP-2 is m6A modified, and its protein expression is decreased in METTL3-deficient NK cells. Reduced SHP-2 activity renders NK cells hyporesponsive to IL-15, which is associated with suppressed activation of the AKT and MAPK signaling pathway in METTL3-deficient NK cells. These findings show that m6A methylation safeguards the homeostasis and tumor immunosurveillance function of NK cells.
Collapse
Affiliation(s)
- Hao Song
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiaxi Song
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ming Cheng
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tian Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Shu Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hui Peng
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, Anhui, 230027, China.
| |
Collapse
|
24
|
Licensing Natural Killers for Antiviral Immunity. Pathogens 2021; 10:pathogens10070908. [PMID: 34358058 PMCID: PMC8308748 DOI: 10.3390/pathogens10070908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) enable discrimination between self- and non-self molecules on the surface of host target cells. In this regard, they have a vital role in self-tolerance through binding and activating intracellular tyrosine phosphatases which can inhibit cellular activation. Yet, self-MHC class I (MHC I)-specific IRs are versatile in that they can also positively impact lymphocyte functionality, as exemplified by their role in natural killer (NK) cell education, often referred to as ’licensing‘. Recent discoveries using defined mouse models of cytomegalovirus (CMV) infection have revealed that select self-MHC I IRs can increase NK cell antiviral defenses as well, whereas other licensing IRs cannot, or instead impede virus-specific NK responses for reasons that remain poorly understood. This review highlights a role for self-MHC I ‘licensing’ IRs in antiviral immunity, especially in the context of CMV infection, their impact on virus-specific NK cells during acute infection, and their potential to affect viral pathogenesis and disease.
Collapse
|
25
|
Han QJ, Mu YL, Zhao HJ, Zhao RR, Guo QJ, Su YH, Zhang J. Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells. World J Gastroenterol 2021; 27:3581-3594. [PMID: 34239271 PMCID: PMC8240055 DOI: 10.3748/wjg.v27.i24.3581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fasudil, as a Ras homology family member A (RhoA) kinase inhibitor, is used to improve brain microcirculation and promote nerve regeneration clinically. Increasing evidence shows that Rho-kinase inhibition could improve liver fibrosis.
AIM To evaluate the anti-fibrotic effects of Fasudil in a mouse model of liver fibrosis induced by thioacetamide (TAA).
METHODS C57BL/6 mice were administered TAA once every 3 d for 12 times. At 1 wk after induction with TAA, Fasudil was intraperitoneally injected once a day for 3 wk, followed by hematoxylin and eosin staining, sirius red staining, western blotting, and quantitative polymerase chain reaction (qPCR), and immune cell activation was assayed by fluorescence-activated cell sorting. Furthermore, the effects of Fasudil on hepatic stellate cells and natural killer (NK) cells were assayed in vitro.
RESULTS First, we found that TAA-induced liver injury was protected, and the positive area of sirius red staining and type I collagen deposition were significantly decreased by Fasudil treatment. Furthermore, western blot and qPCR assays showed that the levels of alpha smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), MMP-9, and transforming growth factor beta 1 (TGF-β1) were inhibited by Fasudil. Moreover, flow cytometry analysis revealed that NK cells were activated by Fasudil treatment in vivo and in vitro. Furthermore, Fasudil directly promoted the apoptosis and inhibited the proliferation of hepatic stellate cells by decreasing α-SMA and TGF-β1.
CONCLUSION Fasudil inhibits liver fibrosis by activating NK cells and blocking hepatic stellate cell activation, thereby providing a feasible solution for the clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yong-Liang Mu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Hua-Jun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Rong-Rong Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Quan-Juan Guo
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Hang Su
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
26
|
Tao T, Luo D, Gao C, Liu H, Lei Z, Liu W, Zhou C, Qi D, Deng Z, Sun X, Xiao J. Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Promotes Inflammation and Accelerates Osteoarthritis by Activating β-Catenin. Front Cell Dev Biol 2021; 9:646386. [PMID: 33898435 PMCID: PMC8063055 DOI: 10.3389/fcell.2021.646386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation, subchondral bone remodeling and osteophyte formation. Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) has not been fully investigated in the pathogenesis of OA. In this study, we found that SHP2 expression was significantly increased after interleukin-1β (IL-1β) treatment in primary mouse chondrocytes. Inhibition of SHP2 using siRNA reduced MMP3, MMP13 levels, but increased AGGRECAN, COL2A1, SOX9 expression in vitro. On the contrary, overexpression of SHP2 exerted the opposite results and promoted cartilage degradation. Mechanistically, SHP2 activated Wnt/β-catenin signaling possibly through directly binding to β-catenin. SHP2 also induced inflammation through activating Mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways. Our in vivo studies showed that SHP2 knockdown effectively delayed cartilage destruction and reduced osteophyte formation in the mouse model of OA induced by destabilization of the medial meniscus (DMM). Altogether, our study identifies that SHP2 is a novel and potential therapeutic target of OA.
Collapse
Affiliation(s)
- Tenghui Tao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danni Luo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Lei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dahu Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Rouas-Freiss N, Moreau P, LeMaoult J, Papp B, Tronik-Le Roux D, Carosella ED. Role of the HLA-G immune checkpoint molecule in pregnancy. Hum Immunol 2021; 82:353-361. [PMID: 33745758 DOI: 10.1016/j.humimm.2021.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
The non-classical HLA class I molecule HLA-G is expressed in trophoblasts where it contributes to maternal-fetal tolerance. HLA-G has been implicated in the control of trophoblast invasion, uterine vascular remodeling, and maintenance of a local immunosuppressive state. Understanding HLA-G biology at the maternal-fetal interface is therefore a critical issue in reproduction. In this regard, we review here: (i) the effects of HLA-G on decidual leucocytes and stromal cells, (ii) the contribution of trogocytosis in HLA-G expression on decidual cells, (iii) its interaction with the ILT2, ILT4 and KIR2DL4 receptors, (iv) the link between HLA-G polymorphism and pregnancy disorders, and (v) the expression of newly-described HLA-G isoforms at the maternal-fetal interface.
Collapse
Affiliation(s)
- Nathalie Rouas-Freiss
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Philippe Moreau
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Joel LeMaoult
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Bela Papp
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Diana Tronik-Le Roux
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Edgardo D Carosella
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris, Paris, France.
| |
Collapse
|
28
|
Dizaji Asl K, Velaei K, Rafat A, Tayefi Nasrabadi H, Movassaghpour AA, Mahdavi M, Nozad Charoudeh H. The role of KIR positive NK cells in diseases and its importance in clinical intervention. Int Immunopharmacol 2021; 92:107361. [PMID: 33429335 DOI: 10.1016/j.intimp.2020.107361] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells are essential for the elimination of the transformed and cancerous cells. Killer cell immunoglobulin-like receptors (KIRs) which expressed by T and NK cells, are key regulator of NK cell function. The KIR and their ligands, MHC class I (HLA-A, B and C) molecules, are highly polymorphic and their related genes are located on 19 q13.4 and 6 q21.3 chromosomes, respectively. It is clear that particular interaction between the KIRs and their related ligands can influence on the prevalence, progression and outcome of several diseases, like complications of pregnancy, viral infection, autoimmune diseases, and hematological malignancies. The mechanisms of immune signaling in particular NK cells involvement in causing pathological conditions are not completely understood yet. Therefore, better understanding of the molecular mechanism of KIR-MHC class I interaction could facilitate the treatment strategy of diseases. The present review focused on the main characteristics and functional details of various KIR and their combination with related ligands in diseases and also highlights ongoing efforts to manipulate the key checkpoints in NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Khadijeh Dizaji Asl
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
29
|
Chen D, Barsoumian HB, Yang L, Younes AI, Verma V, Hu Y, Menon H, Wasley M, Masropour F, Mosaffa S, Ozgen T, Klein K, Cortez MA, Welsh JW. SHP-2 and PD-L1 Inhibition Combined with Radiotherapy Enhances Systemic Antitumor Effects in an Anti-PD-1-Resistant Model of Non-Small Cell Lung Cancer. Cancer Immunol Res 2020; 8:883-894. [PMID: 32299915 PMCID: PMC10173258 DOI: 10.1158/2326-6066.cir-19-0744] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 02/03/2023]
Abstract
Immune checkpoint inhibitors, such as anti-PD-1/PD-L1, have emerged as promising therapies for advanced non-small cell lung cancer (NSCLC). However, approximately 80% of patients do not respond to immunotherapy given alone because of intrinsic or acquired resistance. Radiotherapy (XRT) can overcome PD-1 resistance and improve treatment outcomes, but its efficacy remains suboptimal. The tyrosine phosphatase SHP-2, expressed in some cancers and in immune cells, has been shown to negatively affect antitumor immunity. Our hypothesis was that SHP-2 inhibition in combination with anti-PD-L1 would enhance immune-mediated responses to XRT and synergistically boost antitumor effects in an anti-PD-1-resistant mouse model. We treated 129Sv/Ev mice with anti-PD-1-resistant 344SQ NSCLC adenocarcinoma with oral SHP099 (a SHP-2 inhibitor) combined with XRT and intraperitoneal anti-PD-L1. Primary tumors were treated with XRT (three fractions of 12 Gy each), whereas abscopal (out-of-field) tumors were observed but not treated. XRT in combination with SHP099 and anti-PD-L1 promoted local and abscopal responses, reduced lung metastases, and improved mouse survival. XRT also increased SHP-2+ M1 tumor-associated macrophages in abscopal tumors (P = 0.019). The addition of SHP099 also associated with a higher M1/M2 ratio, greater numbers of CD8+ T cells, and fewer regulatory T cells. This triple-combination therapy had strong antitumor effects in a mouse model of anti-PD-1-resistant NSCLC and may be a novel therapeutic approach for anti-PD-1-resistant NSCLC in patients.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Affiliated to Shandong University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liangpeng Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ahmed I Younes
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hari Menon
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Wasley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fatemeh Masropour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Tugce Ozgen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katherine Klein
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Hypoxia Impairs NK Cell Cytotoxicity through SHP-1-Mediated Attenuation of STAT3 and ERK Signaling Pathways. J Immunol Res 2020; 2020:4598476. [PMID: 33123602 PMCID: PMC7584946 DOI: 10.1155/2020/4598476] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors with potent antitumor activity. However, tumor cells can create an immunosuppressive microenvironment to escape immune surveillance. Although accumulating evidence indicates that microenvironmental hypoxia plays an important role in favoring tumor development and immune evasion, it remains unclear by what means hypoxia directly impairs NK cell antitumor activity. In this study, we confirmed that hypoxic NK cells showed significantly lower cytotoxicity against tumor cells. Consistent with this finding, we found that the reduction in NK cell cytotoxicity resulting from hypoxia correlated to the lower expression of granzyme B, IFN-γ, and degranulation marker CD107a, as well as activating receptors including NKp30, NKp46, and NKG2D expressed on the surface of NK cells. More importantly, we further demonstrated that a reduction in the phosphorylation levels of ERK and STAT3 secondary to hypoxia was strongly associated with the attenuated NK cell cytotoxicity. Focusing on the mechanism responsible for reduced phosphorylation levels of ERK and STAT3, we reveal that the activation of protein tyrosine phosphatase SHP-1 (Src homology region 2 domain-containing phosphatase-1) following hypoxia might play an essential role in this process. By knocking down SHP-1 or blocking its activity using a specific inhibitor TPI-1, we were able to partially restore NK cell cytotoxicity under hypoxia. Taken together, we demonstrate that hypoxia could impair NK cell cytotoxicity by decreasing the phosphorylation levels of ERK and STAT3 in a SHP-1-dependent manner. Therefore, targeting SHP-1 could provide an approach to enhance NK cell-based tumor immunotherapy.
Collapse
|
31
|
Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res 2019; 152:104595. [PMID: 31838080 DOI: 10.1016/j.phrs.2019.104595] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a major phosphatase involved in several cellular processes. In recent years, SHP2 has been the focus of significant attention in human diseases, particular in cancer. Several studies have shown that SHP2 plays an important role in regulating immune cell functions in tumor microenvironment. A few clinical trials conducted using SHP2 allosteric inhibitors have shown remarkable anti-tumor benefits and good safety profiles. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in T lymphocytes, macrophages and cancer cells. It also summarizes the current development of SHP2 inhibitors as a promising strategy for cancer immunotherapy.
Collapse
|
32
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
33
|
Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Front Immunol 2019; 10:2468. [PMID: 31708921 PMCID: PMC6823243 DOI: 10.3389/fimmu.2019.02468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is crucial for the activation of extracellular signal-regulated kinase (ERK) downstream of various growth factor receptors, thereby exerting essential developmental functions. This phosphatase also deploys proto-oncogenic functions and specific inhibitors have recently been developed. With respect to the immune system, the role of SHP-2 in the signaling of cytokines relevant for myelopoiesis and myeloid malignancies has been intensively studied. The function of this phosphatase downstream of cytokines important for lymphocytes is less understood, though multiple lines of evidence suggest its importance. In addition, SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors (IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and NK lymphocytes. Further, we highlight the importance of broadening our understanding of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and unanticipated benefits of its therapeutic blockade.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
34
|
Colucci F. Placentation and antitumor immunity regulated by a scaffolding protein in NK cells. Sci Immunol 2019; 4:eaax9589. [PMID: 31375527 DOI: 10.1126/sciimmunol.aax9589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 01/05/2023]
Abstract
Natural killer cells use the Gab3 adaptor protein to limit trophoblast invasion during pregnancy and to reject tumor cells. See the related Research Article by Sliz et al.
Collapse
Affiliation(s)
- Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine and Centre for Trophoblast Research, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK.
| |
Collapse
|