1
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
2
|
Li X, Liu Q, Wu M, Wang H, Yang J, Mu X, Zhang XD. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging. Adv Healthc Mater 2025; 14:e2403099. [PMID: 39562174 DOI: 10.1002/adhm.202403099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive and radiation-free technique used for soft tissue. However, there are some limitations of the MRI modality, such as low sensitivity and poor image resolution. Artificially engineered magnetic nanoprobes have been extensively explored as a versatile platform for ultrasensitive MRI contrast agents due to their unique physiochemical characteristics and tunable magnetic properties. In this review, the emphasis is on recent progress in MRI nanoprobes with different structures and elements, including gadolinium-, iron-, manganese-based and metal-free nanoprobes. The key influencing factors and advanced engineering strategies for modulating the relaxation ratio of MRI nanoprobes are systematically condensed. Furthermore, the widespread and noninvasive visualization applications of MRI nanoprobes for real time monitoring of major organs and accurate disease diagnosing, such as cerebrovascular, ischemia, Alzheimer's disease, liver fibrosis, whole-body tumors, inflammation, as well as multi-mode imaging applications are summarized. Finally, the challenges and prospects for the future development of MRI nanoprobes are discussed, and promising strategies are specifically emphasized for improving biocompatibility, precisely engineering of optimal size, AI-driven prediction and design, and multifunctional self-assembly to enhance diagnostics. This review will provide new inspiration for artificial engineering and nanotechnology-based molecular probes for medical diagnosis and therapy with ultrasensitive MRI.
Collapse
Affiliation(s)
- Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Menglin Wu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Dos Santos K, Bertho G, Baudin M, Giraud N. Glutamine: A key player in human metabolism as revealed by hyperpolarized magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:15-39. [PMID: 39645348 DOI: 10.1016/j.pnmrs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 12/09/2024]
Abstract
In recent years, there has been remarkable progress in the field of dissolution dynamic nuclear polarization (D-DNP). This method has shown significant potential for enhancing nuclear polarization by over 10,000 times, resulting in a substantial increase in sensitivity. The unprecedented signal enhancements achieved with D-DNP have opened new possibilities for in vitro analysis. This method enables the monitoring of structural and enzymatic kinetics with excellent time resolution at low concentrations. Furthermore, these advances can be straightforwardly translated to in vivo magnetic resonance imaging and magnetic resonance spectroscopy (MRI and MRS) experiments. D-DNP studies have used a range of 13C labeled molecules to gain deeper insights into the cellular metabolic pathways and disease hallmarks. Over the last 15 years, D-DNP has been used to analyze glutamine, a key player in the cellular metabolism, involved in many diseases including cancer. Glutamine is the most abundant amino acid in blood plasma and the major carrier of nitrogen, and it is converted to glutamate inside the cell, where the latter is the most abundant amino acid. It has been shown that increased glutamine consumption by cells is a hallmark of tumor cancer metabolism. In this review, we first highlight the significance of glutamine in metabolism, providing an in-depth description of its use at the cellular level as well as its specific roles in various organs. Next, we present a comprehensive overview of the principles of D-DNP. Finally, we review the state of the art in D-DNP glutamine analysis and its application in oncology, neurology, and perfusion marker studies.
Collapse
Affiliation(s)
- Karen Dos Santos
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Gildas Bertho
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Mathieu Baudin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université 45 rue d'Ulm, 75005 Paris, France
| | - Nicolas Giraud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
4
|
Narwal P, Lorz N, Minaei M, Jannin S, Kouřil K, Gossert A, Meier B. Bullet-DNP Enables NMR Spectroscopy of Pyruvate and Amino Acids at Nanomolar to Low Micromolar Concentrations. Anal Chem 2024; 96:14734-14740. [PMID: 39227032 PMCID: PMC11411493 DOI: 10.1021/acs.analchem.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/05/2024]
Abstract
Hyperpolarized pyruvate is a widely used marker to track metabolism in vivo and a benchmark molecule for hyperpolarization methods. Here, we show how a combination of improved bullet-DNP instrumentation, an optimized sample preparation and a further sensitivity increase via a 13C-1H polarization transfer after dissolution enable the observation of pyruvate at a concentration of 250 nM immediately after dissolution. At this concentration, the experiment employs a total mass of pyruvate of only 20 ng or 180 pmol. If the concentration is increased to 45 μM, pyruvate may be detected 1 min after dissolution with a signal-to-noise ratio exceeding 50. The procedure can be extended to observe a mixture of amino acids at low micromolar concentrations.
Collapse
Affiliation(s)
- Pooja Narwal
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Nils Lorz
- Department
of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Masoud Minaei
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Sami Jannin
- CRMN
UMR-5082, CNRS, ENS Lyon, Universite Claude
Bernard Lyon 1, Villeurbanne 69100, France
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Alvar Gossert
- Department
of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
5
|
Turhan E, Minaei M, Narwal P, Meier B, Kouřil K, Kurzbach D. Short-lived calcium carbonate precursors observed in situ via Bullet-dynamic nuclear polarization. Commun Chem 2024; 7:210. [PMID: 39289493 PMCID: PMC11408677 DOI: 10.1038/s42004-024-01300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
The discovery of (meta)stable pre-nucleation species (PNS) challenges the established nucleation-and-growth paradigm. While stable PNS with long lifetimes are readily accessible experimentally, identifying and characterizing early-stage intermediates with short lifetimes remains challenging. We demonstrate that species with lifetimes ≪ 5 s can be characterized by nuclear magnetic resonance spectroscopy when boosted by 'Bullet' dynamic nuclear polarization (Bullet-DNP). We investigate the previously elusive early-stage prenucleation of calcium carbonates in the highly supersaturated concentration regime, characterizing species that form within milliseconds after the encounter of calcium and carbonate ions and show that ionic pre-nucleation species not only govern the solidification of calcium carbonates at weak oversaturation but also initiate rapid precipitation events at high concentrations. Such, we report a transient co-existence of two PNS with distinct molecular sizes and different compositions. This methodological advance may open new possibilities for studying and exploiting carbonate-based material formation in unexplored parts of the phase space.
Collapse
Affiliation(s)
- Ertan Turhan
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090, Vienna, Austria
| | - Masoud Minaei
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Pooja Narwal
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany.
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344, Egenstein-Leopoldshafen, Germany
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Razanahoera A, Sonnefeld A, Sheberstov K, Narwal P, Minaei M, Kouřil K, Bodenhausen G, Meier B. Hyperpolarization of Long-Lived States of Protons in Aliphatic Chains by Bullet Dynamic Nuclear Polarization, Revealed on the Fly by Spin-Lock-Induced Crossing. J Phys Chem Lett 2024; 15:9024-9029. [PMID: 39189820 PMCID: PMC11626513 DOI: 10.1021/acs.jpclett.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
It is shown that proton spins highly polarized by dynamic nuclear polarization (DNP) retain substantial polarization upon the rapid transfer of frozen bullets from a polarizer to an NMR spectrometer. After injection in solution, the resulting hyperpolarization in aliphatic chains comprises population imbalances between singlet and triplet states of geminal protons and combinations thereof. These hyperpolarized long-lived states (LLSs) can be reconverted into observable transverse magnetization by polychromatic spin-lock-induced crossing (poly-SLIC). This reconversion can be achieved simultaneously in several molecules. Consecutive partial reconversion steps can be carried out to determine the lifetimes TLLS on the fly in a single experiment. The enhancement factors of hyperpolarized LLS-derived signals in our experiments are at least 2 orders of magnitude. These methods extend applications of bullet-DNP to protons in molecules containing short aliphatic chains and may be useful for drug screening.
Collapse
Affiliation(s)
- Aiky Razanahoera
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Anna Sonnefeld
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Kirill Sheberstov
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Pooja Narwal
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Masoud Minaei
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Geoffrey Bodenhausen
- Laboratoire
des Biomolécules, LBM, Département de Chimie, École
Normale Supérieure, PSL University,
Sorbonne Université, CNRS, 75005 Paris, France
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
7
|
Fukazawa J, Mochizuki Y, Kanai S, Miura N, Negoro M, Kagawa A. Real-Time Monitoring of Hydrolysis Reactions of Pyrophosphates with Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:7288-7294. [PMID: 38980118 DOI: 10.1021/acs.jpclett.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dissolution dynamic nuclear polarization (d-DNP) has enabled applications such as the real-time monitoring of chemical reactions. Such applications are mainly for 13C and 15N spins with long spin-lattice relaxation times in the molecules of interest. However, the only applications for phosphorus using d-DNP are pH imaging and nucleation during crystallization due to the short relaxation times. Here we show that it is possible to observe enzyme reactions using d-DNP with phosphorus. Hyperpolarized 31P spins in pyrophosphate were obtained using bullet-DNP, which requires less dilution of highly polarized solid samples. Real-time monitoring of the hydrolysis reaction of pyrophosphate by inorganic pyrophosphatase from baker's yeast at physiological pH and was successfully achieved and the reaction rate was determined. This is an important reaction for a wide range of applications related to medicine, agriculture, and quantum life science.
Collapse
Affiliation(s)
- Jun Fukazawa
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuuki Mochizuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Sakyo Kanai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Natsuko Miura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8231, Japan
| | - Makoto Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Kagawa
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Katz I, Schmidt A, Ben-Shir I, Javitt M, Kouřil K, Capozzi A, Meier B, Lang A, Pokroy B, Blank A. Long-lived enhanced magnetization-A practical metabolic MRI contrast material. SCIENCE ADVANCES 2024; 10:eado2483. [PMID: 38996017 PMCID: PMC11244432 DOI: 10.1126/sciadv.ado2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Noninvasive tracking of biochemical processes in the body is paramount in diagnostic medicine. Among the leading techniques is spectroscopic magnetic resonance imaging (MRI), which tracks metabolites with an amplified (hyperpolarized) magnetization signal injected into the subject just before scanning. Traditionally, the brief enhanced magnetization period of these agents limited clinical imaging. We propose a solution based on amalgamating two materials-one having diagnostic-metabolic activity and the other characterized by robust magnetization retention. This combination slows the magnetization decay in the diagnostic metabolic probe, which receives continuously replenished magnetization from the companion material. Thus, it extends the magnetization lifetime in some of our measurements to beyond 4 min, with net magnetization enhanced by more than four orders of magnitude. This could allow the metabolic probes to remain magnetized from injection until they reach the targeted organ, improving tissue signatures in clinical imaging. Upon validation, this metabolic MRI technique promises wide-ranging clinical applications, including diagnostic imaging, therapeutic monitoring, and posttreatment surveillance.
Collapse
Affiliation(s)
- Itai Katz
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Asher Schmidt
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ira Ben-Shir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Arad Lang
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Sahin Solmaz N, Farsi R, Boero G. 200 GHz single chip microsystems for dynamic nuclear polarization enhanced NMR spectroscopy. Nat Commun 2024; 15:5485. [PMID: 38942752 PMCID: PMC11213862 DOI: 10.1038/s41467-024-49767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Dynamic nuclear polarization (DNP) is one of the most powerful and versatile hyperpolarization methods to enhance nuclear magnetic resonance (NMR) signals. A major drawback of DNP is the cost and complexity of the required microwave hardware, especially at high magnetic fields and low temperatures. To overcome this drawback and with the focus on the study of nanoliter and subnanoliter samples, this work demonstrates 200 GHz single chip DNP microsystems where the microwave excitation/detection are performed locally on chip without the need of external microwave generators and transmission lines. The single chip integrated microsystems consist of a single or an array of microwave oscillators operating at about 200 GHz for ESR excitation/detection and an RF receiver operating at about 300 MHz for NMR detection. This work demonstrates the possibility of using the single chip approach for the realization of probes for DNP studies at high frequency, high field, and low temperature.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Reza Farsi
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Giovanni Boero
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Singh K, Frydman L. Single-Scan Heteronuclear 13C- 15N J-Coupling NMR Observations Enhanced by Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:5659-5664. [PMID: 38767577 PMCID: PMC11145644 DOI: 10.1021/acs.jpclett.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Heteronuclear 13C-15N couplings were measured in single-scan nuclear magnetic resonance (NMR) experiments for a variety of nitrogen-containing chemical compounds with varied structural characteristics, by using a one-dimensional (1D) 13C-15N multiple-quantum (MQ)-filtered experiment. Sensitivity limitations of the MQ filtering were overcome by the combined use of 15N labeling and dissolution dynamic nuclear polarization (dDNP), performed at cryogenic conditions and followed by quick and optimized sample melting and transfer procedures. Coupling information could thus be obtained from nucleotide bases, amino acids, urea, and aliphatic and aromatic amides, including the measurement of relatively small J-couplings directly from the 1D filtered spectra. This experiment could pave the way for NMR-based analytical applications that investigate structural and stereochemical insights into nitrogen-containing compounds, including dipeptides and proteins, while relying on heteronuclear couplings and nuclear hyperpolarization.
Collapse
Affiliation(s)
- Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
11
|
Barskiy DA. Molecules, Up Your Spins! Molecules 2024; 29:1821. [PMID: 38675641 PMCID: PMC11052189 DOI: 10.3390/molecules29081821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are indispensable tools in science and medicine, offering insights into the functions of biological processes [...].
Collapse
Affiliation(s)
- Danila A. Barskiy
- Institut für Physik, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany;
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| |
Collapse
|
12
|
Římal V, Bunyatova EI, Štěpánková H. Efficient Scavenging of TEMPOL Radical by Ascorbic Acid in Solution and Related Prolongation of 13C and 1H Nuclear Spin Relaxation Times of the Solute. Molecules 2024; 29:738. [PMID: 38338481 PMCID: PMC10856727 DOI: 10.3390/molecules29030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Dynamic nuclear polarization for nuclear magnetic resonance (NMR) spectroscopy and imaging uses free radicals to strongly enhance the NMR signal of a compound under investigation. At the same time, the radicals shorten significantly its nuclear spin relaxation times which reduces the time window available for the experiments. Radical scavenging can overcome this drawback. Our work presents a detailed study of the reduction of the TEMPOL radical by ascorbic acid in solution by high-resolution NMR. Carbon-13 and hydrogen-1 nuclear spin relaxations are confirmed to be restored to their values without TEMPOL. Reaction mechanism, kinetics, and the influence of pD and viscosity are thoroughly discussed. The detailed investigation conducted in this work should help with choosing suitable concentrations in the samples for dynamic nuclear polarization and optimizing the measurement protocols.
Collapse
Affiliation(s)
- Václav Římal
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| | | | - Helena Štěpánková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic;
| |
Collapse
|
13
|
Praud C, Ribay V, Dey A, Charrier B, Mandral J, Farjon J, Dumez JN, Giraudeau P. Optimization of heteronuclear ultrafast 2D NMR for the study of complex mixtures hyperpolarized by dynamic nuclear polarization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6209-6219. [PMID: 37942549 DOI: 10.1039/d3ay01681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Hyperpolarized 13C NMR at natural abundance, based on dissolution dynamic nuclear polarization (d-DNP), provides rich, sensitive and repeatable 13C NMR fingerprints of complex mixtures. However, the sensitivity enhancement is associated with challenges such as peak overlap and the difficulty to assign hyperpolarized 13C signals. Ultrafast (UF) 2D NMR spectroscopy makes it possible to record heteronuclear 2D maps of d-DNP hyperpolarized samples. Heteronuclear UF 2D NMR can provide correlation peaks that link quaternary carbons and protons through long-range scalar couplings. Here, we report the analytical assessment of an optimized UF long-range HETCOR pulse sequence, applied to the detection of metabolic mixtures at natural abundance and hyperpolarized by d-DNP, based on repeatability and sensitivity considerations. We show that metabolite-dependent limits of quantification in the range of 1-50 mM (in the sample before dissolution) can be achieved, with a repeatability close to 10% and a very good linearity. We provide a detailed comparison of such analytical performance in two different dissolution solvents, D2O and MeOD. The reported pulse sequence appears as an useful analytical tool to facilitate the assignment and integration of metabolite signals in hyperpolarized complex mixtures.
Collapse
Affiliation(s)
- Clément Praud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Arnab Dey
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Joris Mandral
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Jonathan Farjon
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | | | | |
Collapse
|
14
|
Vaneeckhaute E, Tyburn J, Kempf JG, Martens JA, Breynaert E. Reversible Parahydrogen Induced Hyperpolarization of 15 N in Unmodified Amino Acids Unraveled at High Magnetic Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207112. [PMID: 37211713 PMCID: PMC10427394 DOI: 10.1002/advs.202207112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Amino acids (AAs) and ammonia are metabolic markers essential for nitrogen metabolism and cell regulation in both plants and humans. NMR provides interesting opportunities to investigate these metabolic pathways, yet lacks sensitivity, especially in case of 15 N. In this study, spin order embedded in p-H2 is used to produce on-demand reversible hyperpolarization in 15 N of pristine alanine and ammonia under ambient protic conditions directly in the NMR spectrometer. This is made possible by designing a mixed-ligand Ir-catalyst, selectively ligating the amino group of AA by exploiting ammonia as a strongly competitive co-ligand and preventing deactivation of Ir by bidentate ligation of AA. The stereoisomerism of the catalyst complexes is determined by hydride fingerprinting using 1 H/D scrambling of the associated N-functional groups on the catalyst (i.e., isotopological fingerprinting), and unravelled by 2D-ZQ-NMR. Monitoring the transfer of spin order from p-H2 to 15 N nuclei of ligated and free alanine and ammonia targets using SABRE-INEPT with variable exchange delays pinpoints the monodentate elucidated catalyst complexes to be most SABRE active. Also RF-spin locking (SABRE-SLIC) enables transfer of hyperpolarization to 15 N. The presented high-field approach can be a valuable alternative to SABRE-SHEATH techniques since the obtained catalytic insights (stereochemistry and kinetics) will remain valid at ultra-low magnetic fields.
Collapse
Affiliation(s)
- Ewoud Vaneeckhaute
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- Univ LyonCNRS, ENS LyonUCBLUniversité de LyonCRMN UMR 5280Villeurbanne69100France
| | - Jean‐Max Tyburn
- Bruker Biospin34 Rue de l'Industrie BP 10002Wissembourg Cedex67166France
| | | | - Johan A. Martens
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- Deutsches Elektronen‐Synchrotron DESY – Centre for Molecular Water Science (CMWS)Notkestraße 8522607HamburgGermany
| | - Eric Breynaert
- COK‐katCentre for Surface Chemistry and Catalysis—Characterization and Application TeamKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
- NMRCoReNMR/X‐Ray Platform for Convergence ResearchKU LeuvenCelestijnenlaan 200F, box 2461LeuvenB‐3001Belgium
| |
Collapse
|
15
|
Ribay V, Praud C, Letertre MPM, Dumez JN, Giraudeau P. Hyperpolarized NMR metabolomics. Curr Opin Chem Biol 2023; 74:102307. [PMID: 37094508 DOI: 10.1016/j.cbpa.2023.102307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
Hyperpolarized NMR is a promising approach to address the sensitivity limits of conventional NMR metabolomics approaches, which currently fails to detect minute metabolite concentrations in biological samples. This review describes how tremendous signal enhancement offered by dissolution-dynamic nuclear polarization and parahydrogen-based techniques can be fully exploited for molecular omics sciences. Recent developments, including the combination of hyperpolarization techniques with fast multi-dimensional NMR implementation and quantitative workflows are described, and a comprehensive comparison of existing hyperpolarization techniques is proposed. High-throughput, sensitivity, resolution and other relevant challenges that should be tackled for a general application of hyperpolarized NMR in metabolomics are discussed.
Collapse
Affiliation(s)
- Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Clément Praud
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | | | | |
Collapse
|
16
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
17
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
18
|
Razanahoera A, Sonnefeld A, Bodenhausen G, Sheberstov K. Paramagnetic relaxivity of delocalized long-lived states of protons in chains of CH 2 groups. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:47-56. [PMID: 37904798 PMCID: PMC10583270 DOI: 10.5194/mr-4-47-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 11/01/2023]
Abstract
Long-lived states (LLSs) have lifetimes T LLS that can be much longer than longitudinal relaxation times T 1 . In molecules containing several geminal pairs of protons in neighboring CH2 groups, it has been shown that delocalized LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP). To enhance the magnetization of nuclear spins by d-DNP, the analytes must be mixed with radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL). After dissolution, these radicals lead to an undesirable paramagnetic relaxation enhancement (PRE) which shortens not only the longitudinal relaxation times T 1 but also the lifetimes T LLS of LLSs. It is shown in this work that PRE by TEMPOL is less deleterious for LLSs than for longitudinal magnetization for four different molecules: 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), homotaurine, taurine, and acetylcholine. The relaxivities r LLS (i.e., the slopes of the relaxation rate constants R LLS as a function of the radical concentration) are 3 to 5 times smaller than the relaxivities r 1 of longitudinal magnetization. Partial delocalization of the LLSs across neighboring CH2 groups may decrease this advantage, but in practice, this effect was observed to be small, for example, when comparing taurine containing two CH2 groups and homotaurine with three CH2 groups. Regardless of whether the LLSs are delocalized or not, it is shown that PRE should not be a major problem for experiments combining d-DNP and LLSs, provided the concentration of paramagnetic species after dissolution does not exceed 1 mM, a condition that is readily fulfilled in typical d-DNP experiments. In bullet d-DNP experiments however, it may be necessary to decrease the concentration of TEMPOL or to add ascorbate for chemical reduction.
Collapse
Affiliation(s)
- Aiky Razanahoera
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Anna Sonnefeld
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Geoffrey Bodenhausen
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Kirill Sheberstov
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| |
Collapse
|
19
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Tagami K, Thicklin R, Jain S, Equbal A, Li M, Zens T, Siaw A, Han S. Design of a cryogen-free high field dual EPR and DNP probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107351. [PMID: 36599253 DOI: 10.1016/j.jmr.2022.107351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We present the design and construction of a cryogen free, dual electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) probe for novel dynamic nuclear polarization (DNP) experiments and concurrent "in situ" analysis of DNP mechanisms. We focus on the probe design that meets the balance between EPR, NMR, and low temperature performance, while maintaining a high degree of versatility: allowing multi-nuclear NMR detection as well as broadband DNP/EPR excitation/detection. To accomplish high NMR/EPR performance, we implement a novel inductively coupled double resonance NMR circuit (1H-13C) in a solid state probe operating at cryogenic temperatures. The components of the circuit were custom built to provide maximum NMR performance, and the physical layout of this circuit was numerically optimized via magnetic field simulations to allow maximum microwave transmission to the sample for optimal EPR performance. Furthermore this probe is based around a cryogen free gas exchange cryostat and has been designed to allow unlimited experiment times down to 8.5 Kelvin with minimal cost. The affordability of EPR/DNP experiment is an extremely important aspect for broader impact with magnetic resonance measurements. The purpose of this article is to provide as complete information as we have available for others with interest in building a dual DNP/EPR instrument based around a cryogen-free cryostat.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raymond Thicklin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Miranda Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Toby Zens
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Anthony Siaw
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
21
|
Picazo-Frutos R, Stern Q, Blanchard JW, Cala O, Ceillier M, Cousin SF, Eills J, Elliott SJ, Jannin S, Budker D. Zero- to Ultralow-Field Nuclear Magnetic Resonance Enhanced with Dissolution Dynamic Nuclear Polarization. Anal Chem 2023; 95:720-729. [PMID: 36563171 DOI: 10.1021/acs.analchem.2c02649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method to enhance signals in zero-field nuclear magnetic resonance experiments on sample mixtures of [13C]sodium formate, [1-13C]glycine, and [2-13C]sodium acetate, and our technique is immediately extendable to a broad range of molecules with >1 s relaxation times. We find signal enhancements of up to 11,000 compared with thermal prepolarization in a 2 T permanent magnet. To increase the signal in future experiments, we investigate the relaxation effects of the TEMPOL radicals used for the hyperpolarization process at zero- and ultralow-fields.
Collapse
Affiliation(s)
- Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| | - Quentin Stern
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - John W Blanchard
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany
| | - Olivier Cala
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Morgan Ceillier
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | | | - James Eills
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany.,Institute for Bioengineering of Catalonia, Baldiri Reixac 10-12, Barcelona08028, Spain
| | - Stuart J Elliott
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France.,Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K
| | - Sami Jannin
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| |
Collapse
|
22
|
Capozzi A. Design and performance of a small bath cryostat with NMR capability for transport of hyperpolarized samples. Sci Rep 2022; 12:19260. [PMID: 36357496 PMCID: PMC9649762 DOI: 10.1038/s41598-022-23890-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
As of today, dissolution Dynamic Nuclear Polarization (dDNP) is the only clinically available hyperpolarization technique for 13C-MRI. Despite the clear path towards personalized medicine that dDNP is paving as an alternative and/or complement to Positron Emission Tomography (PET), the technique struggles to enter everyday clinical practice. Because of the minute-long hyperpolarization lifetime after dissolution, one of the reasons lies in the need and consequent complexities of having the machine that generates the hyperpolarization (i.e. the dDNP polarizer) on site. Since some years, research groups are working to make hyperpolarization transportable. Two different methods have been developed that allow "freezing" of the nuclear spin state prior to samples extraction from the polarizer. Nevertheless, so far, all attempts of transport have been limited to a very small scale and to the level of proof-of-principle experiments. The main reason for that is the lack of adequate hardware, strategy, and control on most of the crucial parameters. To bridge the technical gap with PET and provide MRI facilities with hours long relaxing hyperpolarized compounds at controlled conditions, a new generation of low cost/small footprint liquid He cryostats equipped with a magnetically enforced cryogenic probe is needed. In this paper, we detail the theoretical and practical construction of a hyperpolarized samples transportation device small enough to fit in a car and able to hold a sample at 4.2 K for almost 8 h despite the presence of a cryogenically-demanding purpose-built probe that provides enough magnetic field upon insertion of the sample and NMR quality homogeneity at storage position. Should transportable hyperpolarization via DNP become a reality, we herein provide important details to make it possible.
Collapse
Affiliation(s)
- Andrea Capozzi
- SB IPHYS LIFMET, Institute of Physics, EPFL, CH F0 632, Bâtiment CH, Station 6, CH-1015, Lausanne, Switzerland.
- Department of Health Technology, HYPERMAG, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
23
|
Jurkutat M, Kouřilová H, Peat D, Kouřil K, Khan AS, Horsewill AJ, MacDonald JF, Owers-Bradley J, Meier B. Radical-Induced Low-Field 1H Relaxation in Solid Pyruvic Acid Doped with Trityl-OX063. J Phys Chem Lett 2022; 13:10370-10376. [PMID: 36316011 PMCID: PMC9661535 DOI: 10.1021/acs.jpclett.2c02357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In dynamic nuclear polarization (DNP), radicals such as trityl provide a source for high nuclear spin polarization. Conversely, during the low-field transfer of hyperpolarized solids, the radicals' dipolar or Non-Zeeman reservoir may act as a powerful nuclear polarization sink. Here, we report the low-temperature proton spin relaxation in pyruvic acid doped with trityl, for fields from 5 mT to 2 T. We estimate the heat capacity of the radical Non-Zeeman reservoir experimentally and show that a recent formalism by Wenckebach yields a parameter-free, yet quantitative model for the entire field range.
Collapse
Affiliation(s)
- Michael Jurkutat
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen76344, Germany
| | - Hana Kouřilová
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen76344, Germany
| | - David Peat
- School
of Physics and Astronomy, University of
Nottingham, NottinghamNG7 2RD, U.K.
| | - Karel Kouřil
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen76344, Germany
| | - Alixander S. Khan
- School
of Physics and Astronomy, University of
Nottingham, NottinghamNG7 2RD, U.K.
| | - Anthony J. Horsewill
- School
of Physics and Astronomy, University of
Nottingham, NottinghamNG7 2RD, U.K.
| | - James F. MacDonald
- School
of Physics and Astronomy, University of
Nottingham, NottinghamNG7 2RD, U.K.
| | - John Owers-Bradley
- School
of Physics and Astronomy, University of
Nottingham, NottinghamNG7 2RD, U.K.
| | - Benno Meier
- Institute
of Biological Interfaces 4, Karlsruhe Institute
of Technology, Eggenstein-Leopoldshafen76344, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology, Karlsruhe76131, Germany
| |
Collapse
|
24
|
Dey A, Charrier B, Lemaitre K, Ribay V, Eshchenko D, Schnell M, Melzi R, Stern Q, Cousin S, Kempf J, Jannin S, Dumez JN, Giraudeau P. Fine optimization of a dissolution dynamic nuclear polarization experimental setting for 13C NMR of metabolic samples. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:183-202. [PMID: 37904870 PMCID: PMC10583282 DOI: 10.5194/mr-3-183-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/16/2022] [Indexed: 11/01/2023]
Abstract
NMR-based analysis of metabolite mixtures provides crucial information on biological systems but mostly relies on 1D 1 H experiments for maximizing sensitivity. However, strong peak overlap of 1 H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution dynamic nuclear polarization (d-DNP) improves NMR sensitivity by several orders of magnitude, which enables 13 C NMR-based analysis of metabolites at natural abundance. We have recently demonstrated the successful introduction of d-DNP into a full untargeted metabolomics workflow applied to the study of plant metabolism. Here we describe the systematic optimization of d-DNP experimental settings for experiments at natural 13 C abundance and show how the resolution, sensitivity, and ultimately the number of detectable signals improve as a result. We have systematically optimized the parameters involved (in a semi-automated prototype d-DNP system, from sample preparation to signal detection, aiming at providing an optimization guide for potential users of such a system, who may not be experts in instrumental development). The optimization procedure makes it possible to detect previously inaccessible protonated 13 C signals of metabolites at natural abundance with at least 4 times improved line shape and a high repeatability compared to a previously reported d-DNP-enhanced untargeted metabolomic study. This extends the application scope of hyperpolarized 13 C NMR at natural abundance and paves the way to a more general use of DNP-hyperpolarized NMR in metabolomics studies.
Collapse
Affiliation(s)
- Arnab Dey
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Karine Lemaitre
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Dmitry Eshchenko
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Marc Schnell
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Roberto Melzi
- Bruker Biospin, Viale V. Lancetti 43, 20158 Milan, Italy
| | - Quentin Stern
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | | - Sami Jannin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | |
Collapse
|
25
|
Yang H, Li S, Mickles CA, Guzman-Luna V, Sugisaki K, Thompson CM, Dang HH, Cavagnero S. Selective Isotope Labeling and LC-Photo-CIDNP Enable NMR Spectroscopy at Low-Nanomolar Concentration. J Am Chem Soc 2022; 144:11608-11619. [PMID: 35700317 PMCID: PMC9577358 DOI: 10.1021/jacs.2c01809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
NMR spectroscopy is a powerful tool to investigate molecular structure and dynamics. The poor sensitivity of this technique, however, limits its ability to tackle questions requiring dilute samples. Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) is an optically enhanced NMR technology capable of addressing the above challenge by increasing the detection limit of aromatic amino acids in solution up to 1000-fold, either in isolation or within proteins. Here, we show that the absence of NMR-active nuclei close to a magnetically active site of interest (e.g., the structurally diagnostic 1Hα-13Cα pair of amino acids) is expected to significantly increase LC-photo-CIDNP hyperpolarization. Then, we exploit the spin-diluted tryptophan isotopolog Trp-α-13C-β,β,2,4,5,6,7-d7 and take advantage of the above prediction to experimentally achieve a ca 4-fold enhancement in NMR sensitivity over regular LC-photo-CIDNP. This advance enables the rapid (within seconds) detection of 20 nM concentrations or the molecule of interest, corresponding to a remarkable 3 ng detection limit. Finally, the above Trp isotopolog is amenable to incorporation within proteins and is readily detectable at a 1 μM concentration in complex cell-like media, including Escherichia coli cell-free extracts.
Collapse
Affiliation(s)
- Hanming Yang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Siyu Li
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Clayton A Mickles
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kenji Sugisaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Clayton M Thompson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hung H Dang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Negroni M, Guarin D, Che K, Epasto LM, Turhan E, Selimović A, Kozak F, Cousin S, Abergel D, Bodenhausen G, Kurzbach D. Inversion of Hyperpolarized 13C NMR Signals through Cross-Correlated Cross-Relaxation in Dissolution DNP Experiments. J Phys Chem B 2022; 126:4599-4610. [PMID: 35675502 PMCID: PMC9234958 DOI: 10.1021/acs.jpcb.2c03375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Dissolution dynamic nuclear polarization (DDNP) is a versatile tool to boost signal amplitudes in solution-state nuclear magnetic resonance (NMR) spectroscopy. For DDNP, nuclei are spin-hyperpolarized "ex situ" in a dedicated DNP device and then transferred to an NMR spectrometer for detection. Dramatic signal enhancements can be achieved, enabling shorter acquisition times, real-time monitoring of fast reactions, and reduced sample concentrations. Here, we show how the sample transfer in DDNP experiments can affect NMR spectra through cross-correlated cross-relaxation (CCR), especially in the case of low-field passages. Such processes can selectively invert signals of 13C spins in proton-carrying moieties. For their investigations, we use schemes for simultaneous or "parallel" detection of hyperpolarized 1H and 13C nuclei. We find that 1H → 13C CCR can invert signals of 13C spins if the proton polarization is close to 100%. We deduce that low-field passage in a DDNP experiment, a common occurrence due to the introduction of so-called "ultra-shielded" magnets, accelerates these effects due to field-dependent paramagnetic relaxation enhancements that can influence CCR. The reported effects are demonstrated for various molecules, laboratory layouts, and DDNP systems. As coupled 13C-1H spin systems are ubiquitous, we expect similar effects to be observed in various DDNP experiments. This might be exploited for selective spectroscopic labeling of hydrocarbons.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - David Guarin
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Polarize
ApS, 1808 Frederiksberg, Denmark
| | - Kateryna Che
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ludovica M. Epasto
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Albina Selimović
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Fanny Kozak
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Samuel Cousin
- Institut
de Chimie Radicalaire—UMR 7273, Saint-Jérôme
Campus, Av. Esc. Normandie Niemen, Aix-Marseille Université/CNRS, 13397 Marseille
Cedex 20, France
| | - Daniel Abergel
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| |
Collapse
|
27
|
Pham P, Mandal R, Qi C, Hilty C. Interfacing Liquid State Hyperpolarization Methods with NMR Instrumentation. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100052. [PMID: 35530721 PMCID: PMC9070690 DOI: 10.1016/j.jmro.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in liquid state hyperpolarization methods have enabled new applications of high-resolution NMR spectroscopy. Utilizing strong signal enhancements from hyperpolarization allows performing NMR spectroscopy at low concentration, or with high time resolution. Making use of the high, but rapidly decaying hyperpolarization in the liquid state requires new techniques to interface hyperpolarization equipment with liquid state NMR spectrometers. This article highlights rapid injection, high resolution NMR spectroscopy with hyperpolarization produced by the techniques of dissolution dynamic nuclear polarization (D-DNP) and para-hydrogen induced polarization (PHIP). These are popular, albeit not the only methods to produce high polarization levels for liquid samples. Gas and liquid driven sample injection techniques are compatible with both of these hyperpolarization methods. The rapid sample injection techniques are combined with adapted NMR experiments working in a single, or small number of scans. They expand the application of liquid state hyperpolarization to spins with comparably short relaxation times, provide enhanced control over sample conditions, and allow for mixing experiments to study reactions in real time.
Collapse
|
28
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
29
|
Zhang J, Du Y, Zhang Y, Xu Y, Fan Y, Li Y. 1H-NMR Based Metabolomics Technology Identifies Potential Serum Biomarkers of Colorectal Cancer Lung Metastasis in a Mouse Model. Cancer Manag Res 2022; 14:1457-1469. [PMID: 35444465 PMCID: PMC9015044 DOI: 10.2147/cmar.s348981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lung metastasis is a common metastasis site of colorectal cancer which largely reduces the quality of life and survival rates of patients. The discovery of potential novel diagnostic biomarkers is very meaningful for the early diagnosis of colorectal cancer with lung metastasis. Methods In the present study, the metabonomic profiling of serum samples of lung metastasis mice was analyzed by 1H-nuclear magnetic resonance (1H-NMR). Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to elucidate the distinguishing metabolites between different groups, and all achieved excellent separations, which indicated that metastatic mice could be differentiated from control mice based on the metabolic profiles at serum levels. Furthermore, during lung metastasis of colorectal cancer, metabolic phenotypes changed significantly, and some of metabolites were identified. Results Among these metabolites, approximately 15 were closely associated with the lung metastasis process. Pathway enrichment analysis results showed deregulation of metabolic pathways participating in the process of lung metastasis, such as synthesis and degradation of ketone bodies pathway, amino acid metabolism pathway and pyruvate metabolism pathway. Conclusion The present study demonstrated the metabolic disturbances of serum samples of mice during the lung metastasis process of colorectal cancer and provides potential diagnostic biomarkers for the disease.
Collapse
Affiliation(s)
- Junfei Zhang
- Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yuanxin Du
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yongcai Zhang
- First Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanan Xu
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yan Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Correspondence: Yan Li; Yanying Fan, Department of Pharmacology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 56#, Xin Jian South Road, Taiyuan, Shanxi Province, 030001, People’s Republic of China, Email ;
| |
Collapse
|
30
|
Eichhorn TR, Parker AJ, Josten F, Müller C, Scheuer J, Steiner JM, Gierse M, Handwerker J, Keim M, Lucas S, Qureshi MU, Marshall A, Salhov A, Quan Y, Binder J, Jahnke KD, Neumann P, Knecht S, Blanchard JW, Plenio MB, Jelezko F, Emsley L, Vassiliou CC, Hautle P, Schwartz I. Hyperpolarized Solution-State NMR Spectroscopy with Optically Polarized Crystals. J Am Chem Soc 2022; 144:2511-2519. [PMID: 35113568 DOI: 10.1021/jacs.1c09119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T). This makes it possible to exploit the high spin polarization of optically polarized crystals, while mitigating the challenges of its transfer to external nuclei. With this method, we inject the highly polarized mixture into a benchtop NMR spectrometer and observe the polarization dynamics for target 1H nuclei. Although the spectra are radiation damped due to the high naphthalene magnetization, we describe a procedure to process the data to obtain more conventional NMR spectra and extract the target nuclei polarization. With the entire process occurring on a time scale of 1 min, we observe NMR signals enhanced by factors between -200 and -1730 at 1.45 T for a range of small molecules.
Collapse
Affiliation(s)
| | - Anna J Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | - Jakob M Steiner
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | - Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram, Israel
| | - Yifan Quan
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jan Binder
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Kay D Jahnke
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | | | - Martin B Plenio
- Institute for Theoretical Physics, Ulm University, 89081 Ulm, Germany.,Center for Integrated Quantum Science and Technology, Ulm University, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany.,Center for Integrated Quantum Science and Technology, Ulm University, 89081 Ulm, Germany
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| |
Collapse
|
31
|
Kouřil K, Gramberg M, Jurkutat M, Kouřilová H, Meier B. A cryogen-free, semi-automated apparatus for bullet-dynamic nuclear polarization with improved resolution. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:815-825. [PMID: 37905208 PMCID: PMC10539728 DOI: 10.5194/mr-2-815-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 11/01/2023]
Abstract
In dissolution-dynamic nuclear polarization, a hyperpolarized solid is dissolved with a jet of hot solvent. The solution is then transferred to a secondary magnet, where spectra can be recorded with improved sensitivity. In bullet-dynamic nuclear polarization this order is reversed. Pressurized gas is used to rapidly transfer the hyperpolarized solid to the secondary magnet, and the hyperpolarized solid is dissolved only upon arrival. A potential advantage of this approach is that it may avoid excessive dilution and the associated signal loss, in particular for small sample quantities. Previously, we have shown that liquid-state NMR spectra with polarization levels of up to 30 % may be recorded within less than 1 s after the departure of the hyperpolarized solid from the polarizing magnet. The resolution of the recorded spectra however was limited. The system consumed significant amounts of liquid helium, and substantial manual work was required in between experiments to prepare for the next shot. Here, we present a new bullet-DNP (dynamic nuclear polarization) system that addresses these limitations.
Collapse
Affiliation(s)
- Karel Kouřil
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michel Gramberg
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Jurkutat
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hana Kouřilová
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benno Meier
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
32
|
Residue-resolved monitoring of protein hyperpolarization at sub-second time resolution. Commun Chem 2021; 4:147. [PMID: 36697662 PMCID: PMC9814832 DOI: 10.1038/s42004-021-00587-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Signal-enhancement techniques for NMR spectroscopy are important to amplify the weak resonances provided by nuclear spins. Recently, 'hyperpolarization' techniques have been intensively investigated. These provide nuclear spin states far from equilibrium yielding strong signal boosts up to four orders of magnitude. Here we propose a method for real-time NMR of 'hyperpolarized' proteins at residue resolution. The approach is based on dissolution dynamic nuclear polarization (d-DNP), which enables the use of hyperpolarized buffers that selectively boost NMR signals of solvent-exposed protein residues. The resulting spectral sparseness and signal enhancements enable recording of residue-resolved spectra at a 2 Hz sampling rate. Thus, we monitor the hyperpolarization level of different protein residues simultaneously under near-physiological conditions. We aim to address two points: 1) NMR experiments are often performed under conditions that increase sensitivity but are physiologically irrelevant; 2) long signal accumulation impedes fast real-time monitoring. Both limitations are of fundamental relevance to ascertain pharmacological relevance and study protein kinetics.
Collapse
|
33
|
Fiedorowicz M, Wieteska M, Rylewicz K, Kossowski B, Piątkowska-Janko E, Czarnecka AM, Toczylowska B, Bogorodzki P. Hyperpolarized 13C tracers: Technical advancements and perspectives for clinical applications. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Elliott SJ, Stern Q, Ceillier M, El Daraï T, Cousin SF, Cala O, Jannin S. Practical dissolution dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:59-100. [PMID: 34852925 DOI: 10.1016/j.pnmrs.2021.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.
Collapse
Affiliation(s)
- Stuart J Elliott
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Quentin Stern
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Morgan Ceillier
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Théo El Daraï
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Samuel F Cousin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Olivier Cala
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
35
|
Korchak S, Kaltschnee L, Dervisoglu R, Andreas L, Griesinger C, Glöggler S. Spontaneous Enhancement of Magnetic Resonance Signals Using a RASER. Angew Chem Int Ed Engl 2021; 60:20984-20990. [PMID: 34289241 PMCID: PMC8518078 DOI: 10.1002/anie.202108306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Nuclear magnetic resonance is usually drastically limited by its intrinsically low sensitivity: Only a few spins contribute to the overall signal. To overcome this limitation, hyperpolarization methods were developed that increase signals several times beyond the normal/thermally polarized signals. The ideal case would be a universal approach that can signal enhance the complete sample of interest in solution to increase detection sensitivity. Here, we introduce a combination of para-hydrogen enhanced magnetic resonance with the phenomenon of the RASER: Large signals of para-hydrogen enhanced molecules interact with the magnetic resonance coil in a way that the signal is spontaneously converted into an in-phase signal. These molecules directly interact with other compounds via dipolar couplings and enhance their signal. We demonstrate that this is not only possible for solvent molecules but also for an amino acid.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement GroupMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGVon-Siebold-Str. 3A37075GöttingenGermany
| | - Lukas Kaltschnee
- NMR Signal Enhancement GroupMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGVon-Siebold-Str. 3A37075GöttingenGermany
| | - Riza Dervisoglu
- Research Group for Solid State NMRMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Loren Andreas
- Research Group for Solid State NMRMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Christian Griesinger
- Department of NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Stefan Glöggler
- NMR Signal Enhancement GroupMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGVon-Siebold-Str. 3A37075GöttingenGermany
| |
Collapse
|
36
|
Korchak S, Kaltschnee L, Dervisoglu R, Andreas L, Griesinger C, Glöggler S. Spontaneous Enhancement of Magnetic Resonance Signals Using a RASER. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Lukas Kaltschnee
- NMR Signal Enhancement Group Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Riza Dervisoglu
- Research Group for Solid State NMR Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Loren Andreas
- Research Group for Solid State NMR Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
37
|
Elliott S, Stern Q, Jannin S. Solid-state 1H spin polarimetry by 13CH 3 nuclear magnetic resonance. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:643-652. [PMID: 37905218 PMCID: PMC10539844 DOI: 10.5194/mr-2-643-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/02/2021] [Indexed: 11/01/2023]
Abstract
Dissolution dynamic nuclear polarization is used to prepare nuclear spin polarizations approaching unity. At present, 1 H polarization quantification in the solid state remains fastidious due to the requirement of measuring thermal equilibrium signals. Line shape polarimetry of solid-state nuclear magnetic resonance spectra is used to determine several useful properties regarding the spin system under investigation. In the case of highly polarized nuclear spins, such as those prepared under the conditions of dissolution dynamic nuclear polarization experiments, the absolute polarization of a particular isotopic species within the sample may be directly inferred from the characteristics of the corresponding resonance line shape. In situations where direct measurements of polarization are complicated by deleterious phenomena, indirect estimates of polarization using coupled heteronuclear spins prove informative. We present a simple analysis of the 13 C spectral line shape of [2-13 C]sodium acetate based on the normalized deviation of the centre of gravity of the 13 C peaks, which can be used to indirectly evaluate the proton polarization of the methyl group moiety and very likely the entire sample in the case of rapid and homogeneous 1 H-1 H spin diffusion. For the case of positive microwave irradiation, 1 H polarization was found to increase with an increasing normalized centre of gravity deviation. These results suggest that, as a dopant, [2-13 C]sodium acetate could be used to indirectly gauge 1 H polarizations in standard sample formulations, which is potentially advantageous for (i) samples polarized in commercial dissolution dynamic nuclear polarization devices that lack 1 H radiofrequency hardware, (ii) measurements that are deleteriously influenced by radiation damping or complicated by the presence of large background signals and (iii) situations where the acquisition of a thermal equilibrium spectrum is not feasible.
Collapse
Affiliation(s)
- Stuart J. Elliott
- Centre de Résonance Magnétique Nucléaire à Très
Hauts Champs – FRE 2034 Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne,
France
- current address: Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Quentin Stern
- Centre de Résonance Magnétique Nucléaire à Très
Hauts Champs – FRE 2034 Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne,
France
| | - Sami Jannin
- Centre de Résonance Magnétique Nucléaire à Très
Hauts Champs – FRE 2034 Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne,
France
| |
Collapse
|
38
|
El Daraï T, Cousin SF, Stern Q, Ceillier M, Kempf J, Eshchenko D, Melzi R, Schnell M, Gremillard L, Bornet A, Milani J, Vuichoud B, Cala O, Montarnal D, Jannin S. Porous functionalized polymers enable generating and transporting hyperpolarized mixtures of metabolites. Nat Commun 2021; 12:4695. [PMID: 34349114 PMCID: PMC8338986 DOI: 10.1038/s41467-021-24279-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show the synthesis of hyperpolarizing polymers (HYPOPs) that can generate radical- and contaminant-free hyperpolarized samples within minutes with lifetimes exceeding hours in the solid state. HYPOPs feature tunable macroporous porosity, with porous volumes up to 80% and concentration of nitroxide radicals grafted in the bulk matrix up to 285 μmol g-1. Analytes can be efficiently impregnated as aqueous/alcoholic solutions and hyperpolarized up to P(13C) = 25% within 8 min, through the combination of 1H spin diffusion and 1H → 13C cross polarization. Solutions of 13C-analytes of biological interest hyperpolarized in HYPOPs display a very long solid-state 13C relaxation times of 5.7 h at 3.8 K, thus prefiguring transportation over long distances.
Collapse
Affiliation(s)
- Théo El Daraï
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
- Université de Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, Lyon, France
| | - Samuel F Cousin
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France.
| | - Quentin Stern
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Morgan Ceillier
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | | | | | | | | | - Laurent Gremillard
- Université de Lyon, INSA Lyon, MATEIS UMR CNRS 5510, Bât. Blaise Pascal, Villeurbanne, France
| | - Aurélien Bornet
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Jonas Milani
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Basile Vuichoud
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Olivier Cala
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Damien Montarnal
- Université de Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, Lyon, France.
| | - Sami Jannin
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| |
Collapse
|
39
|
Kress T, Che K, Epasto L, Kozak F, Negroni M, Olsen G, Selimovic A, Kurzbach D. A novel sample handling system for dissolution dynamic nuclear polarization experiments. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:387-394. [PMID: 37904780 PMCID: PMC10539747 DOI: 10.5194/mr-2-387-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/19/2021] [Indexed: 11/01/2023]
Abstract
We present a system for facilitated sample vitrification, melting, and transfer in dissolution dynamic nuclear polarization (DDNP) experiments. In DDNP, a sample is typically hyperpolarized at cryogenic temperatures before dissolution with hot solvent and transfer to a nuclear magnetic resonance (NMR) spectrometer for detection in the liquid state. The resulting signal enhancements can exceed 4 orders of magnitude. However, the sudden temperature jump from cryogenic temperatures close to 1 K to ambient conditions imposes a particular challenge. It is necessary to rapidly melt the sample to avoid a prohibitively fast decay of hyperpolarization. Here, we demonstrate a sample dissolution method that facilitates the temperature jump by eliminating the need to open the cryostat used to cool the sample. This is achieved by inserting the sample through an airlock in combination with a dedicated dissolution system that is inserted through the same airlock shortly before the melting event. The advantages are threefold: (1) the cryostat can be operated continuously at low temperatures. (2) The melting process is rapid as no pressurization steps of the cryostat are required. (3) Blockages of the dissolution system due to freezing of solvents during melting and transfer are minimized.
Collapse
Affiliation(s)
- Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road,
Cambridge CB2 1EW, UK
| | - Kateryna Che
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Ludovica M. Epasto
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Fanny Kozak
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Mattia Negroni
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Gregory L. Olsen
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Albina Selimovic
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological
Chemistry, University of Vienna, Währinger Str. 38, Vienna, Austria
| |
Collapse
|
40
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
41
|
Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:5-23. [PMID: 33185800 DOI: 10.1007/s10334-020-00894-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique's shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.
Collapse
|
42
|
Sahin Solmaz N, Grisi M, Matheoud AV, Gualco G, Boero G. Single-Chip Dynamic Nuclear Polarization Microsystem. Anal Chem 2020; 92:9782-9789. [PMID: 32530638 PMCID: PMC9559634 DOI: 10.1021/acs.analchem.0c01221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Integration
of the sensitivity-relevant electronics of nuclear
magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers
on a single chip is a promising approach to improve the limit of detection,
especially for samples in the nanoliter and subnanoliter range. Here,
we demonstrate the cointegration on a single silicon chip of the front-end
electronics of NMR and ESR detectors. The excitation/detection planar
spiral microcoils of the NMR and ESR detectors are concentric and
interrogate the same sample volume. This combination of sensors allows
one to perform dynamic nuclear polarization (DNP) experiments using
a single-chip-integrated microsystem having an area of about 2 mm2. In particular, we report 1H DNP-enhanced NMR
experiments on liquid samples having a volume of about 1 nL performed
at 10.7 GHz(ESR)/16 MHz(NMR). NMR enhancements as large as 50 are
achieved on TEMPOL/H2O solutions at room temperature. The
use of state-of-the-art submicrometer integrated circuit technologies
should allow the future extension of the single-chip DNP microsystem
approach proposed here up the THz(ESR)/GHz(NMR) region, corresponding
to the strongest static magnetic fields currently available. Particularly
interesting is the possibility to create arrays of such sensors for
parallel DNP-enhanced NMR spectroscopy of nanoliter and subnanoliter
samples.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Grisi
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alessandro V. Matheoud
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Gualco
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Boero
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Hassan MM, Olaoye OO. Recent Advances in Chemical Biology Using Benzophenones and Diazirines as Radical Precursors. Molecules 2020; 25:E2285. [PMID: 32414020 PMCID: PMC7288102 DOI: 10.3390/molecules25102285] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
44
|
Bengs C, Levitt MH. A master equation for spin systems far from equilibrium. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106645. [PMID: 31816583 DOI: 10.1016/j.jmr.2019.106645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 05/25/2023]
Abstract
The quantum dynamics of spin systems is often treated by a differential equation known as the master equation, which describes the trajectories of spin observables such as magnetization components, spin state populations, and coherences between spin states. The master equation describes how a perturbed spin system returns to a state of thermal equilibrium with a finite-temperature environment. The conventional master equation, which has the form of an inhomogeneous differential equation, applies to cases where the spin system remains close to thermal equilibrium, which is well satisfied for a wide variety of magnetic resonance experiments conducted on thermally polarized spin systems at ordinary temperatures. However, the conventional inhomogeneous master equation may fail in the case of hyperpolarized spin systems, when the spin state populations deviate strongly from thermal equilibrium, and in general where there is a high degree of nuclear spin order. We highlight a simple case in which the inhomogeneous master equation clearly fails, and propose an alternative master equation based on Lindblad superoperators which avoids most of the deficiencies of previous proposals. We discuss the strengths and limitations of the various formulations of the master equation, in the context of spin systems which are far from thermal equilibrium. The method is applied to several problems in nuclear magnetic resonance and to spin-isomer conversion.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| | - Malcolm H Levitt
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| |
Collapse
|
45
|
Sapir G, Harris T, Uppala S, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. [ 13C 6,D 8]2-deoxyglucose phosphorylation by hexokinase shows selectivity for the β-anomer. Sci Rep 2019; 9:19683. [PMID: 31873121 PMCID: PMC6928223 DOI: 10.1038/s41598-019-56063-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
A non-radioactive 2-deoxyglucose (2DG) analog has been developed here for hyperpolarized magnetic resonance investigations. The analog, [13C6,D8]2DG, showed 13% polarization in solution (27,000-fold signal enhancement at the C1 site), following a dissolution-DNP hyperpolarization process. The phosphorylation of this analog by yeast hexokinase (yHK) was monitored in real-time with a temporal resolution of 1 s. We show that yHK selectively utilizes the β anomer of the 2DG analog, thus revealing a surprising anomeric specificity of this reaction. Such anomeric selectivity was not observed for the reaction of yHK or bacterial glucokinase with a hyperpolarized glucose analog. yHK is highly similar to the human HK-2, which is overexpressed in malignancy. Thus, the current finding may shed a new light on a fundamental enzyme activity which is utilized in the most widespread molecular imaging technology for cancer detection - positron-emission tomography with 18F-2DG.
Collapse
Affiliation(s)
- Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
46
|
Kagawa A, Miyanishi K, Ichijo N, Negoro M, Nakamura Y, Enozawa H, Murata T, Morita Y, Kitagawa M. High-field NMR with dissolution triplet-DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106623. [PMID: 31669795 DOI: 10.1016/j.jmr.2019.106623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Dissolution dynamic nuclear polarization (DNP) has wide variety of important applications such as real-time monitoring of chemical reactions and metabolic imaging. We construct DNP using photoexcited triplet electron spins (Triplet-DNP) apparatus combined with dissolution apparatus for solution NMR in a high magnetic field. Triplet-DNP enables us to obtain high nuclear polarization at room temperature. Solid-state samples polarized by Triplet-DNP are transferred to a superconducting magnet and dissolved by injecting aqueous solvents. The 13C polarization of 0.22% has been obtained for [caryboxy-13C]benzoic acid-d in the liquid state. Our results show that Triplet-DNP can be applied to real-time monitoring with solution NMR.
Collapse
Affiliation(s)
- Akinori Kagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Naoki Ichijo
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Makoto Negoro
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yushi Nakamura
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Hideo Enozawa
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Tsuyoshi Murata
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Yasushi Morita
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Masahiro Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan
| |
Collapse
|
47
|
Eills J, Cavallari E, Carrera C, Budker D, Aime S, Reineri F. Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity Using Parahydrogen-Hyperpolarized [1-13C]Fumarate. J Am Chem Soc 2019; 141:20209-20214. [DOI: 10.1021/jacs.9b10094] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- James Eills
- Helmholtz Institute, Johannes Gutenberg University of Mainz, Mainz 55099, Germany
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Turin 10126, Italy
| | - Dmitry Budker
- Helmholtz Institute, Johannes Gutenberg University of Mainz, Mainz 55099, Germany
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy
| |
Collapse
|
48
|
Aghelnejad B, Bodenhausen G, Marhabaie S. A Low-Temperature Broadband NMR Probe for Multinuclear Cross-Polarization. Chemphyschem 2019; 20:2830-2835. [PMID: 31502395 DOI: 10.1002/cphc.201900723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 11/08/2022]
Abstract
Dissolution dynamic nuclear polarization (D-DNP) probes are usually designed for one or at most two specific nuclei. Investigation of multiple nuclei usually requires manufacturing a number of costly probes. In addition, changing the probe is a time-consuming process since a system that works at low temperature (usually between 1.2 and 4.2 K) must be warmed up, thus increasing the risks of contamination. Here, an efficient apparatus is described for D-DNP designed not only for microwave-enhanced direct observation of a wide range of nuclei S such as 1 H, 13 C, 2 H, 23 Na, and 17 O, but also for cross-polarization (CP) from I=1 H to such S nuclei. Unlike most conventional designs, the tuning and matching circuits are partly immersed in superfluid helium at temperatures down to 1.2 K. Intense radio-frequency (RF) fields with amplitudes on the order of 50 kHz or better can be applied simultaneously to both nuclei I and S using RF amplifiers with powers on the order of 90 and 80 W, respectively, without significant losses of liquid helium. The system can operate at temperatures over a wide range between 1.2 and 300 K.
Collapse
Affiliation(s)
- Behdad Aghelnejad
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Bruker Biospin SAS, F-67160, Wissembourg, France
| | - Geoffrey Bodenhausen
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sina Marhabaie
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Current address: IFSTTAR, Université Paris-Est UPEMLV, Marne-la-Vallée, France
| |
Collapse
|
49
|
Ardenkjaer-Larsen JH. Hyperpolarized MR - What's up Doc? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:124-127. [PMID: 31307893 DOI: 10.1016/j.jmr.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Hyperpolarized MR by dissolution Dynamic Nuclear Polarization (dDNP) appeared on the scene in 2003. Since then, it has been translated to the clinic and several sites are now conducting human studies. This has happened at record pace despite all its complexities. The method has reached a pivotal point, and the coming years will be critical in realizing its full potential. Though the field has been characterized by strong collaboration between academia, government and industry, the key message of this perspective paper is that accelerated consensus building is of the essence in fulfilling the original vision for the method and ensuring widespread adoption. The challenge is to gain acceptance among clinicians based on strong indications and clear evidence. The future appears bright; initial clinical data looks promising and the scope for improvement is significant.
Collapse
Affiliation(s)
- Jan H Ardenkjaer-Larsen
- Technical University of Denmark, Department of Health Technology, Denmark; GE Healthcare, Denmark.
| |
Collapse
|
50
|
Katsikis S, Marin-Montesinos I, Ludwig C, Günther UL. Detecting acetylated aminoacids in blood serum using hyperpolarized 13C- 1Η-2D-NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:175-179. [PMID: 31301460 DOI: 10.1016/j.jmr.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Dynamic Nuclear Polarization (DNP) can substantially enhance the sensitivity of NMR experiments. Among the implementations of DNP, ex-situ dissolution DNP (dDNP) achieves high signal enhancement levels owing to a combination of a large temperature factor between 1.4 and 300 K with the actual DNP effect in the solid state at 1.4 K. For sufficiently long T1 relaxation times much of the polarization can be preserved during dissolution with hot solvent, thus enabling fast experiments during the life time of the polarization. Unfortunately, for many metabolites found in biological samples such as blood, relaxation times are too short to achieve a significant enhancement. We have therefore introduced 13C-carbonyl labeled acetyl groups as probes into amino acid metabolites using a simple reaction protocol. The advantage of such tags is a sufficiently long T1 relaxation time, the possibility to enhance signal intensity by introducing 13C, and the possibility to identify tagged metabolites in NMR spectra. We demonstrate feasibility for mixtures of amino acids and for blood serum. In two-dimensional dDNP-enhanced HMQC experiments of these samples acquired in 8 s we can identify acetylated amino acids and other metabolites based on small differences in chemical shifts.
Collapse
Affiliation(s)
- Sotirios Katsikis
- Department of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Ulrich L Günther
- HWB-NMR, University of Birmingham, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|