1
|
Kang S, Liu S, Dong X, Li H, Qian Y, Dai A, He W, Li X, Chen Q, Wang H, Ding PH. USP4 depletion-driven RAB7A ubiquitylation impairs autophagosome-lysosome fusion and aggravates periodontitis. Autophagy 2025; 21:771-788. [PMID: 39663592 PMCID: PMC11925113 DOI: 10.1080/15548627.2024.2429371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Periodontitis, a prevalent and chronic inflammatory disease, is intricately linked with macroautophagy/autophagy, which has a dual role in maintaining periodontal homeostasis. Despite its importance, the precise interplay between autophagy and periodontitis pathogenesis remains to be fully elucidated. In this study, our investigation revealed that the ubiquitination of RAB7A, mediated by reduced levels of the deubiquitinating enzyme USP4 (ubiquitin specific peptidase 4), disrupts normal lysosomal trafficking and autophagosome-lysosome fusion, thereby contributing significantly to periodontitis progression. Specifically, through genomic and histological analysis of clinical gingival samples, we observed a decreased RAB7A expression and impaired autophagic activity in periodontitis. This was further substantiated through experimental periodontitis mice, where RAB7A inactivation was shown to directly affect autophagy efficiency and drive periodontitis progression. Next, we explored the function of active RAB7A to promote lysosomal trafficking dynamics and autophagosome-lysosome fusion, which was inhibited by RAB7A ubiquitination in macrophages stimulated by Porphyromonas gingivalis (P. g.), one of the keystone pathogens of periodontitis. Last, by proteomics analysis, we revealed that the ubiquitination of RAB7A was mediated by USP4 and validated that upregulation of USP4 could attenuate periodontitis in vivo. In conclusion, these findings highlight the interaction between USP4 and RAB7A as a promising target for therapeutic intervention in managing periodontal diseases.Abbreviation: 3-MA: 3-methyladenine; Baf A1:bafilomycin A1; BECN1: beclin 1, autophagy related; CEJ-ABC: cementoenamel junctionto alveolar bone crest; IL1B/IL-1β: interleukin 1 beta; KD:knockdown; LPS: lipopolysaccharide; MOI: multiplicity of infection;OE: overexpression; P.g.: Porphyromonasgingivalis; RILP: Rabinteracting lysosomal protein; ScRNA-seq: single-cell RNA sequencing; SQSTM1/p62: sequestosome 1; S.s.: Streptococcus sanguinis; USP4:ubiquitin specific peptidase 4.
Collapse
Affiliation(s)
- Sen Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxin Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xian Dong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoyu Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyi Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wentao He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Jin SK, Baek KH. Unraveling the role of deubiquitinating enzymes on cisplatin resistance in several cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189297. [PMID: 40058507 DOI: 10.1016/j.bbcan.2025.189297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The use of platinum-based drugs in cancer treatment is one of the most common methods in chemotherapy. Especially, cisplatin induces cell death by interrupting DNA synthesis by binding to the DNA bases, thereby leading to the apoptosis via multiple pathways. However, the major hurdle in chemotherapy is drug resistance. To overcome drug resistance, the ubiquitin-proteasome system (UPS) has emerged as a potential therapeutic target. The UPS is a pivotal signaling pathway that regulates the majority of cellular proteins by attaching ubiquitin to substrates, leading to proteasomal degradation. Conversely, deubiquitinating enzymes (DUBs) remove tagged ubiquitin from the substrate and inhibit degradation, thereby maintaining proteostasis. Recently, studies have been conducted to identify the substrates of DUBs and investigated the cellular mechanisms, and now the development of therapeutics using DUB inhibitors is in clinical trials. However, the mechanism of the DUB response to cisplatin remains still unclear. In this review, we summarize the research reported on the function of DUBs responding to cisplatin.
Collapse
Affiliation(s)
- Sun-Kyu Jin
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
3
|
Xing S, Chai H, Chen Z, Deng S, Nong F. Lycobetaine Has Therapeutic Efficacy in Lung Squamous Cell Carcinoma by Targeting USP32 to Trigger Ferroptosis. Curr Issues Mol Biol 2025; 47:163. [PMID: 40136417 PMCID: PMC11941616 DOI: 10.3390/cimb47030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Ubiquitin-specific protease 32 (USP32), a deubiquitylating enzyme that controls the ubiquitin process, is overexpressed in multiple cancers and serves as a promising therapeutic target for cancer therapy. Drugs targeting ferroptosis have exhibited promising anticancer activity. Lycobetaine (LBT), a natural alkaloid, holds promise against various cancers, yet its specific targets and anticancer mechanisms remain unclear. In this study, we show that LBT induced ferroptosis in lung squamous cell carcinoma (LUSC) cells, accompanied by glutathione depletion and the accumulation of lipid peroxidation, malondialdehyde, and ferrous iron. Mechanistically, drug affinity responsive target stability-based mass spectrometry analysis, molecular dynamics simulations, and a cellular thermal shift assay confirmed that USP32 is a potential target of LBT in LUSC cells. Moreover, a strong interaction between USP32 and nuclear factor erythroid 2-related factor 2 (NRF2) was found via immunoprecipitation-mass spectrometry and co-immunoprecipitation. In addition, the ubiquitination assay results demonstrated that LBT treatment significantly increased NRF2 ubiquitination and degradation by targeting USP32. Importantly, USP32 overexpression effectively attenuated the effects of LBT on proliferation and ferroptosis in LUSC cells. In orthotopic LUSC xenografts, the administration of LBT significantly inhibited tumor growth and metastasis and induced ferroptosis by targeting the USP32-NRF2 signaling axis. Taken together, these data suggest that LBT exerts its anticancer effects by inhibiting USP32-mediated NRF2 deubiquitination to induce ferroptosis and that LBT may serve as a prospective USP32-targeting agent for LUSC treatment.
Collapse
Affiliation(s)
- Shangping Xing
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; (S.X.); (H.C.); (Z.C.)
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation, Nanning 530021, China
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Nanning 530021, China
| | - Hua Chai
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; (S.X.); (H.C.); (Z.C.)
| | - Zhenlong Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China; (S.X.); (H.C.); (Z.C.)
| | - Shuye Deng
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530024, China
| | - Feifei Nong
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530024, China
| |
Collapse
|
4
|
Modica G, Tejeda-Valencia L, Sauvageau E, Yasa S, Maes J, Skorobogata O, Lefrancois S. Phosphorylation on serine 72 modulates Rab7A palmitoylation and retromer recruitment. J Cell Sci 2025; 138:jcs262177. [PMID: 39584231 PMCID: PMC11828465 DOI: 10.1242/jcs.262177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Rab7A has a key role in regulating membrane trafficking at late endosomes. By interacting with several different effectors, this small GTPase controls late endosome mobility, orchestrates fusion events between late endosomes and lysosomes, and participates in the formation of and regulates the fusion between autophagosomes and lysosomes. Rab7A is also responsible for the spatiotemporal recruitment of retromer, which is required for the endosome-to-trans-Golgi network retrieval of cargo receptors such as sortilin (SORT1) and CI-MPR (also known as IGF2R). Recently, several post-translational modifications have been shown to modulate Rab7A functions, including palmitoylation, ubiquitination and phosphorylation. Here, we show that phosphorylation of Rab7A at serine 72 is important to modulate its interaction with retromer, as the non-phosphorylatable Rab7AS72A mutant is not able to interact with and recruit retromer to late endosomes. We have previously shown that Rab7A palmitoylation is also required for efficient retromer recruitment. We found that palmitoylation of Rab7AS72A is reduced compared to that of the wild-type protein, suggesting an interplay between S72 phosphorylation and palmitoylation in regulating the Rab7A-retromer interaction. Finally, we identify NEK7 as a kinase required to phosphorylate Rab7A to promote retromer binding and recruitment.
Collapse
Affiliation(s)
- Graziana Modica
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Laura Tejeda-Valencia
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Etienne Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Juliette Maes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Olga Skorobogata
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada
| |
Collapse
|
5
|
Hasegawa Y, Luo Y, Sato T. Recent Advances in Ubiquitin Signals Regulating Plant Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2024; 65:1907-1924. [PMID: 39446594 DOI: 10.1093/pcp/pcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Ubiquitination is a reversible post-translational modification involving the attachment of ubiquitin, a 76-amino acid protein conserved among eukaryotes. The protein 'ubiquitin' was named after it was found to be ubiquitously expressed in cells. Ubiquitination was first identified as a post-translational modification that mediates energy-consuming protein degradation by the proteasome. After half a century, the manifold functions of ubiquitin are widely recognized to play key roles in diverse molecular pathways and physiological processes. Compared to humans, the number of enzymes related to ubiquitination is almost twice as high in plant species, such as Arabidopsis and rice, suggesting that this modification plays a critical role in many aspects of plant physiology including development and environmental stress responses. Here, we summarize and discuss recent knowledge of ubiquitination focusing on the regulation of membrane trafficking in plants. Ubiquitination of plasma membrane-localized proteins often leads to endocytosis and vacuolar targeting. In addition to cargo proteins, ubiquitination of membrane trafficking regulators regulates the morphodynamics of the endomembrane system. Thus, throughout this review, we focus on the physiological responses regulated by ubiquitination and their underlying mechanisms to clarify what is already known and what would be interesting to investigate in the future.
Collapse
Affiliation(s)
- Yoko Hasegawa
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Yongming Luo
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | - Takeo Sato
- Faculty of Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810 Japan
| |
Collapse
|
6
|
Su W, Ahmad I, Wu Y, Tang L, Khan I, Ye B, Liang J, Li S, Zheng YH. Furin Egress from the TGN is Regulated by Membrane-Associated RING-CH Finger (MARCHF) Proteins and Ubiquitin-Specific Protease 32 (USP32) via Nondegradable K33-Polyubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403732. [PMID: 39031635 PMCID: PMC11425283 DOI: 10.1002/advs.202403732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.
Collapse
Affiliation(s)
- Wenqiang Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iqbal Ahmad
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - You Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ilyas Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bowei Ye
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Sunan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Hui Zheng
- Department of Microbiology and Immunology, The University of Illinois Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
7
|
Li S, Yang L, Ding X, Sun H, Dong X, Yang F, Wang M, Zhang H, Li Y, Li B, Liu C. USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway. Oncogenesis 2024; 13:27. [PMID: 39030175 PMCID: PMC11271578 DOI: 10.1038/s41389-024-00528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, 266071, Qingdao, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6 Tongfu Road, 266034, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, 266000, Qingdao, China.
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
| |
Collapse
|
8
|
Magits W, Steklov M, Jang H, Sewduth RN, Florentin A, Lechat B, Sheryazdanova A, Zhang M, Simicek M, Prag G, Nussinov R, Sablina A. K128 ubiquitination constrains RAS activity by expanding its binding interface with GAP proteins. EMBO J 2024; 43:2862-2877. [PMID: 38858602 PMCID: PMC11251195 DOI: 10.1038/s44318-024-00146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The RAS pathway is among the most frequently activated signaling nodes in cancer. However, the mechanisms that alter RAS activity in human pathologies are not entirely understood. The most prevalent post-translational modification within the GTPase core domain of NRAS and KRAS is ubiquitination at lysine 128 (K128), which is significantly decreased in cancer samples compared to normal tissue. Here, we found that K128 ubiquitination creates an additional binding interface for RAS GTPase-activating proteins (GAPs), NF1 and RASA1, thus increasing RAS binding to GAP proteins and promoting GAP-mediated GTP hydrolysis. Stimulation of cultured cancer cells with growth factors or cytokines transiently induces K128 ubiquitination and restricts the extent of wild-type RAS activation in a GAP-dependent manner. In KRAS mutant cells, K128 ubiquitination limits tumor growth by restricting RAL/ TBK1 signaling and negatively regulating the autocrine circuit induced by mutant KRAS. Reduction of K128 ubiquitination activates both wild-type and mutant RAS signaling and elicits a senescence-associated secretory phenotype, promoting RAS-driven pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Wout Magits
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Mikhail Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Raj N Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Amir Florentin
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Benoit Lechat
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | | | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Michal Simicek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Gali Prag
- School of Neurobiology, Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000, Leuven, Belgium.
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Ma K, Shu R, Liu H, Ge J, Liu J, Lu Q, Fu J, Liu X, Qiu J. Legionella effectors SidC/SdcA ubiquitinate multiple small GTPases and SNARE proteins to promote phagosomal maturation. Cell Mol Life Sci 2024; 81:249. [PMID: 38836877 PMCID: PMC11335287 DOI: 10.1007/s00018-024-05271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.
Collapse
Affiliation(s)
- Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Rundong Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jiaqi Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 PMCID: PMC12016574 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
11
|
Steinbach A, Bhadkamkar V, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, Mukherjee S. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila. Mol Biol Cell 2024; 35:ar27. [PMID: 38117589 PMCID: PMC10916871 DOI: 10.1091/mbc.e23-06-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s ∼330 secreted effector proteins are ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p. hijacks host cell ubiquitin signaling, we generated a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection increases ubiquitination of host regulators of subcellular trafficking and membrane dynamics, most notably ∼40% of mammalian Ras superfamily small GTPases. We determine that these small GTPases undergo nondegradative ubiquitination at the Legionella-containing vacuole (LCV) membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central role in cross-family small GTPase ubiquitination, and that these effectors function upstream of SidE family ligases in the polyubiquitination and retention of GTPases in the LCV membrane. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. Our findings position L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
Collapse
Affiliation(s)
- Adriana Steinbach
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
| | - Varun Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA 94309
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Gwendolyn M. Jang
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- George Williams Hooper Foundation, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
12
|
Sewduth RN, Carai P, Ivanisevic T, Zhang M, Jang H, Lechat B, Van Haver D, Impens F, Nussinov R, Jones E, Sablina A. Spatial Mechano-Signaling Regulation of GTPases through Non-Degradative Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303367. [PMID: 37946677 PMCID: PMC10754123 DOI: 10.1002/advs.202303367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Blood flow produces shear stress exerted on the endothelial layer of the vessels. Spatial characterization of the endothelial proteome is required to uncover the mechanisms of endothelial activation by shear stress, as blood flow varies in the vasculature. An integrative ubiquitinome and proteome analysis of shear-stressed endothelial cells demonstrated that the non-degradative ubiquitination of several GTPases is regulated by mechano-signaling. Spatial analysis reveals increased ubiquitination of the small GTPase RAP1 in the descending aorta, a region exposed to laminar shear stress. The ubiquitin ligase WWP2 is identified as a novel regulator of RAP1 ubiquitination during shear stress response. Non-degradative ubiquitination fine-tunes the function of GTPases by modifying their interacting network. Specifically, WWP2-mediated RAP1 ubiquitination at lysine 31 switches the balance from the RAP1/ Talin 1 (TLN1) toward RAP1/ Afadin (AFDN) or RAP1/ RAS Interacting Protein 1 (RASIP1) complex formation, which is essential to suppress shear stress-induced reactive oxygen species (ROS) production and maintain endothelial barrier integrity. Increased ROS production in endothelial cells in the descending aorta of endothelial-specific Wwp2-knockout mice leads to increased levels of oxidized lipids and inflammation. These results highlight the importance of the spatially regulated non-degradative ubiquitination of GTPases in endothelial mechano-activation.
Collapse
Affiliation(s)
- Raj N. Sewduth
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Paolo Carai
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Tonci Ivanisevic
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Mingzhen Zhang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Hyunbum Jang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
| | - Benoit Lechat
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| | - Delphi Van Haver
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Francis Impens
- VIB‐UGent Center for Medical BiotechnologyTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- Department of Biomolecular MedicineGhent UniversityTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
- VIB Proteomics CoreTechnologiepark‐Zwijnaarde 75Ghent9052Belgium
| | - Ruth Nussinov
- Computational Structural Biology SectionFrederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunoMetabolismNational Cancer InstituteFrederickMD21702USA
- Department of Human Molecular Genetics and BiochemistrySackler School of MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Elizabeth Jones
- Department of Cardiovascular SciencesCentre for Molecular and Vascular BiologyKU LeuvenHerestraat 49Leuven3000Belgium
- Department of CardiologyCARIM School for Cardiovascular DiseasesMaastricht UniversityUniversiteitssingel 50Maastricht6229 ERThe Netherlands
| | - Anna Sablina
- VIB‐KU Leuven Center for Cancer BiologyVIBLeuven3000Belgium
- Department of OncologyKU LeuvenHerestraat 49Leuven3000Belgium
| |
Collapse
|
13
|
Wei Z, Xia K, Zheng D, Gong C, Guo W. RILP inhibits tumor progression in osteosarcoma via Grb10-mediated inhibition of the PI3K/AKT/mTOR pathway. Mol Med 2023; 29:133. [PMID: 37789274 PMCID: PMC10548720 DOI: 10.1186/s10020-023-00722-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Rab-interacting lysosomal protein (RILP) contains an alpha-helical coil with an unexplored biological function in osteosarcoma. This study investigated the expression of RILP in osteosarcoma cells and tissues to determine the effect of RILP on the biological behaviors of osteosarcoma cells and the underlying mechanism. METHODS Tumor Immune Estimation Resource (TIMER) database, The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were used for bioinformatic analysis. Co-immunoprecipitation experiment was used to determine whether the two proteins were interacting. In functional tests, cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay, transwell invasion assay, Immunofluorescence (IF) assay and immunohistochemical (IHC) assay were performed. RESULTS Overexpression of RILP significantly inhibited proliferation and impaired metastasis ability of osteosarcoma cells, while silencing of RILP showed the opposite trend. RNA-seq data analysis was applied in 143B cells and pathway enrichment analysis revealed that differentially expressed genes were mainly enriched in the PI3K/AKT pathway. We further verified that overexpression of RILP restrained the PI3K/AKT/mTOR signaling pathway and induced autophagy in osteosarcoma cells, while the opposite trend was observed when PI3K pathway activator 740Y-P was used. 3-Methyladenine (3-MA), a selective autophagy inhibitor, partially attenuated the inhibitory effect of RILP on the migration and invasion ability of osteosarcoma cells, suggesting the involvement of autophagy in epithelial-mesenchymal transition regulation in osteosarcoma cells. Growth factor receptor binding protein-10 (Grb10), an adaptor protein, was confirmed as a potential target of RILP to restrain the PI3K/AKT signaling pathway. We subcutaneously injected stably overexpressing 143B osteosarcoma cells into nude mice and observed that overexpression of RILP inhibited tumor growth by inhibiting the PI3K/AKT/mTOR pathway. CONCLUSION Our study revealed that the expression of RILP was associated with favorable prognosis of osteosarcoma and RILP inhibits proliferation, migration, and invasion and promotes autophagy in osteosarcoma cells via Grb10-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. In the future, targeting RILP may be a potential strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Changtian Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
14
|
Gan J, de Vries J, Akkermans JJLL, Mohammed Y, Tjokrodirijo RTN, de Ru AH, Kim RQ, Vargas DA, Pol V, Fasan R, van Veelen PA, Neefjes J, van Dam H, Ovaa H, Sapmaz A, Geurink PP. Cellular Validation of a Chemically Improved Inhibitor Identifies Monoubiquitination on OTUB2. ACS Chem Biol 2023; 18:2003-2013. [PMID: 37642399 PMCID: PMC10510154 DOI: 10.1021/acschembio.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.
Collapse
Affiliation(s)
- Jin Gan
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jelle de Vries
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jimmy J. L. L. Akkermans
- Department
of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Rayman T. N. Tjokrodirijo
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Arnoud H. de Ru
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Robbert Q. Kim
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - David A. Vargas
- Department
of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester, New York 14627, United States
| | - Vito Pol
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester, New York 14627, United States
| | - Peter A. van Veelen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department
of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Hans van Dam
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Huib Ovaa
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Paul P. Geurink
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
15
|
Li S, Song Y, Wang K, Liu G, Dong X, Yang F, Chen G, Cao C, Zhang H, Wang M, Li Y, Zeng T, Liu C, Li B. USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target. Cell Death Discov 2023; 9:338. [PMID: 37679322 PMCID: PMC10485055 DOI: 10.1038/s41420-023-01629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.
Collapse
Grants
- Bing Li, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China Chunyan Liu, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kexin Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Teng Zeng
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Wu PS, Lin MH, Hsiao JC, Lin PY, Pan SH, Chen YJ. EGFR-T790M Mutation-Derived Interactome Rerouted EGFR Translocation Contributing to Gefitinib Resistance in Non-Small Cell Lung Cancer. Mol Cell Proteomics 2023; 22:100624. [PMID: 37495186 PMCID: PMC10545940 DOI: 10.1016/j.mcpro.2023.100624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Secondary mutation, T790M, conferring tyrosine kinase inhibitors (TKIs) resistance beyond oncogenic epidermal growth factor receptor (EGFR) mutations presents a challenging unmet need. Although TKI-resistant mechanisms are intensively investigated, the underlying responses of cancer cells adapting drug perturbation are largely unknown. To illuminate the molecular basis linking acquired mutation to TKI resistance, affinity purification coupled mass spectrometry was adopted to dissect EGFR interactome in TKI-sensitive and TKI-resistant non-small cell lung cancer cells. The analysis revealed TKI-resistant EGFR-mutant interactome allocated in diverse subcellular distribution and enriched in endocytic trafficking, in which gefitinib intervention activated autophagy-mediated EGFR degradation and thus autophagy inhibition elevated gefitinib susceptibility. Alternatively, gefitinib prompted TKI-sensitive EGFR translocating toward cell periphery through Rab7 ubiquitination which may favor efficacy to TKIs suppression. This study revealed that T790M mutation rewired EGFR interactome that guided EGFR to autophagy-mediated degradation to escape treatment, suggesting that combination therapy with TKI and autophagy inhibitor may overcome acquired resistance in non-small cell lung cancer.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Hua Pan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Ju Chen
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Steinbach AM, Bhadkamkar VL, Jimenez-Morales D, Stevenson E, Jang GM, Krogan NJ, Swaney DL, Mukherjee S. Cross-family small GTPase ubiquitination by the intracellular pathogen Legionella pneumophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551750. [PMID: 37577546 PMCID: PMC10418220 DOI: 10.1101/2023.08.03.551750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The intracellular bacterial pathogen Legionella pneumophila (L.p.) manipulates eukaryotic host ubiquitination machinery to form its replicative vacuole. While nearly 10% of L.p.'s arsenal of ~330 secreted effector proteins have been biochemically characterized as ubiquitin ligases or deubiquitinases, a comprehensive measure of temporally resolved changes in the endogenous host ubiquitinome during infection has not been undertaken. To elucidate how L.p hijacks ubiquitin signaling within the host cell, we undertook a proteome-wide analysis of changes in protein ubiquitination during infection. We discover that L.p. infection results in increased ubiquitination of host proteins regulating subcellular trafficking and membrane dynamics, most notably 63 of ~160 mammalian Ras superfamily small GTPases. We determine that these small GTPases predominantly undergo non-degradative monoubiquitination, and link ubiquitination to recruitment to the Legionella-containing vacuole membrane. Finally, we find that the bacterial effectors SidC/SdcA play a central, but likely indirect, role in cross-family small GTPase ubiquitination. This work highlights the extensive reconfiguration of host ubiquitin signaling by bacterial effectors during infection and establishes simultaneous ubiquitination of small GTPases across the Ras superfamily as a novel consequence of L.p. infection. This work positions L.p. as a tool to better understand how small GTPases can be regulated by ubiquitination in uninfected contexts.
Collapse
Affiliation(s)
- Adriana M. Steinbach
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - Varun L. Bhadkamkar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, California, United States of America
| | - Erica Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Gwendolyn M. Jang
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- George Williams Hooper Foundation, University of California, San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
18
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Yalçin Z, Koot D, Bezstarosti K, Salas-Lloret D, Bleijerveld OB, Boersma V, Falcone M, González-Prieto R, Altelaar M, Demmers JAA, Jacobs JJL. Ubiquitinome profiling reveals in vivo UBE2D3 targets and implicates UBE2D3 in protein quality control. Mol Cell Proteomics 2023; 22:100548. [PMID: 37059365 DOI: 10.1016/j.mcpro.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ubiquitination has crucial roles in many cellular processes and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using SILAC-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control (RQC), is dependent on UBE2D3. We show by TULIP2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that UBE2D3's catalytic activity is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control (PQC). Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniëlle Koot
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands; Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain; Department of Cell Biology, University of Seville, Seville, Spain
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Sapmaz A, Erson-Bensan AE. EGFR endocytosis: more than meets the eye. Oncotarget 2023; 14:297-301. [PMID: 37036745 PMCID: PMC10085055 DOI: 10.18632/oncotarget.28400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Behind the scenes of signaling cascades initiated by activated receptors, endocytosis determines the fate of internalized proteins through degradation in lysosomes or recycling. Over the years, significant progress has been made in understanding the mechanisms of endocytosis and deregulation in disease states. Here we review the role of the EGF-SNX3-EGFR axis in breast cancers with an extended discussion on deregulated EGFR endocytosis in cancer.
Collapse
Affiliation(s)
| | - Ayse Elif Erson-Bensan
- Correspondence to:Ayse Elif Erson-Bensan,Department of Biological Sciences, Middle East Technical University, Dumlupinar Blv No:1, Universiteler Mah., Cankaya, Ankara 06800, Türkiye email
| |
Collapse
|
21
|
Tan X, Xiao GY, Wang S, Shi L, Zhao Y, Liu X, Yu J, Russell WK, Creighton CJ, Kurie JM. EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. J Clin Invest 2023; 133:e165863. [PMID: 36757799 PMCID: PMC10065074 DOI: 10.1172/jci165863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) executed a PI4KIIIβ-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanbin Zhao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad J. Creighton
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioinformatics and Computational Biology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Li C, Gao Z, Cui Z, Liu Z, Bian Y, Sun H, Wang N, He Z, Li B, Li F, Li Z, Wang L, Zhang D, Yang L, Xu Z, Xu H. Deubiquitylation of Rab35 by USP32 promotes the transmission of imatinib resistance by enhancing exosome secretion in gastrointestinal stromal tumours. Oncogene 2023; 42:894-910. [PMID: 36725886 DOI: 10.1038/s41388-023-02600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Imatinib is a tyrosine kinase inhibitor that is widely used to combat gastrointestinal stromal tumours (GISTs). However, secondary resistance to imatinib is an important challenge in GIST treatment. Recent studies have demonstrated that cancer-derived nanosized exosomes play a key role in intercellular communication, but little is known about the roles of exosomes in imatinib-resistant GISTs. Here, we reveal that exosomes released from imatinib-resistant GISTs transmit drug resistance to imatinib-sensitive tumours. By using iTRAQ technology, we demonstrate that Ras-related protein Rab-35 (Rab35) is upregulated differentially in imatinib-resistant GISTs. Loss of Rab35 decreases exosome secretion, thereby hampering the transmission of imatinib resistance to sensitive tumours. Mechanistically, we showed that the ubiquitin‒proteasome system is involved in elevated Rab35 expression and that ubiquitin-specific protease 32 (USP32), a deubiquitylating enzyme, is bound to Rab35. Further experiments demonstrate that this protease protects Rab35 from proteasomal degradation by reducing Lys48 (K48)-ubiquitination. Additionally, we found that the transcription factor ETV1, which is a lineage survival factor in GISTs, promotes USP32 expression. Collectively, our results reveal that exosomes transmit imatinib resistance in GISTs and that deubiquitylation plays a key role in regulating the transmission process. The USP32-Rab35 axis provides a potential target for interventions to reduce the occurrence of imatinib resistance in GISTs.
Collapse
Affiliation(s)
- Chao Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhishuang Gao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhiwei Cui
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zonghang Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Yibo Bian
- Department of Oncology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Sun
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Nuofan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhongyuan He
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| |
Collapse
|
23
|
Berlin I, Sapmaz A, Stévenin V, Neefjes J. Ubiquitin and its relatives as wizards of the endolysosomal system. J Cell Sci 2023; 136:288517. [PMID: 36825571 PMCID: PMC10022685 DOI: 10.1242/jcs.260101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.
Collapse
Affiliation(s)
- Ilana Berlin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Virginie Stévenin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
24
|
Shroka TM, Kufareva I, Salanga CL, Handel TM. The dual-function chemokine receptor CCR2 drives migration and chemokine scavenging through distinct mechanisms. Sci Signal 2023; 16:eabo4314. [PMID: 36719944 PMCID: PMC10091583 DOI: 10.1126/scisignal.abo4314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
C-C chemokine receptor 2 (CCR2) is a dual-function receptor. Similar to other G protein-coupled chemokine receptors, it promotes monocyte infiltration into tissues in response to the chemokine CCL2, and, like atypical chemokine receptors (ACKRs), it scavenges chemokine from the extracellular environment. CCR2 therefore mediates CCL2-dependent signaling as a G protein-coupled receptor (GPCR) and also limits CCL2 signaling as a scavenger receptor. We investigated the mechanisms underlying CCR2 scavenging, including the involvement of intracellular proteins typically associated with GPCR signaling and internalization. Using CRISPR knockout cell lines, we showed that CCR2 scavenged by constitutively internalizing to remove CCL2 from the extracellular space and recycling back to the cell surface for further rounds of ligand sequestration. This process occurred independently of G proteins, GPCR kinases (GRKs), β-arrestins, and clathrin, which is distinct from other "professional" chemokine scavenger receptors that couple to GRKs, β-arrestins, or both. These findings set the stage for understanding the molecular regulators that determine CCR2 scavenging and may have implications for drug development targeting this therapeutically important receptor.
Collapse
Affiliation(s)
- Thomas M. Shroka
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Catherina L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Loss of small GTPase Rab7 activation in prion infection negatively affects a feedback loop regulating neuronal cholesterol metabolism. J Biol Chem 2023; 299:102883. [PMID: 36623732 PMCID: PMC9926124 DOI: 10.1016/j.jbc.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.
Collapse
|
26
|
Hertel A, Alves LM, Dutz H, Tascher G, Bonn F, Kaulich M, Dikic I, Eimer S, Steinberg F, Bremm A. USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction. Cell Rep 2022; 41:111653. [PMID: 36476874 DOI: 10.1016/j.celrep.2022.111653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.
Collapse
Affiliation(s)
- Alexandra Hertel
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovico Martins Alves
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Henrik Dutz
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Stefan Eimer
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | - Florian Steinberg
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Elu N, Osinalde N, Ramirez J, Presa N, Rodriguez JA, Prieto G, Mayor U. Identification of substrates for human deubiquitinating enzymes (DUBs): An up-to-date review and a case study for neurodevelopmental disorders. Semin Cell Dev Biol 2022; 132:120-131. [PMID: 35042675 DOI: 10.1016/j.semcdb.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Similar to the reversal of kinase-mediated protein phosphorylation by phosphatases, deubiquitinating enzymes (DUBs) oppose the action of E3 ubiquitin ligases and reverse the ubiquitination of proteins. A total of 99 human DUBs, classified in 7 families, allow in this way for a precise control of cellular function and homeostasis. Ubiquitination regulates a myriad of cellular processes, and is altered in many pathological conditions. Thus, ubiquitination-regulating enzymes are increasingly regarded as potential candidates for therapeutic intervention. In this context, given the predicted easier pharmacological control of DUBs relative to E3 ligases, a significant effort is now being directed to better understand the processes and substrates regulated by each DUB. Classical studies have identified specific DUB substrate candidates by traditional molecular biology techniques in a case-by-case manner. Lately, single experiments can identify thousands of ubiquitinated proteins at a specific cellular context and narrow down which of those are regulated by a given DUB, thanks to the development of new strategies to isolate and enrich ubiquitinated material and to improvements in mass spectrometry detection capabilities. Here we present an overview of both types of studies, discussing the criteria that, in our view, need to be fulfilled for a protein to be considered as a high-confidence substrate of a given DUB. Applying these criteria, we have manually reviewed the relevant literature currently available in a systematic manner, and identified 650 high-confidence substrates of human DUBs. We make this information easily accessible to the research community through an updated version of the DUBase website (https://ehubio.ehu.eus/dubase/). Finally, in order to illustrate how this information can contribute to a better understanding of the physiopathological role of DUBs, we place a special emphasis on a subset of these enzymes that have been associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
28
|
Vogel K, Bläske T, Nagel MK, Globisch C, Maguire S, Mattes L, Gude C, Kovermann M, Hauser K, Peter C, Isono E. Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking. Nat Commun 2022; 13:6897. [PMID: 36371501 PMCID: PMC9653390 DOI: 10.1038/s41467-022-34637-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
The abundance of plasma membrane-resident receptors and transporters has to be tightly regulated by ubiquitin-mediated endosomal degradation for the proper coordination of environmental stimuli and intracellular signaling. Arabidopsis OVARIAN TUMOR PROTEASE (OTU) 11 and OTU12 are plasma membrane-localized deubiquitylating enzymes (DUBs) that bind to phospholipids through a polybasic motif in the OTU domain. Here we show that the DUB activity of OTU11 and OTU12 towards K63-linked ubiquitin is stimulated by binding to lipid membranes containing anionic lipids. In addition, we show that the DUB activity of OTU11 against K6- and K11-linkages is also stimulated by anionic lipids, and that OTU11 and OTU12 can modulate the endosomal degradation of a model cargo and the auxin efflux transporter PIN2-GFP in vivo. Our results suggest that the catalytic activity of OTU11 and OTU12 is tightly connected to their ability to bind membranes and that OTU11 and OTU12 are involved in the fine-tuning of plasma membrane proteins in Arabidopsis.
Collapse
Affiliation(s)
- Karin Vogel
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Tobias Bläske
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Marie-Kristin Nagel
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Christoph Globisch
- grid.9811.10000 0001 0658 7699Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Shane Maguire
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Lorenz Mattes
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Christian Gude
- grid.6936.a0000000123222966School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Kovermann
- grid.9811.10000 0001 0658 7699NMR, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Karin Hauser
- grid.9811.10000 0001 0658 7699Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78464 Konstanz, Germany
| | - Christine Peter
- grid.9811.10000 0001 0658 7699Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Erika Isono
- grid.9811.10000 0001 0658 7699Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
29
|
Huppelschoten Y, Elhebieshy AF, Hameed DS, Sapmaz A, Buchardt J, Nielsen TE, Ovaa H, van der Heden van Noort GJ. Total Chemical Synthesis of a Functionalized GFP Nanobody. Chembiochem 2022; 23:e202200304. [PMID: 35920208 PMCID: PMC9804225 DOI: 10.1002/cbic.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 01/05/2023]
Abstract
Chemical protein synthesis has proven to be a powerful tool to access homogenously modified proteins. The chemical synthesis of nanobodies (Nb) would create possibilities to design tailored Nbs with a range of chemical modifications such as tags, linkers, reporter groups, and subsequently, Nb-drug conjugates. Herein, we describe the total chemical synthesis of a 123 amino-acid Nb against GFP. A native chemical ligation- desulfurization strategy was successfully applied for the synthesis of this GFP Nb, modified with a propargyl (PA) moiety for on-demand functionalization. Biophysical characterization indicated that the synthetic GFP Nb-PA was correctly folded after internal disulfide bond formation. The synthetic Nb-PA was functionalized with a biotin or a sulfo-cyanine5 dye by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), resulting in two distinct probes used for functional in vitro validation in pull-down and confocal microscopy settings.
Collapse
Affiliation(s)
- Yara Huppelschoten
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
- Global Research Technologies, Novo NordiskNovo Nordisk Park2760MåløvDenmark
| | - Angela F. Elhebieshy
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | - Dharjath S. Hameed
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | - Aysegul Sapmaz
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | - Jens Buchardt
- Global Research Technologies, Novo NordiskNovo Nordisk Park2760MåløvDenmark
| | - Thomas E. Nielsen
- Global Research Technologies, Novo NordiskNovo Nordisk Park2760MåløvDenmark
| | - Huib Ovaa
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | | |
Collapse
|
30
|
Ghilarducci K, Cabana VC, Harake A, Cappadocia L, Lussier MP. Membrane Targeting and GTPase Activity of Rab7 Are Required for Its Ubiquitination by RNF167. Int J Mol Sci 2022; 23:ijms23147847. [PMID: 35887194 PMCID: PMC9319455 DOI: 10.3390/ijms23147847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rab7 is a GTPase that controls late endosome and lysosome trafficking. Recent studies have demonstrated that Rab7 is ubiquitinated, a post-translational modification mediated by an enzymatic cascade. To date, only one ubiquitin E3 ligase and one deubiquitinase have been identified in regulating Rab7 ubiquitination. Here, we report that RNF167, a transmembrane endolysosomal ubiquitin ligase, can ubiquitinate Rab7. Using immunoprecipitation and in vitro ubiquitination assays, we demonstrate that Rab7 is a direct substrate of RNF167. Subcellular fractionation indicates that RNF167 activity maintains Rab7′s membrane localization. Epifluorescence microscopy in HeLa cells shows that Rab7-positive vesicles are larger under conditions enabling Rab7 ubiquitination by RNF167. Characterization of its ubiquitination reveals that Rab7 must be in its GTP-bound active form for membrane anchoring and, thus, accessible for RNF167-mediated ubiquitin attachment. Cellular distribution analyses of lysosome marker Lamp1 show that vesicle positioning is independent of Rab7 and RNF167 expression and that Rab7 endosomal localization is not affected by RNF167 knockdown. However, both Rab7 and RNF167 depletion affect each other’s lysosomal localization. Finally, this study demonstrates that the RNF167-mediated ubiquitination of Rab7 GTPase is impaired by variants of Charcot–Marie–Tooth Type 2B disease. This study identified RNF167 as a new ubiquitin ligase for Rab7 while expanding our knowledge of the mechanisms underlying the ubiquitination of Rab7.
Collapse
Affiliation(s)
- Kim Ghilarducci
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Valérie C. Cabana
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Ali Harake
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Laurent Cappadocia
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
| | - Marc P. Lussier
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H2X 2J6, Canada; (K.G.); (V.C.C.); (A.H.); (L.C.)
- Centre d’Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- Correspondence: ; Tel.: +1-514-987-3000 (ext. 5591); Fax: +1-514-987-4054
| |
Collapse
|
31
|
Ashraf S, Qadri S, Akbar S, Parray A, Haik Y. Biogenesis of Exosomes Laden with Metallic Silver-Copper Nanoparticles Liaised by Wheat Germ Agglutinin for Targeted Delivery of Therapeutics to Breast Cancer. Adv Biol (Weinh) 2022; 6:e2200005. [PMID: 35398976 DOI: 10.1002/adbi.202200005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Indexed: 01/28/2023]
Abstract
The anticancer property of silver-copper metallic nanoparticles (AgCu-NPs) is of greater interest in cancer therapeutics; however, its off-target toxicity limits its therapeutic application. Exosomes emerge as one of the leading idiosyncratic nanocarrier choices for cancer therapeutics due to their size, stability, and phenotypic diversity; however, to encapsulate NPs in extracellular vesicles (EVs) without disrupting their inherited functions is far from the expectations. Here, the loading strategy of AgCu-NP conjugated with wheat germ agglutinin (AgCu-NP-WGA) in exosomes during biogenesis for the targeted delivery of anticancer therapeutics to breast cancer is reported. Based on the intrinsic mechanism of endocytosis of WGA, results show that internalization of WGA or AgCu-NP-WGA bypasses the lysosomal pathway and recycles in EVs. On the contrary, the transport of naked AgCu-NPs to lysosomes; mechanistically, an acidic environment causes oxidation of AgCu-NP. Next, the analysis of EVs harvested by differential centrifugation shows that only AgCu-NPs-WGA (Exo-NP) retain their metallic state. Furthermore, Exo-NP cytotoxicity results manifest that MCF10A-derived Exo-NPs are toxic to its homologous breast cancer cells (MCF-7 and MDA-MB 231) and nontoxic to heterologous cancers NC1-1975 and MCF 10A. In conclusion, this study shows the self-assembly of AgCu-NP in exosomes to target and deliver therapeutics for breast cancer.
Collapse
Affiliation(s)
- Sarmadia Ashraf
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education city - Gate 8, Ar-Rayan, Qatar
| | - Shahnaz Qadri
- College of Science and Engineering, Hamad Bin Khalifa University, Education city - Gate 8, Ar-Rayan, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education city - Gate 8, Ar-Rayan, Qatar
| | - Aijaz Parray
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Medical City, Bldg. 320, Doha, Qatar
| | - Yousef Haik
- Department of Mechanical and Industrial Engineering, Texas A & M University-Kingsville, 700 University Blvd, Kingsville, TX, 78363, USA
| |
Collapse
|
32
|
Doherty LM, Mills CE, Boswell SA, Liu X, Hoyt CT, Gyori B, Buhrlage SJ, Sorger PK. Integrating multi-omics data reveals function and therapeutic potential of deubiquitinating enzymes. eLife 2022; 11:e72879. [PMID: 35737447 PMCID: PMC9225015 DOI: 10.7554/elife.72879] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
Deubiquitinating enzymes (DUBs), ~100 of which are found in human cells, are proteases that remove ubiquitin conjugates from proteins, thereby regulating protein turnover. They are involved in a wide range of cellular activities and are emerging therapeutic targets for cancer and other diseases. Drugs targeting USP1 and USP30 are in clinical development for cancer and kidney disease respectively. However, the majority of substrates and pathways regulated by DUBs remain unknown, impeding efforts to prioritize specific enzymes for research and drug development. To assemble a knowledgebase of DUB activities, co-dependent genes, and substrates, we combined targeted experiments using CRISPR libraries and inhibitors with systematic mining of functional genomic databases. Analysis of the Dependency Map, Connectivity Map, Cancer Cell Line Encyclopedia, and multiple protein-protein interaction databases yielded specific hypotheses about DUB function, a subset of which were confirmed in follow-on experiments. The data in this paper are browsable online in a newly developed DUB Portal and promise to improve understanding of DUBs as a family as well as the activities of incompletely characterized DUBs (e.g. USPL1 and USP32) and those already targeted with investigational cancer therapeutics (e.g. USP14, UCHL5, and USP7).
Collapse
Affiliation(s)
- Laura M Doherty
- Harvard Medical School (HMS) Library of Integrated Network-based Cellular Signatures (LINCS) CenterCambridgeUnited States
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Xiaoxi Liu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Charles Tapley Hoyt
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Benjamin Gyori
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
33
|
Mechanisms regulating the sorting of soluble lysosomal proteins. Biosci Rep 2022; 42:231123. [PMID: 35394021 PMCID: PMC9109462 DOI: 10.1042/bsr20211856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
Collapse
|
34
|
Kumar G, Chawla P, Dhiman N, Chadha S, Sharma S, Sethi K, Sharma M, Tuli A. RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning. Nat Commun 2022; 13:1540. [PMID: 35314681 PMCID: PMC8938454 DOI: 10.1038/s41467-022-29077-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
The bidirectional movement of lysosomes on microtubule tracks regulates their whole-cell spatial arrangement. Arl8b, a small GTP-binding (G) protein, promotes lysosome anterograde trafficking mediated by kinesin-1. Herein, we report an Arl8b effector, RUFY3, which regulates the retrograde transport of lysosomes. We show that RUFY3 interacts with the JIP4-dynein-dynactin complex and facilitates Arl8b association with the retrograde motor complex. Accordingly, RUFY3 knockdown disrupts the positioning of Arl8b-positive endosomes and reduces Arl8b colocalization with Rab7-marked late endosomal compartments. Moreover, we find that RUFY3 regulates nutrient-dependent lysosome distribution, although autophagosome-lysosome fusion and autophagic cargo degradation are not impaired upon RUFY3 depletion. Interestingly, lysosome size is significantly reduced in RUFY3 depleted cells, which could be rescued by inhibition of the lysosome reformation regulatory factor PIKFYVE. These findings suggest a model in which the perinuclear cloud arrangement of lysosomes regulates both the positioning and size of these proteolytic compartments.
Collapse
Affiliation(s)
- Gaurav Kumar
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Prateek Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Neha Dhiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Sanya Chadha
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sheetal Sharma
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Kanupriya Sethi
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Amit Tuli
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
| |
Collapse
|
35
|
Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol 2022; 5:114. [PMID: 35136173 PMCID: PMC8826416 DOI: 10.1038/s42003-022-03060-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Ubiquitylation is one of the most common post-translational modifications (PTMs) of proteins that frequently targets substrates for proteasomal degradation. However it can also result in non-proteolytic events which play important functions in cellular processes such as intracellular signaling, membrane trafficking, DNA repair and cell cycle. Emerging evidence demonstrates that dysfunction of non-proteolytic ubiquitylation is associated with the development of multiple human diseases. In this review, we summarize the current knowledge and the latest concepts on how non-proteolytic ubiquitylation pathways are involved in cellular signaling and in disease-mediating processes. Our review, may advance our understanding of the non-degradative ubiquitylation process. Evanthia Pangou and co-authors review recent insights into the important roles of non-proteolytic ubiquitylation in cellular signaling as well as in physiology and disease.
Collapse
|
36
|
EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene 2022; 41:220-232. [PMID: 34718348 PMCID: PMC8883427 DOI: 10.1038/s41388-021-02086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor receptor (EGFR) has critical roles in epithelial cell physiology. Over-expression and over-activation of EGFR have been implicated in diverse cancers, including triple-negative breast cancers (TNBCs), prompting anti-EGFR therapies. Therefore, developing potent therapies and addressing the inevitable drug resistance mechanisms necessitates deciphering of EGFR related networks. Here, we describe Sorting Nexin 3 (SNX3), a member of the recycling retromer complex, as a critical player in the epidermal growth factor (EGF) stimulated EGFR network in TNBCs. We show that SNX3 is an immediate and sustained target of EGF stimulation initially at the protein level and later at the transcriptional level, causing increased SNX3 abundance. Using a proximity labeling approach, we observed increased interaction of SNX3 and EGFR upon EGF stimulation. We also detected colocalization of SNX3 with early endosomes and endocytosed EGF. Moreover, we show that EGFR protein levels are sensitive to SNX3 loss. Transient RNAi models of SNX3 downregulation have a temporary reduction in EGFR levels. In contrast, long-term silencing forces cells to recover and overexpress EGFR mRNA and protein, resulting in increased proliferation, colony formation, migration, invasion in TNBC cells, and increased tumor growth and metastasis in syngeneic models. Consistent with these results, low SNX3 and high EGFR mRNA levels correlate with poor relapse-free survival in breast cancer patients. Overall, our results suggest that SNX3 is a critical player in the EGFR network in TNBCs with implications for other cancers dependent on EGFR activity.
Collapse
|
37
|
Jung J, Baek J, Tae K, Shin D, Han S, Yang W, Yu W, Jung SM, Park SH, Choi CY, Lee S. Structural mechanism for regulation of Rab7 by site-specific monoubiquitination. Int J Biol Macromol 2022; 194:347-357. [PMID: 34801583 DOI: 10.1016/j.ijbiomac.2021.11.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Site-specific ubiquitination can regulate the functions of Rab proteins in membrane trafficking. Previously we showed that site-specific monoubiquitination on Rab5 downregulates its function. Rab7 acts in the downstream of Rab5. Although site-specific ubiquitination of Rab7 can affect its function, it remains elusive how the ubiquitination is involved in modulation of the function of Rab7 at molecular level. Here, we report molecular basis for the regulation of Rab7 by site-specific monoubiquitination. Rab7 was predominantly monoubiquitinated at multiple sites in the membrane fraction of cultured cells. Two major ubiquitination sites (K191 and K194), identified by mutational analysis with single K mutants, were responsible for membrane localization of monoubiquitinated Rab7. Using small-angle X-ray scattering, we derived structural models of site-specifically monoubiquitinated Rab7 in solution. Structural analysis combined with molecular dynamics simulation corroborated that the ubiquitin moieties on K191 and K194 are key determinants for exclusion of Rab7 from the endosomal membrane. Ubiquitination on the two major sites apparently mitigated colocalization of Rab7 with ORF3a of SARS-CoV-2, potentially deterring the egression of SARS-CoV-2. Our results establish that the regulatory effects of a Rab protein through site-specific monoubiquitination are commonly observed among Rab GTPases while the ubiquitination sites differ in each Rab protein.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiseok Baek
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kun Tae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonjin Yang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
38
|
A Panel of Engineered Ubiquitin Variants Targeting the Family of Domains Found in Ubiquitin Specific Proteases (DUSPs). J Mol Biol 2021; 433:167300. [PMID: 34666042 DOI: 10.1016/j.jmb.2021.167300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Domains found in ubiquitin specific proteases (DUSPs) occur in seven members of the ubiquitin specific protease (USP) family. DUSPs are defined by a distinct structural fold but their functions remain largely unknown, although studies with USP4 suggest that its DUSP enhances deubiquitination activity. We used phage-displayed libraries of ubiquitin variants (UbVs) to derive protein-based tools to target DUSP family members with high affinity and specificity. We designed a UbV library based on insights from the structure of a previously identified UbV bound to the DUSP of USP15. The new library yielded 33 unique UbVs that bound to DUSPs from five different USPs (USP4, USP11, USP15, USP20 and USP33). For each USP, we were able to identify at least one DUSP that bound with high affinity and absolute specificity relative to the other DUSPs. We showed that UbVs targeting the DUSPs of USP15, USP11 and USP20 inhibited the catalytic activity of the enzyme, despite the fact that the DUSP is located outside of the catalytic domain. These findings provide an alternative means of inhibiting USP activity by targeting DUSPs, and this mechanism could be potentially extended other DUSP-containing USPs.
Collapse
|
39
|
Desale SE, Chinnathambi S. α- Linolenic acid modulates phagocytosis and endosomal pathways of extracellular Tau in microglia. Cell Adh Migr 2021; 15:84-100. [PMID: 33724164 PMCID: PMC7971307 DOI: 10.1080/19336918.2021.1898727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia, the resident immune cells, were found to be activated to inflammatory phenotype in Alzheimer's disease (AD). The extracellular burden of amyloid-β plaques and Tau seed fabricate the activation of microglia. The seeding effect of extracellular Tau species is an emerging aspect to study about Tauopathies in AD. Tau seeds enhance the propagation of disease along with its contribution to microglia-mediated inflammation. The excessive neuroinflammation cumulatively hampers phagocytic function of microglia reducing the clearance of extracellular protein aggregates. Omega-3 fatty acids, especially docosahexaenoic acid and eicosapentaenoic acid, are recognized to induce anti-inflammatory phenotype of microglia. In addition to increased cytokine production, omega-3 fatty acids enhance phagocytic receptors expression in microglia. In this study, we have observed the phagocytosis of extracellular Tau in the presence of α-linolenic acid (ALA). The increased phagocytosis of extracellular Tau monomer and aggregates have been observed upon ALA exposure to microglia cells. After internalization, the degradation status of Tau has been studied with early and late endosomal markers Rab5 and Rab7. Further, the lysosome-mediated degradation of internalized Tau was studied with LAMP-2A, a lysosome marker. The enhanced migratory ability in the presence of ALA could be beneficial for microglia to access the target and clear it. The increased migration of microglia was found to induce the microtubule-organizing center repolarization. The data indicate that the dietary fatty acids ALA could significantly enhance phagocytosis and intracellular degradation of internalized Tau. Our results suggest that microglia could be influenced to reduce extracellular Tau seed with dietary fatty acids.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
40
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
41
|
Liu Z, Dagley LF, Shield-Artin K, Young SN, Bankovacki A, Wang X, Tang M, Howitt J, Stafford CA, Nachbur U, Fitzgibbon C, Garnish SE, Webb AI, Komander D, Murphy JM, Hildebrand JM, Silke J. Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J 2021; 40:e103718. [PMID: 34698396 DOI: 10.15252/embj.2019103718] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
Mixed lineage kinase domain-like (MLKL) is the executioner in the caspase-independent form of programmed cell death called necroptosis. Receptor-interacting serine/threonine protein kinase 3 (RIPK3) phosphorylates MLKL, triggering MLKL oligomerization, membrane translocation and membrane disruption. MLKL also undergoes ubiquitylation during necroptosis, yet neither the mechanism nor the significance of this event has been demonstrated. Here, we show that necroptosis-specific multi-mono-ubiquitylation of MLKL occurs following its activation and oligomerization. Ubiquitylated MLKL accumulates in a digitonin-insoluble cell fraction comprising organellar and plasma membranes and protein aggregates. Appearance of this ubiquitylated MLKL form can be reduced by expression of a plasma membrane-located deubiquitylating enzyme. Oligomerization-induced MLKL ubiquitylation occurs on at least four separate lysine residues and correlates with its proteasome- and lysosome-dependent turnover. Using a MLKL-DUB fusion strategy, we show that constitutive removal of ubiquitin from MLKL licences MLKL auto-activation independent of necroptosis signalling in mouse and human cells. Therefore, in addition to the role of ubiquitylation in the kinetic regulation of MLKL-induced death following an exogenous necroptotic stimulus, it also contributes to restraining basal levels of activated MLKL to avoid unwanted cell death.
Collapse
Affiliation(s)
- Zikou Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kristy Shield-Artin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel N Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Aleksandra Bankovacki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Translational Research, CSL Limited, Melbourne, VIC, Australia
| | - Xiangyi Wang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michelle Tang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jason Howitt
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Che A Stafford
- Gene Centre and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cheree Fitzgibbon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sarah E Garnish
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David Komander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
42
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
43
|
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases. Front Cell Dev Biol 2021; 9:688352. [PMID: 34277632 PMCID: PMC8281112 DOI: 10.3389/fcell.2021.688352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane trafficking is critical for cellular homeostasis, which is mainly carried out by small GTPases, a class of proteins functioning in vesicle budding, transport, tethering and fusion processes. The accurate and organized membrane trafficking relies on the proper regulation of small GTPases, which involves the conversion between GTP- and GDP-bound small GTPases mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Emerging evidence indicates that post-translational modifications (PTMs) of small GTPases, especially ubiquitination, play an important role in the spatio-temporal regulation of small GTPases, and the dysregulation of small GTPase ubiquitination can result in multiple human diseases. In this review, we introduce small GTPases-mediated membrane trafficking pathways and the biological processes of ubiquitination-dependent regulation of small GTPases, including the regulation of small GTPase stability, activity and localization. We then discuss the dysregulation of small GTPase ubiquitination and the associated human membrane trafficking-related diseases, focusing on the neurological diseases and infections. An in-depth understanding of the molecular mechanisms by which ubiquitination regulates small GTPases can provide novel insights into the membrane trafficking process, which knowledge is valuable for the development of more effective and specific therapeutics for membrane trafficking-related human diseases.
Collapse
Affiliation(s)
- Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Nakae A, Kodama M, Okamoto T, Tokunaga M, Shimura H, Hashimoto K, Sawada K, Kodama T, Copeland NG, Jenkins NA, Kimura T. Ubiquitin specific peptidase 32 acts as an oncogene in epithelial ovarian cancer by deubiquitylating farnesyl-diphosphate farnesyltransferase 1. Biochem Biophys Res Commun 2021; 552:120-127. [PMID: 33744759 DOI: 10.1016/j.bbrc.2021.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022]
Abstract
Epithelial ovarian cancer (EOC) is the seventh most common cancer worldwide and the deadliest gynecological malignancy because of its aggressiveness and high recurrence rate. To discover new therapeutic targets for EOC, we combined public EOC microarray datasets with our previous in vivo shRNA screening dataset. The top-ranked gene ubiquitin specific peptidase 32 (USP32), coding a deubiquitinating enzyme, is a component of the ubiquitin proteasome system. Clinically, USP32 is expressed in primary ovarian cancer, especially in metastatic peritoneal tumors, and negatively impacts the survival outcome. USP32 regulates proliferative and epithelial mesenchymal transition capacities that are associated with EOC progression. Proteomic analysis identified farnesyl-diphosphate farnesyltransferase 1 (FDFT1) as a novel substrate of USP32 that is an enzyme in the mevalonate pathway, essentially associated with cell proliferation and stemness. USP32 and FDFT1 expression was higher in tumor spheres than in adherent cells. Inhibition of USP32, FDFT1, or mevalonate pathway considerably suppressed tumor sphere formation, which was restored by adding squalene, a downstream product of FDFT1. These findings suggested that USP32-FDFT1 axis contributes to EOC progression, and could be novel therapeutic targets for EOC treatment.
Collapse
Affiliation(s)
- Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University, Graduate School of Medicine, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University, Graduate School of Medicine, Japan.
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Makoto Tokunaga
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University, Graduate School of Medicine, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University, Graduate School of Medicine, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University, Graduate School of Medicine, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Japan
| | - Neal G Copeland
- Department of Genetics, University of Texas, MD Anderson Cancer Center, USA
| | - Nancy A Jenkins
- Department of Genetics, University of Texas, MD Anderson Cancer Center, USA
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University, Graduate School of Medicine, Japan
| |
Collapse
|
45
|
Hu J, Ding X, Tian S, Chu Y, Liu Z, Li Y, Li X, Wang G, Wang L, Wang Z. TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 2021; 12:391. [PMID: 33846303 PMCID: PMC8041807 DOI: 10.1038/s41419-021-03670-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
The biological function of TRIM39, a member of TRIM family, remains largely unexplored in cancer, especially in colorectal cancer (CRC). In this study, we show that TRIM39 is upregulated in tumor tissues compared to adjacent normal tissues and associated with poor prognosis in CRC. Functional studies demonstrate that TRIM39 deficiency restrains CRC progression in vitro and in vivo. Our results further find that TRIM39 is a positive regulator of autophagosome–lysosome fusion. Mechanistically, TRIM39 interacts with Rab7 and promotes its activity via inhibiting its ubiquitination at lysine 191 residue. Depletion of TRIM39 inhibits CRC progression and autophagic flux in a Rab7 activity-dependent manner. Moreover, TRIM39 deficiency suppresses CRC progression through inhibiting autophagic degradation of p53. Thus, our findings uncover the roles as well as the relevant mechanisms of TRIM39 in CRC and establish a functional relationship between autophagy and CRC progression, which may provide promising approaches for the treatment of CRC.
Collapse
Affiliation(s)
- Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xueliang Ding
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaobo Tian
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yanan Chu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhibo Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuqin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaoqiong Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
46
|
Spits M, Heesterbeek IT, Voortman LM, Akkermans JJ, Wijdeven RH, Cabukusta B, Neefjes J. Mobile late endosomes modulate peripheral endoplasmic reticulum network architecture. EMBO Rep 2021; 22:e50815. [PMID: 33554435 PMCID: PMC7926257 DOI: 10.15252/embr.202050815] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest organelle contacting virtually every other organelle for information exchange and control of processes such as transport, fusion, and fission. Here, we studied the role of the other organelles on ER network architecture in the cell periphery. We show that the co‐migration of the ER with other organelles, called ER hitchhiking facilitated by late endosomes and lysosomes is a major mechanism controlling ER network architecture. When hitchhiking occurs, emerging ER structures may fuse with the existing ER tubules to alter the local ER architecture. This couples late endosomal/lysosomal positioning and mobility to ER network architecture. Conditions restricting late endosomal movement—including cell starvation—or the depletion of tether proteins that link the ER to late endosomes reduce ER dynamics and limit the complexity of the peripheral ER network architecture. This indicates that among many factors, the ER is controlled by late endosomal movement resulting in an alteration of the ER network architecture.
Collapse
Affiliation(s)
- Menno Spits
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Iris T Heesterbeek
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lennard M Voortman
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jimmy J Akkermans
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruud H Wijdeven
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Birol Cabukusta
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacques Neefjes
- Division of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
47
|
Ecker M, Redpath GMI, Nicovich PR, Rossy J. Quantitative visualization of endocytic trafficking through photoactivation of fluorescent proteins. Mol Biol Cell 2021; 32:892-902. [PMID: 33534630 PMCID: PMC8108533 DOI: 10.1091/mbc.e20-10-0669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.
Collapse
Affiliation(s)
- Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
48
|
Fang Y, Wang L, Wan C, Sun Y, Van der Jeught K, Zhou Z, Dong T, So KM, Yu T, Li Y, Eyvani H, Colter AB, Dong E, Cao S, Wang J, Schneider BP, Sandusky GE, Liu Y, Zhang C, Lu X, Zhang X. MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J Clin Invest 2021; 131:140837. [PMID: 32990678 DOI: 10.1172/jci140837] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Immune evasion is a pivotal event in tumor progression. To eliminate human cancer cells, current immune checkpoint therapy is set to boost CD8+ T cell-mediated cytotoxicity. However, this action is eventually dependent on the efficient recognition of tumor-specific antigens via T cell receptors. One primary mechanism by which tumor cells evade immune surveillance is to downregulate their antigen presentation. Little progress has been made toward harnessing potential therapeutic targets for enhancing antigen presentation on the tumor cell. Here, we identified MAL2 as a key player that determines the turnover of the antigen-loaded MHC-I complex and reduces the antigen presentation on tumor cells. MAL2 promotes the endocytosis of tumor antigens via direct interaction with the MHC-I complex and endosome-associated RAB proteins. In preclinical models, depletion of MAL2 in breast tumor cells profoundly enhanced the cytotoxicity of tumor-infiltrating CD8+ T cells and suppressed breast tumor growth, suggesting that MAL2 is a potential therapeutic target for breast cancer immunotherapy.
Collapse
Affiliation(s)
| | - Lifei Wang
- Department of Medical and Molecular Genetics
| | | | - Yifan Sun
- Department of Medical and Molecular Genetics
| | | | | | | | - Ka Man So
- Department of Medical and Molecular Genetics
| | - Tao Yu
- Department of Medical and Molecular Genetics
| | - Yujing Li
- Department of Medical and Molecular Genetics
| | | | | | - Edward Dong
- Department of Medical and Molecular Genetics
| | - Sha Cao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bryan P Schneider
- Department of Medical and Molecular Genetics.,Melvin and Bren Simon Cancer Center.,Division of Hematology/Oncology, Department of Medicine, and
| | | | - Yunlong Liu
- Department of Medical and Molecular Genetics.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics.,Melvin and Bren Simon Cancer Center.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics.,Melvin and Bren Simon Cancer Center
| |
Collapse
|
49
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
50
|
The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway. Cell Rep 2021; 34:108659. [PMID: 33472082 DOI: 10.1016/j.celrep.2020.108659] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 02/02/2023] Open
Abstract
The endolysosomal system fulfills a wide variety of cellular functions, many of which are modulated through interactions with other organelles. In particular, the ER exerts spatiotemporal constraints on the organization and motility of endosomes and lysosomes. We have recently described the ER transmembrane E3 ubiquitin ligase RNF26 as a regulator of endolysosomal perinuclear positioning and transport dynamics. Here, we report that the ubiquitin conjugating enzyme UBE2J1, also anchored in the ER membrane, partners with RNF26 in this context, and that the cellular activity of the resulting E2/E3 pair is localized in a perinuclear ER subdomain and supported by transmembrane interactions. Through modification of SQSTM1/p62 on lysine 435, the ER-embedded UBE2J1/RNF26 ubiquitylation complex recruits endosomal adaptors to immobilize their cognate vesicles in the perinuclear region of the cell. The resulting spatiotemporal compartmentalization promotes the trafficking of activated EGFR to lysosomes and facilitates the termination of EGF-induced AKT signaling.
Collapse
|