1
|
Fang C, He X, Tang F, Wang Z, Pan C, Zhang Q, Wu J, Wang Q, Liu D, Zhang Y. Where lung cancer and tuberculosis intersect: recent advances. Front Immunol 2025; 16:1561719. [PMID: 40242762 PMCID: PMC11999974 DOI: 10.3389/fimmu.2025.1561719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) represent two major global public health issues. Prior evidence has suggested a link between TB infection and an increased risk of LC. As advancements in LC treatment have led to extended survival rates for LC patients, the co-occurrence of TB and LC has grown more prevalent and poses novel clinical challenges. The intricate molecular mechanisms connecting TB and LC are closely intertwined and many issues remain to be addressed. This review focuses on resemblance between the immunosuppression in tumor and granuloma microenvironments, exploring immunometabolism, cell plasticity, inflammatory signaling pathways, microbiomics, and up-to-date information derived from spatial multi-omics between TB and LC. Furthermore, we outline immunization-related molecular mechanisms underlying these two diseases and propose future research directions. By discussing recent advances and potential targets, this review aims to establish a foundation for developing future therapeutic strategies targeting LC with concurrent TB infection.
Collapse
Affiliation(s)
- Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xuanlu He
- School of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Fei Tang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cong Pan
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Translational Medicine Research Center, eBond Pharmaceutical Technology Co., Ltd., Chengdu, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Wu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Daishun Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
- National Health Commission Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
2
|
Singh M, Sarhan MO, Damiba NNL, Singh AK, Villabona-Rueda A, Nino-Meza OJ, Chen X, Masias-Leon Y, Ruiz-Gonzalez CE, Ordonez AA, D'Alessio FR, Aboagye EO, Carroll LS, Jain SK. Proapoptotic Bcl-2 inhibitor as potential host directed therapy for pulmonary tuberculosis. Nat Commun 2025; 16:3003. [PMID: 40148277 PMCID: PMC11950383 DOI: 10.1038/s41467-025-58190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue necrosis, fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68+ and CD11b+ cells. Finally, positron emission tomography (PET) in live animals using clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74), demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed in postmortem analysis. Our studies suggest that proapoptotic drugs such as navitoclax can potentially improve pulmonary TB treatments, reduce lung damage / fibrosis and may be protective against post-TB lung disease.
Collapse
Affiliation(s)
- Medha Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona O Sarhan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nerketa N L Damiba
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alok K Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | - Oscar J Nino-Meza
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xueyi Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuderleys Masias-Leon
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carlos E Ruiz-Gonzalez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franco R D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Hammersmith Campus, Imperial College, London, UK
| | - Laurence S Carroll
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Wang H, Li X, Li P, Feng Y, Wang J, Gao Q, Men B, Wang W, Yan Y, Zhang Y, Shi H, Wu Y, Ma F, Jia Y, Sang S, Fu X, Duan H, Zeng Q, Li X, Ma W, Li B, Liao Y. Uptake of Biomimetic Nanovesicles by Granuloma for Photodynamic Therapy of Tuberculosis. ACS OMEGA 2025; 10:6679-6688. [PMID: 40028123 PMCID: PMC11866195 DOI: 10.1021/acsomega.4c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
The antimicrobial resistance of Mycobacterium tuberculosis (M. tuberculosis) is a challenge in the antibiotic treatment of tuberculosis (TB). Herein, we aimed to examine a photodynamic therapy for TB that has a low risk of drug resistance and involves biomimetic macrophage membranes combined with a photosensitizer, chlorin e6 (Ce6; hereinafter, C-MV). We used Mycobacterium marinum (M. marinum), a waterborne pathogen closely related to M. tuberculosis, which causes TB-like infections in ectotherms but not in humans. The mouse tail granuloma model induced by M. marinum is a relatively mature TB model developed by our team. C-MV nanoparticles were prepared and injected intravenously, showing longevity in circulation due to the properties of the macrophage membrane, which protects them from being eliminated from the blood. They were then guided to tuberculous granulomas, helping deliver precise photodynamic therapy. Ce6 is a classical photosensitizer that triggers the production of reactive oxygen species under laser irradiation, causing M. marinum death. The C-MV nanoparticles showed good compatibility and a long circulation time, effectively inhibiting the proliferation and infiltration of M. marinum, providing a new paradigm for TB treatment.
Collapse
Affiliation(s)
- Huanhuan Wang
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Xiaoxue Li
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Peiran Li
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Yi Feng
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Jiamei Wang
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Qiuxia Gao
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Bo Men
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Wei Wang
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Yan Yan
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Yunlong Zhang
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Huimin Shi
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Yanqiu Wu
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Fei Ma
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Yue Jia
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Shuo Sang
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Xinting Fu
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Han Duan
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Qin Zeng
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Xiaomin Li
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Weifeng Ma
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Bin Li
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Yuhui Liao
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| |
Collapse
|
4
|
Lawrence ALE, Tan S. Building Spatiotemporal Understanding of Mycobacterium tuberculosis-Host Interactions. ACS Infect Dis 2025; 11:277-286. [PMID: 39847659 PMCID: PMC11828672 DOI: 10.1021/acsinfecdis.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Heterogeneity during Mycobacterium tuberculosis (Mtb) infection greatly impacts disease outcome and complicates treatment. This heterogeneity encompasses many facets, spanning local differences in the host immune response to Mtb and the environment experienced by the bacterium, to nonuniformity in Mtb replication state. All of these facets are interlinked and each can affect Mtb susceptibility to antibiotic treatment. In-depth spatiotemporal understanding of Mtb-host interactions is thus critical to both fundamental comprehension of Mtb infection biology and for the development of effective therapeutic regimens. Such spatiotemporal understanding dictates the need for analysis at the single bacterium/cell level in the context of intact tissue architecture, which has been a significant technical challenge. Excitingly, innovations in spatial single cell methodology have opened the door to such studies, beginning to illuminate aspects ranging from intergranuloma differences in cellular composition and phenotype, to sublocation differences in Mtb physiology and replication state. In this perspective, we discuss recent studies that demonstrate the potential of these methodological advancements to reveal critical spatiotemporal insight into Mtb-host interactions, and highlight future avenues of research made possible by these advances.
Collapse
Affiliation(s)
- Anna-Lisa E Lawrence
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| |
Collapse
|
5
|
Zhou J, Xiong KL, Wang HX, Sun WW, Ke H, Zhang SJ, Dong ZW, Fan L. BATF2/SINHCAF regulates the quantity and function of macrophages infected with Mycobacterium Tuberculosis via regulation of TTC23 through Wnt/β-catenin pathway. Int J Biol Macromol 2025; 288:138639. [PMID: 39672395 DOI: 10.1016/j.ijbiomac.2024.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Elucidating the pathogenic mechanism of Tuberculosis (TB) can contribute to control TB. Basic leucine zipper transcription factor ATF-like 2 (BATF2) belonging to a large family of leucine zipper transcription factors (TFs) termed bZip proteins, had been verified to have important value in the diagnosis of TB. However, its role and mechanism in TB had not been elucidated. The study aimed to explore its function and molecular mechanism in macrophages infected with Mycobacterium tuberculosis (Mtb). The results indicated that BATF2 inhibited cell proliferation, promoted inflammatory response and impaired the antibacterial and antigen-presenting capacity in macrophages for T cells through regulating its downstream gene TTC23 by interacting with SINHCAF. Above roles and regulations were dependent on β-catenin functions in macrophages infected with Mtb. Clinical samples verified that the expressions of BATF2 and TTC23 were significantly higher in the blood of patients with pulmonary TB compared with health controls. Altogether, BATF2 interacted with SINHCAF to regulate the quantity and function of macrophages during Mtb infection by targeting TTC23 through Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Kun-Long Xiong
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Hong-Xiu Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Wen Sun
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Hui Ke
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Shao-Jun Zhang
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China
| | - Zheng-Wei Dong
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fan
- Department of Tuberculosis, Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai Key Lab of Tuberculosis, Shanghai, China.
| |
Collapse
|
6
|
Adduri S, Bohorquez JA, Adejare O, Rincon D, Tucker T, Konduru NV, Yi G. Spatial transcriptomic analysis of HIV and tuberculosis coinfection in a humanized mouse model reveals specific transcription patterns, immune responses and early morphological alteration signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635571. [PMID: 39975088 PMCID: PMC11838271 DOI: 10.1101/2025.01.29.635571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) coinfection is one of the biggest public health concerns worldwide. Both pathogens are adept at modulating immune response and, in the case of Mtb, even inducing structural modification of the affected tissue. The present study aimed at understanding the early phenotypical and functional changes in immune cell infiltration in the affected organ, using a humanized mouse model. The humanized mice were infected with either HIV or Mtb in single infection, or with both pathogens in coinfection. Three weeks after the infection, lung samples were collected, and spatial transcriptomics analysis was performed. This analysis revealed high infiltration of CD4+ T cells in Mtb infection, but not in HIV or coinfection. Coinfected mice also showed a minimal number of NK cells compared to the other groups. In addition to infection status, histological features also influenced the immune cell infiltration pattern in the lungs. Two distinct airway regions with distinct immune cell abundance patterns were detected by spatial transcriptome profiling. A lymphoid cell aggregate detected in coinfection lung exhibited distinct transcript profile. The cellular architecture in the lymphoid cell aggregate did not follow the spatial patterns seen in mature granulomas. However, lymphoid cell aggregates exhibited granuloma gene expression signatures, and pathways associated with reactive oxygen species production, oxidative phosphorylation, and TGFβ and interferon signaling similar to granulomas. This study revealed specific transcription patterns, immune responses and morphological alteration signaling in the early stage of HIV and Mtb infections.
Collapse
Affiliation(s)
- Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Jose Alejandro Bohorquez
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Omoyeni Adejare
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | | | - Torry Tucker
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Nagarjun V Konduru
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| | - Guohua Yi
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, TX 75708, USA
| |
Collapse
|
7
|
Eigenbrood J, Wong N, Mallory P, Pereira J, Morris-II DW, Beck JA, Cronk JC, Sayers CM, Mendez M, Kaiser L, Galindo J, Singh J, Cardamone A, Pore M, Kelly M, LeBlanc AK, Cotter J, Kaplan RN, McEachron TA. Spatial profiling identifies regionally distinct microenvironments and targetable immunosuppressive mechanisms in pediatric osteosarcoma pulmonary metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.631350. [PMID: 39896512 PMCID: PMC11785069 DOI: 10.1101/2025.01.22.631350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Osteosarcoma is the most common malignant bone tumor in young patients and remains a significant clinical challenge, particularly in the context of metastatic disease. Despite extensive documentation of genomic alterations in osteosarcoma, studies detailing the immunosuppressive mechanisms within the metastatic osteosarcoma microenvironment are lacking. Our objective was to characterize the spatial transcriptional landscape of metastatic osteosarcoma to reveal these immunosuppressive mechanisms and identify promising therapeutic targets. Here, we performed spatial transcriptional profiling on a cohort of osteosarcoma pulmonary metastases from pediatric patients. We reveal a conserved spatial gene expression pattern resembling a foreign body granuloma, characterized by peripheral inflammatory signaling, fibrocollagenous encapsulation, lymphocyte exclusion, and peritumoral macrophage accumulation. We also show that the intratumoral microenvironment of these lesions lack inflammatory signaling. Additionally, we identified CXCR4 as an actionable immunomodulatory target that bridges both the intratumoral and extratumoral microenvironments and highlights the spatial heterogeneity and complexity of this pathway. Collectively, this study reveals that metastatic osteosarcoma specimens are comprised of multiple regionally distinct immunosuppressive microenvironments.
Collapse
Affiliation(s)
- Jason Eigenbrood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Current Address: University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
- These authors contributed equally to this manuscript
| | - Nathan Wong
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- These authors contributed equally to this manuscript
| | - Paul Mallory
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Janice Pereira
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Douglass W Morris-II
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James C Cronk
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Monica Mendez
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Linus Kaiser
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie Galindo
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jatinder Singh
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Ashley Cardamone
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Milind Pore
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Kelly
- Center for Cancer Research Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Troy A McEachron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Zheng W, Borja M, Dorman LC, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco AO, Rosenberg OS, Neff N, Zha BS. Single-cell analysis reveals Mycobacterium tuberculosis ESX-1-mediated accumulation of permissive macrophages in infected mouse lungs. SCIENCE ADVANCES 2025; 11:eadq8158. [PMID: 39813329 PMCID: PMC11734715 DOI: 10.1126/sciadv.adq8158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Mycobacterium tuberculosis (MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces a transcriptional signature of immune evasion in lung macrophages and BMDM in an ESX-1-dependent manner. Spatial transcriptomics revealed an up-regulation of permissive features within MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 facilitates the recruitment and differentiation of MNPs, which MTB can infect and manipulate for survival. Our dataset across various models and methods could contribute to the broader understanding of recruited cell heterogeneity during MTB lung infection.
Collapse
Affiliation(s)
- Weihao Zheng
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | - Andy Zhou
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amanda Seng
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Alina Nalyvayko
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Oren S. Rosenberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Monack D, Butler D, Di Luccia B, Vilches-Moure J. Eosinophils Enhance Granuloma-Mediated Control of Persistent Salmonella Infection. RESEARCH SQUARE 2025:rs.3.rs-5610725. [PMID: 39801515 PMCID: PMC11722553 DOI: 10.21203/rs.3.rs-5610725/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Salmonella enterica can persist asymptomatically within tissues for extended periods. This remarkable feat is achieved through intricate host-pathogen interactions in immune cell aggregates called granulomas, wherein Salmonella find favorable cellular niches to exploit while the host limits its expansion and tissue dissemination. Here, using a mouse model of persistent Salmonella infection, we identify a host-protective role of eosinophils in control of Salmonella Typhimurium (STm) infection within the mesenteric lymph nodes (MLN), the main lymphoid tissue of STm persistence. Combining spatial transcriptomics and experimental manipulations, we found that macrophages responding to STm infection recruited eosinophils in a C-C motif chemokine ligand 11 (CCL11)-dependent manner and enhanced their activation. Eosinophil deficiencies increased Salmonella burdens, which was associated with altered granuloma size and impaired type-1 immunity in the MLN. Thus, eosinophils play a vital role in restraining Salmonella exploitation of granuloma macrophages at a key site of bacterial persistence.
Collapse
|
10
|
Pentimalli TM, Karaiskos N, Rajewsky N. Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics. ANNUAL REVIEW OF PATHOLOGY 2025; 20:405-432. [PMID: 39476415 DOI: 10.1146/annurev-pathmechdis-111523-023417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell-cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.
Collapse
Affiliation(s)
- Tancredi Massimo Pentimalli
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikos Karaiskos
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; , ,
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- National Center for Tumor Diseases, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
11
|
Li Q, Wang C, Gou J, Kitanovski S, Tang X, Cai Y, Zhang C, Zhang X, Zhang Z, Qiu Y, Zhao F, Lu M, He Y, Wang J, Lu H. Deciphering lung granulomas in HIV & TB co-infection: unveiling macrophages aggregation with IL6R/STAT3 activation. Emerg Microbes Infect 2024; 13:2366359. [PMID: 38855910 PMCID: PMC11188963 DOI: 10.1080/22221751.2024.2366359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- CD68 Molecule
- Coinfection/virology
- Coinfection/immunology
- Coinfection/microbiology
- Granuloma/immunology
- HIV Infections/complications
- HIV Infections/immunology
- Interleukin-6/metabolism
- Interleukin-6/genetics
- Lung/pathology
- Lung/immunology
- Macrophages/immunology
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-6/genetics
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Suppressor of Cytokine Signaling 3 Protein/metabolism
- Suppressor of Cytokine Signaling 3 Protein/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/complications
Collapse
Affiliation(s)
- Qian Li
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Cheng Wang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jizhou Gou
- Department of Pathology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - XiangYi Tang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yixuan Cai
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Chenxia Zhang
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiling Zhang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Zhenfeng Zhang
- School of Public Health and Emergency Management, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yuanwang Qiu
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Fang Zhao
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Mengji Lu
- Institute of Virology, Essen University Hospital, University of Duisburg-Essen, Essen, German
| | - Yun He
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jun Wang
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
- Clinical Research Center, The Fifth People’s Hospital of Wuxi, Jiangnan University, Wuxi, People’s Republic of China
| | - Hongzhou Lu
- National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
12
|
Yang T, Li D, Luo Z, Wang J, Xiao F, Xu Y, Lin X. Space-Confined Amplification for In Situ Imaging of Single Nucleic Acid and Single Pathogen on Biological Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407055. [PMID: 39373849 PMCID: PMC11600185 DOI: 10.1002/advs.202407055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Direct in situ imaging of nucleic acids on biological samples is advantageous for rapid analysis without DNA extraction. However, traditional nucleic acid amplification in aqueous solutions tends to lose spatial information because of the high mobility of molecules. Similar to a cellular matrix, hydrogels with biomimetic 3D nanoconfined spaces can limit the free diffusion of nucleic acids, thereby allowing for ultrafast in situ enzymatic reactions. In this study, hydrogel-based in situ space-confined interfacial amplification (iSCIA) is developed for direct imaging of single nucleic acid and single pathogen on biological samples without formaldehyde fixation. With a polyethylene glycol hydrogel coating, nucleic acids on the sample are nanoconfined with restricted movement, while in situ amplification can be successfully performed. As a result, the nucleic acids are lighted-up on the large-scale surface in 20 min, with a detection limit as low as 1 copy/10 cm2. Multiplex imaging with a deep learning model is also established to automatically analyze multiple targets. Furthermore, the iSCIA imaging of pathogens on plant leaves and food is successfully used to monitor plant health and food safety. The proposed technique, a rapid and flexible system for in situ imaging, has great potential for food, environmental, and clinical applications.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Dong Li
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- The Rural Development AcademyZhejiang UniversityHangzhou310058China
| | - Zisheng Luo
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Jingjing Wang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Fangbin Xiao
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Yanqun Xu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Xingyu Lin
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| |
Collapse
|
13
|
Di Marco F, Nicola F, Giannese F, Saliu F, Tonon G, de Pretis S, Cirillo DM, Lorè NI. Dual spatial host-bacterial gene expression in Mycobacterium abscessus respiratory infections. Commun Biol 2024; 7:1287. [PMID: 39384974 PMCID: PMC11479615 DOI: 10.1038/s42003-024-06929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Co-localization of spatial transcriptome information of host and pathogen can revolutionize our understanding of microbial pathogenesis. Here, we aimed to demonstrate that customized bacterial probes can be successfully used to identify host-pathogen interactions in formalin-fixed-paraffin-embedded (FFPE) tissues by probe-based spatial transcriptomics technology. We analyzed the spatial gene expression of bacterial transcripts with the host transcriptomic profile in murine lung tissue chronically infected with Mycobacterium abscessus embedded in agar beads. Customized mycobacterial probes were designed for the constitutively expressed rpoB gene (an RNA polymerase β subunit) and the virulence factor precursor lsr2, modulated by oxidative stress. We found a correlation between the rpoB expression, bacterial abundance in the airways, and an increased expression of lsr2 virulence factor in lung tissue with high oxidative stress. Overall, we demonstrate the potential of dual bacterial and host gene expression assay in FFPE tissues, paving the way for the simultaneous detection of host and bacterial transcriptomes in pathological tissues.
Collapse
Affiliation(s)
- Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Milan, Italy
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Nicola
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano de Pretis
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
14
|
Jain S, Singh M, Sarhan M, Damiba N, Singh A, Villabona-Rueda A, Meza ON, Chen X, Ordonez A, D'Alessio F, Aboagye E, Carroll L. Proapoptotic Bcl-2 inhibitor as host directed therapy for pulmonary tuberculosis. RESEARCH SQUARE 2024:rs.3.rs-4926508. [PMID: 39281866 PMCID: PMC11398574 DOI: 10.21203/rs.3.rs-4926508/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Mycobacterium tuberculosis establishes within host cells by inducing anti-apoptotic Bcl-2 family proteins, triggering necrosis, inflammation, and fibrosis. Here, we demonstrate that navitoclax, an orally bioavailable, small-molecule Bcl-2 inhibitor, significantly improves pulmonary tuberculosis (TB) treatments as a host-directed therapy. Addition of navitoclax to standard TB treatments at human equipotent dosing in mouse models of TB, inhibits Bcl-2 expression, leading to improved bacterial clearance, reduced tissue damage / fibrosis and decreased extrapulmonary bacterial dissemination. Using immunohistochemistry and flow cytometry, we show that navitoclax induces apoptosis in several immune cells, including CD68 + and CD11b + cells. Finally, positron emission tomography (PET) in live animals using novel, clinically translatable biomarkers for apoptosis (18F-ICMT-11) and fibrosis (18F-FAPI-74) demonstrates that navitoclax significantly increases apoptosis and reduces fibrosis in pulmonary tissues, which are confirmed using post-mortem studies. Our studies suggest that proapoptotic drugs such as navitoclax can improve pulmonary TB treatments, and should be evaluated in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Alok Singh
- Johns Hopkins University School of Medicine
| | | | | | - Xueyi Chen
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
15
|
Kumar R, Kolloli A, Subbian S, Kaushal D, Shi L, Tyagi S. Imaging the Architecture of Granulomas Induced by Mycobacterium tuberculosis Infection with Single-molecule Fluorescence In Situ Hybridization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:526-537. [PMID: 38912840 PMCID: PMC11407750 DOI: 10.4049/jimmunol.2300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Granulomas are an important hallmark of Mycobacterium tuberculosis infection. They are organized and dynamic structures created when immune cells assemble around the sites of infection in the lungs that locally restrict M. tuberculosis growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of surface markers on the host cells. However, very few Abs are available for model animals used in tuberculosis research, such as nonhuman primates and rabbits, and secreted immunological markers such as cytokines cannot be imaged in situ using Abs. Furthermore, traditional phenotypic surface markers do not provide sufficient resolution for the detection of the many subtypes and differentiation states of immune cells. Using single-molecule fluorescence in situ hybridization (smFISH) and its derivatives, amplified smFISH and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of the expression of these markers in single cells. An analysis of the combinatorial expressions of these markers allowed us to classify the cells into several subtypes, and to chart their densities within granulomas. For one mRNA target, hypoxia-inducible factor-1α, we imaged its mRNA and protein in the same cells, demonstrating the specificity of the probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
16
|
Zhan Y, Zhang Q, Wang W, Liang W, Wang C. Single-cell RNA sequencing in tuberculosis: Application and future perspectives. Chin Med J (Engl) 2024:00029330-990000000-01167. [PMID: 39111829 DOI: 10.1097/cm9.0000000000003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 03/17/2025] Open
Abstract
Tuberculosis (TB) has one of the highest mortality rates among infectious diseases worldwide. The immune response in the host after infection is proposed to contribute significantly to the progression of TB, but the specific mechanisms involved remain to be elucidated. Single-cell RNA sequencing (scRNA-seq) provides unbiased transcriptome sequencing of large quantities of individual cells, thereby defining biological comprehension of cellular heterogeneity and dynamic transcriptome state of cell populations in the field of immunology and is therefore increasingly applied to lung disease research. Here, we first briefly introduce the concept of scRNA-seq, followed by a summarization on the application of scRNA-seq to TB. Furthermore, we underscore the potential of scRNA-seq for clinical biomarker exploration, host-directed therapy, and precision therapy research in TB and discuss the bottlenecks that need to be overcome for the broad application of scRNA-seq to TB-related research.
Collapse
Affiliation(s)
- Yuejuan Zhan
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiran Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyang Wang
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyi Liang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Shurygina APS, Zabolotnykh NV, Vinogradova TI, Vitovskaya ML, Dogonadze MZ, Vasilyev KA, Buzitskaya ZV, Yablonskiy PK, Lioznov DA, Stukova MA. TB/FLU-06E Influenza Vector-Based Vaccine in the Complex Therapy of Drug-Susceptible and Drug-Resistant Experimental Tuberculosis. Pharmaceutics 2024; 16:857. [PMID: 39065554 PMCID: PMC11279844 DOI: 10.3390/pharmaceutics16070857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The steady rise of drug-resistant tuberculosis (TB), which renders standard therapy regimens ineffective, necessitates the development of innovative treatment approaches. Immunotherapeutic vaccines have the potential to effectively regulate the anti-TB immune response and enhance the efficacy of anti-TB treatment. In the present study, we aimed to evaluate the potency of the mucosal vector vaccine TB/FLU-06E as part of a complex treatment regimen for drug-susceptible (DS) or drug-resistant (DR) tuberculosis in C57BL/6 mice. Incorporating TB/FLU-06E into the treatment protocol significantly increased the effectiveness of therapy for both forms of tuberculosis. It was evidenced by higher survival rates and reduced pulmonary bacterial load (1.83 lg CFU for DS tuberculosis and 0.93 lg CFU for DR tuberculosis). Furthermore, the treatment reduced pathomorphological lesions in the lungs and stimulated the local and systemic T-helper 1 (Th1) and cytotoxic T-lymphocyte (CTL) anti-TB immune responses. Thus, therapeutic immunization with the TB/FLU-06E vaccine significantly enhances the efficacy of tuberculosis treatment, which is particularly important in DR tuberculosis.
Collapse
Affiliation(s)
- Anna-Polina S. Shurygina
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, 197022 Saint-Petersburg, Russia
| | - Natalia V. Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology, The Ministry of Health of the Russian Federation, 194064 Saint-Petersburg, Russia
| | - Tatiana I. Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, The Ministry of Health of the Russian Federation, 194064 Saint-Petersburg, Russia
| | - Maria L. Vitovskaya
- Saint-Petersburg State Research Institute of Phthisiopulmonology, The Ministry of Health of the Russian Federation, 194064 Saint-Petersburg, Russia
| | - Marine Z. Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology, The Ministry of Health of the Russian Federation, 194064 Saint-Petersburg, Russia
| | - Kirill A. Vasilyev
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, 197022 Saint-Petersburg, Russia
| | - Zhanna V. Buzitskaya
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, 197022 Saint-Petersburg, Russia
| | - Petr K. Yablonskiy
- Saint-Petersburg State Research Institute of Phthisiopulmonology, The Ministry of Health of the Russian Federation, 194064 Saint-Petersburg, Russia
| | - Dmitriy A. Lioznov
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, 197022 Saint-Petersburg, Russia
| | - Marina A. Stukova
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, 197022 Saint-Petersburg, Russia
| |
Collapse
|
18
|
Zheng W, Borja M, Dorman L, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco A, Rosenberg O, Neff N, Zha BS. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M. tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590421. [PMID: 38712150 PMCID: PMC11071417 DOI: 10.1101/2024.04.20.590421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mycobacterium tuberculosis (MTB) infects and replicates in lung mononuclear phagocytes (MNPs) with astounding ability to evade elimination. ESX-1, a type VII secretion system, acts as a virulence determinant that contributes to MTB's ability to survive within MNPs, but its effect on MNP recruitment and/or differentiation remains unknown. Here, using single-cell RNA sequencing, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces an anti-inflammatory signature in MNPs and BMDM in an ESX-1 dependent manner. Similarly, spatial transcriptomics revealed an upregulation of anti-inflammatory signals in MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 mediates the recruitment and differentiation of anti-inflammatory MNPs, which MTB can infect and manipulate for survival.
Collapse
|
19
|
Bobba S, Chauhan KS, Akter S, Das S, Mittal E, Mathema B, Philips JA, Khader SA. A protective role for type I interferon signaling following infection with Mycobacterium tuberculosis carrying the rifampicin drug resistance-conferring RpoB mutation H445Y. PLoS Pathog 2024; 20:e1012137. [PMID: 38603763 PMCID: PMC11037539 DOI: 10.1371/journal.ppat.1012137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase β subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kuldeep S. Chauhan
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Sadia Akter
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barun Mathema
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Jennifer A. Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shabaana A. Khader
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
20
|
Carow B, Muliadi V, Skålén K, Yokota C, Kathamuthu GR, Setiabudiawan TP, Lange C, Scheu K, Gaede KI, Goldmann T, Pandita A, Masood KI, Pervez S, Grunewald J, Hasan Z, Levin M, Rottenberg ME. Immune mapping of human tuberculosis and sarcoidosis lung granulomas. Front Immunol 2024; 14:1332733. [PMID: 38385142 PMCID: PMC10879604 DOI: 10.3389/fimmu.2023.1332733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024] Open
Abstract
Tuberculosis (TB) and sarcoidosis are both granulomatous diseases. Here, we compared the immunological microenvironments of granulomas from TB and sarcoidosis patients using in situ sequencing (ISS) transcriptomic analysis and multiplexed immunolabeling of tissue sections. TB lesions consisted of large necrotic and cellular granulomas, whereas "multifocal" granulomas with macrophages or epitheloid cell core and a T-cell rim were observed in sarcoidosis samples. The necrotic core in TB lesions was surrounded by macrophages and encircled by a dense T-cell layer. Within the T-cell layer, compact B-cell aggregates were observed in most TB samples. These B-cell clusters were vascularized and could contain defined B-/T-cell and macrophage-rich areas. The ISS of 40-60 immune transcripts revealed the enriched expression of transcripts involved in homing or migration to lymph nodes, which formed networks at single-cell distances in lymphoid areas of the TB lesions. Instead, myeloid-annotated regions were enriched in CD68, CD14, ITGAM, ITGAX, and CD4 mRNA. CXCL8 and IL1B mRNA were observed in granulocytic areas in which M. tuberculosis was also detected. In line with ISS data indicating tertiary lymphoid structures, immune labeling of TB sections expressed markers of high endothelial venules, follicular dendritic cells, follicular helper T cells, and lymph-node homing receptors on T cells. Neither ISS nor immunolabeling showed evidence of tertiary lymphoid aggregates in sarcoidosis samples. Together, our finding suggests that despite their heterogeneity, the formation of tertiary immune structures is a common feature in granulomas from TB patients.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Muliadi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Skålén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chika Yokota
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Gokul Raj Kathamuthu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Christoph Lange
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Katrin Scheu
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Karoline I Gaede
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- BioMaterialBank North, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Torsten Goldmann
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Ankur Pandita
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kiran Iqbal Masood
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Shahid Pervez
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Johan Grunewald
- Respiratory Medicine Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Ashenafi S, Loreti MG, Bekele A, Aseffa G, Amogne W, Kassa E, Aderaye G, Brighenti S. Inflammatory immune profiles associated with disease severity in pulmonary tuberculosis patients with moderate to severe clinical TB or anemia. Front Immunol 2023; 14:1296501. [PMID: 38162636 PMCID: PMC10756900 DOI: 10.3389/fimmu.2023.1296501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background Immune control of Mycobacterium tuberculosis (Mtb) infection is largely influenced by the extensive disease heterogeneity that is typical for tuberculosis (TB). In this study, the peripheral inflammatory immune profile of different sub-groups of pulmonary TB patients was explored based on clinical disease severity, anemia of chronic disease, or the radiological extent of lung disease. Methods Plasma samples were obtained from n=107 patients with active pulmonary TB at the time of diagnosis and after start of standard chemotherapy. A composite clinical TB symptoms score, blood hemoglobin status and chest X-ray imaging were used to sub-group TB patients into 1.) mild and moderate-severe clinical TB, 2.) anemic and non-anemic TB, or 3.) limited and extensive lung involvement. Plasma levels of biomarkers associated with inflammation pathways were assessed using a Bio-Plex Magpix 37-multiplex assay. In parallel, Th1/Th2 cytokines were quantified with a 27-multiplex in matched plasma and cell culture supernatants from whole blood stimulated with M. tuberculosis-antigens using the QuantiFERON-TB Gold assay. Results Clinical TB disease severity correlated with low blood hemoglobin levels and anemia but not with radiological findings in this study cohort. Multiplex protein analyses revealed that distinct clusters of inflammation markers and cytokines separated the different TB disease sub-groups with variable efficacy. Several top-ranked markers overlapped, while other markers were unique with regards to their importance to differentiate the TB disease severity groups. A distinct immune response profile defined by elevated levels of BAFF, LIGHT, sTNF-R1 and 2, IP-10, osteopontin, chitinase-3-like protein 1, and IFNα2 and IL-8, were most effective in separating TB patients with different clinical disease severity and were also promising candidates for treatment monitoring. TB patients with mild disease displayed immune polarization towards mixed Th1/Th2 responses, while pro-inflammatory and B cell stimulating cytokines as well as immunomodulatory mediators predominated in moderate-severe TB disease and anemia of TB. Conclusions Our data demonstrated that clinical disease severity in TB is associated with anemia and distinct inflammatory immune profiles. These results contribute to the understanding of immunopathology in pulmonary TB and define top-ranked inflammatory mediators as biomarkers of disease severity and treatment prognosis.
Collapse
Affiliation(s)
- Senait Ashenafi
- Department of Pathology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Marco Giulio Loreti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Amsalu Bekele
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Getachew Aseffa
- Department of Radiology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Wondwossen Amogne
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Endale Kassa
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Susanna Brighenti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Sounart H, Voronin D, Masarapu Y, Chung M, Saarenpää S, Ghedin E, Giacomello S. Miniature spatial transcriptomics for studying parasite-endosymbiont relationships at the micro scale. Nat Commun 2023; 14:6500. [PMID: 37838705 PMCID: PMC10576761 DOI: 10.1038/s41467-023-42237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Several important human infectious diseases are caused by microscale-sized parasitic nematodes like filarial worms. Filarial worms have their own spatial tissue organization; to uncover this tissue structure, we need methods that can spatially resolve these miniature specimens. Most filarial worms evolved a mutualistic association with endosymbiotic bacteria Wolbachia. However, the mechanisms underlying the dependency of filarial worms on the fitness of these bacteria remain unknown. As Wolbachia is essential for the development, reproduction, and survival of filarial worms, we spatially explored how Wolbachia interacts with the worm's reproductive system by performing a spatial characterization using Spatial Transcriptomics (ST) across a posterior region containing reproductive tissue and developing embryos of adult female Brugia malayi worms. We provide a proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample types, demonstrating the method's ability to uncover nuanced tissue region expression patterns, observe the spatial localization of key B. malayi - Wolbachia pathway genes, and co-localize the B. malayi spatial transcriptome in Wolbachia tissue regions, also under antibiotic treatment. We envision our approach will open up new avenues for the study of infectious diseases caused by micro-scale parasitic worms.
Collapse
Affiliation(s)
- Hailey Sounart
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuvarani Masarapu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sami Saarenpää
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stefania Giacomello
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
23
|
Pan J, Chang Z, Zhang X, Dong Q, Zhao H, Shi J, Wang G. Research progress of single-cell sequencing in tuberculosis. Front Immunol 2023; 14:1276194. [PMID: 37901241 PMCID: PMC10611525 DOI: 10.3389/fimmu.2023.1276194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Shi
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
24
|
Klever AM, Alexander KA, Almeida D, Anderson MZ, Ball RL, Beamer G, Boggiatto P, Buikstra JE, Chandler B, Claeys TA, Concha AE, Converse PJ, Derbyshire KM, Dobos KM, Dupnik KM, Endsley JJ, Endsley MA, Fennelly K, Franco-Paredes C, Hagge DA, Hall-Stoodley L, Hayes D, Hirschfeld K, Hofman CA, Honda JR, Hull NM, Kramnik I, Lacourciere K, Lahiri R, Lamont EA, Larsen MH, Lemaire T, Lesellier S, Lee NR, Lowry CA, Mahfooz NS, McMichael TM, Merling MR, Miller MA, Nagajyothi JF, Nelson E, Nuermberger EL, Pena MT, Perea C, Podell BK, Pyle CJ, Quinn FD, Rajaram MVS, Mejia OR, Rothoff M, Sago SA, Salvador LCM, Simonson AW, Spencer JS, Sreevatsan S, Subbian S, Sunstrum J, Tobin DM, Vijayan KKV, Wright CTO, Robinson RT. The Many Hosts of Mycobacteria 9 (MHM9): A conference report. Tuberculosis (Edinb) 2023; 142:102377. [PMID: 37531864 PMCID: PMC10529179 DOI: 10.1016/j.tube.2023.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.
Collapse
Affiliation(s)
- Abigail Marie Klever
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Kathleen A Alexander
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA; CARACAL/Chobe Research Institute Kasane, Botswana
| | - Deepak Almeida
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | | | - Gillian Beamer
- Host Pathogen Interactions and Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paola Boggiatto
- Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Jane E Buikstra
- Center for Bioarchaeological Research, Arizona State University, Tempe, AZ, USA
| | - Bruce Chandler
- Division of Public Health, Alaska Department of Health, AK, USA
| | - Tiffany A Claeys
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Aislinn E Concha
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Keith M Derbyshire
- Division of Genetics, The Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kevin Fennelly
- Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA; Hospital Infantil de México Federico Gómez, México, USA
| | | | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Don Hayes
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Courtney A Hofman
- Department of Anthropology, University of Oklahoma, Norman, OK, USA; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Jennifer R Honda
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Natalie M Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Igor Kramnik
- Pulmonary Center, The Department of Medicine, Boston University Chobanian & Aveedisian School of Medicine, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Elise A Lamont
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Sandrine Lesellier
- French Agency for Food, Environmental & Occupational Health & Safety (ANSES), Laboratory for Rabies and Wildlife,Nancy, France
| | - Naomi R Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Najmus S Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Marlena R Merling
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jyothi F Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Elizabeth Nelson
- Microbial Paleogenomics Unit, Dept of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, USA
| | - Claudia Perea
- Animal & Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Charlie J Pyle
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Fred D Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | - Oscar Rosas Mejia
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA
| | | | - Saydie A Sago
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Liliana C M Salvador
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Andrew W Simonson
- Department of Microbiology and Molecular Genetics and the Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Srinand Sreevatsan
- Pathobiology & Diagnostic Investigation Department, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | | - David M Tobin
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - K K Vidya Vijayan
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caelan T O Wright
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, OH, USA.
| |
Collapse
|
25
|
Magoulopoulou A, Salas SM, Tiklová K, Samuelsson ER, Hilscher MM, Nilsson M. Padlock Probe-Based Targeted In Situ Sequencing: Overview of Methods and Applications. Annu Rev Genomics Hum Genet 2023; 24:133-150. [PMID: 37018847 DOI: 10.1146/annurev-genom-102722-092013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Elucidating spatiotemporal changes in gene expression has been an essential goal in studies of health, development, and disease. In the emerging field of spatially resolved transcriptomics, gene expression profiles are acquired with the tissue architecture maintained, sometimes at cellular resolution. This has allowed for the development of spatial cell atlases, studies of cell-cell interactions, and in situ cell typing. In this review, we focus on padlock probe-based in situ sequencing, which is a targeted spatially resolved transcriptomic method. We summarize recent methodological and computational tool developments and discuss key applications. We also discuss compatibility with other methods and integration with multiomic platforms for future applications.
Collapse
Affiliation(s)
- Anastasia Magoulopoulou
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Sergio Marco Salas
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Katarína Tiklová
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Erik Reinhold Samuelsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Markus M Hilscher
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden; , , , , ,
| |
Collapse
|
26
|
Wang WJ, Chu LX, He LY, Zhang MJ, Dang KT, Gao C, Ge QY, Wang ZG, Zhao XW. Spatial transcriptomics: recent developments and insights in respiratory research. Mil Med Res 2023; 10:38. [PMID: 37592342 PMCID: PMC10433685 DOI: 10.1186/s40779-023-00471-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field. Although bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) have provided insights into cell types and heterogeneity in the respiratory system, the relevant specific spatial localization and cellular interactions have not been clearly elucidated. Spatial transcriptomics (ST) has filled this gap and has been widely used in respiratory studies. This review focuses on the latest iterative technology of ST in recent years, summarizing how ST can be applied to the physiological and pathological processes of the respiratory system, with emphasis on the lungs. Finally, the current challenges and potential development directions are proposed, including high-throughput full-length transcriptome, integration of multi-omics, temporal and spatial omics, bioinformatics analysis, etc. These viewpoints are expected to advance the study of systematic mechanisms, including respiratory studies.
Collapse
Affiliation(s)
- Wen-Jia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu-Xi Chu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li-Yong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ming-Jing Zhang
- Orthopaedic Bioengineering Research Group, Division of Surgery and Interventional Science, University College London, London, HA7 4LP, UK
| | - Kai-Tong Dang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qin-Yu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhou-Guang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiang-Wei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
27
|
Sawyer AJ, Patrick E, Edwards J, Wilmott JS, Fielder T, Yang Q, Barber DL, Ernst JD, Britton WJ, Palendira U, Chen X, Feng CG. Spatial mapping reveals granuloma diversity and histopathological superstructure in human tuberculosis. J Exp Med 2023; 220:e20221392. [PMID: 36920308 PMCID: PMC10035589 DOI: 10.1084/jem.20221392] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/07/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
The hallmark of tuberculosis (TB) is the formation of immune cell-enriched aggregates called granulomas. While granulomas are pathologically diverse, their tissue-wide heterogeneity has not been spatially resolved at the single-cell level in human tissues. By spatially mapping individual immune cells in every lesion across entire tissue sections, we report that in addition to necrotizing granulomas, the human TB lung contains abundant non-necrotizing leukocyte aggregates surrounding areas of necrotizing tissue. These cellular lesions were more diverse in composition than necrotizing lesions and could be stratified into four general classes based on cellular composition and spatial distribution of B cells and macrophages. The cellular composition of non-necrotizing structures also correlates with their proximity to necrotizing lesions, indicating these are foci of distinct immune reactions adjacent to necrotizing granulomas. Together, we show that during TB, diseased lung tissue develops a histopathological superstructure comprising at least four different types of non-necrotizing cellular aggregates organized as satellites of necrotizing granulomas.
Collapse
Affiliation(s)
- Andrew J. Sawyer
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, Australia
| | - Jarem Edwards
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - James S. Wilmott
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Timothy Fielder
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Qianting Yang
- Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen, Third People’s Hospital, Shenzhen, Shenzhen, China
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel D. Ernst
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Sydney, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Umaimainthan Palendira
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen UniversitySchool of Medicine, Shenzhen, China
| | - Carl G. Feng
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centenary Institute, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| |
Collapse
|
28
|
Liu Z, Ran H, Yu X, Wu Q, Zhang C. Immunocyte count combined with CT features for distinguishing pulmonary tuberculoma from malignancy among non-calcified solitary pulmonary solid nodules. J Thorac Dis 2023; 15:386-398. [PMID: 36910060 PMCID: PMC9992615 DOI: 10.21037/jtd-22-1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
Background Tuberculoma is the most common type of surgically removed benign solid solitary pulmonary nodule (SPN) and can lead to a high risk of misdiagnoses for clinicians. This study aimed to discuss the value of the immunocyte count combined with computed tomography (CT) features in distinguishing pulmonary tuberculoma from malignancy among non-calcified solid SPNs. Methods Forty-eight patients with pulmonary tuberculoma and 52 patients with lung cancer were retrospectively included in our study. Univariate and multivariate analyses were conducted to screen the independent predictors. Receiver operating characteristic (ROC) analysis was performed to investigate the validity of the predictive model. Results The univariate and multivariate analyses revealed that a coarse margin, vacuole, lobulation, pleural indentation, cluster of differentiation (CD)3+ T-lymphocyte count, and CD4+ T-lymphocyte count were independent predictors for distinguishing pulmonary tuberculoma from malignancy. The sensitivity, specificity, accuracy, and the area under the ROC curve of the model comprising the CD3+ T-lymphocyte count were 79.2%, 75%, 74.5%, and 0.845 [95% confidence interval (CI), 0.759-0.910], respectively, and those of the model involving the CD4+ T-lymphocyte count were 77.1%, 78.8%, 77.1%, and 0.857 (95% CI, 0.773-0.919), respectively. Conclusions Immunocyte count combined with CT features is efficient in distinguishing pulmonary tuberculoma from malignancy among non-calcified solid SPNs and has applicable clinical value.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoyu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiran Yu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Kumar R, Kolloli A, Subbian S, Kaushal D, Shi L, Tyagi S. Imaging Architecture of Granulomas Induced by Mycobacterium tuberculosis Infections with Single-Molecule FISH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526702. [PMID: 36778404 PMCID: PMC9915589 DOI: 10.1101/2023.02.02.526702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Granulomas are an important hallmark of Mycobacterium tuberculosis (Mtb) infection. They are organized and dynamic structures created by an assembly of immune cells around the sites of infection in the lungs to locally restrict the bacterial growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of phenotypic surface markers. However, very few antibodies are available for model animals used in tuberculosis research, such as non-human primates and rabbits; secreted immunological markers such as cytokines cannot be imaged in situ using antibodies; and traditional phenotypic surface markers do not provide sufficient resolution for the detection of many subtypes and differentiation states of immune cells. Using single-molecule fluorescent in situ hybridization (smFISH) and its derivatives, amplified smFISH (ampFISH) and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of expression of these markers in single cells in situ. A quantitative analysis of combinatorial expressions of these markers allowed us to classify the cells into several subtypes and chart their distributions within granulomas. For one mRNA target, HIF-1α, we were able to image its mRNA and protein in the same cells, demonstrating the specificity of probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
30
|
Januska MN, Walsh MJ. Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung. Am J Respir Cell Mol Biol 2023; 68:131-139. [PMID: 36194688 PMCID: PMC9986558 DOI: 10.1165/rcmb.2022-0038tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystemic, autosomal recessive disorder caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, with the majority of morbidity and mortality extending from lung disease. Single-cell RNA sequencing (scRNA-seq) has been leveraged in the lung and elsewhere in the body to articulate discrete cell populations, describing cell types, states, and lineages as well as their roles in health and disease. In this translational review, we provide an overview of the current applications of scRNA-seq to the study of the normal and CF lungs, allowing the beginning of a new cellular and molecular narrative of CF lung disease, and we highlight some of the future opportunities to further leverage scRNA-seq and complementary single-cell technologies in the study of CF as we bridge from scientific understanding to clinical application.
Collapse
Affiliation(s)
- Megan N. Januska
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
| | - Martin J. Walsh
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
- Mount Sinai Center for RNA Biology and Medicine, New York, New York
| |
Collapse
|
31
|
Ashenafi S, Brighenti S. Reinventing the human tuberculosis (TB) granuloma: Learning from the cancer field. Front Immunol 2022; 13:1059725. [PMID: 36591229 PMCID: PMC9797505 DOI: 10.3389/fimmu.2022.1059725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in the world and every 20 seconds a person dies from TB. An important attribute of human TB is induction of a granulomatous inflammation that creates a dynamic range of local microenvironments in infected organs, where the immune responses may be considerably different compared to the systemic circulation. New and improved technologies for in situ quantification and multimodal imaging of mRNA transcripts and protein expression at the single-cell level have enabled significantly improved insights into the local TB granuloma microenvironment. Here, we review the most recent data on regulation of immunity in the TB granuloma with an enhanced focus on selected in situ studies that enable spatial mapping of immune cell phenotypes and functions. We take advantage of the conceptual framework of the cancer-immunity cycle to speculate how local T cell responses may be enhanced in the granuloma microenvironment at the site of Mycobacterium tuberculosis infection. This includes an exploratory definition of "hot", immune-inflamed, and "cold", immune-excluded TB granulomas that does not refer to the level of bacterial replication or metabolic activity, but to the relative infiltration of T cells into the infected lesions. Finally, we reflect on the current knowledge and controversy related to reactivation of active TB in cancer patients treated with immune checkpoint inhibitors such as PD-1/PD-L1 and CTLA-4. An understanding of the underlying mechanisms involved in the induction and maintenance or disruption of immunoregulation in the TB granuloma microenvironment may provide new avenues for host-directed therapies that can support standard antibiotic treatment of persistent TB disease.
Collapse
Affiliation(s)
- Senait Ashenafi
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,Department of Pathology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Susanna Brighenti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,*Correspondence: Susanna Brighenti,
| |
Collapse
|
32
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
33
|
Acosta F, Fernández PL, Goodridge A. Do B-1 cells play a role in response to Mycobacterium tuberculosis Beijing lineages? Virulence 2022; 13:1-4. [PMID: 34753390 PMCID: PMC8741279 DOI: 10.1080/21505594.2021.2003116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We highlight the need to include an analysis of the B-1 B cell subset to complement the characterization of the cell-mediated immune response to the Mycobacterium tuberculosis Beijing lineage. The literature describes the B-1 cell repertoire's involvement in the cell-mediated response within granulomas, which is different from the classic antibody response B cells are generally associated with. Specifically, the B-1 B cell subset migrates from other compartments along with other cells to the infection site. We provide details to complement the reported results from Cerezo-Cortes et al.
Collapse
Affiliation(s)
- Fermín Acosta
- Centro de Biología Molecular y Celular de las Enfermedades (CBCME) del Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panamá
| | - Patricia L. Fernández
- Centro de Biología Molecular y Celular de las Enfermedades (CBCME) del Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panamá
| | - Amador Goodridge
- Centro de Biología Molecular y Celular de las Enfermedades (CBCME) del Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panamá,CONTACT Amador Goodridge
| |
Collapse
|
34
|
Joslyn LR, Flynn JL, Kirschner DE, Linderman JJ. Concomitant immunity to M. tuberculosis infection. Sci Rep 2022; 12:20731. [PMID: 36456599 PMCID: PMC9713124 DOI: 10.1038/s41598-022-24516-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Some persistent infections provide a level of immunity that protects against reinfection with the same pathogen, a process referred to as concomitant immunity. To explore the phenomenon of concomitant immunity during Mycobacterium tuberculosis infection, we utilized HostSim, a previously published virtual host model of the immune response following Mtb infection. By simulating reinfection scenarios and comparing with data from non-human primate studies, we propose a hypothesis that the durability of a concomitant immune response against Mtb is intrinsically tied to levels of tissue resident memory T cells (Trms) during primary infection, with a secondary but important role for circulating Mtb-specific T cells. Further, we compare HostSim reinfection experiments to observational TB studies from the pre-antibiotic era to predict that the upper bound of the lifespan of resident memory T cells in human lung tissue is likely 2-3 years. To the authors' knowledge, this is the first estimate of resident memory T-cell lifespan in humans. Our findings are a first step towards demonstrating the important role of Trms in preventing disease and suggest that the induction of lung Trms is likely critical for vaccine success.
Collapse
Affiliation(s)
- Louis R. Joslyn
- grid.214458.e0000000086837370Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136 USA ,grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, 1150W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620 USA
| | - JoAnne L. Flynn
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Denise E. Kirschner
- grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, 1150W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620 USA
| | - Jennifer J. Linderman
- grid.214458.e0000000086837370Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136 USA
| |
Collapse
|
35
|
Quintana JF, Chandrasegaran P, Sinton MC, Briggs EM, Otto TD, Heslop R, Bentley-Abbot C, Loney C, de Lecea L, Mabbott NA, MacLeod A. Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection. Nat Commun 2022; 13:5752. [PMID: 36180478 PMCID: PMC9525673 DOI: 10.1038/s41467-022-33542-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and induces profound reactivity of glial cells and neuroinflammation when the parasites colonise the central nervous system. However, the transcriptional and functional responses of the brain to chronic T. brucei infection remain poorly understood. By integrating single cell and spatial transcriptomics of the mouse brain, we identify that glial responses triggered by infection are readily detected in the proximity to the circumventricular organs, including the lateral and 3rd ventricle. This coincides with the spatial localisation of both slender and stumpy forms of T. brucei. Furthermore, in silico predictions and functional validations led us to identify a previously unknown crosstalk between homeostatic microglia and Cd138+ plasma cells mediated by IL-10 and B cell activating factor (BAFF) signalling. This study provides important insights and resources to improve understanding of the molecular and cellular responses in the brain during infection with African trypanosomes.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK.
| | - Praveena Chandrasegaran
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Matthew C Sinton
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Emma M Briggs
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Infection and Immunity, MVLS, University of Glasgow, Glasgow, UK
| | - Rhiannon Heslop
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Calum Bentley-Abbot
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Colin Loney
- School of Infection and Immunity, MVLS, University of Glasgow, Glasgow, UK
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, CA, USA
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
36
|
Geraldes I, Fernandes M, Fraga AG, Osório NS. The impact of single-cell genomics on the field of mycobacterial infection. Front Microbiol 2022; 13:989464. [PMID: 36246265 PMCID: PMC9562642 DOI: 10.3389/fmicb.2022.989464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Genome sequencing projects of humans and other organisms reinforced that the complexity of biological systems is largely attributed to the tight regulation of gene expression at the epigenome and RNA levels. As a consequence, plenty of technological developments arose to increase the sequencing resolution to the cell dimension creating the single-cell genomics research field. Single-cell RNA sequencing (scRNA-seq) is leading the advances in this topic and comprises a vast array of different methodologies. scRNA-seq and its variants are more and more used in life science and biomedical research since they provide unbiased transcriptomic sequencing of large populations of individual cells. These methods go beyond the previous “bulk” methodologies and sculpt the biological understanding of cellular heterogeneity and dynamic transcriptomic states of cellular populations in immunology, oncology, and developmental biology fields. Despite the large burden caused by mycobacterial infections, advances in this field obtained via single-cell genomics had been comparatively modest. Nonetheless, seminal research publications using single-cell transcriptomics to study host cells infected by mycobacteria have become recently available. Here, we review these works summarizing the most impactful findings and emphasizing the different and recent single-cell methodologies used, potential issues, and problems. In addition, we aim at providing insights into current research gaps and potential future developments related to the use of single-cell genomics to study mycobacterial infection.
Collapse
Affiliation(s)
- Inês Geraldes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
| | - Mónica Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Nuno S. Osório
| |
Collapse
|
37
|
Seto S, Nakamura H, Guo TC, Hikichi H, Wakabayashi K, Miyabayashi A, Nagata T, Hijikata M, Keicho N. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:968543. [PMID: 36237431 PMCID: PMC9551193 DOI: 10.3389/fcimb.2022.968543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infection with Mycobacterium tuberculosis leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of M. tuberculosis proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with M. tuberculosis to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- *Correspondence: Shintaro Seto,
| | - Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tz-Chun Guo
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Vice Director, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
38
|
Boopathi S, Ramasamy S, Haridevamuthu B, Murugan R, Veerabadhran M, Jia AQ, Arockiaraj J. Intercellular communication and social behaviors in mycobacteria. Front Microbiol 2022; 13:943278. [PMID: 36177463 PMCID: PMC9514802 DOI: 10.3389/fmicb.2022.943278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subbiah Ramasamy
- Department of Biochemistry, Cardiac Metabolic Disease Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
39
|
Effect of Potassium-incorporated Titanium Dioxide in an in vitro Granuloma System for Mycobacterium tuberculosis. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Moffitt JR, Lundberg E, Heyn H. The emerging landscape of spatial profiling technologies. Nat Rev Genet 2022; 23:741-759. [PMID: 35859028 DOI: 10.1038/s41576-022-00515-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/04/2023]
Abstract
Improved scale, multiplexing and resolution are establishing spatial nucleic acid and protein profiling methods as a major pillar for cellular atlas building of complex samples, from tissues to full organisms. Emerging methods yield omics measurements at resolutions covering the nano- to microscale, enabling the charting of cellular heterogeneity, complex tissue architectures and dynamic changes during development and disease. We present an overview of the developing landscape of in situ spatial genome, transcriptome and proteome technologies, exemplify their impact on cell biology and translational research, and discuss current challenges for their community-wide adoption. Among many transformative applications, we envision that spatial methods will map entire organs and enable next-generation pathology.
Collapse
Affiliation(s)
- Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Pathology, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
41
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
42
|
Magoulopoulou A, Qian X, Pediatama Setiabudiawan T, Marco Salas S, Yokota C, Rottenberg ME, Nilsson M, Carow B. Spatial Resolution of Mycobacterium tuberculosis Bacteria and Their Surrounding Immune Environments Based on Selected Key Transcripts in Mouse Lungs. Front Immunol 2022; 13:876321. [PMID: 35663950 PMCID: PMC9157500 DOI: 10.3389/fimmu.2022.876321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) bacilli are the causative agent of tuberculosis (TB), a major killer of mankind. Although it is widely accepted that local interactions between Mtb and the immune system in the tuberculous granuloma determine whether the outcome of infection is controlled or disseminated, these have been poorly studied due to methodological constraints. We have recently used a spatial transcriptomic technique, in situ sequencing (ISS), to define the spatial distribution of immune transcripts in TB mouse lungs. To further contribute to the understanding of the immune microenvironments of Mtb and their local diversity, we here present two complementary automated bacteria-guided analysis pipelines. These position 33 ISS-identified immune transcripts in relation to single bacteria and bacteria clusters. The analysis was applied on new ISS data from lung sections of Mtb-infected C57BL/6 and C3HeB/FeJ mice. In lungs from C57BL/6 mice early and late post infection, transcripts that define inflammatory macrophages were enriched at subcellular distances to bacteria, indicating the activation of infected macrophages. In contrast, expression patterns associated to antigen presentation were enriched in non-infected cells at 12 weeks post infection. T-cell transcripts were evenly distributed in the tissue. In Mtb-infected C3HeB/FeJ mice, transcripts characterizing activated macrophages localized in apposition to small bacteria clusters, but not in organized granulomas. Despite differences in the susceptibility to Mtb, the transcript patterns found around small bacteria clusters of C3HeB/FeJ and C57BL/6 mice were similar. Altogether, the presented tools allow us to characterize in depth the immune cell populations and their activation that interact with Mtb in the infected lung.
Collapse
Affiliation(s)
- Anastasia Magoulopoulou
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Todia Pediatama Setiabudiawan
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Chika Yokota
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
43
|
Sholeye AR, Williams AA, Loots DT, Tutu van Furth AM, van der Kuip M, Mason S. Tuberculous Granuloma: Emerging Insights From Proteomics and Metabolomics. Front Neurol 2022; 13:804838. [PMID: 35386409 PMCID: PMC8978302 DOI: 10.3389/fneur.2022.804838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis infection, which claims hundreds of thousands of lives each year, is typically characterized by the formation of tuberculous granulomas — the histopathological hallmark of tuberculosis (TB). Our knowledge of granulomas, which comprise a biologically diverse body of pro- and anti-inflammatory cells from the host immune responses, is based mainly upon examination of lungs, in both human and animal studies, but little on their counterparts from other organs of the TB patient such as the brain. The biological heterogeneity of TB granulomas has led to their diverse, relatively uncoordinated, categorization, which is summarized here. However, there is a pressing need to elucidate more fully the phenotype of the granulomas from infected patients. Newly emerging studies at the protein (proteomics) and metabolite (metabolomics) levels have the potential to achieve this. In this review we summarize the diverse nature of TB granulomas based upon the literature, and amplify these accounts by reporting on the relatively few, emerging proteomics and metabolomics studies on TB granulomas. Metabolites (for example, trimethylamine-oxide) and proteins (such as the peptide PKAp) associated with TB granulomas, and knowledge of their localizations, help us to understand the resultant phenotype. Nevertheless, more multidisciplinary ‘omics studies, especially in human subjects, are required to contribute toward ushering in a new era of understanding of TB granulomas – both at the site of infection, and on a systemic level.
Collapse
Affiliation(s)
- Abisola Regina Sholeye
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Aurelia A. Williams
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - A. Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Shayne Mason
| |
Collapse
|
44
|
Abstract
Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benjamin H. Gern
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kevin B. Urdahl
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Abstract
Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-β, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs with systemic manifestations that define active TB.
Collapse
|
46
|
Su S, Ye MF, Cai XT, Bai X, Huang ZH, Ma SC, Zou JJ, Wen YX, Wu LJ, Guo XJ, Zhang XL, Cen WC, Su DH, Huang HY, Dong ZY. Assessment of anti-PD-(L)1 for patients with coexisting malignant tumor and tuberculosis classified by active, latent, and obsolete stage. BMC Med 2021; 19:322. [PMID: 34923987 PMCID: PMC8686368 DOI: 10.1186/s12916-021-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND It is not a rare clinical scenario to have patients presenting with coexisting malignant tumor and tuberculosis. Whether it is feasible to conduct programmed death-(ligand) 1 [PD-(L)1] inhibitors to these patients, especially those with active tuberculosis treated with concurrent anti-tuberculosis, is still unknown. METHODS This study enrolled patients with coexisting malignancy and tuberculosis and treated with anti-PD-(L)1 from Jan 2018 to July 2021 in 2 institutions. The progression-free survival (PFS), objective response rate (ORR), and safety of anti-PD-(L)1 therapy, as well as response to anti-tuberculosis treatment, were evaluated. RESULTS A total of 98 patients were screened from this cohort study, with 45 (45.9%), 21 (21.4%), and 32 (32.7%) patients diagnosed with active, latent, and obsolete tuberculosis, respectively. The overall ORR was 36.0% for anti-PD-(L)1 therapy, with 34.2%, 35.5%, and 41.2% for each subgroup. Median PFS was 8.0 vs 6.0 vs 6.0 months (P=0.685) for each subgroup at the time of this analysis. For patients with active tuberculosis treated with concurrent anti-tuberculosis, median duration of anti-tuberculosis therapy was 10.0 (95% CI, 8.01-11.99) months. There were 83.3% (20/24) and 93.3% (42/45) patients showing sputum conversion and radiographic response, respectively, after anti-tuberculosis therapy, and two patients experienced tuberculosis relapse. Notably, none of the patients in latent and only one patient in obsolete subgroups showed tuberculosis induction or relapse after anti-PD-(L)1 therapy. Treatment-related adverse events (TRAEs) occurred in 33 patients (73.3%) when treated with concurrent anti-PD-(L)1 and anti-tuberculosis. Grade 3 or higher TRAEs were hematotoxicity (n = 5, 11.1%), and one patient suffered grade 3 pneumonitis leading to the discontinuation of immunotherapy. CONCLUSIONS This study demonstrated that patients with coexisting malignant tumor and tuberculosis benefited equally from anti-PD-(L)1 therapy, and anti-tuberculosis response was unimpaired for those with active tuberculosis. Notably, the combination of anti-PD-(L)1 and anti-tuberculosis therapy was well-tolerated without significant unexpected toxic effects.
Collapse
Affiliation(s)
- Shan Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Mei-Feng Ye
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Xiao-Ting Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Bai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Hao Huang
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Si-Cong Ma
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Jun Zou
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Yu-Xiang Wen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Juan Wu
- Department of Tuberculosis, Guangzhou Chest Hospital, Guangzhou, China
| | - Xue-Jun Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian-Lan Zhang
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Wen-Chang Cen
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Duo-Hua Su
- Department of Tuberculosis, Guangzhou Chest Hospital, Guangzhou, China
| | - Hui-Yi Huang
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, China
| | - Zhong-Yi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov 2021; 7:90. [PMID: 34608123 PMCID: PMC8490369 DOI: 10.1038/s41421-021-00301-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
Pathogenic mycobacteria induce the formation of hypoxic granulomas during latent tuberculosis (TB) infection, in which the immune system contains, but fails to eliminate the mycobacteria. Fatty acid metabolism-related genes are relatively overrepresented in the mycobacterial genome and mycobacteria favor host-derived fatty acids as nutrient sources. However, whether and how mycobacteria modulate host fatty acid metabolism to drive granuloma progression remains unknown. Here, we report that mycobacteria under hypoxia markedly secrete the protein Rv0859/MMAR_4677 (Fatty-acid degradation A, FadA), which is also enriched in tuberculous granulomas. FadA acts as an acetyltransferase that converts host acetyl-CoA to acetoacetyl-CoA. The reduced acetyl-CoA level suppresses H3K9Ac-mediated expression of the host proinflammatory cytokine Il6, thus promoting granuloma progression. Moreover, supplementation of acetate increases the level of acetyl-CoA and inhibits the formation of granulomas. Our findings suggest an unexpected mechanism of a hypoxia-induced mycobacterial protein suppressing host immunity via modulation of host fatty acid metabolism and raise the possibility of a novel therapeutic strategy for TB infection.
Collapse
|
48
|
Chatterjee S, Yabaji SM, Rukhlenko OS, Bhattacharya B, Waligurski E, Vallavoju N, Ray S, Kholodenko BN, Brown LE, Beeler AB, Ivanov AR, Kobzik L, Porco JA, Kramnik I. Channeling macrophage polarization by rocaglates increases macrophage resistance to Mycobacterium tuberculosis. iScience 2021; 24:102845. [PMID: 34381970 PMCID: PMC8333345 DOI: 10.1016/j.isci.2021.102845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/22/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages contribute to host immunity and tissue homeostasis via alternative activation programs. M1-like macrophages control intracellular bacterial pathogens and tumor progression. In contrast, M2-like macrophages shape reparative microenvironments that can be conducive for pathogen survival or tumor growth. An imbalance of these macrophages phenotypes may perpetuate sites of chronic unresolved inflammation, such as infectious granulomas and solid tumors. We have found that plant-derived and synthetic rocaglates sensitize macrophages to low concentrations of the M1-inducing cytokine IFN-gamma and inhibit their responsiveness to IL-4, a prototypical activator of the M2-like phenotype. Treatment of primary macrophages with rocaglates enhanced phagosome-lysosome fusion and control of intracellular mycobacteria. Thus, rocaglates represent a novel class of immunomodulators that can direct macrophage polarization toward the M1-like phenotype in complex microenvironments associated with hypofunction of type 1 and/or hyperactivation of type 2 immunity, e.g., chronic bacterial infections, allergies, and, possibly, certain tumors.
Collapse
Affiliation(s)
- Sujoy Chatterjee
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Shivraj M. Yabaji
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Bidisha Bhattacharya
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Emily Waligurski
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nandini Vallavoju
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, USA
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Aaron B. Beeler
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| |
Collapse
|
49
|
Tans R, Dey S, Dey NS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Spatially Resolved Immunometabolism to Understand Infectious Disease Progression. Front Microbiol 2021; 12:709728. [PMID: 34489899 PMCID: PMC8418271 DOI: 10.3389/fmicb.2021.709728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infectious diseases, including those of viral, bacterial, fungal, and parasitic origin are often characterized by focal inflammation occurring in one or more distinct tissues. Tissue-specific outcomes of infection are also evident in many infectious diseases, suggesting that the local microenvironment may instruct complex and diverse innate and adaptive cellular responses resulting in locally distinct molecular signatures. In turn, these molecular signatures may both drive and be responsive to local metabolic changes in immune as well as non-immune cells, ultimately shaping the outcome of infection. Given the spatial complexity of immune and inflammatory responses during infection, it is evident that understanding the spatial organization of transcripts, proteins, lipids, and metabolites is pivotal to delineating the underlying regulation of local immunity. Molecular imaging techniques like mass spectrometry imaging and spatially resolved, highly multiplexed immunohistochemistry and transcriptomics can define detailed metabolic signatures at the microenvironmental level. Moreover, a successful complementation of these two imaging techniques would allow multi-omics analyses of inflammatory microenvironments to facilitate understanding of disease pathogenesis and identify novel targets for therapeutic intervention. Here, we describe strategies for downstream data analysis of spatially resolved multi-omics data and, using leishmaniasis as an exemplar, describe how such analysis can be applied in a disease-specific context.
Collapse
Affiliation(s)
- Roel Tans
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Ron M. A. Heeren
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
50
|
Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature 2021; 596:211-220. [PMID: 34381231 PMCID: PMC8475179 DOI: 10.1038/s41586-021-03634-9] [Citation(s) in RCA: 753] [Impact Index Per Article: 188.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Deciphering the principles and mechanisms by which gene activity orchestrates complex cellular arrangements in multicellular organisms has far-reaching implications for research in the life sciences. Recent technological advances in next-generation sequencing- and imaging-based approaches have established the power of spatial transcriptomics to measure expression levels of all or most genes systematically throughout tissue space, and have been adopted to generate biological insights in neuroscience, development and plant biology as well as to investigate a range of disease contexts, including cancer. Similar to datasets made possible by genomic sequencing and population health surveys, the large-scale atlases generated by this technology lend themselves to exploratory data analysis for hypothesis generation. Here we review spatial transcriptomic technologies and describe the repertoire of operations available for paths of analysis of the resulting data. Spatial transcriptomics can also be deployed for hypothesis testing using experimental designs that compare time points or conditions-including genetic or environmental perturbations. Finally, spatial transcriptomic data are naturally amenable to integration with other data modalities, providing an expandable framework for insight into tissue organization.
Collapse
Affiliation(s)
- Anjali Rao
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA
| | - Dalia Barkley
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA
| | - Gustavo S França
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|