1
|
Tanvir MAH, Khaleque MA, Lee J, Park JB, Kim GH, Lee HH, Kim YY. Three-Dimensional Bioprinting for Intervertebral Disc Regeneration. J Funct Biomater 2025; 16:105. [PMID: 40137384 PMCID: PMC11943008 DOI: 10.3390/jfb16030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The rising demand for organ transplants and the need for precise tissue models have positioned the in vitro biomanufacturing of tissues and organs as a pivotal area in regenerative treatment. Considerable development has been achieved in growing tissue-engineered intervertebral disc (IVD) scaffolds, designed to meet stringent mechanical and biological compatibility criteria. Among the cutting-edge approaches, 3D bioprinting stands out due to its unparalleled capacity to organize biomaterials, bioactive molecules, and living cells with high precision. Despite these advancements, polymer-based scaffolds still encounter limitations in replicating the extracellular matrix (ECM)-like environment, which is fundamental for optimal cellular activities. To overcome these challenges, integrating polymers with hydrogels has been recommended as a promising solution. This combination enables the advancement of porous scaffolds that nurture cell adhesion, proliferation, as well as differentiation. Additionally, bioinks derived from the decellularized extracellular matrix (dECM) have exhibited potential in replicating biologically relevant microenvironments, enhancing cell viability, differentiation, and motility. Hydrogels, whether derived from natural sources involving collagen and alginate or synthesized chemically, are highly valued for their ECM-like properties and superior biocompatibility. This review will explore recent advancements in techniques and technologies for IVD regeneration. Emphasis will be placed on identifying research gaps and proposing strategies to bridge them, with the goal of accelerating the translation of IVDs into clinical applications.
Collapse
Affiliation(s)
- Md Amit Hasan Tanvir
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Md Abdul Khaleque
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Junhee Lee
- Department of Bionic Machinery, KIMM Institute of AI Robot, Korea Institute of Machinery and Materials, Daejeon 34103, Republic of Korea;
| | - Jong-Beom Park
- Department of Orthopedic Surgery, Uijeongbu Saint Mary’s Hospital, The Catholic University of Korea, Seoul 11765, Republic of Korea;
| | - Ga-Hyun Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Hwan-Hee Lee
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, The Catholic University of Korea, Seoul 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.)
| |
Collapse
|
2
|
Hayashi S, Rupp M, Liu JX, Stiles JW, Das A, Sanchirico A, Moore S, Arnold CB. Laser Upcycling of Hemoglobin Protein Biowaste into Engineered Graphene Aerogel Architectures for 3D Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412588. [PMID: 39739454 PMCID: PMC11848628 DOI: 10.1002/advs.202412588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Indexed: 01/02/2025]
Abstract
Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced. Laser scanning achieves graphene-synthesis concurrently with architecture-engineering through the localized graphitization of hemoglobin along the laser-scan path, enabling the direct preparation of engineered GAs. The laser-upcycled GAs are uniquely decorated with fibrous graphitic structures, which significantly improves the surface area. Such structural formation is attributable to the inherent iron content of hemoglobin which leads to the formation of iron-based nanoparticles that catalyze the formation of nano-structured graphene. By leveraging the high electrical conductivity and unique structural morphology, the laser-upcycled GAs are applied as electrodes of symmetrical 3D supercapacitors. The fabricated supercapacitors exhibited a high specific capacitance (≈54.9 F g-1) and excellent cycle stability (≈94% retention), attributable to the laser-engineered architecture facilitating ion diffusion even for thick electrodes. Not only does this study provide a novel approach to prepare GAs with engineered architectures but showcases the potential of laser-upcycling in preparing advanced functional materials for future devices.
Collapse
Affiliation(s)
- Shuichiro Hayashi
- Princeton Materials InstitutePrinceton UniversityPrincetonNJ08540USA
- Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Marco Rupp
- Princeton Materials InstitutePrinceton UniversityPrincetonNJ08540USA
- Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Jason X. Liu
- Princeton Materials InstitutePrinceton UniversityPrincetonNJ08540USA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Joseph W. Stiles
- Princeton Materials InstitutePrinceton UniversityPrincetonNJ08540USA
- Department of ChemistryPrinceton UniversityPrincetonNJ 08540USA
| | - Ankit Das
- Princeton Materials InstitutePrinceton UniversityPrincetonNJ08540USA
- Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Amelia Sanchirico
- Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Samuel Moore
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNJ08540USA
| | - Craig B. Arnold
- Princeton Materials InstitutePrinceton UniversityPrincetonNJ08540USA
- Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonNJ08540USA
| |
Collapse
|
3
|
Prediger R, Kluck S, Hambitzer L, Sauter D, Kotz-Helmer F. High-Resolution Structuring of Silica-Based Nanocomposites for the Fabrication of Transparent Multicomponent Glasses with Adjustable Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407630. [PMID: 39219207 DOI: 10.1002/adma.202407630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Silicate-based multicomponent glasses are of high interest for technical applications due to their tailored properties, such as an adaptable refractive index or coefficient of thermal expansion. However, the production of complex structured parts is associated with high effort, since glass components are usually shaped from high-temperature melts with subsequent mechanical or chemical postprocessing. Here for the first time the fabrication of binary and ternary multicomponent glasses using doped nanocomposites based on silica nanoparticles and photocurable metal oxide precursors as part of the binder matrix is presented. The doped nanocomposites are structured in high resolution using UV-casting and additive manufacturing techniques, such as stereolithography and two-photon lithography. Subsequently, the composites are thermally converted into transparent glass. By incorporating titanium oxide, germanium oxide, or zirconium dioxide into the silicate glass network, multicomponent glasses are fabricated with an adjustable refractive index nD between 1.4584-1.4832 and an Abbe number V of 53.85-61.13. It is further demonstrated that by incorporating 7 wt% titanium oxide, glasses with ultralow thermal expansion can be fabricated with so far unseen complexity. These novel materials enable for the first time high-precision lithographic structuring of multicomponent silica glasses with applications from optics and photonics, semiconductors as well as sensors.
Collapse
Affiliation(s)
- Richard Prediger
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Sebastian Kluck
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Leonhard Hambitzer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Daniel Sauter
- Laboratory for Micro-Optics, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104, Freiburg, Germany
- Glassomer GmbH, In den Kirchenmatten 54, 79110, Freiburg, Germany
| |
Collapse
|
4
|
Koga T, Nakashima S, Tsumori F. Replicating biological 3D root and hyphal networks in transparent glass chips. Sci Rep 2024; 14:21128. [PMID: 39256469 PMCID: PMC11387748 DOI: 10.1038/s41598-024-72333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
Replicating the complex 3D microvascular architectures found in biological systems is a critical challenge in tissue engineering and other fields requiring efficient mass transport. Conventional microfabrication techniques often face limitations in creating extensive hierarchical networks, especially within bulk materials. Here, we report a versatile bioinspired approach to generate optimized 3D microvascular networks within transparent glass matrix by transcribing the natural growth patterns of plants and fungi. Plant seeds or fungal spores are first cultivated on nanoparticle-based culture media. Subsequent heat treatment removes the biological species while sintering the surrounding compound into a solidified chip with replica root/hyphal architectures as open microchannels. A diverse range of architectures, including the hierarchical branching of plant roots and the intricate networks formed by fungal hyphae, can be faithfully replicated. The resultant glass microvascular networks exhibit high chemical and thermal stability, enabling applications under harsh conditions. Fluid flow experiments validate the functionalities of the fabricated channels. By co-cultivating plants and fungi, hierarchical multi-scale architectures mimicking natural vascular systems are achieved. This bioinspired manufacturing technique leverages autonomous biological growth for architectural optimization, offering a complementary approach to existing microfabrication methods. The transparent nature of the glass chips allows for direct optical inspection, potentially facilitating integration with imaging components. This versatile platform holds promise for various engineering applications, such as microreactors, heat exchangers, and advanced filtration systems.
Collapse
Affiliation(s)
- Tetsuro Koga
- Department of Aeronautics and Astronautics, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shota Nakashima
- Department of Aeronautics and Astronautics, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fujio Tsumori
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Liu L, Wang W, Feng S, Liu S, Sun H, Nian Q, Yang S, Chen X. Rapid, Micron-Resolution 3D Printing of Nd:YAG Ceramic with Optical Gain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403130. [PMID: 38751304 DOI: 10.1002/smll.202403130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/04/2024]
Abstract
Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid-state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free-form structures from micron (∼70 µm) to centimeter scales. Firstly, sol-gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home-built micro-continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µm pixel-1 at a speed of 10 µm s-1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces.
Collapse
Affiliation(s)
- Luyang Liu
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ, 85212, USA
| | - Wenbo Wang
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ, 85212, USA
| | - Shuai Feng
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Siying Liu
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ, 85212, USA
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Haofan Sun
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Qiong Nian
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Sui Yang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiangfan Chen
- School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ, 85212, USA
| |
Collapse
|
6
|
Wang Z, Ong LJY, Gan Y, Pereira JM, Zhang J, Kasetsirikul S, Toh YC, Sauret E. PoroFluidics: deterministic fluid control in porous microfluidics. LAB ON A CHIP 2024; 24:4050-4059. [PMID: 39104280 DOI: 10.1039/d4lc00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Microfluidic devices with open lattice structures, equivalent to a type of porous media, allow for the manipulation of fluid transport processes while having distinct structural, mechanical, and thermal properties. However, a fundamental understanding of the design principles for the solid structure in order to achieve consistent and desired flow patterns remains a challenge, preventing its further development and wider applications. Here, through quantitative and mechanistic analyses of the behavior of multi-phase phenomena that involve gas-liquid-solid interfaces, we present a design framework for microfluidic devices containing porous architectures (referred to as poroFluidics) for deterministic control of multi-phase fluid transport processes. We show that the essential properties of the fluids and solid, including viscosity, interfacial tension, wettability, as well as solid manufacture resolution, can be incorporated into the design to achieve consistent flow in porous media, where the desired spatial and temporal fluid invasion sequence can be realized. Experiments and numerical simulations reveal that different preferential flow pathways can be controlled by solid geometry, flow conditions, or fluid/solid properties. Our design framework enables precise, multifunctional, and dynamic control of multi-phase transport within engineered porous media.
Collapse
Affiliation(s)
- Zhongzheng Wang
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, QLD 4001, Australia.
| | - Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, QLD 4001, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, QLD 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, QLD 4059, Australia
| | - Yixiang Gan
- School of Civil Engineering, The University of Sydney, NSW 2006, Australia
- Sydney Nano, The University of Sydney, NSW 2006, Australia
| | | | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Surasak Kasetsirikul
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, QLD 4001, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, QLD 4059, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, QLD 4001, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, QLD 4059, Australia
- Max Planck Queensland Centre, Queensland University of Technology, QLD 4059, Australia
- Centre for Microbiome Research, Queensland University of Technology, QLD 4102, Australia
| | - Emilie Sauret
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, QLD 4001, Australia.
| |
Collapse
|
7
|
Zhu D, Jiang S, Liao C, Xu L, Wang Y, Liu D, Bao W, Wang F, Huang H, Weng X, Liu L, Qu J, Wang Y. Ultrafast Laser 3D Nanolithography of Fiber-Integrated Silica Microdevices. NANO LETTERS 2024; 24:9734-9742. [PMID: 39047072 DOI: 10.1021/acs.nanolett.4c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.
Collapse
Affiliation(s)
- Dezhi Zhu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Shangben Jiang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ying Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Weijia Bao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Famei Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Ding X, He Z, Li J, Xu X, Li Z. Carbon carrier-based rapid Joule heating technology: a review on the preparation and applications of functional nanomaterials. NANOSCALE 2024; 16:12309-12328. [PMID: 38874095 DOI: 10.1039/d4nr01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Compared to conventional heating techniques, the carbon carrier-based rapid Joule heating (CJH) method is a new class of technologies that offer significantly higher heating rates and ultra-high temperatures. Over the past few decades, CJH technology has spawned several techniques with similar principles for different application scenarios, including ultra-fast high temperature sintering (UHS), carbon thermal shock (CTS), and flash Joule heating (FJH), which have been widely used in material preparation research studies. Functional nanomaterials are a popular direction of research today, mainly including nanometallic materials, nanosilica materials, nanoceramic materials and nanocarbon materials. These materials exhibit unique physical, chemical, and biological properties, including a high specific surface area, strength, thermal stability, and biocompatibility, making them ideal for diverse applications across various fields. The CJH method is a remarkable approach to producing functional nanomaterials that has attracted attention for its significant advantages. This paper aims to delve into the fundamental principles of CJH and elucidate the efficient preparation of functional nanomaterials with superior properties using this technique. The paper is organized into three sections, each dedicated to introducing the process and characteristics of CJH technology for the preparation of three distinct material types: carbon-based nanomaterials, inorganic non-metallic materials, and metallic materials. We discuss the distinctions and merits of the CJH method compared to alternative techniques in the preparation of these materials, along with a thorough examination of their properties. Furthermore, the potential applications of these materials are highlighted. In conclusion, this paper concludes with a discussion on the future research trends and development prospects of CJH technology.
Collapse
Affiliation(s)
- Xinrui Ding
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zihan He
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Jiasheng Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| | - Xiaolin Xu
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zongtao Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| |
Collapse
|
9
|
Han Y, Wan S, Peng X, Chen H, Wang S, Li H, Jiang P, Wei C, Shao J. Evolution mechanism of subsurface damage during laser machining process of fused silica. OPTICS EXPRESS 2024; 32:16273-16291. [PMID: 38859259 DOI: 10.1364/oe.519053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/29/2024] [Indexed: 06/12/2024]
Abstract
The machining-induced subsurface damage (SSD) on fused silica optics would incur damage when irradiated by intense lasers, which severely restricts the service life of fused silica optics. The high absorption of fused silica to 10.6 µm makes it possible to utilize pulsed CO2 laser to remove and characterize SSD by layer-by-layer ablation, which improves its laser-induced damage threshold. However, thermal stress during the laser ablation process may have an impact on SSD, leading to extension. Still, the law of SSD morphology evolution mechanism has not been clearly revealed. In this work, a multi-physics simulated model considering light field modulation is established to reveal the evolution law of radial SSD during the laser layer-by-layer ablation process. Based on the simulation of different characteristic structural parameters, two evolution mechanisms of radial SSD are revealed, and the influence of characteristic structural parameters on SSD is also elaborated. By prefabricating the SSD by femtosecond laser, the measurements of SSD during CO2 laser layer-by-layer ablation experiments are consistent with the simulated results, and three stages of SSD depth variation under two evolution processes are further proposed. The findings of this study provide theoretical guidance for effectively characterizing SSD based on laser layer-by-layer ablation strategies on fused silica optics.
Collapse
|
10
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
11
|
Xu Y, Du X, Wang Z, Liu H, Huang P, To S, Zhu L, Zhu Z. Room-Temperature Molding of Complex-Shaped Transparent Fused Silica Lenses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304756. [PMID: 37870176 DOI: 10.1002/advs.202304756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Indexed: 10/24/2023]
Abstract
The high hardness, brittleness, and thermal resistance impose significant challenges in the scalable manufacturing of fused silica lenses, which are widely used in numerous applications. Taking advantage of the nanocomposites by stirring silica nanopowders with photocurable resins, the newly emerged low-temperature pre-shaping technique provides a paradigm shift in fabricating transparent fused silica components. However, preparing the silica slurry and carefully evaporating the organics may significantly increase the process complexity and decrease the manufacturing efficiency for the nanocomposite-based technique. By directly pressing pure silica nanopowders against the complex-shaped metal molds in minutes, this work reports an entirely different room-temperature molding method capable of mass replication of complex-shaped silica lenses without organic additives. After sintering the replicated lenses, fully transparent fused silica lenses with spherical, arrayed, and freeform patterns are generated with nanometric surface roughness and well-reserved mold shapes, demonstrating a scalable and cost-effective route surpassing the current techniques for the manufacturing of high-quality fused silica lenses.
Collapse
Affiliation(s)
- Ya Xu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xiaotong Du
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Zhenhua Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Hua Liu
- Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Peng Huang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Suet To
- State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Kowloon, Hong Kong SAR, 999077, China
| | - LiMin Zhu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| |
Collapse
|
12
|
Moetazedian A, Candeo A, Liu S, Hughes A, Nasrollahi V, Saadat M, Bassi A, Grover LM, Cox LR, Poologasundarampillai G. Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline. Adv Healthc Mater 2023; 12:e2300636. [PMID: 37186512 PMCID: PMC11468497 DOI: 10.1002/adhm.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Microfluidics have transformed diagnosis and screening in regenerative medicine. Recently, they are showing much promise in biofabrication. However, their adoption is inhibited by costly and drawn-out lithographic processes thus limiting progress. Here, multi-material fibers with complex core-shell geometries with sizes matching those of human arteries and arterioles are fabricated employing versatile microfluidic devices produced using an agile and inexpensive manufacturing pipeline. The pipeline consists of material extrusion additive manufacturing with an innovative continuously varied extrusion (CONVEX) approach to produce microfluidics with complex seamless geometries including, novel variable-width zigzag (V-zigzag) mixers with channel widths ranging from 100-400 µm and hydrodynamic flow-focusing components. The microfluidic systems facilitated rapid mixing of fluids by decelerating the fluids at specific zones to allow for increased diffusion across the interfaces. Better mixing even at high flow rates (100-1000 µL min-1 ) whilst avoiding turbulence led to high cell cytocompatibility (>86%) even when 100 µm nozzles are used. The presented 3D-printed microfluidic system is versatile, simple and efficient, offering a great potential to significantly advance the microfluidic platform in regenerative medicine.
Collapse
Affiliation(s)
- Amirpasha Moetazedian
- School of DentistryInstitute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamB5 7EGUK
- EPSRC Future Metrology HubSchool of Computing and EngineeringUniversity of HuddersfieldHuddersfieldHD1 3DUK
| | - Alessia Candeo
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Siyun Liu
- School of DentistryInstitute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamB5 7EGUK
| | - Arran Hughes
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Vahid Nasrollahi
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Mozafar Saadat
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Andrea Bassi
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Liam M. Grover
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
13
|
Zhang H, Liu YQ, Zhao S, Huang L, Wang Z, Gao Z, Zhu Z, Hu D, Liu H. Transparent and Robust Superhydrophobic Structure on Silica Glass Processed with Microstereolithography Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38132-38142. [PMID: 37506049 DOI: 10.1021/acsami.3c08125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Silica glass devices are widely used due to their exceptional physical and chemical properties. However, prolonged usage may result in abrasion and contamination of silica glass devices, adversely affecting the service life. One of the most effective solutions to this issue is surface modification, in which superhydrophobicity with high transmittance and mechanical robustness is highly desired. Inspired by the concept of protective armor, we proposed a novel approach for the direct integration of robust and transparent superhydrophobic structures on silica glass. In this method, microstereolithography synergistic heat treatment processes are used to create a micrometer-scale biomimetic frame on the surface of silica glass and then filled with in situ deposited nanoparticles. The superhydrophobicity of the surface can be obtained through the nanoparticles, and the biomimetic frame can protect the surface from direct contact with external objects to achieve durability. This process allows the preparation of superhydrophobic silica structures on the silica device surface at temperatures below its melting point, which prevents any damage to the devices during the heat treatment. Moreover, up to 90% transmittance does not affect the performance of silica devices. The composite structure maintains a contact angle of over 150° after multiple abrasion tests, verifying the mechanical robustness. This innovative process paves the way for forming a high mechanical robustness and excellent transmittance protective layer on silica glass devices, which expands the application field.
Collapse
Affiliation(s)
- Han Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Yu-Qing Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Shaoqing Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Long Huang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Zhi Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
| | - Zhiyong Gao
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
| | - Zhiwei Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, J.S 210094, China
| | - Dahai Hu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| | - Hua Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, China
| |
Collapse
|
14
|
Garmasukis R, Hackl C, Charvat A, Mayr SG, Abel B. Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace. Curr Opin Biotechnol 2023; 81:102948. [PMID: 37163825 DOI: 10.1016/j.copbio.2023.102948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/12/2023]
Abstract
Rapid prototyping of microfluidic chips is a key enabler for controlled biotechnology applications in microspaces, as it allows for the efficient design and production of microfluidic systems. With rapid prototyping, researchers and engineers can quickly create and test new microfluidic chip designs, which can then be optimized for specific applications in biotechnology. One of the key advantages of microfluidic chips for biotechnology is the ability to manipulate and control biological samples in a microspace, which enables precise and controlled experiments under well-defined conditions. This is particularly useful for applications such as cell culture, drug discovery, and diagnostic assays, where precise control over the biological environment is crucial for obtaining accurate results. Established methods, for example, soft lithography, 3D printing, injection molding, as well as other recently highlighted innovative approaches, will be compared and challenges as well as limitations will be discussed. It will be shown that rapid prototyping of microfluidic chips enables the use of advanced materials and technologies, such as smart materials and digital sensors, which can further enhance the capabilities of microfluidic systems for biotechnology applications. Overall, rapid prototyping of microfluidic chips is an important enabling technology for controlled biotechnology applications in microspaces, as well as for upscaling it into macroscopic bioreactors, and its continued development and improvement will play a critical role in advancing the field. The review will highlight recent trends in terms of materials and competing approaches and shed light on current challenges on the way toward integrated microtechnologies. Also, the possibility to easy and direct implementation of novel functions (membranes, functionalization of interfaces, etc.) is discussed.
Collapse
Affiliation(s)
- Rokas Garmasukis
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany; Helmholtz-Centre for Environmental Research (UFZ), Permoserstr.15, 04318 Leipzig, Germany
| | - Claudia Hackl
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Ales Charvat
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Stefan G Mayr
- Leibniz-Institute of Surface Engineering Leipzig (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Institute of Chemical Technology, University Leipzig, Linnéstr. 3, 04103 Leipzig, Germany.
| |
Collapse
|
15
|
Bhanvadia AA, Farley RT, Noh Y, Nishida T. 3D printing of hollow geometries using blocking liquid substitution stereolithography. Sci Rep 2023; 13:434. [PMID: 36624138 PMCID: PMC9829859 DOI: 10.1038/s41598-022-26684-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Micrometer scale arbitrary hollow geometries within a solid are needed for a variety of applications including microfluidics, thermal management and metamaterials. A major challenge to 3D printing hollow geometries using stereolithography is the ability to retain empty spaces in between the solidified regions. In order to prevent unwanted polymerization of the trapped resin in the hollow spaces-known as print-through-significant constraints are generally imposed on the primary process parameters such as resin formulation, exposure conditions and layer thickness. Here, we report on a stereolithography process which substitutes the trapped resin with a UV blocking liquid to mitigate print-through. We investigate the mechanism of the developed process and determine guidelines for the formulation of the blocking liquid. The reported method decouples the relationship between the primary process parameters and their effect on print-through. Without having to optimize the primary process parameters to reduce print-through, hollow heights that exceed the limits of conventional stereolithography can be realized. We demonstrate fabrication of a variety of complex hollow geometries with cross-sectional features ranging from tens of micrometer to hundreds of micrometers in size. With the framework presented, this method may be employed for 3D printing functional hollow geometries for a variety of applications, and with improved freedom over the printing process (e.g. material choices, speed and resulting properties of the printed parts).
Collapse
Affiliation(s)
- Aftab A Bhanvadia
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Youngwook Noh
- Nanoptics, Inc., 3014 NE 21st Way, Gainesville, FL, 32609, USA
| | - Toshikazu Nishida
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
Lin Z, Zhao X, Wang C, Dong Q, Qian J, Zhang G, Brozena AH, Wang X, He S, Ping W, Chen G, Pei Y, Zheng C, Clifford BC, Hong M, Wu Y, Yang B, Luo J, Albertus P, Hu L. Rapid Pressureless Sintering of Glasses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107951. [PMID: 35355404 DOI: 10.1002/smll.202107951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Silica glasses have wide applications in industrial fields due to their extraordinary properties, such as high transparency, low thermal expansion coefficient, and high hardness. However, current methods of fabricating silica glass generally require long thermal treatment time (up to hours) and complex setups, leading to high cost and slow manufacturing speed. Herein, to obtain high-quality glasses using a facile and rapid method, an ultrafast high-temperature sintering (UHS) technique is reported that requires no additional pressure. Using UHS, silica precursors can be densified in seconds due to the large heating rate (up to 102 K s-1 ) of closely placed carbon heaters. The typical sintering time is as short as ≈10 s, ≈1-3 orders of magnitude faster than other methods. The sintered glasses exhibit relative densities of > 98% and high visible transmittances of ≈90%. The powder-based sintering process also allows rapid doping of metal ions to fabricate colored glasses. The UHS is further extended to sinter other functional glasses such as indium tin oxide (ITO)-doped silica glass, and other transparent ceramics such as Gd-doped yttrium aluminum garnet. This study demonstrates an UHS proof-of-concept for the rapid fabrication of high-quality glass and opens an avenue toward rapid discovery of transparent materials.
Collapse
Affiliation(s)
- Zhiwei Lin
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Xinpeng Zhao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Chengwei Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ji Qian
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Guangran Zhang
- Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, New York, 14802, USA
| | - Alexandra H Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shuaiming He
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Weiwei Ping
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yong Pei
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Chaolun Zheng
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Bryson Callie Clifford
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Min Hong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yiquan Wu
- Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, New York, 14802, USA
| | - Bao Yang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jian Luo
- Department of NanoEngineering, Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul Albertus
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
17
|
Zhang H, Huang L, Tan M, Zhao S, Liu H, Lu Z, Li J, Liang Z. Overview of 3D-Printed Silica Glass. MICROMACHINES 2022; 13:81. [PMID: 35056246 PMCID: PMC8779994 DOI: 10.3390/mi13010081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022]
Abstract
Not satisfied with the current stage of the extensive research on 3D printing technology for polymers and metals, researchers are searching for more innovative 3D printing technologies for glass fabrication in what has become the latest trend of interest. The traditional glass manufacturing process requires complex high-temperature melting and casting processes, which presents a great challenge to the fabrication of arbitrarily complex glass devices. The emergence of 3D printing technology provides a good solution. This paper reviews the recent advances in glass 3D printing, describes the history and development of related technologies, and lists popular applications of 3D printing for glass preparation. This review compares the advantages and disadvantages of various processing methods, summarizes the problems encountered in the process of technology application, and proposes the corresponding solutions to select the most appropriate preparation method in practical applications. The application of additive manufacturing in glass fabrication is in its infancy but has great potential. Based on this view, the methods for glass preparation with 3D printing technology are expected to achieve both high-speed and high-precision fabrication.
Collapse
Affiliation(s)
- Han Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Long Huang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Mingyue Tan
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shaoqing Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hua Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zifeng Lu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jinhuan Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhongzhu Liang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Emitting Materials and Technology of Ministry of Education, National Demonstration Center for Experimental Physics Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
18
|
Kuang H, Ye X, Qing Z. Porosity of the porous carbonate rocks in the Jingfengqiao-Baidiao area based on finite automata. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211844. [PMID: 35242356 PMCID: PMC8753174 DOI: 10.1098/rsos.211844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
This study is based on the processing of computed microtomography images of rock samples. In this study, a finite automation is constructed using the grey value, red-green-blue (RGB) value and Euler number of polarized images of carbonate rocks from the Jingfengqiao-Baidiao area. The finite automaton is used to perform black and white binary processing of the polarized images of the carbonate rocks. The porosity of the carbonate rock is calculated based on the black and white binarization processing results of the polarized images of the carbonate rocks. The obtained porosity is compared with the carbonate porosity obtained by use of the traditional carbonate research method. When the two porosities are close, the image processing threshold of the finite automata is considered to be credible. Based on the finite automata established using the image processing threshold, the black and white binary images of the polarized images of the carbonate rocks are used to establish a rock pore image using ImageJ2X. The polarized images of the carbonate rocks are classified according to their RGB values using the finite automata for the porosity classification, and the obtained images are used as textures to paste onto a cube to construct a three-dimensional data model of the carbonate rocks. This study also uses 16S rDNA analysis to verify the formation mechanism of the carbonate pores in the Jingfengqiao-Baidiao area. The results of the 16S rDNA analysis show that the pores in the carbonate rocks in the Jingfengqiao-Baidiao area are closely related to microorganisms, represented by denitrifying bacteria.
Collapse
Affiliation(s)
- Honghai Kuang
- School of Geographic Science, Southwest University, Beibei, Chongqing, People’s Republic of China
| | - Xi Ye
- School of Geographic Science, Southwest University, Beibei, Chongqing, People’s Republic of China
| | - Zhiyi Qing
- School of Geographic Science, Southwest University, Beibei, Chongqing, People’s Republic of China
| |
Collapse
|
19
|
Evaluation of advanced methods and materials for construction of scintillation detector light guides. Appl Radiat Isot 2022; 179:109979. [PMID: 34715460 PMCID: PMC8639756 DOI: 10.1016/j.apradiso.2021.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/09/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
New techniques for fabrication of optically clear structures (3D printing and casting) can be applied to fabrication of light guides, especially complex -shaped ones, for scintillation detectors. In this investigation, we explored the spectral transmissivity of sample light guides created with different fabrication methods and materials. A spectrophotometer was used to measure the transmissivity of the samples to determine their compatibility with a number of commonly used inorganic scintillators (NaI(Tl), BGO, LaBr3, LaCr3, CSI(Tl) and LYSO). These measurements showed that stereolithography with a Stratasys 3D printer using Somos WaterClear Ultra 10122® produced the most compatible light guide with common organic scintillators, especially LYSO (peak emission λ=420 nm) (a scintillator commonly used in positron emission tomography (PET) imaging). Additionally, Polytek Poly-Optic® 1730 clear urethane produced a cast light guide that was the most optically compatible with these scintillators. To demonstrate the ability to create a unique shaped scintillation detector using 3D-printing and casting methods, a small arc-shaped piece of LYSO was coupled to a 4 × 4 array of 4 mm2 silicon photomultipliers (SiPM) using light guides made from these materials. For comparative purposes, a light guide was also fabricated using standard acrylic, a material often used in current light guides. All detectors produced similar event position maps. The energy resolution for 18F (511 keV photopeak) was 13% for the acrylic light-guide-based detector, while it was 18% for the printed light-guide-based detector and 20% for the cast light-guide-based detector. Results from this study demonstrate that advanced fabrication methods have the potential to facilitate creation of light guides for scintillation detectors. Continued advancements in materials and methods will likely result in improved optical performance for 3D-printed structures.
Collapse
|
20
|
Malekmohammadi S, Sedghi Aminabad N, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines 2021; 9:1537. [PMID: 34829766 PMCID: PMC8615087 DOI: 10.3390/biomedicines9111537] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
| | - Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amin Sabzi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amir Zarebkohan
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Mehdi Razavi
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Massoud Vosough
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
21
|
Bakirci E, Frank A, Gumbel S, Otto PF, Fürsattel E, Tessmer I, Schmidt H, Dalton PD. Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ezgi Bakirci
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer (BPI) Institute University Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Andreas Frank
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Simon Gumbel
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Paul F. Otto
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer (BPI) Institute University Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Eva Fürsattel
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Ingrid Tessmer
- Rudolf‐Virchow Center for Integrative and Translational Bioimaging University of Würzburg Josef‐Schneider‐Straße 2 Würzburg 97080 Germany
| | - Hans‐Werner Schmidt
- Macromolecular Chemistry and Bavarian Polymer Institute (BPI) University of Bayreuth Universitätsstraße 30 Bayreuth 95440 Germany
| | - Paul D. Dalton
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer (BPI) Institute University Würzburg Pleicherwall 2 Würzburg 97070 Germany
- Phil and Penny Knight Campus to Accelerate Scientific Impact University of Oregon 1505 Franklin Blvd Eugene OR 90403 USA
| |
Collapse
|
22
|
Köpfler J, Frenzel T, Schmalian J, Wegener M. Fused-Silica 3D Chiral Metamaterials via Helium-Assisted Microcasting Supporting Topologically Protected Twist Edge Resonances with High Mechanical Quality Factors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103205. [PMID: 34398466 PMCID: PMC11468693 DOI: 10.1002/adma.202103205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
It is predicted theoretically that a 1D diatomic chain of 3D chiral cells can support a topological bandgap that allows for translating a small time-harmonic axial movement at one end of the chain into a resonantly enhanced large rotation of an edge state at the other end. This edge state is topologically protected such that an arbitrary mass of a mirror at the other end does not shift the eigenfrequency out of the bandgap. Herein, this complex 3D laser-beam-scanner microstructure is realized in fused-silica form. A novel microcasting approach is introduced that starts from a hollow polymer cast made by standard 3D laser nanoprinting. The cast is evacuated and filled with helium, such that a highly viscous commercial glass slurry is sucked in. After UV curing and thermal debinding of the polymer, the fused-silica glass is sintered at 1225 °C under vacuum. Detailed optical measurements reveal a mechanical quality factor of the twist-edge resonance of 2850 at around 278 kHz resonance frequency under ambient conditions. The microcasting approach can likely be translated to many other glasses, to metals and ceramics, and to complex architectures that are not or not yet amenable to direct 3D laser printing.
Collapse
Affiliation(s)
- Julian Köpfler
- Institute of Applied PhysicsKarlsruhe Institute of Technology (KIT)76128KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76021KarlsruheGermany
| | - Tobias Frenzel
- Institute of Applied PhysicsKarlsruhe Institute of Technology (KIT)76128KarlsruheGermany
| | - Jörg Schmalian
- Institute for Theoretical Condensed Matter PhysicsKarlsruhe Institute of Technology (KIT)76128KarlsruheGermany
- Institute for Quantum Materials and TechnologiesKarlsruhe Institute of Technology (KIT)76021KarlsruheGermany
| | - Martin Wegener
- Institute of Applied PhysicsKarlsruhe Institute of Technology (KIT)76128KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)76021KarlsruheGermany
| |
Collapse
|
23
|
Zhang D, Liu X, Qiu J. 3D printing of glass by additive manufacturing techniques: a review. FRONTIERS OF OPTOELECTRONICS 2021; 14:263-277. [PMID: 36637727 PMCID: PMC9743845 DOI: 10.1007/s12200-020-1009-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/22/2020] [Indexed: 05/25/2023]
Abstract
Additive manufacturing (AM), which is also known as three-dimensional (3D) printing, uses computer-aided design to build objects layer by layer. Here, we focus on the recent progress in the development of techniques for 3D printing of glass, an important optoelectronic material, including fused deposition modeling, selective laser sintering/melting, stereolithography (SLA) and direct ink writing. We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects. In addition, we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects. This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.
Collapse
Affiliation(s)
- Dao Zhang
- State Key Laboratory of Modern Optical Instrumentation and School of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaofeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation and School of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
24
|
Abstract
The natural world provides many examples of multiphase transport and reaction processes that have been optimized by evolution. These phenomena take place at multiple length and time scales and typically include gas-liquid-solid interfaces and capillary phenomena in porous media1,2. Many biological and living systems have evolved to optimize fluidic transport. However, living things are exceptionally complex and very difficult to replicate3-5, and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering6-8. Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, three-dimensional structures-enabled by emerging 3D printing methods9,10-for the deterministic control of multiphase flow, transport and reaction processes. We show that flow in these structures can be 'programmed' through architected design of cell type, size and relative density. We demonstrate gas-liquid transport processes such as transpiration and absorption, using evaporative cooling and CO2 capture as examples. We design and demonstrate preferential liquid and gas transport pathways in three-dimensional cellular fluidic devices with capillary-driven and actively pumped liquid flow, and present examples of selective metallization of pre-programmed patterns. Our results show that the design and fabrication of architected cellular materials, coupled with analytical and numerical predictions of steady-state and dynamic behaviour of multiphase interfaces, provide deterministic control of fluidic transport in three dimensions. Cellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processes.
Collapse
|
25
|
Mader M, Schlatter O, Heck B, Warmbold A, Dorn A, Zappe H, Risch P, Helmer D, Kotz F, Rapp BE. High-throughput injection molding of transparent fused silica glass. Science 2021; 372:182-186. [DOI: 10.1126/science.abf1537] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Markus Mader
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | | | - Barbara Heck
- Institute of Physics, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Warmbold
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Alex Dorn
- Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
| | - Hans Zappe
- Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
| | - Patrick Risch
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
- Glassomer GmbH, 79110 Freiburg, Germany
| | - Dorothea Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
- Glassomer GmbH, 79110 Freiburg, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
| | - Frederik Kotz
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
- Glassomer GmbH, 79110 Freiburg, Germany
| | - Bastian E. Rapp
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
- Glassomer GmbH, 79110 Freiburg, Germany
- FIT Freiburg Center of Interactive Materials and Bioinspired Technologies, Albert Ludwig University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
26
|
Kotz F, Quick AS, Risch P, Martin T, Hoose T, Thiel M, Helmer D, Rapp BE. Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006341. [PMID: 33448090 PMCID: PMC11469267 DOI: 10.1002/adma.202006341] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Fused silica glass is the material of choice for many high-performance components in optics due to its high optical transparency combined with its high thermal, chemical, and mechanical stability. Especially, the generation of fused silica microstructures is of high interest for microoptical and biomedical applications. Direct laser writing (DLW) is a suitable technique for generating such devices, as it enables nearly arbitrary structuring down to the sub-micrometer level. In this work, true 3D structuring of transparent fused silica glass using DLW with tens of micrometer resolution and a surface roughness of Ra ≈ 6 nm is demonstrated. The process uses a two-photon curable silica nanocomposite resin that can be structured by DLW, with the printout being convertible to transparent fused silica glass via thermal debinding and sintering. This technology will enable a plethora of applications from next-generation optics and photonics to microfluidic and biomedical applications with resolutions on the scale of tens of micrometers.
Collapse
Affiliation(s)
- Frederik Kotz
- Glassomer GmbHGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of Freiburg79104FreiburgGermany
| | - Alexander S. Quick
- Nanoscribe GmbHHermann‐von‐Helmholtz‐Platz 676344Eggenstein‐LeopoldshafenGermany
| | - Patrick Risch
- Glassomer GmbHGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
| | - Tanja Martin
- Nanoscribe GmbHHermann‐von‐Helmholtz‐Platz 676344Eggenstein‐LeopoldshafenGermany
| | - Tobias Hoose
- Nanoscribe GmbHHermann‐von‐Helmholtz‐Platz 676344Eggenstein‐LeopoldshafenGermany
| | - Michael Thiel
- Nanoscribe GmbHHermann‐von‐Helmholtz‐Platz 676344Eggenstein‐LeopoldshafenGermany
| | - Dorothea Helmer
- Glassomer GmbHGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of Freiburg79104FreiburgGermany
- FIT Freiburg Centre of Interactive Materials and Bioinspired TechnologiesUniversity of Freiburg79110FreiburgGermany
| | - Bastian E. Rapp
- Glassomer GmbHGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of Freiburg79104FreiburgGermany
- FIT Freiburg Centre of Interactive Materials and Bioinspired TechnologiesUniversity of Freiburg79110FreiburgGermany
| |
Collapse
|
27
|
Kade JC, Dalton PD. Polymers for Melt Electrowriting. Adv Healthc Mater 2021; 10:e2001232. [PMID: 32940962 PMCID: PMC11469188 DOI: 10.1002/adhm.202001232] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Melt electrowriting (MEW) is an emerging high-resolution additive manufacturing technique based on the electrohydrodynamic processing of polymers. MEW is predominantly used to fabricate scaffolds for biomedical applications, where the microscale fiber positioning has substantial implications in its macroscopic mechanical properties. This review gives an update on the increasing number of polymers processed via MEW and different commercial sources of the gold standard poly(ε-caprolactone) (PCL). A description of MEW-processed polymers beyond PCL is introduced, including blends and coated fibers to provide specific advantages in biomedical applications. Furthermore, a perspective on printer designs and developments is highlighted, to keep expanding the variety of processable polymers for MEW.
Collapse
Affiliation(s)
- Juliane C. Kade
- Department of Functional Materials in Medicine and DentistryBavarian Polymer InstituteUniversity Clinic WürzburgPleicherwall 297070WürzburgGermany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and DentistryBavarian Polymer InstituteUniversity Clinic WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|
28
|
Nanofabrication of synthetic nanoporous geomaterials: from nanoscale-resolution 3D imaging to nano-3D-printed digital (shale) rock. Sci Rep 2020; 10:21596. [PMID: 33299052 PMCID: PMC7725825 DOI: 10.1038/s41598-020-78467-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/18/2020] [Indexed: 11/08/2022] Open
Abstract
Advances in imaging have made it possible to view nanometer and sub-nanometer structures that are either synthesized or that occur naturally. It is believed that fluid dynamic and thermodynamic behavior differ significantly at these scales from the bulk. From a materials perspective, it is important to be able to create complex structures at the nanometer scale, reproducibly, so that the fluid behavior may be studied. New advances in nanoscale-resolution 3D-printing offer opportunities to achieve this goal. In particular, additive manufacturing with two-photon polymerization allows creation of intricate structures. Using this technology, a creation of the first nano-3D-printed digital (shale) rock is reported. In this paper, focused ion beam-scanning electron microscopy (FIB-SEM) nano-tomography image dataset was used to reconstruct a high-resolution digital rock 3D model of a Marcellus Shale rock sample. Porosity of this 3D model has been characterized and its connected/effective pore system has been extracted and nano-3D-printed. The workflow of creating this novel nano-3D-printed digital rock 3D model is described in this paper.
Collapse
|
29
|
Self-Assembled Disulfide Bond Bearing Paclitaxel-Camptothecin Prodrug Nanoparticle for Lung Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12121169. [PMID: 33271864 PMCID: PMC7760941 DOI: 10.3390/pharmaceutics12121169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Self-assembled prodrugs (SAPDs), which combine prodrug strategy and the merits of self-assembly, not only represent an appealing type of therapeutics, enabling the spontaneous organization of supramolecular nanocomposites with defined structures in aqueous environments, but also provide a new method to formulate existing drugs for more favorable outcomes. To increase drug loading and combination therapy, we covalently conjugated paclitaxel (PTX) and camptothecin (CPT) through a disulfide linker into a prodrug, designated PTX-S-S-CPT. The successful production of PTX-S-S-CPT prodrug was confirmed by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). This prodrug spontaneously undergoes precipitation in aqueous surroundings. Taking advantage of a flow-focusing microfluidics platform, the prodrug nanoparticles (NPs) have good monodispersity, with good reproducibility and high yield. The as-prepared prodrug NPs were characterized with dynamic light scattering (DLS) and transmission electron microscopy (TEM), demonstrating spherical morphology of around 200 nm in size. In the end, the self-assembled NPs were added to mouse embryonic fibroblast (MEF), mouse lung adenocarcinoma and Lewis lung carcinoma (LLC) cell lines, and human non-small cell lung cancer cell line A549 to evaluate cell viability and toxicity. Due to the redox response with a disulfide bond, the PTX-S-S-CPT prodrug NPs significantly inhibited cancer cell growth, but had no obvious toxicity to healthy cells. This prodrug strategy is promising for co-delivery of PTX and CPT for lung cancer treatment, with reduced side effects on healthy cells.
Collapse
|
30
|
Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2020; 93:311-331. [DOI: 10.1021/acs.analchem.0c04366] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon F. Berlanda
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Maximilian Breitfeld
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudius L. Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
31
|
Brunner R, Kraus M, Hirte J, Diao Z, Weishaupt K, Spatz JP, Harzendorf T, Trost M, Munser AS, Schröder S, Baer M. Black and white fused silica: modified sol-gel process combined with moth-eye structuring for highly absorbing and diffuse reflecting SiO 2 glass. OPTICS EXPRESS 2020; 28:32499-32516. [PMID: 33114934 DOI: 10.1364/oe.406150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Diffuse reflecting (white) and highly absorbing (black) fused silica based materials are presented, which combine volume modified substrates and surfaces equipped with anti-reflective moth-eye-structures. For diffuse reflection, micrometer sized cavities are created in bulk fused silica during a sol-gel process. In contrast, carbon black particles are added to get the highly absorbing material. The moth-eye-structures are prepared by block copolymer micelle nanolithography (BCML), followed by a reactive-ion-etching (RIE) step. The moth-eye-structures drastically reduce the specular reflectance on both diffuse reflecting and highly absorbing samples across a wide spectral range from 250 nm to 2500 nm and for varying incidence angles. The adjustment of the height of the moth-eye-structures allows us to select the spectral position of the specular reflectance minimum, which measures less than 0.1%. Diffuse Lambertian-like scattering and absorbance appear nearly uniform across the selected spectral range, showing a slight decrease with increasing wavelength.
Collapse
|
32
|
Skliutas E, Lebedevaite M, Kasetaite S, Rekštytė S, Lileikis S, Ostrauskaite J, Malinauskas M. A Bio-Based Resin for a Multi-Scale Optical 3D Printing. Sci Rep 2020; 10:9758. [PMID: 32546754 PMCID: PMC7297778 DOI: 10.1038/s41598-020-66618-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Materials obtained from renewable sources are emerging to replace the starting materials of petroleum-derived plastics. They offer easy processing, fulfill technological, functional and durability requirements at the same time ensuring increased bio-compatibility, recycling, and eventually lower cost. On the other hand, optical 3D printing (O3DP) is a rapid prototyping tool (and an additive manufacturing technique) being developed as a choice for efficient and low waste production method, yet currently associated with mainly petroleum-derived resins. Here we employ a single bio-based resin derived from soy beans, suitable for O3DP in the scales from nano- to macro-dimensions, which can be processed even without the addition of photoinitiator. The approach is validated using both state-of-the art laser nanolithography setup as well as a widespread table-top 3D printer - sub-micrometer accuracy 3D objects are fabricated reproducibly. Additionally, chess-like figures are made in an industrial line commercially delivering small batch production services. Such concept is believed to make a breakthrough in rapid prototyping by switching the focus of O3DP to bio-based resins instead of being restricted to conventional petroleum-derived photopolymers.
Collapse
Affiliation(s)
- Edvinas Skliutas
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, Vilnius, LT-10223, Lithuania
| | - Migle Lebedevaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254, Kaunas, Lithuania
| | - Sigita Kasetaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254, Kaunas, Lithuania
| | - Sima Rekštytė
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, Vilnius, LT-10223, Lithuania
| | - Saulius Lileikis
- 3D Creative Ltd., Mokslininku St. 2a, Vilnius, LT-08412, Lithuania
| | - Jolita Ostrauskaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254, Kaunas, Lithuania
| | - Mangirdas Malinauskas
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, Vilnius, LT-10223, Lithuania.
| |
Collapse
|
33
|
Highly efficient phosphor-glass composites by pressureless sintering. Nat Commun 2020; 11:2805. [PMID: 32499593 PMCID: PMC7272639 DOI: 10.1038/s41467-020-16649-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
The development of high-power white light-emitting diodes demands highly efficient and stable all-inorganic color converters. In this respect, phosphor-glass/ceramic composites show great promise as they could combine the merits of high quantum efficiency of phosphors and high chemical and thermal stabilities of glass/ceramic matrices. However, strong interfacial reaction between phosphors and matrices at high temperature results in quantum efficiency loss of the embedded phosphors, and traditional solutions rely on high-pressure consolidation techniques. Here we report the intrinsic inhibition of interfacial reaction by using silica glass rather than multicomponent glasses as the matrix. The embedment of phosphors is achieved via a pressureless sintering method, rendering these color-tunable phosphor-glass composites not only accessible to three-dimensional printing technique, but also highly efficient (internal quantum efficiency >90.0%), thermally stable at 1200 °C and hydrothermally stable at 200 °C. Our results provide a facile and general strategy for developing all-inorganic functional composites. Phosphor-glass/ceramic composites are attractive for high-power white light-emitting diodes, but interfacial reaction leads to loss of quantum efficiency. Here the authors report a reduction sintering method for embedment of phosphors into silica glass with limited interfacial reaction.
Collapse
|
34
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Zhang Q, Lei J, Chen Y, Wu Y, Xiao H. Glass 3D printing of microfluidic pressure sensor interrogated by fiber-optic refractometry. IEEE PHOTONICS TECHNOLOGY LETTERS : A PUBLICATION OF THE IEEE LASER AND ELECTRO-OPTICS SOCIETY 2020; 32:414-417. [PMID: 32612343 PMCID: PMC7328953 DOI: 10.1109/lpt.2020.2977324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This letter reports a novel fused silica microfluidic device with pressure sensing capability that is fabricated by integrated additive and subtractive manufacturing (IASM) method. The sensor consists of a capillary and a 3D printed glass reservoir, where the reservoir volume change under pressure manifests liquid level deviation inside the capillary, thus realizing the conversion between small pressure change into large liquid level variation. Thanks to the design flexibility of this unique IASM method, the proposed microfluidic device is fabricated with liquid-in-glass thermometer configuration, where the reservoir is sealed following a novel 3D printing assisted glass bonding process. And liquid level is interrogated by a fiber-optic sensor based on multimode interference (MMI) effect. This proposed microfluidic device is attractive for chemical and biomedical sensing because it is flexible in design, and maintains good chemical and mechanical stability, and adjustable sensitivity and range.
Collapse
Affiliation(s)
- Qi Zhang
- Holcombe Department of Electrical and Computer Engineering, Clemson University Center for Intelligent Systems for Extreme Environments (CU-ISEE), Clemson University, Clemson, SC 29634 USA
| | - Jincheng Lei
- Holcombe Department of Electrical and Computer Engineering, Clemson University Center for Intelligent Systems for Extreme Environments (CU-ISEE), Clemson University, Clemson, SC 29634 USA
| | - Yizheng Chen
- Holcombe Department of Electrical and Computer Engineering, Clemson University Center for Intelligent Systems for Extreme Environments (CU-ISEE), Clemson University, Clemson, SC 29634 USA
| | - Yongji Wu
- Holcombe Department of Electrical and Computer Engineering, Clemson University Center for Intelligent Systems for Extreme Environments (CU-ISEE), Clemson University, Clemson, SC 29634 USA
| | - Hai Xiao
- Holcombe Department of Electrical and Computer Engineering, Clemson University Center for Intelligent Systems for Extreme Environments (CU-ISEE), Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
36
|
Kotz F, Helmer D, Rapp BE. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:37-66. [PMID: 32797271 DOI: 10.1007/10_2020_141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, 3D printing has had a huge impact on the field of biotechnology: from 3D-printed pharmaceuticals to tissue engineering and microfluidic chips. Microfluidic chips are of particular interest and importance for the field of biotechnology, since they allow for the analysis and screening of a wide range of biomolecules - including single cells, proteins, and DNA. The fabrication of microfluidic chips has historically been time-consuming, however, and is typically limited to 2.5 dimensional structures and a restricted palette of well-known materials. Due to the high surface-to-volume ratios in microfluidic chips, the nature of the chip material is of paramount importance to the final system behavior. With the emergence of 3D printing, however, a wide range of microfluidic systems are now being printed for the first time in a manner that facilitates flexibility while minimizing time and cost. Nevertheless, resolution and material choices still remain challenges and in the focus of current research, aiming for (1) 3D printing with high resolutions in the range of tens of micrometers and (2) a wider range of available materials for these high-resolution prints. The first part of this chapter highlights recent emerging technologies in the field of high-resolution printing via stereolithography (SL) and 2-photon polymerization (2PP) and seeks to identify particularly interesting emerging technologies which could have a major impact on the field in the near future. The second part of this chapter highlights current developments in the field of materials that are used for these high-resolution 3D printing technologies.
Collapse
Affiliation(s)
- Frederik Kotz
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University Freiburg, Freiburg, Germany.
- Freiburg Materials Research Center (FMF), University Freiburg, Freiburg, Germany.
| | - Dorothea Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University Freiburg, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University Freiburg, Freiburg, Germany
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University Freiburg, Freiburg, Germany
| | - Bastian E Rapp
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University Freiburg, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University Freiburg, Freiburg, Germany
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Abstract
Multiphoton 3D lithography is becoming a tool of choice in a wide variety of fields. Regenerative medicine is one of them. Its true 3D structuring capabilities beyond diffraction can be exploited to produce structures with diverse functionality. Furthermore, these objects can be produced from unique materials allowing expanded performance. Here, we review current trends in this research area. We pay particular attention to the interplay between the technology and materials used. Thus, we extensively discuss undergoing light-matter interactions and peculiarities of setups needed to induce it. Then, we continue with the most popular resins, photoinitiators, and general material functionalization, with emphasis on their potential usage in regenerative medicine. Furthermore, we provide extensive discussion of current advances in the field as well as prospects showing how the correct choice of the polymer can play a vital role in the structure’s functionality. Overall, this review highlights the interplay between the structure’s architecture and material choice when trying to achieve the maximum result in the field of regenerative medicine.
Collapse
|
38
|
Barua R, Giria H, Datta S, Roy Chowdhury A, Datta P. Force modeling to develop a novel method for fabrication of hollow channels inside a gel structure. Proc Inst Mech Eng H 2019; 234:223-231. [PMID: 31774361 DOI: 10.1177/0954411919891654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fabrication of hollow channels with user-defined dimensions and patterns inside viscoelastic, gel-type materials is required for several applications, especially in biomedical engineering domain. These include objectives of obtaining vascularized tissues and enclosed or subsurface microfluidic devices. However, presently there is no suitable manufacturing technology that can create such channels and networks in a gel structure. The advent of three-dimensional bioprinting has opened new possibilities for fabricating structures with complex geometries. However, application of this technique to fabricate internal hollow channels in viscoelastic material has not been yet explored to a great extent. In this article, we present the theoretical modeling/background of a proposed manufacturing paradigm through which hollow channels can be conveniently fabricated inside a gel structure. We propose that a tip connected to a robotic arm can be moved in X-, Y-, and Z-axis as per the desired design. The tip can be moved by a magnet or mechanical force. If the tip is further trailed with porous tube and moved inside the viscoelastic material, corresponding internal channels can be fabricated. To achieve this, however, force modeling to understand the forces that will be required to move the tip inside viscoelastic material should be known and understood. Therefore, in our first attempt, we developed the computational force modeling of the tip movement inside gels with different viscoelastic properties to create the channels.
Collapse
Affiliation(s)
- Ranjit Barua
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Himanshu Giria
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Sudipto Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Amit Roy Chowdhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India.,Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| |
Collapse
|
39
|
Chu Y, Fu X, Luo Y, Canning J, Tian Y, Cook K, Zhang J, Peng GD. Silica optical fiber drawn from 3D printed preforms. OPTICS LETTERS 2019; 44:5358-5361. [PMID: 31675013 DOI: 10.1364/ol.44.005358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Silica optical fiber was drawn from a three-dimensional printed preform. Both single mode and multimode fibers are reported. The results demonstrate additive manufacturing of glass optical fibers and its potential to disrupt traditional optical fiber fabrication. It opens up fiber designs for novel applications hitherto not possible.
Collapse
|